1
|
Cerdeira CD, Brigagão MRPL. Targeting Macrophage Polarization in Infectious Diseases: M1/M2 Functional Profiles, Immune Signaling and Microbial Virulence Factors. Immunol Invest 2024; 53:1030-1091. [PMID: 38913937 DOI: 10.1080/08820139.2024.2367682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
INTRODUCTION An event of increasing interest during host-pathogen interactions is the polarization of patrolling/naive monocytes (MOs) into macrophage subsets (MФs). Therapeutic strategies aimed at modulating this event are under investigation. METHODS This review focuses on the mechanisms of induction/development and profile of MФs polarized toward classically proinflammatory (M1) or alternatively anti-inflammatory (M2) phenotypes in response to bacteria, fungi, parasites, and viruses. RESULTS AND DISCUSSION It highlights nuclear, cytoplasmic, and cell surface receptors (pattern recognition receptors/PPRs), microenvironmental mediators, and immune signaling. MФs polarize into phenotypes: M1 MФs, activated by IFN-γ, pathogen-associated molecular patterns (PAMPs, e.g. lipopolysaccharide) and membrane-bound PPRs ligands (TLRs/CLRs ligands); or M2 MФs, induced by interleukins (ILs-4, -10 and -13), antigen-antibody complexes, and helminth PAMPs. Polarization toward M1 and M2 profiles evolve in a pathogen-specific manner, with or without canonicity, and can vary widely. Ultimately, this can result in varying degrees of host protection or more severe disease outcome. On the one hand, the host is driving effective MФs polarization (M1 or M2); but on the other hand, microorganisms may skew the polarization through virulence factors to increase pathogenicity. Cellular/genomic reprogramming also ensures plasticity of M1/M2 phenotypes. Because modulation of polarization can occur at multiple points, new insights and emerging perspectives may have clinical implications during the inflammation-to-resolution transition; translated into practical applications as for therapeutic/vaccine design target to boost microbicidal response (M1, e.g. triggering oxidative burst) with specifics PAMPs/IFN-γ or promote tissue repair (M2, increasing arginase activity) via immunotherapy.
Collapse
|
2
|
Vrijmoeth HD, Ursinus J, Botey-Bataller J, Kuijpers Y, Chu X, van de Schoor FR, Scicluna BP, Xu CJ, Netea MG, Kullberg BJ, van den Wijngaard CC, Li Y, Hovius JW, Joosten LAB. Genome-wide analyses in Lyme borreliosis: identification of a genetic variant associated with disease susceptibility and its immunological implications. BMC Infect Dis 2024; 24:337. [PMID: 38515037 PMCID: PMC10956190 DOI: 10.1186/s12879-024-09217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Genetic variation underly inter-individual variation in host immune responses to infectious diseases, and may affect susceptibility or the course of signs and symptoms. METHODS We performed genome-wide association studies in a prospective cohort of 1138 patients with physician-confirmed Lyme borreliosis (LB), the most common tick-borne disease in the Northern hemisphere caused by the bacterium Borrelia burgdorferi sensu lato. Genome-wide variants in LB patients-divided into a discovery and validation cohort-were compared to two healthy cohorts. Additionally, ex vivo monocyte-derived cytokine responses of peripheral blood mononuclear cells to several stimuli including Borrelia burgdorferi were performed in both LB patient and healthy control samples, as were stimulation experiments using mechanistic/mammalian target of rapamycin (mTOR) inhibitors. In addition, for LB patients, anti-Borrelia antibody responses were measured. Finally, in a subset of LB patients, gene expression was analysed using RNA-sequencing data from the ex vivo stimulation experiments. RESULTS We identified a previously unknown genetic variant, rs1061632, that was associated with enhanced LB susceptibility. This polymorphism was an eQTL for KCTD20 and ETV7 genes, and its major risk allele was associated with upregulation of the mTOR pathway and cytokine responses, and lower anti-Borrelia antibody production. In addition, we replicated the recently reported SCGB1D2 locus that was suggested to have a protective effect on B. burgdorferi infection, and associated this locus with higher Borrelia burgdorferi antibody indexes and lower IL-10 responses. CONCLUSIONS Susceptibility for LB was associated with higher anti-inflammatory responses and reduced anti-Borrelia antibody production, which in turn may negatively impact bacterial clearance. These findings provide important insights into the immunogenetic susceptibility for LB and may guide future studies on development of preventive or therapeutic measures. TRIAL REGISTRATION The LymeProspect study was registered with the International Clinical Trials Registry Platform (NTR4998, registration date 2015-02-13).
Collapse
Affiliation(s)
- Hedwig D Vrijmoeth
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Jeanine Ursinus
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam UMC, Location AMC, University of Amsterdam, P.O. Box 22660, Amsterdam, 1100 DD, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Javier Botey-Bataller
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
| | - Yunus Kuijpers
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
| | - Xiaojing Chu
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
| | - Freek R van de Schoor
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Brendon P Scicluna
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei Hospital, University of Malta, MSD 2080, Msida, Malta
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences, University of Malta, MSD 2080, Msida, Malta
| | - Cheng-Jian Xu
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
| | - Mihai G Netea
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, 53113, Bonn, Germany
| | - Bart Jan Kullberg
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Cees C van den Wijngaard
- National Institute for Public Health and Environment (RIVM), Center for Infectious Disease Control, Bilthoven, 3720 BA, the Netherlands
| | - Yang Li
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
| | - Joppe W Hovius
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam UMC, Location AMC, University of Amsterdam, P.O. Box 22660, Amsterdam, 1100 DD, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands.
| |
Collapse
|
3
|
Koloski CW, Hurry G, Foley-Eby A, Adam H, Goldstein S, Zvionow P, Detmer SE, Voordouw MJ. Male C57BL/6J mice have higher presence and abundance of Borrelia burgdorferi in their ventral skin compared to female mice. Ticks Tick Borne Dis 2024; 15:102308. [PMID: 38215632 DOI: 10.1016/j.ttbdis.2024.102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024]
Abstract
Borrelia burgdorferi is a tick-borne spirochete that causes Lyme disease in humans. The host immune system controls the abundance of the spirochete in the host tissues. Recent work with immunocompetent Mus musculus mice strain C3H/HeJ found that males had a higher tissue infection prevalence and spirochete load compared to females. The purpose of this study was to determine whether host sex and acquired immunity interact to influence the prevalence and abundance of spirochetes in the tissues of the commonly used mouse strain C57BL/6. Wildtype (WT) mice and their SCID counterparts (C57BL/6) were experimentally infected with B. burgdorferi via tick bite. Ear biopsies were sampled at weeks 4, 8, and 12 post-infection (PI) and five tissues (left ear, ventral skin, heart, tibiotarsal joint of left hind leg, and liver) were collected at necropsy (16 weeks PI). The mean spirochete load in the tissues of the SCID mice was 260.4x higher compared to the WT mice. In WT mice, the infection prevalence in the ventral skin was significantly higher in males (40.0 %) compared to females (0.0 %), and the spirochete load in the rear tibiotarsal joint was significantly higher (4.3x) in males compared to females. In SCID mice, the spirochete load in the ventral skin was 200.0x higher in males compared to females, but there were no significant sex-specific difference in spirochete load in the other tissues (left ear, heart, tibiotarsal joint, or liver). Thus, the absence of acquired immunity greatly amplified the spirochete load in the ventral skin of male mice. It is important to note that the observed sex-specific differences in laboratory mice cannot be extrapolated to humans. Future studies should investigate the mechanisms underlying the male bias in the abundance of B. burgdorferi in the mouse skin.
Collapse
Affiliation(s)
- Cody W Koloski
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Georgia Hurry
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Alexandra Foley-Eby
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Hesham Adam
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Savannah Goldstein
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Pini Zvionow
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Susan E Detmer
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Maarten J Voordouw
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
4
|
Pavia CS, Plummer MM, Varantsova A. An Unusual Case of Serologically Confirmed Post-Partum Lyme Disease Following an Asymptomatic Borrelia burgdorferi Infection Acquired during Pregnancy and Lacking Vertical Transmission in Utero. Pathogens 2024; 13:186. [PMID: 38535530 PMCID: PMC10976031 DOI: 10.3390/pathogens13030186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/11/2025] Open
Abstract
In this report, we describe a 23-year-old female who, while pregnant, was exposed to Borrelia burgdorferi but did not develop significant signs or symptoms (joint pain, arthritis) of Lyme disease until shortly after delivering a healthy child at term. Serologic testing confirmed infection with B. burgdorferi. A 3-week course of treatment with doxycycline was completely curative. There was no evidence for congenital or perinatal transmission of this pathogen at any point pre-term or postnatally. The key reasons that could account for this unique clinical scenario are discussed in the context of previously published related reports.
Collapse
Affiliation(s)
- Charles S. Pavia
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- Division of Infectious Diseases, New York Medical College, Valhalla, NY 10595, USA
| | - Maria M. Plummer
- Department of Clinical Specialties, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Alena Varantsova
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32308, USA
| |
Collapse
|
5
|
Sze CW, Zhang K, Lynch MJ, Iyer R, Crane BR, Schwartz I, Li C. A chemosensory-like histidine kinase is dispensable for chemotaxis in vitro but regulates the virulence of Borrelia burgdorferi through modulating the stability of RpoS. PLoS Pathog 2023; 19:e1011752. [PMID: 38011206 PMCID: PMC10703414 DOI: 10.1371/journal.ppat.1011752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 10/14/2023] [Indexed: 11/29/2023] Open
Abstract
As an enzootic pathogen, the Lyme disease bacterium Borrelia burgdorferi possesses multiple copies of chemotaxis proteins, including two chemotaxis histidine kinases (CHK), CheA1 and CheA2. Our previous study showed that CheA2 is a genuine CHK that is required for chemotaxis; however, the role of CheA1 remains mysterious. This report first compares the structural features that differentiate CheA1 and CheA2 and then provides evidence to show that CheA1 is an atypical CHK that controls the virulence of B. burgdorferi through modulating the stability of RpoS, a key transcriptional regulator of the spirochete. First, microscopic analyses using green-fluorescence-protein (GFP) tags reveal that CheA1 has a unique and dynamic cellular localization. Second, loss-of-function studies indicate that CheA1 is not required for chemotaxis in vitro despite sharing a high sequence and structural similarity to its counterparts from other bacteria. Third, mouse infection studies using needle inoculations show that a deletion mutant of CheA1 (cheA1mut) is able to establish systemic infection in immune-deficient mice but fails to do so in immune-competent mice albeit the mutant can survive at the inoculation site for up to 28 days. Tick and mouse infection studies further demonstrate that CheA1 is dispensable for tick colonization and acquisition but essential for tick transmission. Lastly, mechanistic studies combining immunoblotting, protein turnover, mutagenesis, and RNA-seq analyses reveal that depletion of CheA1 affects RpoS stability, leading to reduced expression of several RpoS-regulated virulence factors (i.e., OspC, BBK32, and DbpA), likely due to dysregulated clpX and lon protease expression. Bulk RNA-seq analysis of infected mouse skin tissues further show that cheA1mut fails to elicit mouse tnf-α, il-10, il-1β, and ccl2 expression, four important cytokines for Lyme disease development and B. burgdorferi transmigration. Collectively, these results reveal a unique role and regulatory mechanism of CheA1 in modulating virulence factor expression and add new insights into understanding the regulatory network of B. burgdorferi.
Collapse
Affiliation(s)
- Ching Wooen Sze
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kai Zhang
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Michael J. Lynch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Radha Iyer
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Ira Schwartz
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Chunhao Li
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
6
|
Gaber AM, Mandric I, Nitirahardjo C, Piontkivska H, Hillhouse AE, Threadgill DW, Zelikovsky A, Rogovskyy AS. Comparative transcriptome analysis of Peromyscus leucopus and C3H mice infected with the Lyme disease pathogen. Front Cell Infect Microbiol 2023; 13:1115350. [PMID: 37113133 PMCID: PMC10126474 DOI: 10.3389/fcimb.2023.1115350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Lyme disease (LD), the most prevalent tick-borne disease of humans in the Northern Hemisphere, is caused by the spirochetal bacterium of Borreliella burgdorferi (Bb) sensu lato complex. In nature, Bb spirochetes are continuously transmitted between Ixodes ticks and mammalian or avian reservoir hosts. Peromyscus leucopus mice are considered the primary mammalian reservoir of Bb in the United States. Earlier studies demonstrated that experimentally infected P. leucopus mice do not develop disease. In contrast, C3H mice, a widely used laboratory strain of Mus musculus in the LD field, develop severe Lyme arthritis. To date, the exact tolerance mechanism of P. leucopus mice to Bb-induced infection remains unknown. To address this knowledge gap, the present study has compared spleen transcriptomes of P. leucopus and C3H/HeJ mice infected with Bb strain 297 with those of their respective uninfected controls. Overall, the data showed that the spleen transcriptome of Bb-infected P. leucopus mice was much more quiescent compared to that of the infected C3H mice. To date, the current investigation is one of the few that have examined the transcriptome response of natural reservoir hosts to Borreliella infection. Although the experimental design of this study significantly differed from those of two previous investigations, the collective results of the current and published studies have consistently demonstrated very limited transcriptomic responses of different reservoir hosts to the persistent infection of LD pathogens. Importance The bacterium Borreliella burgdorferi (Bb) causes Lyme disease, which is one of the emerging and highly debilitating human diseases in countries of the Northern Hemisphere. In nature, Bb spirochetes are maintained between hard ticks of Ixodes spp. and mammals or birds. In the United States, the white-footed mouse, Peromyscus leucopus, is one of the main Bb reservoirs. In contrast to humans and laboratory mice (e.g., C3H mice), white-footed mice rarely develop clinical signs (disease) despite being (persistently) infected with Bb. How the white-footed mouse tolerates Bb infection is the question that the present study has attempted to address. Comparisons of genetic responses between Bb-infected and uninfected mice demonstrated that, during a long-term Bb infection, C3H mice reacted much stronger, whereas P. leucopus mice were relatively unresponsive.
Collapse
Affiliation(s)
- Alhussien M. Gaber
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Igor Mandric
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Caroline Nitirahardjo
- Department of Biological Sciences, and School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Helen Piontkivska
- Department of Biological Sciences, and School of Biomedical Sciences, Kent State University, Kent, OH, United States
- Brain Health Research Institute, Kent State University, Kent, OH, United States
| | - Andrew E. Hillhouse
- Texas A&M Institute for Genomics Sciences and Society, Texas A&M University, College Station, TX, United States
| | - David W. Threadgill
- Texas A&M Institute for Genomics Sciences and Society, Texas A&M University, College Station, TX, United States
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Texas A&M University, College Station, TX, United States
| | - Alex Zelikovsky
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Artem S. Rogovskyy
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
7
|
Santiago KN, Kozlik T, Liedhegner ES, Slick RA, Lawlor MW, Nardelli DT. Effects of Regulatory T Cell Depletion in BALB/c Mice Infected with Low Doses of Borrelia burgdorferi. Pathogens 2023; 12:189. [PMID: 36839461 PMCID: PMC9965304 DOI: 10.3390/pathogens12020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
We previously demonstrated that a depletion of regulatory T (Treg) cells in Lyme arthritis-resistant C57BL/6 mice leads to pathological changes in the tibiotarsal joints following infection with Borrelia burgdorferi. Here, we assessed the effects of Treg cells on the response to B. burgdorferi infection in BALB/c mice, which exhibit infection-dose-dependent disease and a different sequence of immune events than C57BL/6 mice. The depletion of Treg cells prior to infection with 1 × 102, but not 5 × 103, organisms led to increased swelling of the tibiotarsal joints. However, Treg cell depletion did not significantly affect the development of histopathology at these low doses of infection. BALB/c mice depleted of Treg cells before infection with 1 × 103 spirochetes harbored a higher borrelial load in the hearts and exhibited higher levels of serum interleukin-10 five weeks later. These results indicate that Treg cells regulate certain aspects of the response to B. burgdorferi in a mouse strain that may display a range of disease severities. As the presentation of Lyme disease may vary among humans, it is necessary to consider multiple animal models to obtain a complete picture of the various means by which Treg cells affect the host response to B. burgdorferi.
Collapse
Affiliation(s)
- Kaitlyn N. Santiago
- Department of Biomedical Sciences, University of Wisconsin–Milwaukee, Milwaukee, WI 53211, USA
| | - Tanya Kozlik
- Department of Biomedical Sciences, University of Wisconsin–Milwaukee, Milwaukee, WI 53211, USA
| | - Elizabeth S. Liedhegner
- Department of Biomedical Sciences, University of Wisconsin–Milwaukee, Milwaukee, WI 53211, USA
| | - Rebecca A. Slick
- Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael W. Lawlor
- Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Dean T. Nardelli
- Department of Biomedical Sciences, University of Wisconsin–Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
8
|
Helble JD, McCarthy JE, Sawden M, Starnbach MN, Hu LT. The PD-1/PD-L1 pathway is induced during Borrelia burgdorferi infection and inhibits T cell joint infiltration without compromising bacterial clearance. PLoS Pathog 2022; 18:e1010903. [PMID: 36265003 PMCID: PMC9624412 DOI: 10.1371/journal.ppat.1010903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/01/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
The Lyme disease bacterial pathogen, Borrelia burgdorferi, establishes a long-term infection inside its mammalian hosts. Despite the continued presence of the bacteria in animal models of disease, inflammation is transitory and resolves spontaneously. T cells with limited effector functions and the inability to become activated by antigen, termed exhausted T cells, are present in many long-term infections. These exhausted T cells mediate a balance between pathogen clearance and preventing tissue damage resulting from excess inflammation. Exhausted T cells express a variety of immunoinhibitory molecules, including the molecule PD-1. Following B. burgdorferi infection, we found that PD-1 and its ligand PD-L1 are significantly upregulated on CD4+ T cells and antigen presenting cell subsets, respectively. Using mice deficient in PD-1, we found that the PD-1/PD-L1 pathway did not impact bacterial clearance but did impact T cell expansion and accumulation in the ankle joint and popliteal lymph nodes without affecting B cell populations or antibody production, suggesting that the PD-1/PD-L1 pathway may play a role in shaping the T cell populations present in affected tissues.
Collapse
Affiliation(s)
- Jennifer D. Helble
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Julie E. McCarthy
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Machlan Sawden
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Michael N. Starnbach
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
9
|
Hammond EM, Baumgarth N. CD4 T cell responses in persistent Borrelia burgdorferi infection. Curr Opin Immunol 2022; 77:102187. [PMID: 35550259 DOI: 10.1016/j.coi.2022.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022]
Abstract
Infection of mice with Borrelia burgdorferi (Bb), a tick-transmitted spirochete and the pathogen that causes Lyme disease in humans, triggers CD4 T cell activation in secondary lymphoid tissues, from which they disseminate into various infected tissues. Despite their activation and the appearance of CD4 T cell-dependent antibody responses, Bb establishes persistent infection in natural Bb reservoir hosts in the absence of overt disease, raising the question of the effectiveness of the anti-Bb T cell responses. Reviewing the existing literature, we propose that CD4 T cells might constitute a host cell target of Bb-mediated immune evasion, rendering these cells ineffective in orchestrating effective inflammatory responses and in supporting highly functional Bb-specific antibody induction. Supporting the induction of more effective CD4 T cell responses may help overcome Bb persistence.
Collapse
Affiliation(s)
- Elizabeth M Hammond
- Graduate Group in Immunology, University of California Davis, One Shields Ave, Davis, CA 95616, USA; Center for Immunology and Infectious Diseases, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Nicole Baumgarth
- Graduate Group in Immunology, University of California Davis, One Shields Ave, Davis, CA 95616, USA; Center for Immunology and Infectious Diseases, University of California Davis, One Shields Ave, Davis, CA 95616, USA; Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
10
|
Li J, Ma Y, Paquette JK, Richards AC, Mulvey MA, Zachary JF, Teuscher C, Weis JJ. The Cdkn2a gene product p19 alternative reading frame (p19ARF) is a critical regulator of IFNβ-mediated Lyme arthritis. PLoS Pathog 2022; 18:e1010365. [PMID: 35324997 PMCID: PMC8946740 DOI: 10.1371/journal.ppat.1010365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/11/2022] [Indexed: 11/18/2022] Open
Abstract
Type I interferon (IFN) has been identified in patients with Lyme disease, and its abundant expression in joint tissues of C3H mice precedes development of Lyme arthritis. Forward genetics using C3H mice with severe Lyme arthritis and C57BL/6 (B6) mice with mild Lyme arthritis identified the Borrelia burgdorferi arthritis-associated locus 1 (Bbaa1) on chromosome 4 (Chr4) as a regulator of B. burgdorferi-induced IFNβ expression and Lyme arthritis severity. B6 mice introgressed with the C3H allele for Bbaa1 (B6.C3-Bbaa1 mice) displayed increased severity of arthritis, which is initiated by myeloid lineage cells in joints. Using advanced congenic lines, the physical size of the Bbaa1 interval has been reduced to 2 Mbp, allowing for identification of potential genetic regulators. Small interfering RNA (siRNA)-mediated silencing identified Cdkn2a as the gene responsible for Bbaa1 allele-regulated induction of IFNβ and IFN-stimulated genes (ISGs) in bone marrow-derived macrophages (BMDMs). The Cdkn2a-encoded p19 alternative reading frame (p19ARF) protein regulates IFNβ induction in BMDMs as shown by siRNA silencing and overexpression of ARF. In vivo studies demonstrated that p19ARF contributes to joint-specific induction of IFNβ and arthritis severity in B. burgdorferi-infected mice. p19ARF regulates B. burgdorferi-induced IFNβ in BMDMs by stabilizing the tumor suppressor p53 and sequestering the transcriptional repressor BCL6. Our findings link p19ARF regulation of p53 and BCL6 to the severity of IFNβ-induced Lyme arthritis in vivo and indicate potential novel roles for p19ARF, p53, and BCL6 in Lyme disease and other IFN hyperproduction syndromes. Lyme disease is caused by infection with the tick-transmitted bacterium Borrelia burgdorferi. Although different isolates of B. burgdorferi have distinct potential for dissemination and tissue invasion, factors intrinsic to the infected host also play an important role in directing the severity of Lyme disease. In the animal model, infected C3H mice develop severe Lyme arthritis following elevation of type I IFN in joint tissue, while in C57BL/6 (B6) mice arthritis is mild and not associated with type I IFN. We demonstrated that the Borrelia burgdorferi arthritis-associated locus 1 (Bbaa1) on chromosome 4 (Chr4) intrinsically controls the magnitude of IFNβ production and the severity of Lyme arthritis in C3H vs B6 mice. The Cdkn2a gene was positionally identified as the regulator of IFNβ within Bbaa1, and determined to function through its protein product p19 alternative reading frame (p19ARF). ARF regulates IFNβ expression and Lyme arthritis severity by modulating the activities of the tumor suppressor p53 and transcriptional repressor BCL6. Our study provides new insight and potential therapeutic targets for the investigation of type I IFN-dependent Lyme arthritis and other IFN-driven diseases.
Collapse
Affiliation(s)
- Jinze Li
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Ying Ma
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Jackie K. Paquette
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Amanda C. Richards
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Matthew A. Mulvey
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - James F. Zachary
- Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Cory Teuscher
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, Vermont, United States of America
| | - Janis J. Weis
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
11
|
Donta ST, States LJ, Adams WA, Bankhead T, Baumgarth N, Embers ME, Lochhead RB, Stevenson B. Report of the Pathogenesis and Pathophysiology of Lyme Disease Subcommittee of the HHS Tick Borne Disease Working Group. Front Med (Lausanne) 2021; 8:643235. [PMID: 34164410 PMCID: PMC8215209 DOI: 10.3389/fmed.2021.643235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
An understanding of the pathogenesis and pathophysiology of Lyme disease is key to the ultimate care of patients with Lyme disease. To better understand the various mechanisms underlying the infection caused by Borrelia burgdorferi, the Pathogenesis and Pathophysiology of Lyme Disease Subcommittee was formed to review what is currently known about the pathogenesis and pathophysiology of Lyme disease, from its inception, but also especially about its ability to persist in the host. To that end, the authors of this report were assembled to update our knowledge about the infectious process, identify the gaps that exist in our understanding of the process, and provide recommendations as to how to best approach solutions that could lead to a better means to manage patients with persistent Lyme disease.
Collapse
Affiliation(s)
- Sam T Donta
- Falmouth Hospital, Falmouth, MA, United States
| | - Leith J States
- Office of the Assistant Secretary for Health, U.S. Department of Health and Human Services, Washington, DC, United States
| | - Wendy A Adams
- Bay Area Lyme Foundation, Portola Valley, CA, United States
| | - Troy Bankhead
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA, United States
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Monica E Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| | - Robert B Lochhead
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
12
|
The Brilliance of Borrelia: Mechanisms of Host Immune Evasion by Lyme Disease-Causing Spirochetes. Pathogens 2021; 10:pathogens10030281. [PMID: 33801255 PMCID: PMC8001052 DOI: 10.3390/pathogens10030281] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
Lyme disease (LD) has become the most common vector-borne illness in the northern hemisphere. The causative agent, Borrelia burgdorferi sensu lato, is capable of establishing a persistent infection within the host. This is despite the activation of both the innate and adaptive immune responses. B. burgdorferi utilizes several immune evasion tactics ranging from the regulation of surface proteins, tick saliva, antimicrobial peptide resistance, and the disabling of the germinal center. This review aims to cover the various methods by which B. burgdorferi evades detection and destruction by the host immune response, examining both the innate and adaptive responses. By understanding the methods employed by B. burgdorferi to evade the host immune response, we gain a deeper knowledge of B. burgdorferi pathogenesis and Lyme disease, and gain insight into how to create novel, effective treatments.
Collapse
|
13
|
Saunders RA, Michniacki TF, Hames C, Moale HA, Wilke C, Kuo ME, Nguyen J, Hartlerode AJ, Moore BB, Sekiguchi JM. Elevated inflammatory responses and targeted therapeutic intervention in a preclinical mouse model of ataxia-telangiectasia lung disease. Sci Rep 2021; 11:4268. [PMID: 33608602 PMCID: PMC7895952 DOI: 10.1038/s41598-021-83531-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive, multisystem disorder characterized by cerebellar degeneration, cancer predisposition, and immune system defects. A major cause of mortality in A-T patients is severe pulmonary disease; however, the underlying causes of the lung complications are poorly understood, and there are currently no curative therapeutic interventions. In this study, we examined the lung phenotypes caused by ATM-deficient immune cells using a mouse model of A-T pulmonary disease. In response to acute lung injury, ATM-deficiency causes decreased survival, reduced blood oxygen saturation, elevated neutrophil recruitment, exaggerated and prolonged inflammatory responses and excessive lung injury compared to controls. We found that ATM null bone marrow adoptively transferred to WT recipients induces similar phenotypes that culminate in impaired lung function. Moreover, we demonstrated that activated ATM-deficient macrophages exhibit significantly elevated production of harmful reactive oxygen and nitrogen species and pro-inflammatory cytokines. These findings indicate that ATM-deficient immune cells play major roles in causing the lung pathologies in A-T. Based on these results, we examined the impact of inhibiting the aberrant inflammatory responses caused by ATM-deficiency with reparixin, a CXCR1/CXCR2 chemokine receptor antagonist. We demonstrated that reparixin treatment reduces neutrophil recruitment, edema and tissue damage in ATM mutant lungs. Thus, our findings indicate that targeted inhibition of CXCR1/CXCR2 attenuates pulmonary phenotypes caused by ATM-deficiency and suggest that this treatment approach represents a viable therapeutic strategy for A-T lung disease.
Collapse
Affiliation(s)
- Rudel A Saunders
- Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, 2063 BSRB, Box 2200, Ann Arbor, MI, 48109, USA
| | - Thomas F Michniacki
- Department of Pediatric Hematology/Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Courtney Hames
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Hilary A Moale
- Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, 2063 BSRB, Box 2200, Ann Arbor, MI, 48109, USA
| | - Carol Wilke
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Molly E Kuo
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Johnathan Nguyen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Bethany B Moore
- Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, 2063 BSRB, Box 2200, Ann Arbor, MI, 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - JoAnn M Sekiguchi
- Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, 2063 BSRB, Box 2200, Ann Arbor, MI, 48109, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Bernard Q, Hu LT. Innate Immune Memory to Repeated Borrelia burgdorferi Exposure Correlates with Murine In Vivo Inflammatory Phenotypes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:3383-3389. [PMID: 33168577 PMCID: PMC7725865 DOI: 10.4049/jimmunol.2000686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/07/2020] [Indexed: 01/02/2023]
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, is transmitted by the bite of an infected tick. Once inoculated into the host dermis, it disseminates to various organs including distant skin sites, the heart, the joint and the nervous system. Most humans will develop an early skin manifestation called erythema migrans at the tick bite site. This can be followed by symptoms such as carditis, neuritis, meningitis, or arthritis if not treated. A specific mouse strain, C3H/HeN develops arthritis with B. burgdorferi infection whereas another strain, C57BL/6, develops minimal to no arthritis. Neither strain of mice show any skin signs of rash or inflammation. Factors that determine the presence of skin inflammation and the joint arthritis susceptibility in the host are only partially characterized. We show in this study that murine fibroblast-like synoviocytes display trained immunity, a program in some cells that results in increased inflammatory responses if the cell has previously come in contact with a stimulus, and that trained immunity in fibroblast-like synoviocytes tested ex vivo correlates with Lyme arthritis susceptibility. Conversely, skin fibroblasts do not exhibit trained immunity, which correlates with the absence of skin symptoms in these mice. Moreover, we demonstrate that the trained phenotype in FLS is affected by the cell environment, which depends on the host genetic background. Future studies expanding this initial report of the role of trained immunity on symptoms of B. burgdorferi infection may provide insight into the pathogenesis of disease in murine models.
Collapse
Affiliation(s)
- Quentin Bernard
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
| |
Collapse
|
15
|
Bockenstedt LK, Wooten RM, Baumgarth N. Immune Response to Borrelia: Lessons from Lyme Disease Spirochetes. Curr Issues Mol Biol 2020; 42:145-190. [PMID: 33289684 PMCID: PMC10842262 DOI: 10.21775/cimb.042.145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The mammalian host responds to infection with Borrelia spirochetes through a highly orchestrated immune defense involving innate and adaptive effector functions aimed toward limiting pathogen burdens, minimizing tissue injury, and preventing subsequent reinfection. The evolutionary adaptation of Borrelia spirochetes to their reservoir mammalian hosts may allow for its persistence despite this immune defense. This review summarizes our current understanding of the host immune response to B. burgdorferi sensu lato, the most widely studied Borrelia spp. and etiologic agent of Lyme borreliosis. Pertinent literature will be reviewed with emphasis on in vitro, ex vivo and animal studies that influenced our understanding of both the earliest responses to B. burgdorferi as it enters the mammalian host and those that evolve as spirochetes disseminate and establish infection in multiple tissues. Our focus is on the immune response of inbred mice, the most commonly studied animal model of B. burgdorferi infection and surrogate for one of this pathogen's principle natural reservoir hosts, the white-footed deer mouse. Comparison will be made to the immune responses of humans with Lyme borreliosis. Our goal is to provide an understanding of the dynamics of the mammalian immune response during infection with B. burgdorferi and its relation to the outcomes in reservoir (mouse) and non-reservoir (human) hosts.
Collapse
Affiliation(s)
- Linda K. Bockenstedt
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8031, USA
| | - R. Mark Wooten
- Department of Medical Microbiology and Immunology, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases and Dept. Pathology, Microbiology and Immunology, University of California, Davis, Davis CA 95616, USA
| |
Collapse
|
16
|
Regulatory T Cells Contribute to Resistance against Lyme Arthritis. Infect Immun 2020; 88:IAI.00160-20. [PMID: 32778610 DOI: 10.1128/iai.00160-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
The symptoms of Lyme disease are caused by inflammation induced by species of the Borrelia burgdorferi sensu lato complex. The various presentations of Lyme disease in the population suggest that differences exist in the intensity and regulation of the host response to the spirochete. Previous work has described correlations between the presence of regulatory T cells and recovery from Lyme arthritis. However, the effects of Foxp3-expressing CD4+ T cells existing prior to, and during, B. burgdorferi infection have not been well characterized. Here, we used C57BL/6 "depletion of regulatory T cell" mice to assess the effects these cells have on the arthritis-resistant phenotype characteristic of this mouse strain. We showed that depletion of regulatory T cells prior to infection with B. burgdorferi resulted in sustained swelling, as well as histopathological changes, of the tibiotarsal joints that were not observed in infected control mice. Additionally, in vitro stimulation of splenocytes from these regulatory T cell-depleted mice resulted in increases in gamma interferon and interleukin-17 production and decreases in interleukin-10 production that were not evident among splenocytes of infected mice in which Treg cells were not depleted. Depletion of regulatory T cells at various times after infection also induced rapid joint swelling. Collectively, these findings provide evidence that regulatory T cells existing at the time of, and possibly after, B. burgdorferi infection may play an important role in limiting the development of arthritis.
Collapse
|
17
|
Shemenski J. Cimetidine as a novel adjunctive treatment for early stage Lyme disease. Med Hypotheses 2019; 128:94-100. [DOI: 10.1016/j.mehy.2016.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/28/2016] [Indexed: 12/24/2022]
|
18
|
Hilliard KA, Brown CR. Treatment of Borrelia burgdorferi-Infected Mice with Apoptotic Cells Attenuates Lyme Arthritis via PPAR-γ. THE JOURNAL OF IMMUNOLOGY 2019; 202:1798-1806. [PMID: 30700583 DOI: 10.4049/jimmunol.1801179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/02/2019] [Indexed: 12/25/2022]
Abstract
Infection of mice with Borrelia burgdorferi causes an inflammatory arthritis that peaks 3-4 wk postinfection and then spontaneously resolves. Although the recruitment of neutrophils is known to drive the development of arthritis, mechanisms of disease resolution remain unclear. Efficient clearance of apoptotic cells (AC) is likely an important component of arthritis resolution. In this article, we show the number of AC increases in the joints of B. burgdorferi-infected mice around day 21 postinfection and peaks around day 28. Injection of AC directly into the ankles of B. burgdorferi-infected mice limited ankle swelling but had no effect on spirochete clearance or arthritis severity scores. In vitro, addition of AC to bone marrow macrophage cultures decreased B. burgdorferi-induced TNF-α and KC and increased IL-10. In addition, phagocytosis of B. burgdorferi and neutrophil migration to LTB4 were inhibited by AC. Exogenous AC caused an increase in peroxisome proliferator-activated receptor-γ (PPAR-γ) expression both in vitro and in vivo during B. burgdorferi infection. The PPAR-γ agonist rosiglitazone elicited similar changes in macrophage cytokine production and neutrophil migration as exogenous AC. Addition of the PPAR-γ antagonist GW 9662 abrogated the effects of AC in vitro. Injection of rosiglitazone directly into the tibiotarsal joints of B. burgdorferi-infected mice decreased ankle swelling and immune cell recruitment, similar to the injection of AC. These results suggest that clearance of AC plays a role in the resolution of inflammation during experimental Lyme arthritis through the activation of PPAR-γ. PPAR-γ agonists, such as rosiglitazone, may therefore be effective treatments for inducing arthritis resolution.
Collapse
Affiliation(s)
- Kinsey A Hilliard
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211
| | - Charles R Brown
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211
| |
Collapse
|
19
|
Characterization of Brain Dysfunction Induced by Bacterial Lipopeptides That Alter Neuronal Activity and Network in Rodent Brains. J Neurosci 2018; 38:10672-10691. [PMID: 30381406 DOI: 10.1523/jneurosci.0825-17.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/24/2018] [Accepted: 09/15/2018] [Indexed: 12/11/2022] Open
Abstract
The immunopathological states of the brain induced by bacterial lipoproteins have been well characterized by using biochemical and histological assays. However, these studies have limitations in determining functional states of damaged brains involving aberrant synaptic activity and network, which makes it difficult to diagnose brain disorders during bacterial infection. To address this, we investigated the effect of Pam3CSK4 (PAM), a synthetic bacterial lipopeptide, on synaptic dysfunction of female mice brains and cultured neurons in parallel. Our functional brain imaging using PET with [18F]fluorodeoxyglucose and [18F] flumazenil revealed that the brain dysfunction induced by PAM is closely aligned to disruption of neurotransmitter-related neuronal activity and functional correlation in the region of the limbic system rather than to decrease of metabolic activity of neurons in the injection area. This finding was verified by in vivo tissue experiments that analyzed synaptic and dendritic alterations in the regions where PET imaging showed abnormal neuronal activity and network. Recording of synaptic activity also revealed that PAM reorganized synaptic distribution and decreased synaptic plasticity in hippocampus. Further study using in vitro neuron cultures demonstrated that PAM decreased the number of presynapses and the frequency of miniature EPSCs, which suggests PAM disrupts neuronal function by damaging presynapses exclusively. We also showed that PAM caused aggregation of synapses around dendrites, which may have caused no significant change in expression level of synaptic proteins, whereas synaptic number and function were impaired by PAM. Our findings could provide a useful guide for diagnosis and treatment of brain disorders specific to bacterial infection.SIGNIFICANCE STATEMENT It is challenging to diagnose brain disorders caused by bacterial infection because neural damage induced by bacterial products involves nonspecific neurological symptoms, which is rarely detected by laboratory tests with low spatiotemporal resolution. To better understand brain pathology, it is essential to detect functional abnormalities of brain over time. To this end, we investigated characteristic patterns of altered neuronal integrity and functional correlation between various regions in mice brains injected with bacterial lipopeptides using PET with a goal to apply new findings to diagnosis of brain disorder specific to bacterial infection. In addition, we analyzed altered synaptic density and function using both in vivo and in vitro experimental models to understand how bacterial lipopeptides impair brain function and network.
Collapse
|
20
|
Cagliero J, Villanueva SYAM, Matsui M. Leptospirosis Pathophysiology: Into the Storm of Cytokines. Front Cell Infect Microbiol 2018; 8:204. [PMID: 29974037 PMCID: PMC6019470 DOI: 10.3389/fcimb.2018.00204] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 12/20/2022] Open
Abstract
Leptospirosis is a neglected tropical zoonosis caused by pathogenic spirochetes of the genus Leptospira. Infected reservoir animals, typically mice and rats, are asymptomatic, carry the pathogen in their renal tubules, and shed pathogenic spirochetes in their urine, contaminating the environment. Humans are accidental hosts of pathogenic Leptospira. Most human infections are mild or asymptomatic. However, 10% of human leptospirosis cases develop into severe forms, including high leptospiremia, multi-organ injuries, and a dramatically increased mortality rate, which can relate to a sepsis-like phenotype. During infection, the triggering of the inflammatory response, especially through the production of cytokines, is essential for the early elimination of pathogens. However, uncontrolled cytokine production can result in a cytokine storm process, followed by a state of immunoparalysis, which can lead to sepsis and associated organ failures. In this review, the involvement of cytokine storm and subsequent immunoparalysis in the development of severe leptospirosis in susceptible hosts will be discussed. The potential contribution of major pro-inflammatory cytokines in the development of tissue lesions and systemic inflammatory response, as well as the role of anti-inflammatory cytokines in contributing to the onset of a deleterious immunosuppressive cascade will also be examined. Data from studies comparing susceptible and resistant mouse models will be included. Lastly, a concise discussion on the use of cytokines for therapeutic purposes or as biomarkers of leptospirosis severity will be provided.
Collapse
Affiliation(s)
- Julie Cagliero
- Group Immunity and Inflammation, Institut Pasteur International Network, Institut Pasteur in New Caledonia, Nouméa, New Caledonia
| | - Sharon Y A M Villanueva
- Department of Medical Microbiology, College of Public Health, University of the Philippines, Manila, Philippines
| | - Mariko Matsui
- Group Immunity and Inflammation, Institut Pasteur International Network, Institut Pasteur in New Caledonia, Nouméa, New Caledonia
| |
Collapse
|
21
|
Induction of Interleukin 10 by Borrelia burgdorferi Is Regulated by the Action of CD14-Dependent p38 Mitogen-Activated Protein Kinase and cAMP-Mediated Chromatin Remodeling. Infect Immun 2018; 86:IAI.00781-17. [PMID: 29311239 DOI: 10.1128/iai.00781-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/31/2017] [Indexed: 12/22/2022] Open
Abstract
Host genotype influences the severity of murine Lyme borreliosis, caused by the spirochetal bacterium Borrelia burgdorferi C57BL/6 (B6) mice develop mild Lyme arthritis, whereas C3H/HeN (C3H) mice develop severe Lyme arthritis. Differential expression of interleukin 10 (IL-10) has long been associated with mouse strain differences in Lyme pathogenesis; however, the underlying mechanism(s) of this genotype-specific IL-10 regulation remained elusive. Herein we reveal a cAMP-mediated mechanism of IL-10 regulation in B6 macrophages that is substantially diminished in C3H macrophages. Under cAMP and CD14-p38 mitogen-activated protein kinase (MAPK) signaling, B6 macrophages stimulated with B. burgdorferi produce increased amounts of IL-10 and decreased levels of arthritogenic cytokines, including tumor necrosis factor (TNF). cAMP relaxes chromatin, while p38 increases binding of the transcription factors signal transducer and activator of transcription 3 (STAT3) and specific protein 1 (SP1) to the IL-10 promoter, leading to increased IL-10 production in B6 bone marrow-derived monocytes (BMDMs). Conversely, macrophages derived from arthritis-susceptible C3H mice possess significantly less endogenous cAMP, produce less IL-10, and thus are ill equipped to mitigate the damaging consequences of B. burgdorferi-induced TNF. Intriguingly, an altered balance between anti-inflammatory and proinflammatory cytokines and CD14-dependent regulatory mechanisms also is operative in primary human peripheral blood-derived monocytes, providing potential insight into the clinical spectrum of human Lyme disease. In line with this notion, we have demonstrated that cAMP-enhancing drugs increase IL-10 production in myeloid cells, thus curtailing inflammation associated with murine Lyme borreliosis. Discovery of novel treatments or repurposing of FDA-approved cAMP-modulating medications may be a promising avenue for treatment of patients with adverse clinical outcomes, including certain post-Lyme complications, in whom dysregulated immune responses may play a role.
Collapse
|
22
|
A multi-omic analysis reveals the regulatory role of CD180 during the response of macrophages to Borrelia burgdorferi. Emerg Microbes Infect 2018; 7:19. [PMID: 29511161 PMCID: PMC5841238 DOI: 10.1038/s41426-017-0018-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
Abstract
Macrophages are cells of the innate immune system with the ability to phagocytose and induce a global pattern of responses that depend on several signaling pathways. We have determined the biosignature of murine bone marrow-derived macrophages and human blood monocytes using transcriptomic and proteomic approaches. We identified a common pattern of genes that are transcriptionally regulated and overall indicate that the response to B. burgdorferi involves the interaction of spirochetal antigens with several inflammatory pathways corresponding to primary (triggered by pattern-recognition receptors) and secondary (induced by proinflammatory cytokines) responses. We also show that the Toll-like receptor family member CD180 is downregulated by the stimulation of macrophages, but not monocytes, with the spirochete. Silencing Cd180 results in increased phagocytosis while tempering the production of the proinflammatory cytokine TNF. Cd180-silenced cells produce increased levels of Itgam and surface CD11b, suggesting that the regulation of CD180 by the spirochete initiates a cascade that increases CR3-mediated phagocytosis of the bacterium while repressing the consequent inflammatory response.
Collapse
|
23
|
Taylor CH, Wanelik KM, Friberg IM, Lowe A, Hall AJ, Ralli C, Birtles RJ, Begon M, Paterson S, Jackson JA, Bradley JE. Physiological, but not fitness, effects of two interacting haemoparasitic infections in a wild rodent. Int J Parasitol 2018; 48:463-471. [PMID: 29476867 DOI: 10.1016/j.ijpara.2017.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/07/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
Abstract
In contrast to the conditions in most laboratory studies, wild animals are routinely challenged by multiple infections simultaneously, and these infections can interact in complex ways. This means that the impact of a parasite on its host's physiology and fitness cannot be fully assessed in isolation, and requires consideration of the interactions with other co-infections. Here we examine the impact of two common blood parasites in the field vole (Microtus agrestis): Babesia microti and Bartonella spp., both of which have zoonotic potential. We collected longitudinal and cross-sectional data from four populations of individually tagged wild field voles. This included data on biometrics, life history, ectoparasite counts, presence/absence of microparasites, immune markers and, for a subset of voles, more detailed physiological and immunological measurements. This allowed us to monitor infections over time and to estimate components of survival and fecundity. We confirm, as reported previously, that B. microti has a preventative effect on infection with Bartonella spp., but that the reverse is not true. We observed gross splenomegaly following B. microti infection, and an increase in IL-10 production together with some weight loss following Bartonella spp. infection. However, these animals appeared otherwise healthy and we detected no impact of infection on survival or fecundity due to the two haemoparasite taxa. This is particularly remarkable in the case of B. microti which induces apparently drastic long-term changes to spleen sizes, but without major adverse effects. Our work sheds light on the ecologies of these important zoonotic agents, and more generally on the influence that interactions among multiple parasites have on their hosts in the wild.
Collapse
Affiliation(s)
| | - Klara M Wanelik
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Ida M Friberg
- School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK
| | - Ann Lowe
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Amy J Hall
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Catriona Ralli
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Richard J Birtles
- School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK
| | - Mike Begon
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Joseph A Jackson
- School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK
| | - Janette E Bradley
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
24
|
Whiteside SK, Snook JP, Ma Y, Sonderegger FL, Fisher C, Petersen C, Zachary JF, Round JL, Williams MA, Weis JJ. IL-10 Deficiency Reveals a Role for TLR2-Dependent Bystander Activation of T Cells in Lyme Arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:1457-1470. [PMID: 29330323 PMCID: PMC5809275 DOI: 10.4049/jimmunol.1701248] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/13/2017] [Indexed: 11/19/2022]
Abstract
T cells predominate the immune responses in the synovial fluid of patients with persistent Lyme arthritis; however, their role in Lyme disease remains poorly defined. Using a murine model of persistent Lyme arthritis, we observed that bystander activation of CD4+ and CD8+ T cells leads to arthritis-promoting IFN-γ, similar to the inflammatory environment seen in the synovial tissue of patients with posttreatment Lyme disease. TCR transgenic mice containing monoclonal specificity toward non-Borrelia epitopes confirmed that bystander T cell activation was responsible for disease development. The microbial pattern recognition receptor TLR2 was upregulated on T cells following infection, implicating it as marker of bystander T cell activation. In fact, T cell-intrinsic expression of TLR2 contributed to IFN-γ production and arthritis, providing a mechanism for microbial-induced bystander T cell activation during infection. The IL-10-deficient mouse reveals a novel TLR2-intrinsic role for T cells in Lyme arthritis, with potentially broad application to immune pathogenesis.
Collapse
Affiliation(s)
- Sarah K Whiteside
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Jeremy P Snook
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Ying Ma
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - F Lynn Sonderegger
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Colleen Fisher
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Charisse Petersen
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - James F Zachary
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802
| | - June L Round
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Matthew A Williams
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Janis J Weis
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| |
Collapse
|
25
|
Embers ME, Hasenkampf NR, Jacobs MB, Tardo AC, Doyle-Meyers LA, Philipp MT, Hodzic E. Variable manifestations, diverse seroreactivity and post-treatment persistence in non-human primates exposed to Borrelia burgdorferi by tick feeding. PLoS One 2017; 12:e0189071. [PMID: 29236732 PMCID: PMC5728523 DOI: 10.1371/journal.pone.0189071] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/17/2017] [Indexed: 01/21/2023] Open
Abstract
The efficacy and accepted regimen of antibiotic treatment for Lyme disease has been a point of significant contention among physicians and patients. While experimental studies in animals have offered evidence of post-treatment persistence of Borrelia burgdorferi, variations in methodology, detection methods and limitations of the models have led to some uncertainty with respect to translation of these results to human infection. With all stages of clinical Lyme disease having previously been described in nonhuman primates, this animal model was selected in order to most closely mimic human infection and response to treatment. Rhesus macaques were inoculated with B. burgdorferi by tick bite and a portion were treated with recommended doses of doxycycline for 28 days at four months post-inoculation. Signs of infection, clinical pathology, and antibody responses to a set of five antigens were monitored throughout the ~1.2 year study. Persistence of B. burgdorferi was evaluated using xenodiagnosis, bioassays in mice, multiple methods of molecular detection, immunostaining with polyclonal and monoclonal antibodies and an in vivo culture system. Our results demonstrate host-dependent signs of infection and variation in antibody responses. In addition, we observed evidence of persistent, intact, metabolically-active B. burgdorferi after antibiotic treatment of disseminated infection and showed that persistence may not be reflected by maintenance of specific antibody production by the host.
Collapse
Affiliation(s)
- Monica E. Embers
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States of America
- * E-mail:
| | - Nicole R. Hasenkampf
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States of America
| | - Mary B. Jacobs
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States of America
| | - Amanda C. Tardo
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States of America
| | - Lara A. Doyle-Meyers
- Division of Veterinary Medicine, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States of America
| | - Mario T. Philipp
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States of America
| | - Emir Hodzic
- Center for Comparative Medicine, Schools of Medicine and Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| |
Collapse
|
26
|
Paquette JK, Ma Y, Fisher C, Li J, Lee SB, Zachary JF, Kim YS, Teuscher C, Weis JJ. Genetic Control of Lyme Arthritis by Borrelia burgdorferi Arthritis-Associated Locus 1 Is Dependent on Localized Differential Production of IFN-β and Requires Upregulation of Myostatin. THE JOURNAL OF IMMUNOLOGY 2017; 199:3525-3534. [PMID: 28986440 DOI: 10.4049/jimmunol.1701011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/14/2017] [Indexed: 01/29/2023]
Abstract
Previously, using a forward genetic approach, we identified differential expression of type I IFN as a positional candidate for an expression quantitative trait locus underlying Borrelia burgdorferi arthritis-associated locus 1 (Bbaa1). In this study, we show that mAb blockade revealed a unique role for IFN-β in Lyme arthritis development in B6.C3-Bbaa1 mice. Genetic control of IFN-β expression was also identified in bone marrow-derived macrophages stimulated with B. burgdorferi, and it was responsible for feed-forward amplification of IFN-stimulated genes. Reciprocal radiation chimeras between B6.C3-Bbaa1 and C57BL/6 mice revealed that arthritis is initiated by radiation-sensitive cells, but orchestrated by radiation-resistant components of joint tissue. Advanced congenic lines were developed to reduce the physical size of the Bbaa1 interval, and confirmed the contribution of type I IFN genes to Lyme arthritis. RNA sequencing of resident CD45- joint cells from advanced interval-specific recombinant congenic lines identified myostatin as uniquely upregulated in association with Bbaa1 arthritis development, and myostatin expression was linked to IFN-β production. Inhibition of myostatin in vivo suppressed Lyme arthritis in the reduced interval Bbaa1 congenic mice, formally implicating myostatin as a novel downstream mediator of the joint-specific inflammatory response to B. burgdorferi.
Collapse
Affiliation(s)
- Jackie K Paquette
- Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Ying Ma
- Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Colleen Fisher
- Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Jinze Li
- Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Sang Beum Lee
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822
| | - James F Zachary
- Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61820; and
| | - Yong Soo Kim
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822
| | - Cory Teuscher
- Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Janis J Weis
- Department of Pathology, University of Utah, Salt Lake City, UT 84112;
| |
Collapse
|
27
|
Aslam B, Nisar MA, Khurshid M, Farooq Salamat MK. Immune escape strategies of Borrelia burgdorferi. Future Microbiol 2017; 12:1219-1237. [PMID: 28972415 DOI: 10.2217/fmb-2017-0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The borrelial resurge demonstrates that Borrelia burgdorferi is a persistent health problem. This spirochete is responsible for a global public health concern called Lyme disease. B. burgdorferi faces diverse environmental conditions of its vector and host during its life cycle. To circumvent the host immune system is a prominent feature of B. burgdorferi. To date, numerous studies have reported on the various mechanisms used by this pathogen to evade the host defense mechanisms. This current review attempts to consolidate this information to describe the immunological and molecular methods used by B. burgdorferi for its survival.
Collapse
Affiliation(s)
- Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan.,College of Allied Health Professionals, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
28
|
Matsui M, Roche L, Soupé-Gilbert ME, Hasan M, Monchy D, Goarant C. High level of IL-10 expression in the blood of animal models possibly relates to resistance against leptospirosis. Cytokine 2017; 96:144-151. [PMID: 28410507 DOI: 10.1016/j.cyto.2017.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/09/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022]
Abstract
Leptospirosis is a severe zoonosis which immunopathogenesis is poorly understood. We evaluated correlation between acute form of the disease and the ratio of the anti-inflammatory cytokine IL-10 to the pro-inflammatory TNF-α and IL-1β expression during the early phase of infection comparing resistant mice and susceptible hamsters infected with two different species of virulent Leptospira. The IL-10/TNF-α and IL-10/IL-1β expression ratios were higher in mouse compared to hamster independently of the Leptospira strain, suggesting a preponderant role of the host response and notably these cytokines in the clinical expression and survival to leptospirosis. Using an IL-10 neutralization strategy in Leptospira-infected mouse model, we also showed evidence of a possible role of this cytokine on host susceptibility, bacterial clearance and on regulation of cytokine gene expression.
Collapse
Affiliation(s)
- Mariko Matsui
- Institut Pasteur International Network, Institut Pasteur de Nouvelle-Calédonie, Group Immunity and Inflammation, Noumea, New Caledonia.
| | - Louise Roche
- Institut Pasteur International Network, Institut Pasteur de Nouvelle-Calédonie, Leptospirosis Research and Expertise Unit, Noumea, New Caledonia
| | - Marie-Estelle Soupé-Gilbert
- Institut Pasteur International Network, Institut Pasteur de Nouvelle-Calédonie, Leptospirosis Research and Expertise Unit, Noumea, New Caledonia
| | - Milena Hasan
- Center for Translational Research, Technology Core, Institut Pasteur, Paris, France
| | - Didier Monchy
- Anatomic Pathology Laboratory, Gaston-Bourret Territorial Hospital Center, Noumea, New Caledonia
| | - Cyrille Goarant
- Institut Pasteur International Network, Institut Pasteur de Nouvelle-Calédonie, Leptospirosis Research and Expertise Unit, Noumea, New Caledonia
| |
Collapse
|
29
|
Christodoulides A, Boyadjian A, Kelesidis T. Spirochetal Lipoproteins and Immune Evasion. Front Immunol 2017; 8:364. [PMID: 28424696 PMCID: PMC5372817 DOI: 10.3389/fimmu.2017.00364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/14/2017] [Indexed: 12/28/2022] Open
Abstract
Spirochetes are a major threat to public health. However, the exact pathogenesis of spirochetal diseases remains unclear. Spirochetes express lipoproteins that often determine the cross talk between the host and spirochetes. Lipoproteins are pro-inflammatory, modulatory of immune responses, and enable the spirochetes to evade the immune system. In this article, we review the modulatory effects of spirochetal lipoproteins related to immune evasion. Understanding lipoprotein-induced immunomodulation will aid in elucidating innate pathogenesis processes and subsequent adaptive mechanisms potentially relevant to spirochetal disease vaccine development and treatment.
Collapse
Affiliation(s)
- Alexei Christodoulides
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Ani Boyadjian
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Theodoros Kelesidis
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
30
|
Devlin AA, Halvorsen PJ, Miller JC, Laster SM. Il-10 deficient mice express IFN-γ mRNA and clear Leptospira interrogans from their kidneys more rapidly than normal C57BL/6 mice. Immunobiology 2017; 222:768-777. [PMID: 28237664 DOI: 10.1016/j.imbio.2017.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/28/2022]
Abstract
Leptospira interrogans (L. interrogans), the causative agent of leptospirosis, is a widespread zoonotic spirochete that lives a dual lifestyle. L. interrogans infects mice, rats, and wildlife in a persistent and asymptomatic fashion, while also causing productive and acute infections in other mammals such as humans and hamsters. Infections in humans can be fatal, accompanied by a cytokine storm and shock-like symptoms. Production of IL-10 has been noted in both rodent and human infections which has led a number of investigators to hypothesize that IL-10 plays a role in the pathogenesis of this disease. To test this hypothesis we have compared bacteremia and the cytokine response of normal and IL-10 deficient C57Bl/6 mice following ip infection with L. interrogans. In normal mice bacterial 16s mRNA was detected in both lung and kidney tissues within a day after infection. Levels of 16s mRNA then dropped in both organs with complete elimination from the lung by day 3 but persistence in the kidney for 7days after infection. In contrast, in IL-10 deficient mice, the organism was eliminated more rapidly from the kidney. We found that infection of both control and IL-10 deficient mice produced similar levels of a number of pro-inflammatory cytokine mRNAs. On the other hand, IFN-γ mRNA was only induced in IL-10 deficient mice. These results support the hypothesis that L. interrogans ability to induce IL-10, which in turn prevents production of IFN-γ and inhibits T cell immunity, may contribute to the persistent growth of this microorganism in the murine kidney.
Collapse
Affiliation(s)
- Amy A Devlin
- Reynolds American, Inc. 401 N. Main St., Winston Salem, NC 27101, United States
| | - Priya J Halvorsen
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, United States
| | - Jennifer C Miller
- Galaxy Diagnostics, Inc. 7020 Kit Creek Rd., Ste 130, Research Triangle Park, NC 27709, United States
| | - Scott M Laster
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
31
|
Novak EA, Sekar P, Xu H, Moon KH, Manne A, Wooten RM, Motaleb MA. The Borrelia burgdorferi CheY3 response regulator is essential for chemotaxis and completion of its natural infection cycle. Cell Microbiol 2016; 18:1782-1799. [PMID: 27206578 PMCID: PMC5116424 DOI: 10.1111/cmi.12617] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/14/2016] [Accepted: 05/06/2016] [Indexed: 12/12/2022]
Abstract
Borrelia burgdorferi possesses a sophisticated and complex chemotaxis system, but how the organism utilizes this system in its natural enzootic life cycle is poorly understood. Of the three CheY chemotaxis response regulators in B. burgdorferi, we found that only deletion of cheY3 resulted in an altered motility and significantly reduced chemotaxis phenotype. Although ΔcheY3 maintained normal densities in unfed ticks, their numbers were significantly reduced in fed ticks compared with the parental or cheY3-complemented spirochetes. Importantly, mice fed upon by the ΔcheY3-infected ticks did not develop a persistent infection. Intravital confocal microscopy analyses discovered that the ΔcheY3 spirochetes were motile within skin, but appeared unable to reverse direction and perform the characteristic backward-forward motility displayed by the parental strain. Subsequently, the ΔcheY3 became 'trapped' in the skin matrix within days of inoculation, were cleared from the skin needle-inoculation site within 96 h post-injection and did not disseminate to distant tissues. Interestingly, although ΔcheY3 cells were cleared within 96 h post-injection, this attenuated infection elicited significant levels of B. burgdorferi-specific IgM and IgG. Taken together, these data demonstrate that cheY3-mediated chemotaxis is crucial for motility, dissemination and viability of the spirochete both within and between mice and ticks.
Collapse
Affiliation(s)
- Elizabeth A. Novak
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Padmapriya Sekar
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Hui Xu
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ki Hwan Moon
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Akarsh Manne
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - R. Mark Wooten
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Md. A. Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
32
|
Hansen ES, Johnson ME, Schell RF, Nardelli DT. CD4+ cell-derived interleukin-17 in a model of dysregulated, Borrelia-induced arthritis. Pathog Dis 2016; 74:ftw084. [PMID: 27549424 DOI: 10.1093/femspd/ftw084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 11/14/2022] Open
Abstract
Lyme borreliosis, which is caused in the United States by the spirochete Borrelia burgdorferi, may manifest as different arrays of signs, symptoms and severities between infected individuals. Recent studies have indicated that particularly severe forms of Lyme borreliosis in humans are associated with an increased Th17 response. Here, we hypothesized that a murine model combining the dysregulated immune response of an environment lacking interleukin-10 (IL-10) with a robust T-cell-driven inflammatory response would reflect arthritis associated with the production of IL-17 by CD4+ cells. We demonstrate that IL-10 regulates the production of IL-17 by Borrelia-primed CD4+ cells early after interaction with Lyme spirochetes in vitro and that infection of Borrelia-primed mice with B. burgdorferi leads to significant production of IL-17 that contributes to the development of severe arthritis. These results extend our previous findings by demonstrating that a dysregulated adaptive immune response to Lyme spirochetes can contribute to severe, Th17-associated arthritis. These findings may lead to therapeutic measures for individuals with particularly severe symptoms of Lyme borreliosis.
Collapse
Affiliation(s)
- Emily S Hansen
- Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee WI 53211, USA
| | - Megan E Johnson
- Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee WI 53211, USA
| | - Ronald F Schell
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI 53706, USA Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dean T Nardelli
- Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee WI 53211, USA
| |
Collapse
|
33
|
Totté P, Puech C, Rodrigues V, Bertin C, Manso-Silvan L, Thiaucourt F. Free exopolysaccharide from Mycoplasma mycoides subsp. mycoides possesses anti-inflammatory properties. Vet Res 2015; 46:122. [PMID: 26490663 PMCID: PMC4618858 DOI: 10.1186/s13567-015-0252-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 08/28/2015] [Indexed: 01/08/2023] Open
Abstract
In this study we explored the immunomodulatory properties of highly purified free galactan, the soluble exopolysaccharide secreted by Mycoplasma mycoides subsp. mycoides (Mmm). Galactan was shown to bind to TLR2 but not TLR4 using HEK293 reporter cells and to induce the production of the anti-inflammatory cytokine IL-10 in bovine macrophages, whereas low IL-12p40 and no TNF-α, both pro-inflammatory cytokines, were induced in these cells. In addition, pre-treatment of macrophages with galactan substantially reduced lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines TNF- and IL-12p40 while increasing LPS-induced secretion of immunosuppressive IL-10. Also, galactan did not activate naïve lymphocytes and induced only low production of the Th1 cytokine IFN-γ in Mmm-experienced lymphocytes. Finally, galactan triggered weak recall proliferation of CD4+ T lymphocytes from contagious bovine pleuropneumonia-infected animals despite having a positive effect on the expression of co-stimulatory molecules on macrophages. All together, these results suggest that galactan possesses anti-inflammatory properties and potentially provides Mmm with a mechanism to evade host innate and adaptive cell-mediated immune responses.
Collapse
Affiliation(s)
- Philippe Totté
- Centre International de Recherche en Agronomie pour le Développement, UMR CMAEE, Montpellier, France.
- Institut National de Recherche Agronomique, UMR1309 CMAEE, Montpellier, France.
| | - Carinne Puech
- Centre International de Recherche en Agronomie pour le Développement, UMR CMAEE, Montpellier, France.
- Institut National de Recherche Agronomique, UMR1309 CMAEE, Montpellier, France.
| | - Valérie Rodrigues
- Centre International de Recherche en Agronomie pour le Développement, UMR CMAEE, Montpellier, France.
- Institut National de Recherche Agronomique, UMR1309 CMAEE, Montpellier, France.
| | - Clothilde Bertin
- Centre International de Recherche en Agronomie pour le Développement, UMR CMAEE, Montpellier, France.
- Institut National de Recherche Agronomique, UMR1309 CMAEE, Montpellier, France.
| | - Lucia Manso-Silvan
- Centre International de Recherche en Agronomie pour le Développement, UMR CMAEE, Montpellier, France.
- Institut National de Recherche Agronomique, UMR1309 CMAEE, Montpellier, France.
| | - François Thiaucourt
- Centre International de Recherche en Agronomie pour le Développement, UMR CMAEE, Montpellier, France.
- Institut National de Recherche Agronomique, UMR1309 CMAEE, Montpellier, France.
| |
Collapse
|
34
|
Macrophage Polarization during Murine Lyme Borreliosis. Infect Immun 2015; 83:2627-35. [PMID: 25870230 DOI: 10.1128/iai.00369-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/09/2015] [Indexed: 12/14/2022] Open
Abstract
Infection of C3H mice with Borrelia burgdorferi, the causative agent of Lyme disease, reliably produces an infectious arthritis and carditis that peak around 3 weeks postinfection and then spontaneously resolve. Macrophage polarization has been suggested to drive inflammation, the clearance of bacteria, and tissue repair and resolution in a variety of infectious disease models. During Lyme disease it is clear that macrophages are capable of clearing Borrelia spirochetes and exhausted neutrophils; however, the role of macrophage phenotype in disease development or resolution has not been studied. Using classical (NOS2) and alternative (CD206) macrophage subset-specific markers, we determined the phenotype of F4/80(+) macrophages within the joints and heart throughout the infection time course. Within the joint, CD206(+) macrophages dominated throughout the course of infection, and NOS2(+) macrophage numbers became elevated only during the peak of inflammation. We also found dual NOS2(+) CD206(+) macrophages which increased during resolution. In contrast to findings for the ankle joints, numbers of NOS2(+) and CD206(+) macrophages in the heart were similar at the peak of inflammation. 5-Lipoxygenase-deficient (5-LOX(-/-)) mice, which display a failure of Lyme arthritis resolution, recruited fewer F4/80(+) cells to the infected joints and heart, but macrophage subset populations were unchanged. These results highlight differences in the inflammatory infiltrates during Lyme arthritis and carditis and demonstrate the coexistence of multiple macrophage subsets within a single inflammatory site.
Collapse
|
35
|
Motor rotation is essential for the formation of the periplasmic flagellar ribbon, cellular morphology, and Borrelia burgdorferi persistence within Ixodes scapularis tick and murine hosts. Infect Immun 2015; 83:1765-77. [PMID: 25690096 DOI: 10.1128/iai.03097-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/05/2015] [Indexed: 12/13/2022] Open
Abstract
Borrelia burgdorferi must migrate within and between its arthropod and mammalian hosts in order to complete its natural enzootic cycle. During tick feeding, the spirochete transmits from the tick to the host dermis, eventually colonizing and persisting within multiple, distant tissues. This dissemination modality suggests that flagellar motor rotation and, by extension, motility are crucial for infection. We recently reported that a nonmotile flaB mutant that lacks periplasmic flagella is rod shaped and unable to infect mice by needle or tick bite. However, those studies could not differentiate whether motor rotation or merely the possession of the periplasmic flagella was crucial for cellular morphology and host persistence. Here, we constructed and characterized a motB mutant that is nonmotile but retains its periplasmic flagella. Even though ΔmotB bacteria assembled flagella, part of the mutant cell is rod shaped. Cryoelectron tomography revealed that the flagellar ribbons are distorted in the mutant cells, indicating that motor rotation is essential for spirochetal flat-wave morphology. The ΔmotB cells are unable to infect mice, survive in the vector, or migrate out of the tick. Coinfection studies determined that the presence of these nonmotile ΔmotB cells has no effect on the clearance of wild-type spirochetes during murine infection and vice versa. Together, our data demonstrate that while flagellar motor rotation is necessary for spirochetal morphology and motility, the periplasmic flagella display no additional properties related to immune clearance and persistence within relevant hosts.
Collapse
|
36
|
Lyme disease: A rigorous review of diagnostic criteria and treatment. J Autoimmun 2015; 57:82-115. [DOI: 10.1016/j.jaut.2014.09.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 01/07/2023]
|
37
|
Ma Y, Bramwell KKC, Lochhead RB, Paquette JK, Zachary JF, Weis JH, Teuscher C, Weis JJ. Borrelia burgdorferi arthritis-associated locus Bbaa1 regulates Lyme arthritis and K/B×N serum transfer arthritis through intrinsic control of type I IFN production. THE JOURNAL OF IMMUNOLOGY 2014; 193:6050-60. [PMID: 25378596 DOI: 10.4049/jimmunol.1401746] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Localized upregulation of type I IFN was previously implicated in development of Borrelia burgdorferi-induced arthritis in C3H mice, and was remarkable due to its absence in the mildly arthritic C57BL/6 (B6) mice. Independently, forward genetics analysis identified a quantitative trait locus on Chr4, termed B. burgdorferi-associated locus 1 (Bbaa1), that regulates Lyme arthritis severity and includes the 15 type I IFN genes. Involvement of Bbaa1 in arthritis development was confirmed in B6 mice congenic for the C3H allele of Bbaa1 (B6.C3-Bbaa1), which developed more severe Lyme arthritis and K/B×N model of rheumatoid arthritis (RA) than did parental B6 mice. Administration of a type I IFN receptor blocking mAb reduced the severity of both Lyme arthritis and RA in B6.C3-Bbaa1 mice, formally linking genetic elements within Bbaa1 to pathological production of type I IFN. Bone marrow-derived macrophages from Bbaa1 congenic mice implicated this locus as a regulator of type I IFN induction and downstream target gene expression. Bbaa1-mediated regulation of IFN-inducible genes was upstream of IFN receptor-dependent amplification; however, the overall magnitude of the response was dependent on autocrine/paracrine responses to IFN-β. In addition, the Bbaa1 locus modulated the functional phenotype ascribed to bone marrow-derived macrophages: the B6 allele promoted expression of M2 markers, whereas the C3H allele promoted induction of M1 responses. This report identifies a genetic locus physically and functionally linked to type I IFN that contributes to the pathogenesis of both Lyme and RA.
Collapse
Affiliation(s)
- Ying Ma
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Kenneth K C Bramwell
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Robert B Lochhead
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Jackie K Paquette
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - James F Zachary
- Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802; and
| | - John H Weis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Cory Teuscher
- Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Janis J Weis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112;
| |
Collapse
|
38
|
Mulye M, Bechill MP, Grose W, Ferreira VP, Lafontaine ER, Wooten RM. Delineating the importance of serum opsonins and the bacterial capsule in affecting the uptake and killing of Burkholderia pseudomallei by murine neutrophils and macrophages. PLoS Negl Trop Dis 2014; 8:e2988. [PMID: 25144195 PMCID: PMC4140662 DOI: 10.1371/journal.pntd.0002988] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 05/18/2014] [Indexed: 12/30/2022] Open
Abstract
Infection of susceptible hosts by the encapsulated Gram-negative bacterium Burkholderia pseudomallei (Bp) causes melioidosis, with septic patients attaining mortality rates ≥ 40%. Due to its high infectivity through inhalation and limited effective therapies, Bp is considered a potential bioweapon. Thus, there is great interest in identifying immune effectors that effectively kill Bp. Our goal is to compare the relative abilities of murine macrophages and neutrophils to clear Bp, as well as determine the importance of serum opsonins and bacterial capsule. Our findings indicate that murine macrophages and neutrophils are inherently unable to clear either unopsonized Bp or the relatively-avirulent acapsular bacterium B. thailandensis (Bt). Opsonization of Bp and Bt with complement or pathogen-specific antibodies increases macrophage-uptake, but does not promote clearance, although antibody-binding enhances complement deposition. In contrast, complement opsonization of Bp and Bt causes enhanced uptake and killing by neutrophils, which is linked with rapid ROS induction against bacteria exhibiting a threshold level of complement deposition. Addition of bacteria-specific antibodies enhances complement deposition, but antibody-binding alone cannot elicit neutrophil clearance. Bp capsule provides some resistance to complement deposition, but is not anti-phagocytic or protective against reactive oxygen species (ROS)-killing. Macrophages were observed to efficiently clear Bp only after pre-activation with IFNγ, which is independent of serum- and/or antibody-opsonization. These studies indicate that antibody-enhanced complement activation is sufficient for neutrophil-clearance of Bp, whereas macrophages are ineffective at clearing serum-opsonized Bp unless pre-activated with IFNγ. This suggests that effective immune therapies would need to elicit both antibodies and Th1-adaptive responses for successful prevention/eradication of melioidosis.
Collapse
Affiliation(s)
- Minal Mulye
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Michael P. Bechill
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - William Grose
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Viviana P. Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Eric R. Lafontaine
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - R. Mark Wooten
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
39
|
Kelesidis T. The Cross-Talk between Spirochetal Lipoproteins and Immunity. Front Immunol 2014; 5:310. [PMID: 25071771 PMCID: PMC4075078 DOI: 10.3389/fimmu.2014.00310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/17/2014] [Indexed: 12/11/2022] Open
Abstract
Spirochetal diseases such as syphilis, Lyme disease, and leptospirosis are major threats to public health. However, the immunopathogenesis of these diseases has not been fully elucidated. Spirochetes interact with the host through various structural components such as lipopolysaccharides (LPS), surface lipoproteins, and glycolipids. Although spirochetal antigens such as LPS and glycolipids may contribute to the inflammatory response during spirochetal infections, spirochetes such as Treponema pallidum and Borrelia burgdorferi lack LPS. Lipoproteins are most abundant proteins that are expressed in all spirochetes and often determine how spirochetes interact with their environment. Lipoproteins are pro-inflammatory, may regulate responses from both innate and adaptive immunity and enable the spirochetes to adhere to the host or the tick midgut or to evade the immune system. However, most of the spirochetal lipoproteins have unknown function. Herein, the immunomodulatory effects of spirochetal lipoproteins are reviewed and are grouped into two main categories: effects related to immune evasion and effects related to immune activation. Understanding lipoprotein-induced immunomodulation will aid in elucidating innate immunopathogenesis processes and subsequent adaptive mechanisms potentially relevant to spirochetal disease vaccine development and to inflammatory events associated with spirochetal diseases.
Collapse
Affiliation(s)
- Theodoros Kelesidis
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles , Los Angeles, CA , USA
| |
Collapse
|
40
|
Lochhead RB, Ma Y, Zachary JF, Baltimore D, Zhao JL, Weis JH, O'Connell RM, Weis JJ. MicroRNA-146a provides feedback regulation of lyme arthritis but not carditis during infection with Borrelia burgdorferi. PLoS Pathog 2014; 10:e1004212. [PMID: 24967703 PMCID: PMC4072785 DOI: 10.1371/journal.ppat.1004212] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 05/13/2014] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs have been shown to be important regulators of inflammatory and immune responses and are implicated in several immune disorders including systemic lupus erythematosus and rheumatoid arthritis, but their role in Lyme borreliosis remains unknown. We performed a microarray screen for expression of miRNAs in joint tissue from three mouse strains infected with Borrelia burgdorferi. This screen identified upregulation of miR-146a, a key negative regulator of NF-κB signaling, in all three strains, suggesting it plays an important role in the in vivo response to B. burgdorferi. Infection of B6 miR-146a-/- mice with B. burgdorferi revealed a critical nonredundant role of miR-146a in modulating Lyme arthritis without compromising host immune response or heart inflammation. The impact of miR-146a was specifically localized to the joint, and did not impact lesion development or inflammation in the heart. Furthermore, B6 miR-146a-/- mice had elevated levels of NF-κB-regulated products in joint tissue and serum late in infection. Flow cytometry analysis of various lineages isolated from infected joint tissue of mice showed that myeloid cell infiltration was significantly greater in B6 miR-146a-/- mice, compared to B6, during B. burgdorferi infection. Using bone marrow-derived macrophages, we found that TRAF6, a known target of miR-146a involved in NF-κB activation, was dysregulated in resting and B. burgdorferi-stimulated B6 miR-146a-/- macrophages, and corresponded to elevated IL-1β, IL-6 and CXCL1 production. This dysregulated protein production was also observed in macrophages treated with IL-10 prior to B. burgdorferi stimulation. Peritoneal macrophages from B6 miR-146a-/- mice also showed enhanced phagocytosis of B. burgdorferi. Together, these data show that miR-146a-mediated regulation of TRAF6 and NF-κB, and downstream targets such as IL-1β, IL-6 and CXCL1, are critical for modulation of Lyme arthritis during chronic infection with B. burgdorferi.
Collapse
Affiliation(s)
- Robert B. Lochhead
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Ying Ma
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - James F. Zachary
- Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - David Baltimore
- Department of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Jimmy L. Zhao
- Department of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - John H. Weis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Ryan M. O'Connell
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Janis J. Weis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
41
|
Oosting M, Buffen K, van der Meer JWM, Netea MG, Joosten LAB. Innate immunity networks during infection with Borrelia burgdorferi. Crit Rev Microbiol 2014; 42:233-44. [PMID: 24963691 DOI: 10.3109/1040841x.2014.929563] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The recognition of Borrelia species represents a complex process in which multiple components of the immune system are involved. In this review, we summarize the interplay between the host innate system and Borrelia spp., from the recognition by pattern recognition receptors (PRRs) to the induction of a complex network of proinflammatory mediators. Several PRR families are crucial for recognition of Borrelia spp., including Toll-like receptors (TLRs) and Nucleotide Oligomerization Domain (NOD)-like receptors (NLRs). TLR-2 is crucial for the recognition of outer surface protein (Osp)A from Borrelia spp. and together with TLR8 mediates phagocytosis of the microorganism and production of type I interferons. Intracellular receptors such as TLR7, TLR8 and TLR9 on the one hand and the NLR receptor NOD2 on the other hand, represent the second major recognition system of Borrelia. PRR-dependent signals induce the release of pro-inflammatory cytokines such as interleukin-1 and T-helper-derived cytokines, which are thought to mediate the inflammation during Lyme disease. Understanding the regulation of host defense mechanisms against Borrelia has the potential to lead to the discovery of novel immunotherapeutic targets to improve the therapy against Lyme disease.
Collapse
Affiliation(s)
- Marije Oosting
- a Department of Internal Medicine , and.,b Nijmegen Institute of Infection, Inflammation and Immunity (N4i), Radboud University Medical Centre , Nijmegen , The Netherlands
| | - Kathrin Buffen
- a Department of Internal Medicine , and.,b Nijmegen Institute of Infection, Inflammation and Immunity (N4i), Radboud University Medical Centre , Nijmegen , The Netherlands
| | - Jos W M van der Meer
- a Department of Internal Medicine , and.,b Nijmegen Institute of Infection, Inflammation and Immunity (N4i), Radboud University Medical Centre , Nijmegen , The Netherlands
| | - Mihai G Netea
- a Department of Internal Medicine , and.,b Nijmegen Institute of Infection, Inflammation and Immunity (N4i), Radboud University Medical Centre , Nijmegen , The Netherlands
| | - Leo A B Joosten
- a Department of Internal Medicine , and.,b Nijmegen Institute of Infection, Inflammation and Immunity (N4i), Radboud University Medical Centre , Nijmegen , The Netherlands
| |
Collapse
|
42
|
Campfield BT, Nolder CL, Marinov A, Bushnell D, Davis A, Spychala C, Hirsch R, Nowalk AJ. Follistatin-like protein 1 is a critical mediator of experimental Lyme arthritis and the humoral response to Borrelia burgdorferi infection. Microb Pathog 2014; 73:70-9. [PMID: 24768929 DOI: 10.1016/j.micpath.2014.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/10/2014] [Accepted: 04/15/2014] [Indexed: 12/19/2022]
Abstract
Follistatin-like protein 1 (FSTL-1) has recently been described as a critical mediator of CIA and a marker of disease activity. Lyme arthritis, caused by Borrelia burgdorferi, shares similarities with autoimmune arthritis and the experimental murine model collagen-induced arthritis (CIA). Because FSTL-1 is important in CIA and autoimmune arthritides, and Lyme arthritis shares similarities with CIA, we hypothesized that FSTL-1 may be an important mediator of Lyme arthritis. We demonstrate for the first time that FSTL-1 is induced by B. burgdorferi infection and is required for the development of Lyme arthritis in a murine model, utilizing a gene insertion to generate FSTL-1 hypomorphic mice. Using qPCR and qRT-PCR, we found that despite similar early infectious burden, FSTL-1 hypomorphic mice have improved spirochetal clearance in the face of attenuated arthritis and inflammatory cytokine production. Further, FSTL-1 mediates pathogen-specific antibody production and antigen recognition when assessed by ELISA and one- and two-dimensional immunoblotting. This study is the first to describe a role for FSTL-1 in the development of Lyme arthritis and anti-Borrelia response, and the first to demonstrate a role for FSTL-1 in response to infection, highlighting the potential for FSTL-1 as a target in the treatment of B. burgdorferi infection.
Collapse
Affiliation(s)
- Brian T Campfield
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Christi L Nolder
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Anthony Marinov
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Daniel Bushnell
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Amy Davis
- Department of Pathology, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Caressa Spychala
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Raphael Hirsch
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Andrew J Nowalk
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
43
|
Chung Y, Zhang N, Wooten RM. Borrelia burgdorferi elicited-IL-10 suppresses the production of inflammatory mediators, phagocytosis, and expression of co-stimulatory receptors by murine macrophages and/or dendritic cells. PLoS One 2013; 8:e84980. [PMID: 24367705 PMCID: PMC3868605 DOI: 10.1371/journal.pone.0084980] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/27/2013] [Indexed: 11/18/2022] Open
Abstract
Borrelia burgdorferi (Bb) is a tick-borne spirochete that is the causative agent for Lyme disease. Our previous studies indicate that virulent Bb can potently enhance IL-10 production by macrophages (MØs) and that blocking IL-10 production significantly enhances bacterial clearance. We hypothesize that skin-associated APC types, such as MØs and dendritic cells (DCs) are potent producers of IL-10 in response to Bb, which may act in autocrine fashion to suppress APC responses critical for efficient Bb clearance. Our goal is to delineate which APC immune functions are dysregulated by Bb-elicited IL-10 using a murine model of Lyme disease. Our in vitro studies indicated that both APCs rapidly produce IL-10 upon exposure to Bb, that these levels inversely correlate with the production of many Lyme-relevant proinflammatory cytokines and chemokines, and that APCs derived from IL-10(-/-) mice produced greater amounts of these proinflammatory mediators than wild-type APCs. Phagocytosis assays determined that Bb-elicited IL-10 levels can diminish Bb uptake and trafficking by MØs, suppresses ROS production, but does not affect NO production; Bb-elicited IL-10 had little effect on phagocytosis, ROS, and NO production by DCs. In general, Bb exposure caused little-to-no upregulation of several critical surface co-stimulatory markers by MØs and DCs, however eliminating Bb-elicited IL-10 allowed a significant upregulation in many of these co-stimulatory receptors. These data indicate that IL-10 elicited from Bb-stimulated MØs and DCs results in decreased production of proinflammatory mediators and co-stimulatory molecules, and suppress phagocytosis-associated events that are important for mediating both innate and adaptive immune responses by APCs.
Collapse
Affiliation(s)
- Yutein Chung
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Nan Zhang
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - R. Mark Wooten
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
44
|
Xue F, Zhao X, Yang Y, Zhao J, Yang Y, Cao Y, Hong C, Liu Y, Sun L, Huang M, Gu J. Responses of murine and human macrophages to leptospiral infection: a study using comparative array analysis. PLoS Negl Trop Dis 2013; 7:e2477. [PMID: 24130911 PMCID: PMC3794915 DOI: 10.1371/journal.pntd.0002477] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/30/2013] [Indexed: 12/04/2022] Open
Abstract
Leptospirosis is a re-emerging tropical infectious disease caused by pathogenic Leptospira spp. The different host innate immune responses are partially related to the different severities of leptospirosis. In this study, we employed transcriptomics and cytokine arrays to comparatively calculate the responses of murine peritoneal macrophages (MPMs) and human peripheral blood monocytes (HBMs) to leptospiral infection. We uncovered a series of different expression profiles of these two immune cells. The percentages of regulated genes in several biological processes of MPMs, such as antigen processing and presentation, membrane potential regulation, and the innate immune response, etc., were much greater than those of HBMs (>2-fold). In MPMs and HBMs, the caspase-8 and Fas-associated protein with death domain (FADD)-like apoptosis regulator genes were significantly up-regulated, which supported previous results that the caspase-8 and caspase-3 pathways play an important role in macrophage apoptosis during leptospiral infection. In addition, the key component of the complement pathway, C3, was only up-regulated in MPMs. Furthermore, several cytokines, e.g. interleukin 10 (IL-10) and tumor necrosis factor alpha (TNF-alpha), were differentially expressed at both mRNA and protein levels in MPMs and HBMs. Some of the differential expressions were proved to be pathogenic Leptospira-specific regulations at mRNA level or protein level. Though it is still unclear why some animals are resistant and others are susceptible to leptospiral infection, this comparative study based on transcriptomics and cytokine arrays partially uncovered the differences of murine resistance and human susceptibility to leptospirosis. Taken together, these findings will facilitate further molecular studies on the innate immune response to leptospiral infection. Although pathogenic Leptospira is not an obligate intracellular pathogen, recent studies have shown that phagocytosis and innate immunity play important roles in leptospirosis. The Leptospira-macrophage interaction is a common model used to elucidate the initial response in leptospiral infection. Our previous research has shown that there is little difference in the transcriptomics of pathogenic Leptospira infecting murine or human macrophage cell lines. Contrarily, in this study, we observed significant differences of murine and human primary macrophages infected by L. interrogans as shown in several processes, such as antigen processing and presentation, Toll-like receptor signaling pathway and innate immune response, complement and coagulation cascades, expression of major cytokines and chemokines, etc. These results suggested that different immune responses explain the major disparities in the murine and human Leptospira-macrophage infection models. This study added to the former leptospiral transcriptomics research on the Leptospira-macrophage interaction model and laid a foundation for further investigation in the pathogenesis of leptospirosis.
Collapse
Affiliation(s)
- Feng Xue
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Tropical Medicine Research Institute, Beijing, China
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
- Beijing Institute of Biotechnology, Beijing, China
- * E-mail:
| | - Xinghui Zhao
- Beijing Institute of Biotechnology, Beijing, China
| | - Yingchao Yang
- Division of Parasitic Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
| | - Jinping Zhao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yutao Yang
- Department of Neurobiology, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Major Brain Disorders, Beijing Institute of Brain Disorders, Beijing, China
| | - Yongguo Cao
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Cailing Hong
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuan Liu
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lan Sun
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Tropical Medicine Research Institute, Beijing, China
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| | - Minjun Huang
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Tropical Medicine Research Institute, Beijing, China
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| | - Junchao Gu
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Tropical Medicine Research Institute, Beijing, China
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| |
Collapse
|
45
|
Interleukin-10 (IL-10) inhibits Borrelia burgdorferi-induced IL-17 production and attenuates IL-17-mediated Lyme arthritis. Infect Immun 2013; 81:4421-30. [PMID: 24042116 DOI: 10.1128/iai.01129-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that cells and cytokines associated with interleukin-17 (IL-17)-driven inflammation are involved in the arthritic response to Borrelia burgdorferi infection. Here, we report that IL-17 is a contributing factor in the development of Lyme arthritis and show that its production and histopathological effects are regulated by interleukin-10 (IL-10). Spleen cells obtained from B. burgdorferi-infected, "arthritis-resistant" wild-type C57BL/6 mice produced low levels of IL-17 following stimulation with the spirochete. In contrast, spleen cells obtained from infected, IL-10-deficient C57BL/6 mice produced a significant amount of IL-17 following stimulation with B. burgdorferi. These mice developed significant arthritis, including erosion of the bones in the ankle joints. We further show that treatment with antibody to IL-17 partially inhibited the significant hind paw swelling and histopathological changes observed in B. burgdorferi-infected, IL-10-deficient mice. Taken together, these findings provide additional evidence of a role for IL-17 in Lyme arthritis and reveal an additional regulatory target of IL-10 following borrelial infection.
Collapse
|
46
|
Bhat A, Wooten RM, Jayasuriya AC. Secretion of growth factors from macrophages when cultured with microparticles. J Biomed Mater Res A 2013; 101:3170-80. [PMID: 23554098 DOI: 10.1002/jbm.a.34604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 01/09/2013] [Indexed: 12/31/2022]
Abstract
The aim of this study is to investigate the influence of macrophages on osteoblast (OB) performance and differentiation. In this regard, we studied the secretion of growth factors including bone morphogenetic proteins (BMPs) from before and after activation of macrophages. We also evaluated osteogenic markers in the co-culture of macrophages and OBs. The macrophages were seeded on microparticles (MPs) based on chitosan (CS). Two types of MPs were fabricated including CS MPs and 10% calcium phosphate (CaHPO4 )-incorporated CS MPs. Macrophage seeded on MPs was activated using lipopolysaccharide (LPS). The expression of BMP-2, BMP-6, BMP-7, and transforming growth factor beta (TGF-β) from macrophages seeded and cultured on hybrid MPs before and after activation of LPS at predetermined times was quantified using a quantitative reverse transcription-polymerase chain reaction (RT-PCR). All of the above growth factors were expressed from MP-macrophage cultures before LPS activation. Osteogenic markers such as alkaline phosphatase (ALP), osteocalcin (OCN), and collagen I (COL-I) in the cultures of MP-OB-macrophage were quantified using a quantitative RT-PCR at days 2, 4, and 7. We found an elevation of gene expression of ALP and COL-1 in the co-cultures of OB-macrophage on MPs compared to OB on MP cultures. These data suggest that macrophages enhance expression of osteogenic markers in OBs, and demonstrate the importance of the role of macrophages in bone regeneration.
Collapse
Affiliation(s)
- Archana Bhat
- Department of Orthopaedic Surgery, The University of Toledo, College of Medicine, Toledo, Ohio, 43614
| | | | | |
Collapse
|
47
|
Gautam A, Dixit S, Embers M, Gautam R, Philipp MT, Singh SR, Morici L, Dennis VA. Different patterns of expression and of IL-10 modulation of inflammatory mediators from macrophages of Lyme disease-resistant and -susceptible mice. PLoS One 2012; 7:e43860. [PMID: 23024745 PMCID: PMC3443101 DOI: 10.1371/journal.pone.0043860] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 07/26/2012] [Indexed: 12/04/2022] Open
Abstract
C57BL/6J (C57) mice develop mild arthritis (Lyme disease-resistant) whereas C3H/HeN (C3H) mice develop severe arthritis (Lyme disease-susceptible) after infection with the spirochete Borrelia burgdorferi. We hypothesized that susceptibility and resistance to Lyme disease, as modeled in mice, is associated with early induction and regulation of inflammatory mediators by innate immune cells after their exposure to live B. burgdorferi spirochetes. Here, we employed multiplex ELISA and qRT-PCR to investigate quantitative differences in the levels of cytokines and chemokines produced by bone marrow-derived macrophages from C57 and C3H mice after these cells were exposed ex vivo to live spirochetes or spirochetal lipoprotein. Upon stimulation, the production of both cytokines and chemokines was up-regulated in macrophages from both mouse strains. Interestingly, however, our results uncovered two distinct patterns of spirochete- and lipoprotein-inducible inflammatory mediators displayed by mouse macrophages, such that the magnitude of the chemokine up-regulation was larger in C57 cells than it was in C3H cells, for most chemokines. Conversely, cytokine up-regulation was more intense in C3H cells. Gene transcript analyses showed that the displayed patterns of inflammatory mediators were associated with a TLR2/TLR1 transcript imbalance: C3H macrophages expressed higher TLR2 transcript levels as compared to those expressed by C57 macrophages. Exogenous IL-10 dampened production of inflammatory mediators, especially those elicited by lipoprotein stimulation. Neutralization of endogenously produced IL-10 increased production of inflammatory mediators, notably by macrophages of C57 mice, which also displayed more IL-10 than C3H macrophages. The distinct patterns of pro-inflammatory mediator production, along with TLR2/TLR1 expression, and regulation in macrophages from Lyme disease-resistant and -susceptible mice suggests itself as a blueprint to further investigate differential pathogenesis of Lyme disease.
Collapse
Affiliation(s)
- Aarti Gautam
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
| | - Saurabh Dixit
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
- Center for Nanobiotechnology Research, Alabama State University, Montgomery, Alabama, United States of America
| | - Monica Embers
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
| | - Rajeev Gautam
- Division of Microbiology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
| | - Mario T. Philipp
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
| | - Shree R. Singh
- Center for Nanobiotechnology Research, Alabama State University, Montgomery, Alabama, United States of America
| | - Lisa Morici
- Department of Microbiology and Immunology, Tulane University, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Vida A. Dennis
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
- Center for Nanobiotechnology Research, Alabama State University, Montgomery, Alabama, United States of America
| |
Collapse
|
48
|
Lochhead RB, Sonderegger FL, Ma Y, Brewster JE, Cornwall D, Maylor-Hagen H, Miller JC, Zachary JF, Weis JH, Weis JJ. Endothelial cells and fibroblasts amplify the arthritogenic type I IFN response in murine Lyme disease and are major sources of chemokines in Borrelia burgdorferi-infected joint tissue. THE JOURNAL OF IMMUNOLOGY 2012; 189:2488-501. [PMID: 22851707 DOI: 10.4049/jimmunol.1201095] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Localized elevation in type I IFN has been uniquely linked to the severe Lyme arthritis that develops in C3H mice infected with the spirochete Borrelia burgdorferi. In this study, the dynamic interactions that result in generation of these responses were further examined in C3H mice carrying the type I IFN receptor gene ablation, which effectively blocks all autocrine/paracrine signaling crucial to induction of downstream effectors. Reciprocal radiation chimeras between C3H and IFNAR1⁻/⁻ mice implicated both radiation-sensitive and radiation-resistant cells of the joint tissue in the proarthritic induction of type I IFN. Ex vivo analysis of cells from the naive joint revealed CD45⁺ cells residing in the tissue to be uniquely capable of initiating the type I IFN response to B. burgdorferi. Type I IFN responses were analyzed in real time by lineage sorting of cells from infected joint tissue. This demonstrated that myeloid cells, endothelial cells, and fibroblasts were responsible for propagating the robust IFN response, which peaked at day 7 postinfection and rapidly resolved. Endothelial cells and fibroblasts were the dominant sources of IFN signature transcripts in the joint tissue. Fibroblasts were also the major early source of chemokines associated with polymorphonuclear leukocyte and monocyte/macrophage infiltration, thus providing a focal point for arthritis development. These findings suggest joint-localized interactions among related and unrelated stromal, endothelial, and myeloid cell lineages that may be broadly applicable to understanding the pathogeneses of diseases associated with type I IFN signature, including systemic lupus erythematosus and some rheumatoid arthritides.
Collapse
Affiliation(s)
- Robert B Lochhead
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sonderegger FL, Ma Y, Maylor-Hagan H, Brewster J, Huang X, Spangrude GJ, Zachary JF, Weis JH, Weis JJ. Localized production of IL-10 suppresses early inflammatory cell infiltration and subsequent development of IFN-γ-mediated Lyme arthritis. THE JOURNAL OF IMMUNOLOGY 2011; 188:1381-93. [PMID: 22180617 DOI: 10.4049/jimmunol.1102359] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IL-10 is a nonredundant inflammatory modulator that suppresses arthritis development in Borrelia burgdorferi-infected mice. Infected C57BL/6 (B6) IL-10(-/-) mice were previously found to have a prolonged IFN-inducible response in joint tissue. Infection of B6 IL-10 reporter mice identified macrophages and CD4(+) T cells as the primary sources of IL-10 in the infected joint tissue, suggesting that early local production of IL-10 dampened the proarthritic IFN response. Treatment of B6 IL-10(-/-) mice with anti-IFN-γ reduced the increase in arthritis severity and suppressed IFN-inducible transcripts to wild-type levels, thereby linking dysregulation of IFN-γ to disease in the B6 IL-10(-/-) mouse. Arthritis in B6 IL-10(-/-) mice was associated with elevated numbers of NK cell, NKT cell, α/β T cell, and macrophage infiltration of the infected joint. FACS lineage sorting revealed NK cells and CD4(+) T cells as sources of IFN-γ in the joint tissue of B6 IL-10(-/-) mice. These findings suggest the presence of a positive-feedback loop in the joint tissue of infected B6 IL-10(-/-) mice, in which production of inflammatory chemokines, infiltration of IFN-γ-producing cells, and additional production of inflammatory cytokines result in arthritis. This mechanism of arthritis is in contrast to that seen in C3H/He mice, in which arthritis development is linked to transient production of type I IFN and develops independently of IFN-γ. Due to the sustained IFN response driven by NK cells and T cells, we propose the B6 IL-10(-/-) mouse as a potential model to study the persistent arthritis observed in some human Lyme disease patients.
Collapse
Affiliation(s)
- F Lynn Sonderegger
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Matsui M, Rouleau V, Bruyère-Ostells L, Goarant C. Gene expression profiles of immune mediators and histopathological findings in animal models of leptospirosis: comparison between susceptible hamsters and resistant mice. Infect Immun 2011; 79:4480-4492. [PMID: 21844232 PMCID: PMC3257942 DOI: 10.1128/iai.05727-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/03/2011] [Indexed: 01/14/2023] Open
Abstract
Leptospirosis is a widespread zoonosis characterized by multiple organ failure and variable host susceptibility toward pathogenic Leptospira strains. In this study, we put the role of inflammatory mediators in parallel with bacterial burdens and organ lesions by comparing a susceptible animal model, the hamster, and a resistant one, the Oncins France 1 (OF1) mouse, both infected with virulent Leptospira interrogans serovar Icterohaemorrhagiae strain Verdun. Histological observations evidenced edema, congestion, hemorrhage, and inflammatory infiltration in the organs of hamsters, in contrast to limited changes in mice. Using reverse transcription-quantitative PCR techniques, we showed that the relative Leptospira burden progressively increased in hamster tissues, while a rapid clearance was observed in mouse tissues. The early regulation of the proinflammatory mediators interleukin-1β (IL-1β), IL-6, tumor necrosis factor alpha, and cyclo-oxygenase-2 and the chemokines gamma interferon-inducible protein 10 kDa/CXCL10 and macrophage inflammatory protein-1α/CCL3 in mouse tissues contrasted with their delayed and massive overexpression in hamster tissues. Conversely, the induction of the anti-inflammatory cytokine IL-10 was faster in the resistant than in the susceptible animal model. The role of these cytokines in the pathophysiology of leptospirosis and the implications of their differential regulation in the development of this disease are discussed.
Collapse
Affiliation(s)
- Mariko Matsui
- Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Bacterial Research Laboratory, Noumea, New Caledonia
| | - Vincent Rouleau
- Anatomic Pathology Laboratory, Territorial Hospital Centre of New Caledonia, Noumea, New Caledonia
| | - Lilian Bruyère-Ostells
- Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Bacterial Research Laboratory, Noumea, New Caledonia
| | - Cyrille Goarant
- Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Bacterial Research Laboratory, Noumea, New Caledonia
| |
Collapse
|