1
|
Miranda C, Oliveira L, Carmo AM, Olsson IAS, Franco NH. Contactless body temperature assessment for signalling humane endpoints in a mouse model of sepsis. Anim Welf 2025; 34:e13. [PMID: 40028439 PMCID: PMC11867820 DOI: 10.1017/awf.2025.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 03/05/2025]
Abstract
Minimising suffering is an ethical and legal requirement in animal research. This is particularly relevant for research on animal models of sepsis and septic shock, which show rapid progression towards severe stages and death. Specific and reliable criteria signalling non-recovery points can be used as humane endpoints, beyond which a study cannot be allowed to progress, thus preventing avoidable suffering. Body temperature is a key indicator for assessing animal health and welfare and has been suggested to have potential for monitoring the status of mouse models of sepsis. In this study, we monitored temperature variations using contactless methods - thermal imaging and subcutaneously implanted PIT tags - in a surgical model of sepsis by caecal ligation and puncture (CLP). We monitored body temperature variation following mid-grade CLP, high-grade CLP and sham surgery. All mice (Mus musculus) were monitored four times per day in the high-grade CLP model and three times per day in the mid-grade CLP model by both PIT tag readout and infrared thermography for ten days post-surgery, or until animals reached a predefined humane endpoint. Thermal data were compared with the clinical score and weight loss threshold used at our facility. Mean body surface temperature (MBST) assessed by thermal imaging and subcutaneous temperature (SCT) measured by PIT tags correlated, albeit not strongly. Moreover, while MBST does not appear to be a reliable predictor of non-recovery stages, SCT showed promise in this regard, even surpassing the widely used weight loss criterion, particularly for the high-grade CLP model of induced sepsis.
Collapse
Affiliation(s)
| | - Liliana Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto
| | - Alexandre M Carmo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto
| | - I Anna S Olsson
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto
| | - Nuno H Franco
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto
| |
Collapse
|
2
|
Azizian-Farsani F, Weixelbaumer K, Mascher D, Klang A, Högler S, Dinhopl N, Bauder B, Weissenböck H, Tichy A, Schmidt P, Mascher H, Osuchowski MF. Lethal versus surviving sepsis phenotypes displayed a partly differential regional expression of neurotransmitters and inflammation and did not modify the blood-brain barrier permeability in female CLP mice. Intensive Care Med Exp 2024; 12:96. [PMID: 39497013 PMCID: PMC11535104 DOI: 10.1186/s40635-024-00688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Septic encephalopathy is frequent but its pathophysiology is enigmatic. We studied expression of neurotransmitters, inflammation and integrity of the blood-brain barrier (BBB) in several brain regions during abdominal sepsis. We compared mice with either lethal or surviving phenotype in the first 4 sepsis days. Mature CD-1 females underwent cecal ligation and puncture (CLP). Body temperature (BT) was measured daily and predicted-to-die (within 24 h) mice (for P-DIE; BT < 28 °C) were sacrificed together (1:1 ratio) with mice predicted-to-survive (P-SUR; BT > 35 °C), and healthy controls (CON). Brains were dissected into neocortex, cerebellum, midbrain, medulla, striatum, hypothalamus and hippocampus. RESULTS CLP mice showed an up to threefold rise of serotonin in the hippocampus, 5-hydroxyindoleacetic and homovanillic acid (HVA) in nearly all regions vs. CON. Compared to P-SUR, P-DIE mice showed a 1.7 to twofold rise of HVA (386 ng/g of tissue), dopamine (265 ng/g) and 3,4-Dihydroxyphenylacetic acid (DOPAC; 140 ng/g) in the hippocampus, hypothalamus and medulla (174, 156, 82 ng/g of tissue, respectively). CLP increased expression of TNFα, IL-1β and IL-6 mRNA by several folds in the midbrain, cerebellum and hippocampus versus CON. The same cytokines were further elevated in P-DIE vs P-SUR in the midbrain and cerebellum. Activation of astrocytes and microglia was robust across regions but remained typically phenotype independent. There was a similar influx of sodium fluorescein across the BBB in both P-DIE and P-SUR mice. CONCLUSIONS Compared to survivors, the lethal phenotype induced a stronger deregulation of amine metabolism and cytokine expression in selected brain regions, but the BBB permeability remained similar regardless of the predicted outcome.
Collapse
Affiliation(s)
- Fatemeh Azizian-Farsani
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200, Vienna, Austria
| | - Katrin Weixelbaumer
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200, Vienna, Austria
| | | | - Andrea Klang
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Sandra Högler
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Nora Dinhopl
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Bauder
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | | | - Alexander Tichy
- Institute of Medical Physics and Biostatistics, University of Veterinary Medicine, Vienna, Austria
| | - Peter Schmidt
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | | | - Marcin F Osuchowski
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200, Vienna, Austria.
| |
Collapse
|
3
|
Moretti EH, Lino CA, Steiner AA. INTERPLAY BETWEEN BRAIN OXYGENATION AND THE DEVELOPMENT OF HYPOTHERMIA IN ENDOTOXIC SHOCK. Shock 2024; 61:861-868. [PMID: 38662598 DOI: 10.1097/shk.0000000000002350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT There is evidence to suggest that the hypothermia observed in the most severe cases of systemic inflammation or sepsis is a regulated response with potential adaptive value, but the mechanisms involved are poorly understood. Here, we investigated the interplay between brain oxygenation (assessed by tissue P o2 ) and the development of hypothermia in unanesthetized rats challenged with a hypotension-inducing dose of bacterial LPS (1 mg/kg i.v.). At an ambient temperature of 22°C, oxygen consumption (V̇O 2 ) began to fall only a few minutes after the LPS injection, and this suppression in metabolic rate preceded the decrease in core temperature. No reduction in brain P o2 was observed prior to the development of the hypometabolic, hypothermic response, ruling out the possibility that brain hypoxia served as a trigger for hypothermia in this model. Brain P o2 was even increased. Such an improvement in brain oxygenation could reflect either an increased O 2 delivery or a decreased O 2 consumption. The former explanation seems unlikely because blood flow (cardiac output) was being progressively decreased during the recording period. On the other hand, the decrease in V̇O 2 usually preceded the rise in P o2 , and an inverse correlation between V̇O 2 and brain P o2 was consistently observed. These findings do not support the existence of a closed-loop feedback relationship between brain oxygenation and hypothermia in systemic inflammation. The data are consistent with a feedforward mechanism in which hypothermia is triggered (possibly by cryogenic inflammatory mediators) in anticipation of changes in brain oxygenation to prevent the development of tissue hypoxia.
Collapse
Affiliation(s)
- Eduardo H Moretti
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | | |
Collapse
|
4
|
Na AY, Lee H, Min EK, Paudel S, Choi SY, Sim H, Liu KH, Kim KT, Bae JS, Lee S. Novel Time-dependent Multi-omics Integration in Sepsis-associated Liver Dysfunction. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1101-1116. [PMID: 37084954 PMCID: PMC11082264 DOI: 10.1016/j.gpb.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/03/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
The recently developed technologies that allow the analysis of each single omics have provided an unbiased insight into ongoing disease processes. However, it remains challenging to specify the study design for the subsequent integration strategies that can associate sepsis pathophysiology and clinical outcomes. Here, we conducted a time-dependent multi-omics integration (TDMI) in a sepsis-associated liver dysfunction (SALD) model. We successfully deduced the relation of the Toll-like receptor 4 (TLR4) pathway with SALD. Although TLR4 is a critical factor in sepsis progression, it is not specified in single-omics analyses but only in the TDMI analysis. This finding indicates that the TDMI-based approach is more advantageous than single-omics analyses in terms of exploring the underlying pathophysiological mechanism of SALD. Furthermore, TDMI-based approach can be an ideal paradigm for insightful biological interpretations of multi-omics datasets that will potentially reveal novel insights into basic biology, health, and diseases, thus allowing the identification of promising candidates for therapeutic strategies.
Collapse
Affiliation(s)
- Ann-Yae Na
- Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyojin Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Eun Ki Min
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Sanjita Paudel
- Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - So Young Choi
- Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - HyunChae Sim
- Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwang-Hyeon Liu
- Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Jong-Sup Bae
- Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sangkyu Lee
- Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
5
|
Bodilly L, Williamson L, Lahni P, Alder MN, Haslam DB, Kaplan JM. Obesity Alters cytokine signaling and gut microbiome in septic mice. Innate Immun 2023; 29:161-170. [PMID: 37802127 PMCID: PMC10621470 DOI: 10.1177/17534259231205959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023] Open
Abstract
Sepsis is a leading cause of mortality. Plasma cytokine levels may identify those at increased risk of mortality from sepsis. Our aim was to understand how obesity alters cytokine levels during early sepsis and its correlation with survival. Six-week-old C57BL/6 male mice were randomized to control (non-obese) or high fat diet (obese) for 5-7 weeks. Sepsis was induced by cecal ligation and perforation (CLP). Cytokine levels were measured from cheek bleeds 8 h after CLP, and mice were monitored for survival. Other cohorts were sacrificed 1 h after CLP for plasma and tissue. Septic obese mice had higher survival. At 8 h after sepsis, obese mice had higher adiponectin, leptin, and resistin but lower TNFα and IL-6 compared to non-obese mice. When stratified by 24-h survival, adipokines were not significantly different in obese and non-obese mice. TNFα and IL-6 were higher in non-obese, compared to obese, mice that died within 24 h of sepsis. Diet and to sepsis significantly impacted the cecal microbiome. IL-6 is a prognostic biomarker during early sepsis in non-obese and obese mice. A plausible mechanism for the survival difference in non-obese and obese mice may be the difference in gut microbiome and its evolution during sepsis.
Collapse
Affiliation(s)
- Lauren Bodilly
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Lauren Williamson
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Patrick Lahni
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew N. Alder
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - David B. Haslam
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jennifer M. Kaplan
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Madhvapathy SR, Wang JJ, Wang H, Patel M, Chang A, Zheng X, Huang Y, Zhang ZJ, Gallon L, Rogers JA. Implantable bioelectronic systems for early detection of kidney transplant rejection. Science 2023; 381:1105-1112. [PMID: 37676965 DOI: 10.1126/science.adh7726] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/19/2023] [Indexed: 09/09/2023]
Abstract
Early-stage organ transplant rejection can be difficult to detect. Percutaneous biopsies occur infrequently and are risky, and measuring biomarker levels in blood can lead to false-negative and -positive outcomes. We developed an implantable bioelectronic system capable of continuous, real-time, long-term monitoring of the local temperature and thermal conductivity of a kidney for detecting inflammatory processes associated with graft rejection, as demonstrated in rat models. The system detects ultradian rhythms, disruption of the circadian cycle, and/or a rise in kidney temperature. These provide warning signs of acute kidney transplant rejection that precede changes in blood serum creatinine/urea nitrogen by 2 to 3 weeks and approximately 3 days for cases of discontinued and absent administration of immunosuppressive therapy, respectively.
Collapse
Affiliation(s)
- Surabhi R Madhvapathy
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA 60208
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA 60208
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA 60611
| | - Heling Wang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA 60208
- Department of Civil Engineering, Northwestern University, Evanston, IL, USA 60208
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100085 China
| | - Manish Patel
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA 60208
- Department of Intervention Radiology, University of Illinois at Chicago, Chicago, IL, USA 60612
| | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, IL USA 60637
| | - Xin Zheng
- Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA 60611
| | - Yonggang Huang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA 60208
- Department of Civil Engineering, Northwestern University, Evanston, IL, USA 60208
| | - Zheng J Zhang
- Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA 60611
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA 60611
| | - Lorenzo Gallon
- Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA 60611
- Department of Nephrology, Northwestern University, Chicago, IL, USA 60611
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA 60208
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA 60208
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA 60208
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA 60611
| |
Collapse
|
7
|
Ma Q, Wischmeyer PE. Effects of glutamine and n-3 polyunsaturated fatty acid mixed lipid emulsion supplementation of parenteral nutrition on sepsis score and bacterial clearance in early experimental sepsis. Clin Nutr ESPEN 2023; 54:406-411. [PMID: 36963886 DOI: 10.1016/j.clnesp.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
INTRODUCTION Glutamine (GLN) and n-3 polyunsaturated fatty acids (n-3PUFAs) have been shown to potentially possess immune-modulating and disease-modifying properties in experimental and clinical critical illness when given with parenteral nutrition (PN). However, we recently showed in experimental cancer models that combinations of GLN/n-3 PUFA may antagonize benefits of either nutrient alone. Thus, our aim was to explore the effects of PN-containing GLN and n-3PUFA mixed lipid emulsion (MLE) alone and in combination in experimental sepsis. METHODS Adult male rats were exposed to cecal ligation and puncture (CLP) and sacrificed at 24 h. Rats were infused with either normal saline (NS); PN + Intralipid (PNcont); PN + GLN; PN + n-3PUFA MLE; or PN + GLN/n-3PUFA MLE after CLP-sepsis for 23 h. Animals were assessed at 24 h for sepsis score, Gram (+) and Gram (-) bacterial load in blood, peritoneum, and bronchoalveolar lavage fluid (BALF). RESULTS Rats treated with PN + GLN or PN + n-3PUFA showed significantly lower sepsis scores compared to NS and PNcont (all p ≤ 0.016). Non-significant trends to improved sepsis scores was observed in rats treated with PN + GLN/n-3PUFA versus NS (p = 0.067) or PNcont (p = 0.093). Rats treated with PN + GLN, PN + n-3PUFA, or PN + GLN/n-3PUFA had significant improvement or trends to improved Gram (+) and Gram (-) bacterial loads in BALF versus NS (p ≤ 0.05, PN + GLN and PN + GLN/n-3PUFA for Gram (+); p = 0.057, PN + n-3PUFA for Gram (+); p ≤ 0.05, n-3PUFA and PN + GLN/n-3PUFA for Gram (-)). No differences between groups in blood or peritoneal bacterial counts observed. CONCLUSIONS This data describes initial evidence that nutritional-doses of GLN, n-3PUFA MLE, and GLN + n-3PUFA MLE in PN can improve bacterial load/clearance in sepsis. Further, improvements of sepsis score by PN + n-3PUFA MLE and PN + GLN was observed. Previously observed antagonism of benefits of PN-containing GLN or n-3PUFAs alone by combinations of these nutrients was not observed in experimental sepsis. These results suggest further research is needed into PN-strategies using GLN and/or n-3PUFA at nutritional-doses in sepsis.
Collapse
Affiliation(s)
- Qing Ma
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Paul E Wischmeyer
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
8
|
Garcia LF, Singh V, Mireles B, Dwivedi AK, Walker WE. Common Variables That Influence Sepsis Mortality in Mice. J Inflamm Res 2023; 16:1121-1134. [PMID: 36941984 PMCID: PMC10024505 DOI: 10.2147/jir.s400115] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/18/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction Sepsis is characterized by a dysregulated host immune response to infection, leading to organ dysfunction and a high risk of death. The cecal ligation and puncture (CLP) mouse model is commonly used to study sepsis, but animal mortality rates vary between different studies. Technical factors and animal characteristics may affect this model in unanticipated ways, and if unaccounted for, may lead to serious biases in study findings. We sought to evaluate whether mouse sex, age, weight, surgeon, season of experiments, and timing of antibiotic administration influenced mortality in the CLP model. Methods We created a comprehensive dataset of C57BL/6J mice that had undergone CLP surgery within our lab during years 2015-2020 from published and unpublished studies. The primary outcome was defined as the time from sepsis induction to death or termination of study (14 days). The Log rank test and Cox regression models were used to analyze the dataset. The study included 119 mice, of which 43% were female, with an average age of 12.6 weeks, an average weight of 25.3 g. 38 (32%) of the animals died. Results In the unadjusted analyses, experiments performed in the summer and higher weight predicted a higher risk of mortality. In the stratified Cox model by sex, summer season (adjusted hazard ratio [aHR]=5.61, p=0.004) and delayed antibiotic administration (aHR=1.46, p=0.029) were associated with mortality in males, whereas higher weight (aHR=1.52, p=0.005) significantly affected mortality in females. In addition, delayed antibiotic administration (HR=1.42, p=0.025) was associated with mortality in the non-summer seasons, but not in the summer season. Discussion In conclusion, some factors specific to sex and season have a significant influence on sepsis mortality in the CLP model. Consideration of these factors along with appropriate group matching or adjusted analysis is critical to minimize variability beyond the experimental conditions within a study.
Collapse
Affiliation(s)
- Luiz F Garcia
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Vishwajeet Singh
- Biostatistics and Epidemiology Consulting Lab, Office of Research, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Blake Mireles
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Alok Kumar Dwivedi
- Biostatistics and Epidemiology Consulting Lab, Office of Research, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
- Division of Biostatistics and Epidemiology, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Wendy E Walker
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
- Correspondence: Wendy E Walker, 5001 El Paso Drive, El Paso, TX, 79905, USA, Tel +1 915 215-4268, Fax +1 915 783-1271, Email
| |
Collapse
|
9
|
Yamashita T, Street JM, Halasa BC, Naito Y, Tsuji T, Tsuji N, Hayase N, Yuen PST, Star RA. The effect of continuous intravenous norepinephrine infusion on systemic hemodynamics in a telemetrically-monitored mouse model of sepsis. PLoS One 2022; 17:e0271667. [PMID: 35951593 PMCID: PMC9371331 DOI: 10.1371/journal.pone.0271667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Sepsis, a life-threatening organ dysfunction, results from dysregulated host responses to infection and still has a high incidence and mortality. Although administration of vasopressors to treat septic shock is standard of care, the benefits are not well established. We evaluated the effect of continuous intravenous norepinephrine infusion in a septic cecal ligation and puncture (CLP) mouse model, evaluating systemic hemodynamics and body temperature post-hoc. CLP surgery significantly decreased mean arterial blood pressure (MAP), heart rate, and body temperature within six hours. Continuous norepinephrine infusion (NE+, n = 12) started at the time of CLP surgery significantly increased MAP at 24 and 30 hours and heart rate at 6, 18, 24, and 30 hours after CLP vs CLP alone (NE-, n = 12). However, addition of norepinephrine did not improve survival rate (NE+ n = 34, NE- n = 31). Early (6 hours or earlier, when the animal became visibly sick) MAP did not predict 7-day mortality. However, heart rates at 3 and at 6 hours after CLP/norepinephrine (NE+) were highly predictive of mortality, as also been found in one clinical study. We conclude that limited hemodynamic support can be provided in a mouse sepsis model. We propose that heart rate can be used to stratify severity of illness in rodent preclinical studies of sepsis therapeutics.
Collapse
Affiliation(s)
- Tetsushi Yamashita
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Jonathan M. Street
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Brianna C. Halasa
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Yoshitaka Naito
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Takayuki Tsuji
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Naoko Tsuji
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Naoki Hayase
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Peter S. T. Yuen
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| | - Robert A. Star
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| |
Collapse
|
10
|
Pre-treatment and continuous administration of simvastatin during sepsis improve metabolic parameters and prevent CNS injuries in survivor rats. Mol Cell Biochem 2022; 477:2657-2667. [DOI: 10.1007/s11010-022-04463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
|
11
|
Wang X, Zhang H, Guo R, Li X, Liu H, Wang Z, Du Q, Tong D, Huang Y. MicroRNA-223 modulates the IL-4-medicated macrophage M2-type polarization to control the progress of sepsis. Int Immunopharmacol 2021; 96:107783. [PMID: 34162147 DOI: 10.1016/j.intimp.2021.107783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
MicroRNAs play a variety of roles in the progress of inflammation. Herein, we investigated the roles of miR-223 in governing macrophage polarization balance in the progress of sepsis. We firstly observed that miR-223 was down-regulated at the early phase and up-regulated at the late phase of sepsis in macrophages; the levels of miR-223 were positively correlated to the ratio of M2 macrophages during sepsis. In miR-223 knockout mice, we observed that miR-223 was dispensable for efficient pro-inflammatory responses, but was required for efficient M2-associated phenotype and function. miR-223 deletion increased clinical scores of sepsis, leading to increased mortality in septic mice. Furthermore, we found that miR-223 expression in M2-type macrophages was controlled by interleukin (IL)-4, but not IL-10; IL-4 antibodies were able to downregulate the levels of miR-223, increased the expression of targeted genes Nfat5 and Rasa1, reduced the ratio of M2 macrophages, resulting in a decreased survival rate in septic mice. Meanwhile, miR-223 deficient macrophages appeared a markedly decreased M2-type polarization when induced by IL-4, but did not affect macrophages skew to M2 phenotype induced by IL-10. Taken together, our results demonstrate that miR-223 acts as an important regulator to modulate IL-4-meditated M2-type polarization of macrophages via targeting to Nfat5 and Rasa1 to control the progress of sepsis.
Collapse
Affiliation(s)
- Xiaoya Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Hai Zhang
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, No. 169 Changle West Road, Xi'an 710032, China; Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Rui Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xiaomin Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Haixin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Zhenyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
12
|
Bayer J, Vaghela R, Drechsler S, Osuchowski MF, Erben RG, Andrukhova O. The bone is the major source of high circulating intact fibroblast growth factor-23 in acute murine polymicrobial sepsis induced by cecum ligation puncture. PLoS One 2021; 16:e0251317. [PMID: 33989306 PMCID: PMC8121358 DOI: 10.1371/journal.pone.0251317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/23/2021] [Indexed: 12/20/2022] Open
Abstract
Fibroblast growth factor-23 (FGF23), a bone-produced hormone, plays a critical role in mineral homeostasis. Human diseases associated with excessive intact circulating FGF23 (iFGF23) result in hypophosphatemia and low vitamin D hormone in patients with normal kidney function. In addition, there is accumulating evidence linking FGF23 with inflammation. Based on these studies and the frequent observation of hypophosphatemia among septic patients, we sought to elucidate further the relationship between FGF23 and mineral homeostasis in a clinically relevant murine polymicrobial sepsis model. Medium-severity sepsis was induced by cecum ligation puncture (CLP) in adult CD-1 mice of both sexes. Healthy CD-1 mice (without CLP) were used as controls. Forty-eight hours post-CLP, spontaneous urine was collected, and serum, organs and bones were sampled at necropsy. Serum iFGF23 increased ~20-fold in CLP compared to control mice. FGF23 protein concentration was increased in the bones, but not in spleen or liver of CLP mice. Despite the ~20-fold iFGF23 increase, we did not observe any significant changes in mineral homeostasis or parathyroid hormone levels in the blood of CLP animals. Urinary excretion of phosphate, calcium, and sodium remained unchanged in male CLP mice, whereas female CLP mice exhibited lower urinary calcium excretion, relative to healthy controls. In line with renal FGF23 resistance, expression of phosphate-, calcium- and sodium-transporting proteins did not show consistent changes in the kidneys of male and female CLP mice. Renal expression of the co-receptor αKlotho was downregulated in female, but not in male CLP mice. In conclusion, our data demonstrate that the dramatic, sex-independent rise in serum iFGF23 post-CLP was mainly caused by an upregulation of FGF23 secretion in the bone. Surprisingly, the upsurge in circulating iFGF23 did not alter humoral mineral homeostasis in the acutely septic mice. Hence, the biological function of elevated FGF23 in sepsis remains unclear and warrants further studies.
Collapse
Affiliation(s)
- Jessica Bayer
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ravikumar Vaghela
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Susanne Drechsler
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Marcin F. Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Reinhold G. Erben
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Olena Andrukhova
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
13
|
Bone Marrow Mesenchymal Stromal Cells on Silk Fibroin Scaffolds to Attenuate Polymicrobial Sepsis Induced by Cecal Ligation and Puncture. Polymers (Basel) 2021; 13:polym13091433. [PMID: 33946773 PMCID: PMC8125697 DOI: 10.3390/polym13091433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Suitable scaffolds with appropriate mechanical and biological properties can improve mesenchymal stromal cell (MSC) therapy. Because silk fibroins (SFs) are biocompatible materials, they were electrospun and applied as scaffolds for MSC therapy. Consequently, interferon (IFN)-primed human bone marrow MSCs on SF nanofibers were administered into a polymicrobial sepsis murine model. The IL-6 level gradually decreased from 40 ng/mL at 6 h after sepsis to 35 ng/mL at 24 h after sepsis. The IL-6 level was significantly low as 5 ng/mL in primed MSCs on SF nanofibers, and 15 ng/mL in primed MSCs on the control surface. In contrast to the acute response, inflammation-related factors, including HO-1 and COX-2 in chronic liver tissue, were effectively inhibited by MSCs on both SF nanofibers and the control surface at the 5-day mark after sepsis. An in vitro study indicated that the anti-inflammatory function of MSCs on SF nanofibers was mediated through enhanced COX-2-PGE2 production, as indomethacin completely abrogated PGE2 production and decreased the survival rate of septic mice. Thus, SF nanofiber scaffolds potentiated the anti-inflammatory and immunomodulatory functions of MSCs, and were beneficial as a culture platform for the cell therapy of inflammatory disorders.
Collapse
|
14
|
Karabulut G, Bedirli N, Akyürek N, Bağrıaçık EÜ. Dose-related effects of dexmedetomidine on sepsis-initiated lung injury in rats. Braz J Anesthesiol 2021; 71:271-277. [PMID: 33845100 PMCID: PMC9373509 DOI: 10.1016/j.bjane.2021.02.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 02/14/2021] [Accepted: 02/27/2021] [Indexed: 02/05/2023] Open
Abstract
Background Sepsis is one of the leading causes of death in intensive care units. Dexmedetomidine is a sedative agent with anti-inflammatory properties. This study is designed to differentiate the impact of two different doses of dexmedetomidine on lung injury induced by sepsis. Methods Adult male Wistar rats were randomly divided into four groups: sham (n = 6), control (n = 12), 5DEX (n = 12), and 10DEX (n = 12). Cecal ligation puncture (CLP) was applied for sepsis initiation. The 5DEX group received 5 μg.kg-1.h-1 and the 10DEX group received 10 μg.kg-1.h-1 dexmedetomidine intravenous infusions for a 1-hour period. Six hours after CLP, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and intercellular adhesion molecule-1 (ICAM-1) levels were analyzed in blood samples. Twenty-four hours after CLP, lung samples from the remaining rats were collected for the measurement of myeloperoxidase (MPO) activity, histological examination, and TdT- (terminal deoxynucleotidyl transferase) mediated fluorescent-dUTP labeling staining for apoptosis detection. Results Serum cytokine release, MPO activity, and apoptosis in the lung were significantly increased in the CLP group compared with the sham and dexmedetomidine groups (p < 0.05). TNF-α, ICAM-1, and MPO were significantly lower in the 10DEX group compared with both 5DEX and control groups, while IL-1β, total injury score, and apoptotic cell count had significantly lower values in both 10DEX and 5DEX groups compared with the control group (p < 0.05). Conclusion Dexmedetomidine administration played a protective role against CLP-induced lung injury. High-dose dexmedetomidine was needed for suppressing the leukocyte-mediated lung injury and apoptosis of lung tissue.
Collapse
Affiliation(s)
- Gülsüm Karabulut
- Gazi University, Faculty of Medicine, Department of Anesthesiology and Reanimation, Ankara, Turkey.
| | - Nurdan Bedirli
- Gazi University, Faculty of Medicine, Department of Anesthesiology and Reanimation, Ankara, Turkey
| | - Nalan Akyürek
- Gazi University, Faculty of Medicine, Department of Pathology, Ankara, Turkey
| | - Emin Ümit Bağrıaçık
- Gazi University, Faculty of Medicine, Department of Immunology, Ankara, Turkey
| |
Collapse
|
15
|
Patel A, Khande H, Periasamy H, Mokale S. Immunomodulatory Effect of Doxycycline Ameliorates Systemic and Pulmonary Inflammation in a Murine Polymicrobial Sepsis Model. Inflammation 2021; 43:1035-1043. [PMID: 31955291 PMCID: PMC7224120 DOI: 10.1007/s10753-020-01188-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Acute lung injury is an inflammatory condition developed after severe sepsis in response to excessive secretion of pro-inflammatory cytokines. Doxycycline is widely reported to possess immunomodulatory activity through inhibition of various inflammatory pathways. Considering the broad spectrum of anti-inflammatory activity, protective effect of doxycycline was evaluated in clinically relevant murine polymicrobial sepsis model induced by caecal ligation and puncture (CLP). In this model, sepsis is accompanied with infection and therefore ceftriaxone at sub-protective dose was combined to retard the bacterial growth. Three hours after CLP challenge, mice were administered vehicle, ceftriaxone (100 mg/kg subcutaneously) alone and in combination with immunomodulatory dose of doxycycline (50 mg/kg, intraperitoneal) and survival were monitored for 5 days. Bacterial count in blood and peritoneal fluid along with cytokines [interleukin (IL)-6, IL-1β, tumour necrosis factor (TNF)-α] and myeloperoxidase (MPO) in plasma and lung homogenate were measured at 18 h post-CLP. Plasma glutathione (GSH) was also determined. Doxycycline in presence of ceftriaxone improved survival of septic mice by significantly reducing the plasma and lung pro-inflammatory cytokines and MPO levels. It also increased plasma GSH levels. Doxycycline did not improve antibacterial effect of ceftriaxone in combination, suggesting that the protective effect of doxycycline was due to its immunomodulatory activity. Doxycycline in the presence of ceftriaxone demonstrated improved survival of septic mice by modulating the immune response.
Collapse
Affiliation(s)
- Anasuya Patel
- Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Marg, Aurangabad, Maharashtra, India
- Wockhardt Research Centre, Aurangabad, Maharashtra, India
| | - Hemant Khande
- Wockhardt Research Centre, Aurangabad, Maharashtra, India
| | | | - Santosh Mokale
- Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Marg, Aurangabad, Maharashtra, India.
| |
Collapse
|
16
|
Törnblom S, Nisula S, Vaara ST, Poukkanen M, Andersson S, Pettilä V, Pesonen E. Early prolonged neutrophil activation in critically ill patients with sepsis. Innate Immun 2021; 27:192-200. [PMID: 33461369 PMCID: PMC7882810 DOI: 10.1177/1753425920980078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We hypothesised that plasma concentrations of biomarkers of neutrophil activation and pro-inflammatory cytokines differ according to the phase of rapidly evolving sepsis. In an observational study, we measured heparin-binding protein (HBP), myeloperoxidase (MPO), IL-6 and IL-8 in 167 sepsis patients on intensive care unit admission. We prospectively used the emergence of the first sepsis-associated organ dysfunction (OD) as a surrogate for the sepsis phase. Fifty-five patients (of 167, 33%) developed the first OD > 1 h before, 74 (44%) within ± 1 h, and 38 (23%) > 1 h after intensive care unit admission. HBP and MPO were elevated at a median of 12 h before the first OD, remained high up to 24 h, and were not associated with sepsis phase. IL-6 and IL-8 rose and declined rapidly close to OD emergence. Elevation of neutrophil activation markers HBP and MPO was an early event in the evolution of sepsis, lasting beyond the subsidence of the pro-inflammatory cytokine reaction. Thus, as sepsis biomarkers, HBP and MPO were not as prone as IL-6 and IL-8 to the effect of sample timing.
Collapse
Affiliation(s)
- Sanna Törnblom
- Division of Intensive Care Medicine, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Sara Nisula
- Division of Intensive Care Medicine, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Suvi T Vaara
- Division of Intensive Care Medicine, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Meri Poukkanen
- Department of Anaesthesia and Intensive Care Medicine, Lapland Central Hospital, Finland
| | - Sture Andersson
- New Children's Hospital, University of Helsinki and Helsinki University Hospital, Finland
| | - Ville Pettilä
- Division of Intensive Care Medicine, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Eero Pesonen
- Division of Anaesthesiology, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Finland
| |
Collapse
|
17
|
Steinhagen F, Hilbert T, Cramer N, Senzig S, Parcina M, Bode C, Boehm O, Frede S, Klaschik S. Development of a minimal invasive and controllable murine model to study polymicrobial abdominal sepsis. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1909663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Folkert Steinhagen
- Department of Anesthesiology and Critical Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Tobias Hilbert
- Department of Anesthesiology and Critical Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Nina Cramer
- Department of Anesthesiology and Critical Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Sebastian Senzig
- Department of Anesthesiology and Critical Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Marijo Parcina
- Department of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Critical Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Olaf Boehm
- Department of Anesthesiology and Critical Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Stilla Frede
- Department of Anesthesiology and Critical Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Sven Klaschik
- Department of Anesthesiology and Critical Care Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
18
|
Neurokinin-1 Receptor Deficiency Improves Survival in Murine Polymicrobial Sepsis Through Multiple Mechanisms in Aged Mice. Shock 2020; 52:61-66. [PMID: 30095600 DOI: 10.1097/shk.0000000000001248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Substance P (SP) is a neuropeptide that contributes to a proinflammatory state by binding to the neurokinin 1 receptor (NK-1R). Limiting this interaction has been shown to attenuate the acute inflammation. Our hypothesis was that NK-1R activation would contribute to the morbidity and mortality of sepsis in a model using mice genetically deficient in the NK-1R. METHODS To investigate the role of the SP/NK-1R axis in a murine model of sepsis, cecal ligation and puncture (CLP) in NK-1R deficient and wild type (WT) aged mice was performed. Acute inflammation was assessed by measuring circulating cytokines and clinical parameters. RESULTS Deletion of the NK-1R results in improved survival following CLP (NK-1R knockout mice survival = 100% vs. WT = 14%). A reduction in the inflammatory cytokines interleukin (IL) 6, macrophage inflammatory peptide 2, and IL-1 receptor antagonist, improved hemodynamic parameters, and increased neutrophilia were present in the NK-1R-deficient mice after CLP compared with WT mice. CONCLUSIONS These data confirm the hypothesis that eliminating the SP/NK-1R interaction in a highly lethal murine model of sepsis leads to decreased morbidity and mortality through multiple mechanisms.
Collapse
|
19
|
Clinical relevance of single nucleotide polymorphisms in the CXCL1 and CXCL12 genes in patients with major trauma. J Trauma Acute Care Surg 2020; 86:440-447. [PMID: 30489503 DOI: 10.1097/ta.0000000000002141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Genetic backgrounds have been recognized as significant determinants of susceptibility to sepsis. CXC chemokines play a significant role in innate immunity against infectious diseases. Genetic polymorphisms of CXC chemokine genes have been widely studied in inflammatory and infectious diseases but not in sepsis. Thus, we aimed to investigate the clinical relevance of CXC chemokine gene polymorphisms and susceptibility to sepsis in a traumatically injured population. METHODS Thirteen tag single nucleotide polymorphisms were selected from CXC chemokine genes using a multimarker tagging algorithm in the Tagger software. Three independent cohorts of injured patients (n = 1700) were prospectively recruited. Selected single nucleotide polymorphisms were genotyped using an improved multiplex ligation detection reaction method. Cytokine production in lipopolysaccharide-stimulated whole blood was measured using an enzyme-linked immunosorbent assay. RESULTS Among the 13 tag single nucleotide polymorphisms, four single nucleotide polymorphisms (rs1429638, rs266087, rs2297630, and rs2839693) were significantly associated with the susceptibility to sepsis, and three (rs3117604, rs1429638, and rs4074) were significantly associated with an increased multiple organ dysfunction score in the derivation cohort. However, only the clinical relevance of rs1429638 and rs266087 was confirmed in the validation cohorts. In addition, rs2297630 was significantly associated with interleukin 6 production. CONCLUSION The rs1429638 polymorphism in the CXCL1 gene and the rs2297630 polymorphism in the CXCL12 gene were associated with altered susceptibility to sepsis and might be used as important genetic markers to assess the risks of sepsis in trauma patients. LEVEL OF EVIDENCE Prognostic and epidemiologic study, level II.
Collapse
|
20
|
Kim J, Arnaout L, Remick D. Hydrocortisone, Ascorbic Acid, and Thiamine (HAT) Therapy Decreases Oxidative Stress, Improves Cardiovascular Function, and Improves Survival in Murine Sepsis. Shock 2020; 53:460-467. [PMID: 31169765 PMCID: PMC11615833 DOI: 10.1097/shk.0000000000001385] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION A small clinical trial showed HAT therapy improved survival but no studies have been reported in animal models to examine potential mechanisms. METHODS Sepsis was induced in female mice using the cecal ligation and puncture (CLP) model. Physiologic parameters including heart rate (HR), pulse distension (PD), and respiratory rate (RR) were measured noninvasively at baseline, 6 and 24 h post CLP. These measurements stratified mice into predicted to live (Live-P) or die (Die-P). Mice were randomized to receive HAT therapy or vehicle. Oxidative stress was measured in peritoneal exudative cells 24 h after CLP. RESULTS HR, PD, and RR all declined within the first 6 h of sepsis and were significantly lower in the Die-P mice compared with Live-P. HR 6 h post-CLP best predicted mortality and continued to decline between 6 and 24 h post CLP. Oxidative stress in peritoneal cells harvested 24 h post CLP (determined by 8 isoprostaglandin F2α and protein carbonyl derivatives) was significantly higher in the Die-P mice. HAT therapy was initiated 7 h post-CLP after mortality prediction and stratification. HAT significantly reduced oxidative stress in the Die-P mice without altering these parameters in the Live-P mice. HAT treatment prevented the decline in HR, again only in the Die-P mice. Mice treated with HAT therapy had significantly better survival. CONCLUSIONS Physiologic parameters accurately predicted mortality. Die-P mice had significant oxidative stress compared with Live-P. HAT therapy significantly decreased oxidative stress, increased HR, and improved survival in the Die-P mice. These data suggest that HAT exerts a beneficial effect through reducing oxidative stress and improving cardiovascular function.
Collapse
Affiliation(s)
- John Kim
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | | | | |
Collapse
|
21
|
Gollomp K, Sarkar A, Harikumar S, Seeholzer SH, Arepally GM, Hudock K, Rauova L, Kowalska MA, Poncz M. Fc-modified HIT-like monoclonal antibody as a novel treatment for sepsis. Blood 2020; 135:743-754. [PMID: 31722003 PMCID: PMC7059515 DOI: 10.1182/blood.2019002329] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/03/2019] [Indexed: 12/19/2022] Open
Abstract
Sepsis is characterized by multiorgan system dysfunction that occurs because of infection. It is associated with high morbidity and mortality and is in need of improved therapeutic interventions. Neutrophils play a crucial role in sepsis, releasing neutrophil extracellular traps (NETs) composed of DNA complexed with histones and toxic antimicrobial proteins that ensnare pathogens, but also damage host tissues. At presentation, patients often have a significant NET burden contributing to the multiorgan damage. Therefore, interventions that inhibit NET release would likely be ineffective at preventing NET-based injury. Treatments that enhance NET degradation may liberate captured bacteria and toxic NET degradation products (NDPs) and likely be of limited therapeutic benefit as well. We propose that interventions that stabilize NETs and sequester NDPs may be protective in sepsis. We showed that platelet factor 4 (PF4), a platelet-associated chemokine, binds and compacts NETs, increasing their resistance to DNase I. We now show that PF4 increases NET-mediated bacterial capture, reduces the release of NDPs, and improves outcome in murine models of sepsis. A monoclonal antibody KKO which binds to PF4-NET complexes, further enhances DNase resistance. However, the Fc portion of this antibody activates the immune response and increases thrombotic risk, negating any protective effects in sepsis. Therefore, we developed an Fc-modified KKO that does not induce these negative outcomes. Treatment with this antibody augmented the effects of PF4, decreasing NDP release and bacterial dissemination and increasing survival in murine sepsis models, supporting a novel NET-targeting approach to improve outcomes in sepsis.
Collapse
Affiliation(s)
- Kandace Gollomp
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Amrita Sarkar
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sanjiv Harikumar
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Steven H Seeholzer
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | - Kristin Hudock
- Department of Internal Medicine, University of Cincinnati School of Medicine, Cincinnati, OH; and
| | - Lubica Rauova
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - M Anna Kowalska
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Institute of Medical Biology, Polish Academy of Science, Lodz, Poland
| | - Mortimer Poncz
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
22
|
Abstract
Sepsis morbidity and mortality exacts a toll on patients and contributes significantly to healthcare costs. Preclinical models of sepsis have been used to study disease pathogenesis and test new therapies, but divergent outcomes have been observed with the same treatment even when using the same sepsis model. Other disorders such as diabetes, cancer, malaria, obesity, and cardiovascular diseases have used standardized, preclinical models that allow laboratories to compare results. Standardized models accelerate the pace of research and such models have been used to test new therapies or changes in treatment guidelines. The National Institutes of Health mandated that investigators increase data reproducibility and the rigor of scientific experiments and has also issued research funding announcements about the development and refinement of standardized models. Our premise is that refinement and standardization of preclinical sepsis models may accelerate the development and testing of potential therapeutics for human sepsis, as has been the case with preclinical models for other disorders. As a first step toward creating standardized models, we suggest standardizing the technical standards of the widely used cecal ligation and puncture model and creating a list of appropriate organ injury and immune dysfunction parameters. Standardized sepsis models could enhance reproducibility and allow comparison of results between laboratories and may accelerate our understanding of the pathogenesis of sepsis.
Collapse
|
23
|
Harpin D, Simadibrata CL, Mihardja H, Barasila AC. Effect of Electroacupuncture on Urea and Creatinine Levels in the Wistar Sepsis Model. Med Acupunct 2020; 32:29-37. [PMID: 32104525 DOI: 10.1089/acu.2019.1369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Objective: Sepsis is a life-threatening organ dysfunction caused by dysregulation of a host's response to infections. Sepsis-one of the most common contributing factors to acute kidney injuries in critically ill patients-is caused by bacterial endotoxins that lead to excessive production of proinflammatory cytokines. This condition can be treated with few side-effects by using electroacupuncture (EA) to regulate the neuroendocrine immune system to control the production of these cytokines. A number of studies have proven that EA stimulates the vagus nerve to manage inflammatory responses through the cholinergic pathway, slowing sepsis. This study was conducted to investigate the effect of bilateral EA at ST 36 (Zusanli) on rats' renal function by measuring their levels of plasma urea and creatinine. Materials and Methods: This study was a randomized, double-blinded, laboratory experimental post-test, with both subjects and laboratory investigators blinded. Twenty-eight male Wistar rats were divided randomly into 4 groups of 7 rats each: (1) a control group; (2) a sepsis group; (3) an EA + group; and (4) a sham EA + group. EA and sham EA was applied once for 30 minutes before intraperitoneal administration of live Eschericia coli bacteria ATCC 25922. Six hours after administration of the bacteria the rats' plasma urea and creatinine levels were measured. Results: There was a statistically significant difference in the mean levels of urea (P < 0.001, 95% confidence interval (CI): 57.1-76.6) and creatinine (P = 0.005, 95% CI: 0.14-0.62) between the sepsis and control groups. Conclusions: These findings suggest that EA pretreatment at ST 36 attenuated the induced inflammatory bacteria response and mitigated acute kidney injury.
Collapse
Affiliation(s)
- Darwin Harpin
- Medical Department of Acupuncture, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
| | - Christina L Simadibrata
- Medical Department of Acupuncture, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
| | - Hasan Mihardja
- Medical Department of Acupuncture, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
| | - Atikah C Barasila
- Department of Histology, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
| |
Collapse
|
24
|
Pereira de Souza Goldim M, Della Giustina A, Mathias K, de Oliveira Junior A, Fileti ME, De Carli R, Zarbato G, Garbossa L, da Rosa N, Oliveira J, Vieira A, Generoso J, Oliveira BH, Ferreira N, Palandi J, Bobinski F, Martins DF, Fortunato J, Barichello T, Quevedo J, Dal-Pizzol F, Petronilho F. Sickness Behavior Score Is Associated with Neuroinflammation and Late Behavioral Changes in Polymicrobial Sepsis Animal Model. Inflammation 2020; 43:1019-1034. [PMID: 31981061 DOI: 10.1007/s10753-020-01187-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The use of reliable scores is a constant development in critical illness. According to Sepsis-3 consensus, the use of Sequential Organ Failure Assessment (SOFA) score of 2 or more is associated with a higher mortality of sepsis patients. In experimental research, due murine animal model limitations, the use of a score systems can be an alternative to assess sepsis severity. In this work, we suggest a sickness behavior score (SBS) that uses physiological variables to assess sepsis severity and mortality. Animals were evaluated daily by the presence of six indicators of sickness behavior: temperature alteration, preference of water/sucrose, liquid intake, food intake, body weight, and movimentation. Male adult Wistar rats were evaluated daily after sepsis induction by cecal ligation and puncture (CLP) or laparotomy only (sham) for determination of SBS. Oxidative stress, IL-6, and HPA axis markers (corticosterone and adrenal gland weight) were evaluated 24 h after CLP to determine the correlation with the acute SBS and neuroinflammation. Also, BDNF and four cognitive behavioral tests were correlated with the chronic SBS, i.e., sum of 8 days after surgery. In result, septic rats presented higher SBS than sham animals. Sepsis severity markers were associated with acute and chronic SBS. Also, SBS was negative correlated with the cognitive tests. In conclusion, SBS shows to be reliable score to predict sepsis severity and mortality. The use of score system provides the analysis of global sickness behavior, beyond evaluation of each parameter individually.
Collapse
Affiliation(s)
- Mariana Pereira de Souza Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Amanda Della Giustina
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Khiany Mathias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Aloir de Oliveira Junior
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Maria Eduarda Fileti
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Raquel De Carli
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Graciela Zarbato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Leandro Garbossa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Juliana Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Andriele Vieira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Jaqueline Generoso
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Bruna Hoffmann Oliveira
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Nivaldo Ferreira
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Juliete Palandi
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daniel Fernandes Martins
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Jucelia Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Joao Quevedo
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, 88806-000, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil.
| |
Collapse
|
25
|
Carpenter KC, Hakenjos JM, Fry CD, Nemzek JA. The Influence of Pain and Analgesia in Rodent Models of Sepsis. Comp Med 2019; 69:546-554. [PMID: 31213216 PMCID: PMC6935706 DOI: 10.30802/aalas-cm-19-000004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/15/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
Sepsis is a multifaceted host response to infection that dramatically affects patient outcomes and the cost of health care. Animal models are necessary to replicate the complexity and heterogeneity of clinical sepsis. However, these models entail a high risk of pain and distress due to tissue trauma, inflammation, endotoxin-mediated hyperalgesia, and other mechanisms. Several recent studies and initiatives address the need to improve the welfare of animals through analgesics and standardize the models used in preclinical sepsis research. Ultimately, the goal is to provide high-fidelity, humane animal models that better replicate the clinical course of sepsis, to provide more effective translation and advance therapeutic discovery. The purpose of this review is to discuss the current understanding of the roles of pain and analgesia in rodent models of sepsis. The current definitions of sepsis along with an overview of pain in human sepsis are described. Finally, welfare concerns associated with animal models of sepsis and the most recent considerations for relief of pain and distress are reviewed.
Collapse
Affiliation(s)
- Kelsey C Carpenter
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan
| | - John M Hakenjos
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Christopher D Fry
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jean A Nemzek
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan;,
| |
Collapse
|
26
|
Abstract
Sepsis continues to be a major challenge for modern medicine. Several preclinical models were developed to study sepsis and each has strengths and weaknesses. The cecal slurry (CS) method is a practical alternative because it does not require surgery, and the infection can be dosed. However, one disadvantage is that the dosage must be determined for each CS preparation using survival studies. Our aim was to refine a survival protocol for the CS model by determining a premonitory humane endpoint that would reduce animal suffering. Mice become hypothermic in sepsis; therefore, we tested whether reductions in surface temperature (Ts), measured by noninvasive infrared thermometry, could predict eventual death. We injected 154 C57BL/6J mice with CS (0.9-1.8 mg/g) and periodically monitored Ts at the xiphoid process over 5 days. We used, as predictors, combinations of temperature thresholds (29°C -31°C) and times, postinjection (18-36 h). A receiver-operator curve, sensitivity, and specificity were determined. A Distress Index value was calculated for the threshold conditions. The optimum detection threshold (highest Youden index) was found at Ts ≤ 30.5°C at 24 h (90% specific, 84% sensitive). This threshold condition reduced animal suffering by 41% while providing an accurate survival rate estimate. Using this threshold, only 13 of 154 mice would have died from sepsis; 67 would have been euthanized at 24 h, and only 7 of 154 would have been euthanized unnecessarily. In conclusion, using a humane endpoint of Ts ≤ 30.5°C at 24 h accurately predicts mortality and can effectively reduce animal suffering during CS survival protocols.
Collapse
|
27
|
Prompt Administration of Antibiotics and Fluids in the Treatment of Sepsis: A Murine Trial. Crit Care Med 2019; 46:e426-e434. [PMID: 29369056 DOI: 10.1097/ccm.0000000000003004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Sepsis, the acute organ dysfunction caused by a dysregulated host response to infection, poses a serious public health burden. Current management includes early detection, initiation of antibiotics and fluids, and source control as necessary. Although observational data suggest that delays of even a few hours in the initiation of antibiotics or IV fluids is associated with survival, these findings are controversial. There are no randomized data in humans, and prior animal studies studied time from experimental manipulation, not from the onset of clinical features of sepsis. Using a recently developed murine cecal ligation and puncture model that precisely monitors physiologic deterioration, we hypothesize that incremental hourly delays in the first dose of antibiotics, in the first bolus of fluid resuscitation, or a combination of the two at a clinically relevant point of physiologic deterioration during polymicrobial sepsis will shorten survival. DESIGN Randomized laboratory animal experimental trial. SETTING University basic science laboratory. SUBJECTS Male C57BL/6J, female C57BL/6J, aged (40-50 wk old) male C57BL/6J, and BALB/C mice. INTERVENTIONS Mice (n = 200) underwent biotelemetry-enhanced cecal ligation and puncture and were randomized after meeting validated criteria for acute physiologic deterioration. Treatment groups consisted of a single dose of imipenem/cilastatin, a single bolus of 30 mL/kg fluid resuscitation, or a combination of the two. Mice were allocated to receive treatment at the time of meeting deterioration criteria, after a 2-hour delay or after a 4-hour delay. MEASUREMENTS AND MAIN RESULTS Hourly delays in the initiation of antibiotic therapy led to progressively shortened survival in our model (p < 0.001). The addition of fluid resuscitation was unable to rescue animals, which received treatment 4 hours after meeting enrollment criteria. Systemic inflammation was increased, and host physiology was increasingly deranged with hourly delays to antibiotics. CONCLUSIONS We conclude that antibiotic therapy is highly time sensitive, and efforts should be made to deliver this critical therapy as early as possible in sepsis, perhaps extending into the first point of medical contact outside the hospital.
Collapse
|
28
|
Saito E, Kuo R, Pearson RM, Gohel N, Cheung B, King NJC, Miller SD, Shea LD. Designing drug-free biodegradable nanoparticles to modulate inflammatory monocytes and neutrophils for ameliorating inflammation. J Control Release 2019; 300:185-196. [PMID: 30822435 DOI: 10.1016/j.jconrel.2019.02.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022]
Abstract
Inflammation associated with autoimmune diseases and chronic injury is an initiating event that leads to tissue degeneration and dysfunction. Inflammatory monocytes and neutrophils systemically circulate and enter inflamed tissue, and pharmaceutical based targeting of these cells has not substantially improved outcomes and has had side effects. Herein, we investigated the design of drug-free biodegradable nanoparticles, notably without any active pharmaceutical ingredient or targeting ligand, that target circulating inflammatory monocytes and neutrophils in the vasculature to inhibit them from migrating into inflamed tissue. Nanoparticles were formed from 50:50 poly(DL-lactide-co-glycolide) (PLG) with two molecular weights (Low, High) and poly(DL-lactide) (PLA) (termed PLG-L, PLG-H, and PDLA, respectively) and were analyzed for their association with monocytes and neutrophils and their impact on disease course along with immune cell trafficking. For particles injected intravenously for 6 consecutive days to mice with experimental autoimmune encephalomyelitis (EAE), PLG-H particles had significantly lower EAE clinical scores than PBS control, while PLG-L and PDLA particles had modest or negligible effect on EAE onset. In vivo and in vitro data suggests that PLG-H particles had high association with immune cells, with preferential association with blood neutrophils relative to other particles. PLG-H particles restrained immune cells from the central nervous system (CNS), with increased accumulation in the spleen, which was not observed for mice receiving PDLA or control treatments. These results demonstrate that the particle composition influences the association with inflammatory monocytes and neutrophils in the vasculature, with the potential to redirect trafficking and ameliorate inflammation.
Collapse
Affiliation(s)
- Eiji Saito
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert Kuo
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, USA
| | - Nishant Gohel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brandon Cheung
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas J C King
- The Discipline of Pathology, School of Medical Science, Bosch Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL 60208, USA; The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
29
|
Wang Y, Wang X, Yang W, Zhao X, Zhang R. Effect of Simvastatin on the Intestinal Rho/ROCK Signaling Pathway in Rats With Sepsis. J Surg Res 2018; 232:531-538. [DOI: 10.1016/j.jss.2018.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 06/09/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
|
30
|
Patel A, Joseph J, Periasamy H, Mokale S. Azithromycin in Combination with Ceftriaxone Reduces Systemic Inflammation and Provides Survival Benefit in a Murine Model of Polymicrobial Sepsis. Antimicrob Agents Chemother 2018; 62:e00752-18. [PMID: 29967025 PMCID: PMC6125560 DOI: 10.1128/aac.00752-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022] Open
Abstract
Sepsis is a life-threatening systemic inflammatory condition triggered as a result of an excessive host immune response to infection. In the past, immunomodulators have demonstrated a protective effect in sepsis. Azithromycin (a macrolide antibiotic) has immunomodulatory activity and was therefore evaluated in combination with ceftriaxone in a clinically relevant murine model of sepsis induced by cecal ligation and puncture (CLP). First, mice underwent CLP and 3 h later were administered the vehicle or a subprotective dose of ceftriaxone (100 mg/kg of body weight subcutaneously) alone or in combination with an immunomodulatory dose of azithromycin (100 mg/kg intraperitoneally). Survival was monitored for 5 days. In order to assess the immunomodulatory activity, parameters such as plasma and lung cytokine (interleukin-6 [IL-6], IL-1β, tumor necrosis factor alpha) concentrations, the plasma glutathione (GSH) concentration, plasma and lung myeloperoxidase (MPO) concentrations, body temperature, blood glucose concentration, and total white blood cell count, along with the bacterial load in blood, peritoneal lavage fluid, and lung homogenate, were measured 18 h after CLP challenge. Azithromycin in the presence of ceftriaxone significantly improved the survival of CLP-challenged mice. Further, the combination attenuated the elevated levels of inflammatory cytokines and MPO in plasma and lung tissue and increased the body temperature and blood glucose and GSH concentrations, which were otherwise markedly decreased in CLP-challenged mice. Ceftriaxone produced a significant reduction in the bacterial load, while coadministration of azithromycin did not produce a further reduction. Therefore, the survival benefit offered by azithromycin was due to immunomodulation and not its antibacterial action. The findings of this study indicate that azithromycin, in conjunction with appropriate antibacterial agents, could provide clinical benefits in sepsis.
Collapse
Affiliation(s)
- Anasuya Patel
- Y. B. Chavan College of Pharmacy, Aurangabad, Maharashtra, India
- Wockhardt Research Centre, Aurangabad, Maharashtra, India
| | - Jiji Joseph
- Wockhardt Research Centre, Aurangabad, Maharashtra, India
| | | | - Santosh Mokale
- Y. B. Chavan College of Pharmacy, Aurangabad, Maharashtra, India
| |
Collapse
|
31
|
Hirano Y, Ode Y, Ochani M, Wang P, Aziz M. Targeting junctional adhesion molecule-C ameliorates sepsis-induced acute lung injury by decreasing CXCR4 + aged neutrophils. J Leukoc Biol 2018; 104:1159-1171. [PMID: 30088666 DOI: 10.1002/jlb.3a0218-050r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/31/2018] [Accepted: 07/09/2018] [Indexed: 01/13/2023] Open
Abstract
Sepsis is a severe inflammatory condition associated with high mortality. Transmigration of neutrophils into tissues increases their lifespan to promote deleterious function. Junctional adhesion molecule-C (JAM-C) plays a pivotal role in neutrophil transmigration into tissues. We aim to study the role of JAM-C on the aging of neutrophils to cause sepsis-induced acute lung injury (ALI). Sepsis was induced in C57BL/6J mice by cecal ligation and puncture (CLP) and JAM-C expression in serum was assessed. Bone marrow-derived neutrophils (BMDN) were treated with recombinant mouse JAM-C (rmJAM-C) ex vivo and their viability was assessed. CLP-operated animals were administrated with either isotype IgG or anti-JAM-C Ab at a concentration of 3 mg/kg and after 20 h, aged neutrophils (CXCR4+ ) were assessed in blood and lungs and correlated with systemic injury and inflammatory markers. Soluble JAM-C level in serum was up-regulated during sepsis. Treatment with rmJAM-C inhibited BMDN apoptosis, thereby increasing their lifespan. CLP increased the frequencies of CXCR4+ neutrophils in blood and lungs, while treatment with anti-JAM-C Ab significantly reduced the frequencies of CXCR4+ aged neutrophils. Treatment with anti-JAM-C Ab significantly reduced systemic injury markers (alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase) as well as systemic and lung inflammatory cytokines (IL-6 and IL-1β) and chemokine (macrophage inflammatory protein-2). The blockade of JAM-C improved lung histology and reduced neutrophil contents in lungs of septic mice. Thus, reduction of the pro-inflammatory aged neutrophils by blockade of JAM-C has a novel therapeutic potential in sepsis-induced ALI.
Collapse
Affiliation(s)
- Yohei Hirano
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, New York, USA.,Department of Emergency and Critical Care Medicine, Juntendo University and Urayasu Hospital, Chiba, Japan
| | - Yasumasa Ode
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Mahendar Ochani
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, New York, USA.,Department of Surgery and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, New York, USA
| |
Collapse
|
32
|
Rajaee A, Barnett R, Cheadle WG. Pathogen- and Danger-Associated Molecular Patterns and the Cytokine Response in Sepsis. Surg Infect (Larchmt) 2018; 19:107-116. [DOI: 10.1089/sur.2017.264] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Arezoo Rajaee
- Department of Surgery, University of Louisville, Louisville, Kentucky
| | - Rebecca Barnett
- Department of Surgery, University of Louisville, Louisville, Kentucky
| | | |
Collapse
|
33
|
Zymosan-Induced Peritonitis: Effects on Cardiac Function, Temperature Regulation, Translocation of Bacteria, and Role of Dectin-1. Shock 2018; 46:723-730. [PMID: 27380533 DOI: 10.1097/shk.0000000000000669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Zymosan-induced peritonitis is a model commonly used to study systemic inflammatory response syndrome and multiple organ dysfunction syndrome. However, effects of zymosan on cardiac function have not been reported. We evaluated cardiac responses to zymosan in mice and the role of β-glucan and dectin-1 in mediating these responses. Temperature and cardiac function were evaluated before and after intraperitoneal (i.p.) injection of zymosan (100 or 500 mg/kg) or saline. Chronotropic and dromotropic functions were measured using electrocardiograms (ECGs) collected from conscious mice. Cardiac inotropic function was determined by echocardiography. High-dose zymosan caused a rapid and maintained hypothermia along with visual signs of illness. Baseline heart rate (HR) was unaffected but HR variability (HRV) increased, and there was a modest slowing of ventricular conduction. High-dose zymosan also caused prominent decreases in cardiac contractility at 4 and 24 h. Because zymosan is known to cause gastrointestinal tract pathology, peritoneal wash and blood samples were evaluated for bacteria at 24 h after zymosan or saline injection. Translocation of bacterial occurred in all zymosan-treated mice (n = 3), and two had bacteremia. Purified β-glucan (50 and 125 mg/kg, i.p.) had no effect on temperature or ECG parameters. However, deletion of dectin-1 modified the ECG responses to high-dose zymosan; slowing of ventricular conduction and the increase in HRV were eliminated but a marked bradycardia appeared at 24 h after zymosan treatment. Zymosan-treated dectin-1 knockout mice also showed hypothermia and visual signs of illness. Fecal samples from dectin-1 knockout mice contained more bacteria than wild types, but zymosan caused less translocation of bacteria. Collectively, these findings demonstrate that zymosan-induced systemic inflammation causes cardiac dysfunction in mice. The data suggest that dectin-1-dependent and -independent mechanisms are involved. Although zymosan treatment causes translocation of bacteria, this effect does not have a major role in the overall systemic response to zymosan.
Collapse
|
34
|
Itakura J, Sato M, Ito T, Mino M, Fushimi S, Takahashi S, Yoshimura T, Matsukawa A. Spred2-deficiecy Protects Mice from Polymicrobial Septic Peritonitis by Enhancing Inflammation and Bacterial Clearance. Sci Rep 2017; 7:12833. [PMID: 28993690 PMCID: PMC5634500 DOI: 10.1038/s41598-017-13204-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/20/2017] [Indexed: 01/11/2023] Open
Abstract
Sepsis is an infection-induced systemic inflammatory syndrome and a major cause of death for critically ill patients. Here, we examined whether the absence of Sprouty-related EVH1-domain-containing protein 2 (Spred2), a negative regulator of the Ras/Raf/ERK/MAPK pathway, influences host defense against polymicrobial sepsis (PMS) induced by cecal ligation and puncture (CLP). Compared to wild-type mice, Spred2−/− mice exhibited higher survival rates with increased level of leukocyte infiltration and local chemokine production and reduced plasma and peritoneal bacterial loads after CLP. The MEK inhibitor U0126 significantly reduced LPS-induced chemokine production by Spred2−/− resident macrophages in vitro, and decreased CLP-induced leukocyte infiltration in vivo. Spred2−/− resident macrophages, but not neutrophils or elicited macrophages, exhibited increased phagocytic activity. Interestingly, surface expression of complement receptor 1/2 (CR1/2) was increased in Spred2−/− resident macrophages in response to lipopolysaccharide in a manner dependent on the ERK/MAPK pathway, and blocking CR1/2 in vivo resulted in reduced leukocyte infiltration and increased bacterial loads after CLP. Taken together, our results indicate that Spred2-deficiency protects mice from PMS via increased activation of the ERK/MAPK pathway and subsequent increase in innate immune responses. Thus, inhibiting Spred2 may present a novel means to prevent the development of PMS.
Collapse
Affiliation(s)
- Junya Itakura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Miwa Sato
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Toshihiro Ito
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan.,Department of Immunology, Nara Medical University, Nara, 634-8521, Japan
| | - Megumi Mino
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Soichiro Fushimi
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Sakuma Takahashi
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan.
| |
Collapse
|
35
|
Seemann S, Zohles F, Lupp A. Comprehensive comparison of three different animal models for systemic inflammation. J Biomed Sci 2017; 24:60. [PMID: 28836970 PMCID: PMC5569462 DOI: 10.1186/s12929-017-0370-8] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/21/2017] [Indexed: 12/16/2022] Open
Abstract
Background To mimic systemic inflammation in humans, different animal models have been developed. Since these models are still discussed controversially, we aimed to comparatively evaluate the most widely used models with respect to the systemic effects, the influence on organ functions and to the underlying pathophysiological processes. Methods Systemic inflammation was induced in C57BL/6N mice with lipopolysaccharide (LPS) treatment, peritoneal contamination and infection (PCI), or cecal ligation and puncture (CLP). Blood glucose and circulating cytokine levels were evaluated at 0, 2, 4, 6, 12, 24, 48, and 72 h after induction of inflammation. Additionally, oxidative stress in various organs and liver biotransformation capacity were determined. Markers for oxidative stress, apoptosis, infiltrating immune cells, as well as cytokine expression patterns, were assessed in liver and spleen tissue by immunohistochemistry. Results Treating mice with LPS and PCI induced a very similar course of inflammation; however, LPS treatment elicited a stronger response. In both models, serum pro-inflammatory cytokine levels rapidly increased whereas blood glucose decreased. Organs showed early signs of oxidative stress, and apoptosis was increased in splenic cells. In addition, liver biotransformation capacity was reduced and there was pronounced immune cell infiltration in both the liver and spleen. Mice exposed to either LPS or PCI recovered after 72 h. In contrast, CLP treatment induced comparatively fewer effects, but a more protracted course of inflammation. Conclusions The LPS model of systemic inflammation revealed to be most suitable when being interested in the impact of new therapies for acute inflammation. When using the CLP model to mimic human sepsis more closely, a longer time course should be employed, as the treatment induces delayed development of systemic inflammation. Electronic supplementary material The online version of this article (10.1186/s12929-017-0370-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Semjon Seemann
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany.
| | - Franziska Zohles
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| |
Collapse
|
36
|
Chichelnitskiy E, Himmelseher B, Bachmann M, Pfeilschifter J, Mühl H. Hypothermia Promotes Interleukin-22 Expression and Fine-Tunes Its Biological Activity. Front Immunol 2017; 8:742. [PMID: 28706520 PMCID: PMC5489602 DOI: 10.3389/fimmu.2017.00742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/12/2017] [Indexed: 01/15/2023] Open
Abstract
Disturbed homeostasis as a result of tissue stress can provoke leukocyte responses enabling recovery. Since mild hypothermia displays specific clinically relevant tissue-protective properties and interleukin (IL)-22 promotes healing at host/environment interfaces, effects of lowered ambient temperature on IL-22 were studied. We demonstrate that a 5-h exposure of endotoxemic mice to 4°C reduces body temperature by 5.0° and enhances splenic and colonic il22 gene expression. In contrast, tumor necrosis factor-α and IL-17A were not increased. In vivo data on IL-22 were corroborated using murine splenocytes and human peripheral blood mononuclear cells (PBMC) cultured upon 33°C and polyclonal T cell activation. Upregulation by mild hypothermia of largely T-cell-derived IL-22 in PBMC required monocytes and associated with enhanced nuclear T-cell nuclear factor of activated T cells (NFAT)-c2. Notably, NFAT antagonism by cyclosporin A or FK506 impaired IL-22 upregulation at normothermia and entirely prevented its enhanced expression upon hypothermic culture conditions. Data suggest that intact NFAT signaling is required for efficient IL-22 induction upon normothermic and hypothermic conditions. Hypothermia furthermore boosted early signal transducer and activator of transcription 3 activation by IL-22 and shaped downstream gene expression in epithelial-like cells. Altogether, data indicate that hypothermia supports and fine-tunes IL-22 production/action, which may contribute to regulatory properties of low ambient temperature.
Collapse
Affiliation(s)
- Evgeny Chichelnitskiy
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Britta Himmelseher
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Malte Bachmann
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Heiko Mühl
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
37
|
Seo KH, Choi JW, Jung HS, Yoo H, Joo JD. The Effects of Remifentanil on Expression of High Mobility Group Box 1 in Septic Rats. J Korean Med Sci 2017; 32:542-551. [PMID: 28145661 PMCID: PMC5290117 DOI: 10.3346/jkms.2017.32.3.542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/11/2016] [Indexed: 02/01/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a pivotal mediator of sepsis progression. Remifentanil, an opioid agonist, has demonstrated anti-inflammatory effects in septic mice. However, it is not yet known whether remifentanil affects the expression of HMGB1. We investigated the effects of remifentanil on HMGB1 expression and the underlying mechanism in septic rats. Forty-eight male Sprague-Dawley rats were randomly divided into 3 groups; a sham group, a cecal ligation and puncture (CLP) group, and a CLP with remifentanil treatment (Remi) group. The rat model of CLP was used to examine plasma concentrations of proinflammatory cytokines, tissue HMGB1 mRNA and the activity of nuclear factor (NF)-κB in the liver, lungs, kidneys, and ileum. Pathologic changes and immunohistochemical staining of NF-κB in the liver, lungs, and kidneys tissue were observed. We found that remifentanil treatment suppressed the level of serum interleukin (IL)-6 and tumor necrosis factor (TNF)-α 6 hours after CLP, and serum HMGB1 24 hours after CLP. HMGB1 mRNA levels and the activity of NF-κB in multiple organs decreased by remifentanil treatment 24 hours after CLP. Remifentanil treatment also attenuated nuclear expression of NF-κB in immunohistochemical staining and mitigated pathologic changes in multiple organs. Altogether, these results suggested that remifentanil inhibited expression of HMGB1 in vital organs and release of HMGB1 into plasma. The mechanism was related to the inhibitory effect of remifentanil on the release of proinflammatory cytokines and activation of NF-κB.
Collapse
Affiliation(s)
- Kwon Hui Seo
- Department of Anesthesiology and Pain Medicine, Saint Vincent's Hospital, The College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Jin Woo Choi
- Department of Anesthesiology and Pain Medicine, Saint Vincent's Hospital, The College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Hong Soo Jung
- Department of Anesthesiology and Pain Medicine, Saint Vincent's Hospital, The College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Hansol Yoo
- Department of Anesthesiology and Pain Medicine, Saint Vincent's Hospital, The College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Jin Deok Joo
- Department of Anesthesiology and Pain Medicine, Saint Vincent's Hospital, The College of Medicine, The Catholic University of Korea, Suwon, Korea.
| |
Collapse
|
38
|
Johnson BL, Midura EF, Prakash PS, Rice TC, Kunz N, Kalies K, Caldwell CC. Neutrophil derived microparticles increase mortality and the counter-inflammatory response in a murine model of sepsis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2554-2563. [PMID: 28108420 DOI: 10.1016/j.bbadis.2017.01.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/04/2017] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Abstract
Although advances in medical care have significantly improved sepsis survival, sepsis remains the leading cause of death in the ICU. This is likely due to a lack of complete understanding of the pathophysiologic mechanisms that lead to dysfunctional immunity. Neutrophil derived microparticles (NDMPs) have been shown to be the predominant microparticle present at infectious and inflamed foci in human models, however their effect on the immune response to inflammation and infection is sepsis has not been fully elucidated. As NDMPs may be a potential diagnostic and therapeutic target, we sought to determine the impact NDMPs on the immune response to a murine polymicrobial sepsis. We found that peritoneal neutrophil numbers, bacterial loads, and NDMPs were increased in our abdominal sepsis model. When NDMPs were injected into septic mice, we observed increased bacterial load, decreased neutrophil recruitment, increased expression of IL-10 and worsened mortality. Furthermore, the NDMPs express phosphatidylserine and are ingested by F4/80 macrophages via a Tim-4 and MFG-E8 dependent mechanism. Finally, upon treatment, NDMPs decrease macrophage activation, increase IL-10 release and decrease macrophage numbers. Altogether, these data suggest that NDMPs enhance immune dysfunction in sepsis by blunting the function of neutrophils and macrophages, two key cell populations involved in the early immune response to infection. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju.
Collapse
Affiliation(s)
- Bobby L Johnson
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Emily F Midura
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Priya S Prakash
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Teresa C Rice
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Natalia Kunz
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States; Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Kathrin Kalies
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States; Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Charles C Caldwell
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States.
| |
Collapse
|
39
|
Jin L, Batra S, Jeyaseelan S. Deletion of Nlrp3 Augments Survival during Polymicrobial Sepsis by Decreasing Autophagy and Enhancing Phagocytosis. THE JOURNAL OF IMMUNOLOGY 2016; 198:1253-1262. [PMID: 28031338 DOI: 10.4049/jimmunol.1601745] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/25/2016] [Indexed: 01/07/2023]
Abstract
NLRP3 inflammasome is a critical player in innate immunity. Neutrophil recruitment to tissues and effective neutrophil function are critical innate immune mechanisms for bacterial clearance. However, the role of NLRP3 in neutrophil-dependent bacterial clearance in polymicrobial sepsis is unclear. In this study, we evaluated the role of NLRP3 in polymicrobial sepsis induced by cecal ligation and puncture (CLP). Our results showed protection from death in NLRP3-deficient (Nlrp3-/-) and NLRP3 inhibitor-treated wild-type (C57BL/6) mice. Nlrp3-/- and NLRP3 inhibitor-treated mice displayed lower bacterial load but no impairment in neutrophil recruitment to peritoneum. However, neutrophil depletion abrogated protection from death in Nlrp3-/- mice in response to CLP. Intriguingly, following CLP, Nlrp3-/- peritoneal cells (primarily neutrophils) demonstrate decreased autophagy, augmented phagocytosis, and enhanced scavenger receptor (macrophage receptor with collagenous structure) and mannose-binding leptin expression. These findings enhance our understanding of the critical role of NLRP3 in modulating autophagy and phagocytosis in neutrophils and suggest that therapies should be targeted to modulate autophagy and phagocytosis in neutrophils to control bacterial burden in tissues during CLP-induced polymicrobial sepsis.
Collapse
Affiliation(s)
- Liliang Jin
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Experimental Infectious Disease Research, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803; and
| | - Sanjay Batra
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Experimental Infectious Disease Research, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803; and
| | - Samithamby Jeyaseelan
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Experimental Infectious Disease Research, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803; and .,Division of Pulmonary and Critical Care, Department of Medicine, LSU Health Sciences Center, New Orleans, LA 70112
| |
Collapse
|
40
|
Insulin modulates energy and substrate sensing and protein catabolism induced by chronic peritonitis in skeletal muscle of neonatal pigs. Pediatr Res 2016; 80:744-752. [PMID: 27508897 PMCID: PMC5746053 DOI: 10.1038/pr.2016.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/26/2016] [Indexed: 11/08/2022]
Abstract
BACKGROUND Acute infection promotes skeletal muscle wasting and insulin resistance, but the effect of insulin on energy and substrate sensing in skeletal muscle of chronically infected neonates has not been studied. METHODS Eighteen 2-d-old pigs underwent cecal ligation and puncture (CLP) or sham surgery (CON) to induce a chronic infection for 5 d. On d 5, pancreatic-substrate clamps were performed to attain fasting or fed insulin levels but to maintain glucose and amino acids in the fasting range. Total fractional protein synthesis rates (Ks), translational control mechanisms, and energy sensing and degradation signal activation were measured in longissimus dorsi muscle. RESULTS In fasting conditions, CLP reduced Ks and sirtuin 1 (SIRT1) and increased AMP-activated protein kinase α (AMPKα) activation and muscle RING-finger protein-1 (MuRF1). Insulin treatment increased Ks and mitochondrial protein synthesis, enhanced translation activation, and reduced SIRT1 in CON. In contrast, in CLP, insulin treatment increased Ks, protein kinase B (PKB) and Forkhead box O1 phosphorylation, antagonized AMPK activation, and decreased peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), MuRF1, and SIRT1. CONCLUSION Energy and substrate sensing in skeletal muscle by the PKB-AMPK-SIRT1-PGC-1α axis is impacted by chronic infection in neonatal pigs and can be modulated by insulin.
Collapse
|
41
|
Abstract
We suggest that successful defense against microbial invasion requires both local inflammation and systemic anti-inflammation. The key systemic responses involve the hypothalamic-pituitary-adrenocortical axis, the sympathetic-adrenomedullary axis, acute phase protein production, thermoregulation and alterations in leukocyte responsiveness to agonists such as bacterial endotoxin. These integrated responses raise blood and tissue concentrations of several anti-infective molecules, mobilize leukocytes into the circulation, and increase blood flow to injured or infected sites. They also neutralize cytokines, proteases and oxidants that enter the bloodstream from inflamed local sites and forestall endothelial activation in distant vessels. Together, these forces help concentrate activated phagocytes at injured or infected local sites while preventing potentially damaging inflammation in uninvolved tissues.
Collapse
|
42
|
Affiliation(s)
- Anthony J. Lewis
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Christopher W. Seymour
- The Clinical Research, Investigation, and Systems Modeling of Acute illness (CRISMA) Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Matthew R. Rosengart
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- The Clinical Research, Investigation, and Systems Modeling of Acute illness (CRISMA) Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
Ruiz S, Vardon-Bounes F, Merlet-Dupuy V, Conil JM, Buléon M, Fourcade O, Tack I, Minville V. Sepsis modeling in mice: ligation length is a major severity factor in cecal ligation and puncture. Intensive Care Med Exp 2016; 4:22. [PMID: 27430881 PMCID: PMC4949182 DOI: 10.1186/s40635-016-0096-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/07/2016] [Indexed: 02/01/2023] Open
Abstract
Background The cecal ligation and puncture (CLP) model, a gold standard in sepsis research, is associated with an important variability in mortality. While the number of punctures and needle size is well described in CLP animal studies, the length of cecal ligation is often not. The relationship between cecal ligation and survival in mice is briefly reported in the literature; therefore, we devised an investigation in mice of the consequences of three standardized cecal ligation lengths on mortality and the severity of the ensued sepsis. Methods Male C57BL/6J mice underwent standardized CLP. The cecum was ligated at 5, 20, or 100 % of its total length and further perforated by a single 20-G puncture. Mortality was analyzed. We assessed blood lactate, serum creatinine levels, and serum cytokines (TNF-α, IL-1β, IL-6, and IL-10) after procedure in a control group and in ligated mice. Results Mortality was directly related to ligation length: median survival was 24 h for the “100 %” group and 44 h for the “20 %” group. Blood lactate increased proportionally with the ligation length. At 6 h post-procedure, pro-inflammatory cytokines significantly increased in the ligated group with significantly higher serum levels of IL-6 in the 100 % group compared to the other ligated groups. The 20 % group exhibited the characteristics of septic shock with hypotension below 65 mmHg, pro-inflammatory balance, organ dysfunction, and hyperlactatemia. Conclusions Cecal ligation length appears to be a major limiting factor in the mouse CLP model. Thus, this experimental model should be performed with high consistency in future protocol designs.
Collapse
Affiliation(s)
- Stéphanie Ruiz
- Department of Anesthesiology and Intensive Care, Rangueil Hospital, University Hospital of Toulouse, 1 Avenue du Professeur Jean Poulhès TSA 50032, 31059, Toulouse, Cedex 9, France. .,Inserm/UPS UMR 1048 - I2MC, Equipe 3, Toulouse, France.
| | - Fanny Vardon-Bounes
- Department of Anesthesiology and Intensive Care, Rangueil Hospital, University Hospital of Toulouse, 1 Avenue du Professeur Jean Poulhès TSA 50032, 31059, Toulouse, Cedex 9, France.,Inserm/UPS UMR 1048 - I2MC, Equipe 3, Toulouse, France
| | - Virginie Merlet-Dupuy
- Department of Anesthesiology and Intensive Care, Rangueil Hospital, University Hospital of Toulouse, 1 Avenue du Professeur Jean Poulhès TSA 50032, 31059, Toulouse, Cedex 9, France
| | - Jean-Marie Conil
- Department of Anesthesiology and Intensive Care, Rangueil Hospital, University Hospital of Toulouse, 1 Avenue du Professeur Jean Poulhès TSA 50032, 31059, Toulouse, Cedex 9, France
| | - Marie Buléon
- Inserm/UPS UMR 1048 - I2MC, Equipe 12, Toulouse, France
| | - Olivier Fourcade
- Department of Anesthesiology and Intensive Care, Rangueil Hospital, University Hospital of Toulouse, 1 Avenue du Professeur Jean Poulhès TSA 50032, 31059, Toulouse, Cedex 9, France.,EA 4564 - MATN - Laboratoire de Modélisation de l'Agression Tissulaire et de la Nociception Toulouse, Institut Louis Bugnard (IFR 150), Toulouse, France
| | - Ivan Tack
- Inserm/UPS UMR 1048 - I2MC, Equipe 12, Toulouse, France.,Department of Physiology, Rangueil Hospital, University Hospital of Toulouse, 1 Avenue du Professeur Jean Poulhès TSA 50032, 31059, Toulouse Cedex 9, France
| | - Vincent Minville
- Department of Anesthesiology and Intensive Care, Rangueil Hospital, University Hospital of Toulouse, 1 Avenue du Professeur Jean Poulhès TSA 50032, 31059, Toulouse, Cedex 9, France.,Inserm/UPS UMR 1048 - I2MC, Equipe 3, Toulouse, France
| |
Collapse
|
44
|
Zhou Q, Pan X, Wang L, Wang X, Xiong D. The protective role of neuregulin-1: A potential therapy for sepsis-induced cardiomyopathy. Eur J Pharmacol 2016; 788:234-240. [PMID: 27346832 DOI: 10.1016/j.ejphar.2016.06.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 01/05/2023]
Abstract
The extremely high mortality of sepsis in intensive care units, caused primarily by sepsis-induced cardiomyopathy, is a pressing issue. Current studies have revealed the importance of the neuregulin-1 (NRG-1)/ErbB signaling axis at the cardiovascular level and the positive effect of NRG-1 on cardiac function in patients with heart failure. To investigate the protective mechanism of NRG-1 against myocardial injury in septic rats, a cecal ligation and puncture (CLP) model was applied. Animals were administered either a vehicle or recombinant human NRG-1 (rhNRG-1, 10μg/kg). Their survival rates were noted 24h after CLP. The hemodynamic method was used to evaluate their cardiac function. The myocardial morphology was observed. An enzyme-linked immunosorbent assay was used to detect the level of cardiac troponin-T (cTn-T), cytokines, and angiotensin II (Ang II) in the serum and myocardium. Compared with the vehicle, rhNRG-1 improved survival of rats and prevented hemodynamic derangement, as reflected in the increased mean arterial pressure, left ventricular systolic pressure, ±dp/dt max, and decreased left ventricular end-diastolic pressure (P<0.05). Furthermore, the serum levels of cTn-T and pro-inflammatory cytokines (tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6) were significantly increased in vehicle-treated rats but reduced in rhNRG-1-treated rats. The latter also showed decreased concentration of macrophage inhibitory factor and Ang II in the myocardium (P<0.05). These results suggest that NRG-1 improved cardiac function and protected cardiomyocytes of rats from CLP-induced sepsis by suppressing the immune inflammatory response and excessive activation of the renin-angiotensin-aldosterone system. Ultimately, NRG-1 increased the survival rate of rats.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Xia Pan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Long Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China.
| | - Xi Wang
- Cardiovascular Research Institute of Wuhan University, Wuhan, PR China.
| | - Dongsheng Xiong
- Cardiovascular Research Institute of Wuhan University, Wuhan, PR China
| |
Collapse
|
45
|
Honig G, Mader S, Chen H, Porat A, Ochani M, Wang P, Volpe BT, Diamond B. Blood-Brain Barrier Deterioration and Hippocampal Gene Expression in Polymicrobial Sepsis: An Evaluation of Endothelial MyD88 and the Vagus Nerve. PLoS One 2016; 11:e0144215. [PMID: 26790027 PMCID: PMC4720404 DOI: 10.1371/journal.pone.0144215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/16/2015] [Indexed: 12/29/2022] Open
Abstract
Systemic infection can initiate or exacerbate central nervous system (CNS) pathology, even in the absence of overt invasion of bacteria into the CNS. Recent epidemiological studies have demonstrated that human survivors of sepsis have an increased risk of long-term neurocognitive decline. There is thus a need for improved understanding of the physiological mechanisms whereby acute sepsis affects the CNS. In particular, MyD88-dependent activation of brain microvascular endothelial cells and a resulting loss of blood-brain barrier integrity have been proposed to play an important role in the effects of systemic inflammation on the CNS. Signaling through the vagus nerve has also been considered to be an important component of CNS responses to systemic infection. Here, we demonstrate that blood-brain barrier permeabilization and hippocampal transcriptional responses during polymicrobial sepsis occur even in the absence of MyD88-dependent signaling in cerebrovascular endothelial cells. We further demonstrate that these transcriptional responses can occur without vagus nerve input. These results suggest that redundant signals mediate CNS responses in sepsis. Either endothelial or vagus nerve activation may be individually sufficient to transmit systemic inflammation to the central nervous system. Transcriptional activation in the forebrain in sepsis may be mediated by MyD88-independent endothelial mechanisms or by non-vagal neuronal pathways.
Collapse
Affiliation(s)
- Gerard Honig
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Simone Mader
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Huiyi Chen
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Amit Porat
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Mahendar Ochani
- Center for Translational Research, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Ping Wang
- Center for Translational Research, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Bruce T. Volpe
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Betty Diamond
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- * E-mail:
| |
Collapse
|
46
|
Abstract
This report aims to facilitate the implementation of the Three Rs (replacement, reduction, and refinement) in the use of animal models or procedures involving sepsis and septic shock, an area where there is the potential of high levels of suffering for animals. The emphasis is on refinement because this has the greatest potential for immediate implementation. Specific welfare issues are identified and discussed, and practical measures are proposed to reduce animal use and suffering as well as reducing experimental variability and increasing translatability. The report is based on discussions and submissions from a nonregulatory expert working group consisting of veterinarians, animal technologists, and scientists with expert knowledge relevant to the field.
Collapse
|
47
|
Wong HR, Cvijanovich NZ, Anas N, Allen GL, Thomas NJ, Bigham MT, Weiss SL, Fitzgerald J, Checchia PA, Meyer K, Quasney M, Hall M, Gedeit R, Freishtat RJ, Nowak J, Raj SS, Gertz S, Howard K, Harmon K, Lahni P, Frank E, Hart KW, Lindsell CJ. Prospective Testing and Redesign of a Temporal Biomarker Based Risk Model for Patients With Septic Shock: Implications for Septic Shock Biology. EBioMedicine 2015; 2:2087-93. [PMID: 26844289 PMCID: PMC4703723 DOI: 10.1016/j.ebiom.2015.11.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/07/2015] [Accepted: 11/19/2015] [Indexed: 01/01/2023] Open
Abstract
The temporal version of the pediatric sepsis biomarker risk model (tPERSEVERE) estimates the risk of a complicated course in children with septic shock based on biomarker changes from days 1 to 3 of septic shock. We validated tPERSEVERE performance in a prospective cohort, with an a priori plan to redesign tPERSEVERE if it did not perform well. Biomarkers were measured in the validation cohort (n = 168) and study subjects were classified according to tPERSEVERE. To redesign tPERSEVERE, the validation cohort and the original derivation cohort (n = 299) were combined and randomly allocated to training (n = 374) and test (n = 93) sets. tPERSEVERE was redesigned using the training set and CART methodology. tPERSEVERE performed poorly in the validation cohort, with an area under the curve (AUC) of 0.67 (95% CI: 0.58–0.75). Failure analysis revealed potential confounders related to clinical characteristics. The redesigned tPERSEVERE model had an AUC of 0.83 (0.79–0.87) and a sensitivity of 93% (68–97) for estimating the risk of a complicated course. Similar performance was seen in the test set. The classification tree segregated patients into two broad endotypes of septic shock characterized by either excessive inflammation or immune suppression. We prospectively tested the performance of the temporal version of the pediatric sepsis biomarker risk model (tPERSEVERE). tPERSEVERE performed poorly in the test cohort, prompting a redesign. The redesigned tPERSEVERE model performed well upon testing. The redesigned tPERSEVERE provides information regarding septic shock endotypes.
Septic shock is characterized by individual heterogeneity and it is not known who is at greatest risk of poor outcome and would thus benefit from more aggressive treatment. We designed a biomarker-based model to estimate the risk of poor outcome in children with septic shock. The model measures biomarker concentrations over the early period of disease evolution, and estimates how the biomarker changes reflect changing risk for poor outcome. The model has potential to serve as a monitor to evaluate the effectiveness of therapy in children with septic shock and may provide information regarding the biological mechanisms of septic shock.
Collapse
Affiliation(s)
- Hector R Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | | | - Nick Anas
- Children's Hospital of Orange County, Orange, CA, United States
| | | | - Neal J Thomas
- Penn State Hershey Children's Hospital, Hershey, PA, United States
| | | | - Scott L Weiss
- The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Julie Fitzgerald
- The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Paul A Checchia
- Texas Children's Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Keith Meyer
- Miami Children's Hospital, Miami, FL, United States
| | - Michael Quasney
- CS Mott Children's Hospital at the University of Michigan, Ann Arbor, MI, United States
| | - Mark Hall
- Nationwide Children's Hospital, Columbus, OH, United States
| | - Rainer Gedeit
- Children's Hospital of Wisconsin, Milwaukee, WI, United States
| | | | - Jeffrey Nowak
- Children's Hospital and Clinics of Minnesota, Minneapolis, MN, United States
| | - Shekhar S Raj
- Riley Hospital for Children, Indianapolis, IN, United States
| | - Shira Gertz
- Hackensack University Medical Center, Joseph M. Sanzari Children's Hospital, Hackensack, NJ, United States
| | - Kelli Howard
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Kelli Harmon
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Patrick Lahni
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Erin Frank
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Kimberly W Hart
- Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christopher J Lindsell
- Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
48
|
Nemzek JA, Hodges AP, He Y. Bayesian network analysis of multi-compartmentalized immune responses in a murine model of sepsis and direct lung injury. BMC Res Notes 2015; 8:516. [PMID: 26423575 PMCID: PMC4589912 DOI: 10.1186/s13104-015-1488-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 09/21/2015] [Indexed: 12/20/2022] Open
Abstract
Background Inflammatory disease processes involve complex and interrelated systems of mediators. Determining the causal relationships among these mediators becomes more complicated when two, concurrent inflammatory conditions occur. In those cases, the outcome may also be dependent upon the timing, severity and compartmentalization of the insults. Unfortunately, standard methods of experimentation and analysis of data sets may investigate a single scenario without uncovering many potential associations among mediators. However, Bayesian network analysis is able to model linear, nonlinear, combinatorial, and stochastic relationships among variables to explore complex inflammatory disease systems. In these studies, we modeled the development of acute lung injury from an indirect insult (sepsis induced by cecal ligation and puncture) complicated by a direct lung insult (aspiration). To replicate multiple clinical situations, the aspiration injury was delivered at different severities and at different time intervals relative to the septic insult. For each scenario, we measured numerous inflammatory cell types and cytokines in samples from the local compartments (peritoneal and bronchoalveolar lavage fluids) and the systemic compartment (plasma). We then analyzed these data by Bayesian networks and standard methods. Results Standard data analysis demonstrated that the lung injury was actually reduced when two insults were involved as compared to one lung injury alone. Bayesian network analysis determined that both the severity of lung insult and presence of sepsis influenced neutrophil recruitment and the amount of injury to the lung. However, the levels of chemoattractant cytokines responsible for neutrophil recruitment were more strongly linked to the timing and severity of the lung insult compared to the presence of sepsis. This suggests that something other than sepsis-driven exacerbation of chemokine levels was influencing the lung injury, contrary to previous theories. Conclusions To our knowledge, these studies are the first to use Bayesian networks together with experimental studies to examine the pathogenesis of sepsis-associated lung injury. Compared to standard statistical analysis and inference, these analyses elucidated more intricate relationships among the mediators, immune cells and insult-related variables (timing, compartmentalization and severity) that cause lung injury. Bayesian networks are an effective tool for evaluating complex models of inflammation.
Collapse
Affiliation(s)
- Jean A Nemzek
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Andrew P Hodges
- Center for Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, MI, USA. .,Bioinformatics and Systems Biology, Sanford
- Burnham Medical Research Institute, La Jolla, CA, USA.
| | - Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA. .,Center for Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
49
|
Impaired heart rate regulation and depression of cardiac chronotropic and dromotropic function in polymicrobial sepsis. Shock 2015; 43:185-91. [PMID: 25271380 DOI: 10.1097/shk.0000000000000272] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The scope of cardiac pathophysiology in sepsis has not been fully defined. Accordingly, we evaluated the effects of sepsis on heart rate (HR), HR variability, and conduction parameters in a murine model of sepsis. Electrocardiograms were recorded noninvasively from conscious mice before and after cecal ligation and puncture (CLP) or sham surgery. Responses of isolated atria to tyramine and isoproterenol were quantified to assess the functional state of sympathetic nerves and postjunctional sensitivity to adrenergic stimulation. Cecal ligation and puncture mice had lower HR compared with sham at 16 to 18 h postsurgery (sham, 741 ± 7 beats/min; CLP, 557 ± 31 beats/min; n = 6/group; P < 0.001), and there was significant prolongation of the PR, QRS, and QTc intervals. Slowing of HR and conduction developed within 4 to 6 h after CLP and were preceded by a decrease in HR variability. Treatment of CLP mice with isoproterenol (5 mg/kg, intraperitoneally) at 25 h after surgery failed to increase HR or decrease conduction intervals. The lack of in vivo response to isoproterenol cannot be attributed to hypothermia because robust chronotropic and inotropic responses to isoproterenol were evoked from isolated atria at 25 °C and 30 °C. These findings demonstrate that impaired regulation of HR (i.e., reduced HR variability) develops before the onset of overt cardiac rate and conduction changes in septic mice. Subsequent time-dependent decreases in HR and cardiac conduction can be attributed to hypothermia and would contribute to decreased cardiac output and organ perfusion. Because isolated atria from septic mice showed normal responsiveness to adrenergic stimulation, we conclude that impaired effectiveness of isoproterenol in vivo can be attributed to reversible effects of systemic factors on adrenergic receptors and/or postreceptor signaling.
Collapse
|
50
|
Szabo PA, Anantha RV, Shaler CR, McCormick JK, Haeryfar SMM. CD1d- and MR1-Restricted T Cells in Sepsis. Front Immunol 2015; 6:401. [PMID: 26322041 PMCID: PMC4533011 DOI: 10.3389/fimmu.2015.00401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/22/2015] [Indexed: 12/23/2022] Open
Abstract
Dysregulated immune responses to infection, such as those encountered in sepsis, can be catastrophic. Sepsis is typically triggered by an overwhelming systemic response to an infectious agent(s) and is associated with high morbidity and mortality even under optimal critical care. Recent studies have implicated unconventional, innate-like T lymphocytes, including CD1d- and MR1-restricted T cells as effectors and/or regulators of inflammatory responses during sepsis. These cell types are typified by invariant natural killer T (iNKT) cells, variant NKT (vNKT) cells, and mucosa-associated invariant T (MAIT) cells. iNKT and vNKT cells are CD1d-restricted, lipid-reactive cells with remarkable immunoregulatory properties. MAIT cells participate in antimicrobial defense, and are restricted by major histocompatibility complex-related protein 1 (MR1), which displays microbe-derived vitamin B metabolites. Importantly, NKT and MAIT cells are rapid and potent producers of immunomodulatory cytokines. Therefore, they may be considered attractive targets during the early hyperinflammatory phase of sepsis when immediate interventions are urgently needed, and also in later phases when adjuvant immunotherapies could potentially reverse the dangerous state of immunosuppression. We will highlight recent findings that point to the significance or the therapeutic potentials of NKT and MAIT cells in sepsis and will also discuss what lies ahead in research in this area.
Collapse
Affiliation(s)
- Peter A Szabo
- Department of Microbiology and Immunology, Western University , London, ON , Canada
| | - Ram V Anantha
- Department of Microbiology and Immunology, Western University , London, ON , Canada ; Division of General Surgery, Department of Medicine, Western University , London, ON , Canada
| | - Christopher R Shaler
- Department of Microbiology and Immunology, Western University , London, ON , Canada
| | - John K McCormick
- Department of Microbiology and Immunology, Western University , London, ON , Canada ; Centre for Human Immunology, Western University , London, ON , Canada ; Lawson Health Research Institute , London, ON , Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University , London, ON , Canada ; Centre for Human Immunology, Western University , London, ON , Canada ; Lawson Health Research Institute , London, ON , Canada ; Division of Clinical Immunology and Allergy, Department of Medicine, Western University , London, ON , Canada
| |
Collapse
|