1
|
Mathieu-Denoncourt A, Duperthuy M. Secretome analysis reveals a role of subinhibitory concentrations of polymyxin B in the survival of Vibrio cholerae mediated by the type VI secretion system. Environ Microbiol 2021; 24:1133-1149. [PMID: 34490971 DOI: 10.1111/1462-2920.15762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/04/2021] [Indexed: 11/30/2022]
Abstract
Antimicrobials are commonly used in prevention of infections including in aquaculture, agriculture and medicine. Subinhibitory concentrations of antimicrobial peptides can modulate resistance, virulence and persistence effectors in Gram-negative pathogens. In this study, we investigated the effect of subinhibitory concentrations of polymyxin B (PmB) on the secretome of Vibrio cholerae, a natural inhabitant of aquatic environments and the pathogen responsible for the cholera disease. Our proteomic approach revealed that the abundance of many extracellular proteins is affected by PmB and some of them are detected only either in the presence or in the absence of PmB. The type VI secretion system (T6SS) secreted hemolysin-coregulated protein (Hcp) displayed an increased abundance in the presence of PmB. Hcp is also more abundant in the bacterial cells in the presence of PmB and hcp expression is upregulated upon PmB supplementation. No effect of the T6SS on antimicrobial resistance was observed. Conversely, PmB increases the T6SS-dependent cytotoxicity of V. cholerae towards the amoeba Dictyostelium discoideum and its ability to compete with Escherichia coli.
Collapse
Affiliation(s)
- Annabelle Mathieu-Denoncourt
- Department de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Marylise Duperthuy
- Department de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
| |
Collapse
|
2
|
Fu TK, Ng SK, Chen YE, Lee YC, Demeter F, Herczeg M, Borbás A, Chiu CH, Lan CY, Chen CL, Chang MDT. Rhamnose Binding Protein as an Anti-Bacterial Agent-Targeting Biofilm of Pseudomonas aeruginosa. Mar Drugs 2019; 17:md17060355. [PMID: 31207891 PMCID: PMC6628293 DOI: 10.3390/md17060355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 01/14/2023] Open
Abstract
More than 80% of infectious bacteria form biofilm, which is a bacterial cell community surrounded by secreted polysaccharides, proteins and glycolipids. Such bacterial superstructure increases resistance to antimicrobials and host defenses. Thus, to control these biofilm-forming pathogenic bacteria requires antimicrobial agents with novel mechanisms or properties. Pseudomonas aeruginosa, a Gram-negative opportunistic nosocomial pathogen, is a model strain to study biofilm development and correlation between biofilm formation and infection. In this study, a recombinant hemolymph plasma lectin (rHPLOE) cloned from Taiwanese Tachypleus tridentatus was expressed in an Escherichia coli system. This rHPLOE was shown to have the following properties: (1) Binding to P. aeruginosa PA14 biofilm through a unique molecular interaction with rhamnose-containing moieties on bacteria, leading to reduction of extracellular di-rhamnolipid (a biofilm regulator); (2) decreasing downstream quorum sensing factors, and inhibiting biofilm formation; (3) dispersing the mature biofilm of P. aeruginosa PA14 to improve the efficacies of antibiotics; (4) reducing P. aeruginosa PA14 cytotoxicity to human lung epithelial cells in vitro and (5) inhibiting P. aeruginosa PA14 infection of zebrafish embryos in vivo. Taken together, rHPLOE serves as an anti-biofilm agent with a novel mechanism of recognizing rhamnose moieties in lipopolysaccharides, di-rhamnolipid and structural polysaccharides (Psl) in biofilms. Thus rHPLOE links glycan-recognition to novel anti-biofilm strategies against pathogenic bacteria.
Collapse
Affiliation(s)
- Tse-Kai Fu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Simpson Biotech Co., Ltd., Taoyuan 333, Taiwan.
| | - Sim-Kun Ng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Yi-En Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Yuan-Chuan Lee
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Department of Biology, Johns Hopkins University, Baltimore, ML 21218, USA.
| | - Fruzsina Demeter
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen 4032, Hungary (F.D.).
| | - Mihály Herczeg
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen 4032, Hungary (F.D.).
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen 4032, Hungary (F.D.).
| | - Cheng-Hsun Chiu
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan.
| | - Margaret Dah-Tsyr Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
3
|
Stiers KM, Muenks AG, Beamer LJ. Biology, Mechanism, and Structure of Enzymes in the α-d-Phosphohexomutase Superfamily. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 109:265-304. [PMID: 28683921 PMCID: PMC5802415 DOI: 10.1016/bs.apcsb.2017.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Enzymes in the α-d-phosphohexomutases superfamily catalyze the reversible conversion of phosphosugars, such as glucose 1-phosphate and glucose 6-phosphate. These reactions are fundamental to primary metabolism across the kingdoms of life and are required for a myriad of cellular processes, ranging from exopolysaccharide production to protein glycosylation. The subject of extensive mechanistic characterization during the latter half of the 20th century, these enzymes have recently benefitted from biophysical characterization, including X-ray crystallography, NMR, and hydrogen-deuterium exchange studies. This work has provided new insights into the unique catalytic mechanism of the superfamily, shed light on the molecular determinants of ligand recognition, and revealed the evolutionary conservation of conformational flexibility. Novel associations with inherited metabolic disease and the pathogenesis of bacterial infections have emerged, spurring renewed interest in the long-appreciated functional roles of these enzymes.
Collapse
Affiliation(s)
| | | | - Lesa J Beamer
- University of Missouri, Columbia, MO, United States.
| |
Collapse
|
4
|
Santhanam P, Boshoven JC, Salas O, Bowler K, Islam MT, Saber MK, van den Berg GCM, Bar‐Peled M, Thomma BPHJ. Rhamnose synthase activity is required for pathogenicity of the vascular wilt fungus Verticillium dahliae. MOLECULAR PLANT PATHOLOGY 2017; 18:347-362. [PMID: 26996832 PMCID: PMC6638212 DOI: 10.1111/mpp.12401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 05/05/2023]
Abstract
The initial interaction of a pathogenic fungus with its host is complex and involves numerous metabolic pathways and regulatory proteins. Considerable attention has been devoted to proteins that play a crucial role in these interactions, with an emphasis on so-called effector molecules that are secreted by the invading microbe to establish the symbiosis. However, the contribution of other types of molecules, such as glycans, is less well appreciated. Here, we present a random genetic screen that enabled us to identify 58 novel candidate genes that are involved in the pathogenic potential of the fungal pathogen Verticillium dahliae, which causes vascular wilt diseases in over 200 dicotyledonous plant species, including economically important crops. One of the candidate genes that was identified concerns a putative biosynthetic gene involved in nucleotide sugar precursor formation, as it encodes a putative nucleotide-rhamnose synthase/epimerase-reductase (NRS/ER). This enzyme has homology to bacterial enzymes involved in the biosynthesis of the nucleotide sugar deoxy-thymidine diphosphate (dTDP)-rhamnose, a precursor of L-rhamnose, which has been shown to be required for virulence in several human pathogenic bacteria. Rhamnose is known to be a minor cell wall glycan in fungi and has therefore not been suspected as a crucial molecule in fungal-host interactions. Nevertheless, our study shows that deletion of the VdNRS/ER gene from the V. dahliae genome results in complete loss of pathogenicity on tomato and Nicotiana benthamiana plants, whereas vegetative growth and sporulation are not affected. We demonstrate that VdNRS/ER is a functional enzyme in the biosynthesis of uridine diphosphate (UDP)-rhamnose, and further analysis has revealed that VdNRS/ER deletion strains are impaired in the colonization of tomato roots. Collectively, our results demonstrate that rhamnose, although only a minor cell wall component, is essential for the pathogenicity of V. dahliae.
Collapse
Affiliation(s)
- Parthasarathy Santhanam
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Jordi C. Boshoven
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Omar Salas
- Complex Carbohydrate Research Center, University of GeorgiaAthensGA30602USA
| | - Kyle Bowler
- Complex Carbohydrate Research Center, University of GeorgiaAthensGA30602USA
| | - Md Tohidul Islam
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Mojtaba Keykha Saber
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Grardy C. M. van den Berg
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Maor Bar‐Peled
- Complex Carbohydrate Research Center, University of GeorgiaAthensGA30602USA
| | - Bart P. H. J. Thomma
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| |
Collapse
|
5
|
Liu Z, Yoshihara A, Kelly C, Heap JT, Marqvorsen MHS, Jenkinson SF, Wormald MR, Otero JM, Estévez A, Kato A, Fleet GWJ, Estévez RJ, Izumori K. 6-Deoxyhexoses froml-Rhamnose in the Search for Inducers of the Rhamnose Operon: Synergy of Chemistry and Biotechnology. Chemistry 2016; 22:12557-65. [PMID: 27439720 DOI: 10.1002/chem.201602482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Zilei Liu
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; Oxford OX1 3TA UK
- Glycobiology Institute; Department of Biochemistry; University of Oxford; Oxford OX1 3QU UK
| | - Akihide Yoshihara
- International Institute of Rare Sugar Research and Education; Kagawa University; Miki Kagawa 761-0795 Japan
| | - Ciarán Kelly
- Centre for Synthetic Biology and Innovation; Department of Life Sciences; Imperial College; London SW7 2AZ UK
| | - John T. Heap
- Centre for Synthetic Biology and Innovation; Department of Life Sciences; Imperial College; London SW7 2AZ UK
| | - Mikkel H. S. Marqvorsen
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; Oxford OX1 3TA UK
| | - Sarah F. Jenkinson
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; Oxford OX1 3TA UK
| | - Mark R. Wormald
- Glycobiology Institute; Department of Biochemistry; University of Oxford; Oxford OX1 3QU UK
| | - José M. Otero
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Amalia Estévez
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Atsushi Kato
- Department of Hospital Pharmacy; University of Toyama; Toyama 930-0194 Japan
| | - George W. J. Fleet
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; Oxford OX1 3TA UK
| | - Ramón J. Estévez
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Ken Izumori
- International Institute of Rare Sugar Research and Education; Kagawa University; Miki Kagawa 761-0795 Japan
| |
Collapse
|
6
|
Yaung SJ, Deng L, Li N, Braff JL, Church GM, Bry L, Wang HH, Gerber GK. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics. Mol Syst Biol 2016; 11:788. [PMID: 26148351 PMCID: PMC4380924 DOI: 10.15252/msb.20145866] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large‐scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Population dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co‐evolution of the plasmid library and E. coli genome driving increased galactose utilization. Our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo.
Collapse
|
7
|
Mistou MY, Sutcliffe IC, van Sorge NM. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria. FEMS Microbiol Rev 2016; 40:464-79. [PMID: 26975195 PMCID: PMC4931226 DOI: 10.1093/femsre/fuw006] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2016] [Indexed: 12/21/2022] Open
Abstract
The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. This review summarizes new insights into the genetics and function of rhamnose-containing cell wall polysaccharides expressed by lactic acid bacteria, which includes medically important pathogens, and discusses perspectives on possible future therapeutic and biotechnological applications.
Collapse
Affiliation(s)
- Michel-Yves Mistou
- Laboratory for Food Safety, Université Paris-Est, ANSES, F-94701 Maisons-Alfort, France
| | - Iain C Sutcliffe
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Nina M van Sorge
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
8
|
Ng SK, Huang YT, Lee YC, Low EL, Chiu CH, Chen SL, Mao LC, Chang MDT. A recombinant horseshoe crab plasma lectin recognizes specific pathogen-associated molecular patterns of bacteria through rhamnose. PLoS One 2014; 9:e115296. [PMID: 25541995 PMCID: PMC4277298 DOI: 10.1371/journal.pone.0115296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 11/21/2014] [Indexed: 11/18/2022] Open
Abstract
Horseshoe crab is an ancient marine arthropod that, in the absence of a vertebrate-like immune system, relies solely on innate immune responses by defense molecules found in hemolymph plasma and granular hemocytes for host defense. A plasma lectin isolated from the hemolymph of Taiwanese Tachypleus tridentatus recognizes bacteria and lipopolysaccharides (LPSs), yet its structure and mechanism of action remain unclear, largely because of limited availability of horseshoe crabs and the lack of a heterogeneous expression system. In this study, we have successfully expressed and purified a soluble and functional recombinant horseshoe crab plasma lectin (rHPL) in an Escherichia coli system. Interestingly, rHPL bound not only to bacteria and LPSs like the native HPL but also to selective medically important pathogens isolated from clinical specimens, such as Gram-negative Pseudomonas aeruginosa and Klebsiella pneumoniae and Gram-positive Streptococcus pneumoniae serotypes. The binding was demonstrated to occur through a specific molecular interaction with rhamnose in pathogen-associated molecular patterns (PAMPs) on the bacterial surface. Additionally, rHPL inhibited the growth of P. aeruginosa PAO1 in a concentration-dependent manner. The results suggest that a specific protein-glycan interaction between rHPL and rhamnosyl residue may further facilitate development of novel diagnostic and therapeutic strategies for microbial pathogens.
Collapse
Affiliation(s)
- Sim-Kun Ng
- Institute of Molecular and Cellular Biology & Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Yu-Tsyr Huang
- Institute of Molecular and Cellular Biology & Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Yuan-Chuan Lee
- Institute of Molecular and Cellular Biology & Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ee-Ling Low
- Institute of Molecular and Cellular Biology & Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Cheng-Hsun Chiu
- Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan Hsien, Taiwan, Republic of China
| | - Shiu-Ling Chen
- Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan Hsien, Taiwan, Republic of China
| | - Liang-Chi Mao
- Simpson Biotech Co., Ltd., Kuei Shan, Taoyuan County, Taiwan, Republic of China
| | - Margaret Dah-Tsyr Chang
- Institute of Molecular and Cellular Biology & Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
9
|
Fu Y, Waldor MK, Mekalanos JJ. Tn-Seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. Cell Host Microbe 2014; 14:652-63. [PMID: 24331463 DOI: 10.1016/j.chom.2013.11.001] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/09/2013] [Accepted: 10/25/2013] [Indexed: 02/08/2023]
Abstract
Analysis of genes required for host infection will provide clues to the drivers of evolutionary fitness of pathogens like Vibrio cholerae, a mounting threat to global heath. We used transposon insertion site sequencing (Tn-seq) to comprehensively assess the contribution of nearly all V. cholerae genes toward growth in the infant rabbit intestine. Four hundred genes were identified as critical to V. cholerae in vivo fitness. These included most known colonization factors and several new genes affecting the bacterium's metabolic properties, resistance to bile, and ability to synthesize cyclic AMP-GMP. Notably, a mutant carrying an insertion in tsiV3, encoding immunity to a bacteriocidal type VI secretion system (T6SS) effector VgrG3, exhibited a colonization defect. The reduced in vivo fitness of tsiV3 mutants depends on their cocolonization with bacterial cells carrying an intact T6SS locus and VgrG3 gene, suggesting that the V. cholerae T6SS is functional and mediates antagonistic interbacterial interactions during infection.
Collapse
Affiliation(s)
- Yang Fu
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; College of Life Science, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Matthew K Waldor
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Division of Infectious Disease, Brigham & Women's Hospital, and Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - John J Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Wang Y, Qian G, Liu F, Li YZ, Shen Y, Du L. Facile method for site-specific gene integration in Lysobacter enzymogenes for yield improvement of the anti-MRSA antibiotics WAP-8294A and the antifungal antibiotic HSAF. ACS Synth Biol 2013; 2:670-8. [PMID: 23937053 DOI: 10.1021/sb4000806] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lysobacter is a genus of Gram-negative gliding bacteria that are emerged as novel biocontrol agents and new sources of bioactive natural products. The bacteria are naturally resistant to many antibiotics commonly used in transformant selection, which has hampered the genetic manipulations. Here, we described a facile method for quick-and-easy identification of the target transformants from a large population of the wild type and nontarget transformants. The method is based on a distinct yellow-to-black color change as a visual selection marker for site-specific integration of the gene of interest. Through transposon random mutagenesis, we identified a black-colored strain from the yellow-colored L. enzymogenes . The black strain was resulted from a disruption of hmgA, a gene required for tyrosine/phenylalanine metabolism. The disruption of hmgA led to accumulation of dark brown pigments. As proof of principle, we constructed a series of expression vectors for a regulator gene found within the WAP-8294A biosynthetic gene cluster. The yield of WAP-8294A in the black strains increased by 2 fold compared to the wild type. Interestingly, the yield of another antibiotic (HSAF) increased up to 7 fold in the black strains. WAP-8294A is a family of potent anti-MRSA antibiotics and is currently in clinical studies, and HSAF is an antifungal compound with distinct structural features and a novel mode of action. This work represents the first successful metabolic engineering in Lysobacter. The development of this facile method opens a way toward manipulating antibiotic production in the largely unexplored sources.
Collapse
Affiliation(s)
- Yan Wang
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Guoliang Qian
- Department
of Plant Pathology, Nanjing Agricultural University, Nanjing, China 210095
| | - Fengquan Liu
- Department
of Plant Pathology, Nanjing Agricultural University, Nanjing, China 210095
| | - Yue-Zhong Li
- State
Key Laboratory of Microbial Technology, College of Life Sciences, Shandong University, Jinan, China 250012
| | - Yuemao Shen
- State
Key Laboratory of Microbial Technology, College of Life Sciences, Shandong University, Jinan, China 250012
| | - Liangcheng Du
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
11
|
Provenzano D, Kovác P, Wade WF. The ABCs (Antibody, B Cells, and Carbohydrate Epitopes) of Cholera Immunity: Considerations for an Improved Vaccine. Microbiol Immunol 2013; 50:899-927. [PMID: 17179659 DOI: 10.1111/j.1348-0421.2006.tb03866.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cholera, a diarrheal disease, is known for explosive epidemics that can quickly kill thousands. Endemic cholera is a seasonal torment that also has a significant mortality. Not all nations with extensive rural communities can achieve the required infrastructure or behavioral changes to prevent epidemic or endemic cholera. For some communities, a single-dose cholera vaccine that protects those at risk is the most efficacious means to reduce morbidity and mortality. It is clear that our understanding of what a protective cholera immune response is has not progressed at the rate our understanding of the pathogenesis and molecular biology of cholera infection has. This review addresses V. cholerae lipopolysaccharide (LPS)-based immunogens because LPS is the only immunogen proven to induce protective antibody in humans. We discuss the role of anti-LPS antibodies in protection from cholera, the importance and the potential role of B cell subsets in protection that is based on their anatomical location and the intrinsic antigen-receptor specificity of various subsets is introduced.
Collapse
Affiliation(s)
- Daniele Provenzano
- Department of Biological Sciences, University of Texas-Brownsville, Brownsville, TX 78520, USA
| | | | | |
Collapse
|
12
|
Wang Y, Qian G, Li Y, Wang Y, Wang Y, Wright S, Li Y, Shen Y, Liu F, Du L. Biosynthetic mechanism for sunscreens of the biocontrol agent Lysobacter enzymogenes. PLoS One 2013; 8:e66633. [PMID: 23826105 PMCID: PMC3691225 DOI: 10.1371/journal.pone.0066633] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/08/2013] [Indexed: 01/06/2023] Open
Abstract
Lysobacter are ubiquitous environmental bacteria emerging as novel biocontrol agents and new sources of anti-infectives. So far, very little effort has been invested in the study of the biology of these Gram-negative gliding bacteria. Many Lysobacter species are characterized by their yellow-orange appearance. Using transposon mutagenesis, we identified a stand-alone polyketide synthase (PKS) gene cluster required for the pigment production in L. enzymogenes OH11. The yellow pigments were abolished in the "white" mutants generated by target-specific deletions of ketosynthase (KS), acyl carrier protein, or ketoreductase. Spectroscopic data suggested that the pigments belong to xanthomonadin-like aryl polyenes. Polyene-type polyketides are known to be biosynthesized by modular PKS (Type I), not by stand-alone PKS (Type II) which always contain the heterodimer KS-CLF (chain-length factor) as the key catalytic component. Remarkably, this aryl polyene PKS complex only contains the KS (ORF17), but not the CLF. Instead, a hypothetical protein (ORF16) is located immediately next to ORF17. ORF16-17 homologs are widespread in numerous uncharacterized microbial genomes, in which an ORF17 homolog is always accompanied by an ORF16 homolog. The deletion of ORF16 eliminated pigment production, and homology modeling suggested that ORF16 shares a structural similarity to the N-terminal half of CLF. A point-mutation of glutamine (Q166A) that is the conserved active site of known CLF abolished pigment production. The "white" mutants are significantly more sensitive to UV/visible light radiation or H2O2 treatment than the wild type. These results unveil the first example of Type II PKS-synthesized polyene pigments and show that the metabolites serve as Lysobacter "sunscreens" that are important for the survival of these ubiquitous environmental organisms.
Collapse
Affiliation(s)
- Yan Wang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- State Key Laboratory of Microbial Technology, College of Life Sciences, Shandong University, Jinan, China
| | - Guoliang Qian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yaoyao Li
- State Key Laboratory of Microbial Technology, College of Life Sciences, Shandong University, Jinan, China
| | - Yansheng Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yulan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Stephen Wright
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, College of Life Sciences, Shandong University, Jinan, China
| | - Yuemao Shen
- State Key Laboratory of Microbial Technology, College of Life Sciences, Shandong University, Jinan, China
| | - Fengquan Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
13
|
Seed KD, Faruque SM, Mekalanos JJ, Calderwood SB, Qadri F, Camilli A. Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLoS Pathog 2012; 8:e1002917. [PMID: 23028317 PMCID: PMC3441752 DOI: 10.1371/journal.ppat.1002917] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 08/05/2012] [Indexed: 02/05/2023] Open
Abstract
The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage.
Collapse
Affiliation(s)
- Kimberley D. Seed
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Shah M. Faruque
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - John J. Mekalanos
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Firdausi Qadri
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Andrew Camilli
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Lee Y, Mick J, Furdui C, Beamer LJ. A coevolutionary residue network at the site of a functionally important conformational change in a phosphohexomutase enzyme family. PLoS One 2012; 7:e38114. [PMID: 22685552 PMCID: PMC3369874 DOI: 10.1371/journal.pone.0038114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/01/2012] [Indexed: 11/26/2022] Open
Abstract
Coevolution analyses identify residues that co-vary with each other during evolution, revealing sequence relationships unobservable from traditional multiple sequence alignments. Here we describe a coevolutionary analysis of phosphomannomutase/phosphoglucomutase (PMM/PGM), a widespread and diverse enzyme family involved in carbohydrate biosynthesis. Mutual information and graph theory were utilized to identify a network of highly connected residues with high significance. An examination of the most tightly connected regions of the coevolutionary network reveals that most of the involved residues are localized near an interdomain interface of this enzyme, known to be the site of a functionally important conformational change. The roles of four interface residues found in this network were examined via site-directed mutagenesis and kinetic characterization. For three of these residues, mutation to alanine reduces enzyme specificity to ∼10% or less of wild-type, while the other has ∼45% activity of wild-type enzyme. An additional mutant of an interface residue that is not densely connected in the coevolutionary network was also characterized, and shows no change in activity relative to wild-type enzyme. The results of these studies are interpreted in the context of structural and functional data on PMM/PGM. Together, they demonstrate that a network of coevolving residues links the highly conserved active site with the interdomain conformational change necessary for the multi-step catalytic reaction. This work adds to our understanding of the functional roles of coevolving residue networks, and has implications for the definition of catalytically important residues.
Collapse
Affiliation(s)
- Yingying Lee
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Jacob Mick
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Cristina Furdui
- Department of Internal Medicine, Wake Forest University Health Sciences Winston-Salem, North Carolina, United States of America
| | - Lesa J. Beamer
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
15
|
Selection of available suicide vectors for gene mutagenesis using chiA (a chitinase encoding gene) as a new reporter and primary functional analysis of chiA in Lysobacter enzymogenes strain OH11. World J Microbiol Biotechnol 2011; 28:549-57. [PMID: 22806850 DOI: 10.1007/s11274-011-0846-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/08/2011] [Indexed: 10/18/2022]
Abstract
Here, three different suicide vectors were evaluated for the possibility of performing gene mutagenesis in strain OH11 using the chiA gene (accession number: DQ888611) as a new reporter. Suicide vector pEX18GM was selected, and it was successfully applied for disruption and in-frame deletions in the chiA gene in strain OH11, which was confirmed by PCR amplification and Southern hybridization. The chiA-deletion mutant OH11-3 did not have the ability to produce chitinase on chitine selection medium. Interestingly, the chiA-deletion mutants displayed wild-type antimicrobial activity against Saccharomyces cerevisiae, Magnaporthe grisea, Phytophthora capsici, Rhizoctonia solani, Sclerotinia sclerotiorum and Pythium ultimum. Our data suggest that chitinase might not be a unique lytic enzyme in controlling S. cerevisiae, M. grisea, P. capsici, and P. ultimum. R. solani, S. sclerotiorum. Also, suicide vector pEX18GM might be explored as a potential tool for gene deletions in L. enzymogenes, which will facilitate the molecular study of mechanisms of biological control in L. enzymogenes.
Collapse
|
16
|
Tsou AM, Liu Z, Cai T, Zhu J. The VarS/VarA two-component system modulates the activity of the Vibrio cholerae quorum-sensing transcriptional regulator HapR. MICROBIOLOGY-SGM 2011; 157:1620-1628. [PMID: 21393367 DOI: 10.1099/mic.0.046235-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The human pathogen Vibrio cholerae uses quorum sensing to regulate the expression of a number of phenotypes, including virulence factor production, in response to changes in cell density. It produces small molecules called autoinducers that increase in concentration as cell density increases, and these autoinducers bind to membrane sensors once they reach a certain threshold. This binding leads to signalling through a downstream phosphorelay pathway to alter the expression of the transcriptional regulator HapR. Previously, it was shown that the VarS/VarA two-component system acts on a component of the phosphorelay pathway upstream of HapR to regulate HapR expression levels. Here, we show that in addition to this mechanism of regulation, VarS and VarA also indirectly modulate HapR protein activity. This modulation is mediated by the small RNA CsrB but is independent of the known quorum-sensing system that links the autoinducers to HapR. Thus, the VarS/VarA two-component system intersects with the quorum-sensing network at two levels. In both cases, the effect of VarS and VarA on quorum sensing is dependent on the Csr small RNAs, which regulate carbon metabolism, suggesting that V. cholerae may integrate nutrient status and cell density sensory inputs to tailor its gene expression profile more precisely to surrounding conditions.
Collapse
Affiliation(s)
- Amy M Tsou
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Zhi Liu
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Tao Cai
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jun Zhu
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Olivier V, Queen J, Satchell KJF. Successful small intestine colonization of adult mice by Vibrio cholerae requires ketamine anesthesia and accessory toxins. PLoS One 2009; 4:e7352. [PMID: 19812690 PMCID: PMC2753775 DOI: 10.1371/journal.pone.0007352] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 09/15/2009] [Indexed: 12/11/2022] Open
Abstract
Vibrio cholerae colonizes the small intestine of adult C57BL/6 mice. In this study, the physical and genetic parameters that facilitate this colonization were investigated. Successful colonization was found to depend upon anesthesia with ketamine-xylazine and neutralization of stomach acid with sodium bicarbonate, but not streptomycin treatment. A variety of common mouse strains were colonized by O1, O139, and non-O1/non-O139 strains. All combinations of mutants in the genes for hemolysin, the multifunctional, autoprocessing RTX toxin (MARTX), and hemagglutinin/protease were assessed, and it was found that hemolysin and MARTX are each sufficient for colonization after a low dose infection. Overall, this study suggests that, after intragastric inoculation, V. cholerae encounters barriers to infection including an acidic environment and an immediate immune response that is circumvented by sodium bicarbonate and the anti-inflammatory effects of ketamine-xylazine. After initial adherence in the small intestine, the bacteria are subjected to additional clearance mechanisms that are evaded by the independent toxic action of hemolysin or MARTX. Once colonization is established, it is suggested that, in humans, these now persisting bacteria initiate synthesis of the major virulence factors to cause cholera disease. This adult mouse model of intestinal V. cholerae infection, now well-characterized and fully optimized, should serve as a valuable tool for studies of pathogenesis and testing vaccine efficacy.
Collapse
Affiliation(s)
- Verena Olivier
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | | | | |
Collapse
|
18
|
Cai T, Cai W, Zhang J, Zheng H, Tsou AM, Xiao L, Zhong Z, Zhu J. Host legume-exuded antimetabolites optimize the symbiotic rhizosphere. Mol Microbiol 2009; 73:507-17. [PMID: 19602148 DOI: 10.1111/j.1365-2958.2009.06790.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Rhizobia form symbiotic nodules on host legumes and fix nitrogen for their hosts in exchange for nutrients. In order to establish this mutually beneficial relationship, rhizobia must compete with other soil bacteria in the host legume rhizosphere to colonize plant roots efficiently. A promoter-trap transposon screen in Mesorhizobium tianshanense, a Rhizobium that forms nodules on licorice (Glycyrrhiza uralensis) plants revealed that the expression of msiA, which encodes a putative exporter protein belonging to the LysE family of translocators, is activated by both legume exudates and MsiR, a LysR family transcriptional regulator. Chemical analysis suggests that the msiA-inducing signal in exudates is canavanine, an anti-metabolite present in the seeds and exudates of a variety of legume plants. We show that MsiA serves as a canavanine exporter that is indispensable for canavanine resistance in M. tianshanense. We also show that the expression of MsiA homologues in other rhizobial species is induced by canavanine and is critical for canavanine resistance. Furthermore, rhizobial canavanine resistance is important for root hair adherence as well as for survival in a canavanine-producing legume rhizosphere. Together, these data suggest that host legumes may exude specific antimetabolites into their surroundings to optimize the bacterial population in order to have successful symbiotic events with rhizobia.
Collapse
Affiliation(s)
- Tao Cai
- Department of Microbiology, MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Vibrio cholerae Interactions with the Gastrointestinal Tract: Lessons from Animal Studies. Curr Top Microbiol Immunol 2009; 337:37-59. [DOI: 10.1007/978-3-642-01846-6_2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Nelson EJ, Chowdhury A, Flynn J, Schild S, Bourassa L, Shao Y, LaRocque RC, Calderwood SB, Qadri F, Camilli A. Transmission of Vibrio cholerae is antagonized by lytic phage and entry into the aquatic environment. PLoS Pathog 2008; 4:e1000187. [PMID: 18949027 PMCID: PMC2563029 DOI: 10.1371/journal.ppat.1000187] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 09/24/2008] [Indexed: 11/21/2022] Open
Abstract
Cholera outbreaks are proposed to propagate in explosive cycles powered by hyperinfectious Vibrio cholerae and quenched by lytic vibriophage. However, studies to elucidate how these factors affect transmission are lacking because the field experiments are almost intractable. One reason for this is that V. cholerae loses the ability to culture upon transfer to pond water. This phenotype is called the active but non-culturable state (ABNC; an alternative term is viable but non-culturable) because these cells maintain the capacity for metabolic activity. ABNC bacteria may serve as the environmental reservoir for outbreaks but rigorous animal studies to test this hypothesis have not been conducted. In this project, we wanted to determine the relevance of ABNC cells to transmission as well as the impact lytic phage have on V. cholerae as the bacteria enter the ABNC state. Rice-water stool that naturally harbored lytic phage or in vitro derived V. cholerae were incubated in a pond microcosm, and the culturability, infectious dose, and transcriptome were assayed over 24 h. The data show that the major contributors to infection are culturable V. cholerae and not ABNC cells. Phage did not affect colonization immediately after shedding from the patients because the phage titer was too low. However, V. cholerae failed to colonize the small intestine after 24 h of incubation in pond water—the point when the phage and ABNC cell titers were highest. The transcriptional analysis traced the transformation into the non-infectious ABNC state and supports models for the adaptation to nutrient poor aquatic environments. Phage had an undetectable impact on this adaptation. Taken together, the rise of ABNC cells and lytic phage blocked transmission. Thus, there is a fitness advantage if V. cholerae can make a rapid transfer to the next host before these negative selective pressures compound in the aquatic environment. The biological factors that control the transmission of water-borne pathogens like Vibrio cholerae during outbreaks are ill defined. In this study, a molecular analysis of the active but non-culturable (ABNC) state of V. cholerae provides insights into the physiology of environmental adaptation. The ABNC state, lytic phage, and hyperinfectivity were concurrently followed as V. cholerae passaged from cholera patients to an aquatic reservoir. The relevance to transmission of each factor was weighed against the others. As the bacteria transitioned from the patient to pond water, there was a rapid decay into the ABNC state and a rise of lytic phage that compounded to block transmission in a mouse model. These two factors give reason for V. cholerae to make a quick transit through the environment and onto the next human host. Thus, in over-crowded locations with failed water infrastructure, the opportunity for fast transmission coupled with the increased infectivity and culturability of recently shed V. cholerae creates a charged setting for explosive cholera outbreaks.
Collapse
Affiliation(s)
- Eric J. Nelson
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | | | - James Flynn
- Tufts Expression Array Core (TEAC) Facility, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Stefan Schild
- Institut fuer Molekulare Biowissenschaften, Karl-Franzens-Universitaet Graz, Graz, Austria
| | - Lori Bourassa
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Yue Shao
- Tufts Expression Array Core (TEAC) Facility, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Andrew Camilli
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
21
|
Schild S, Nelson EJ, Camilli A. Immunization with Vibrio cholerae outer membrane vesicles induces protective immunity in mice. Infect Immun 2008; 76:4554-63. [PMID: 18678672 PMCID: PMC2546833 DOI: 10.1128/iai.00532-08] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/16/2008] [Accepted: 07/21/2008] [Indexed: 02/01/2023] Open
Abstract
The gram-negative bacterium Vibrio cholerae releases outer membrane vesicles (OMVs) during growth. In this study, we immunized female mice by the intranasal, intragastric, or intraperitoneal route with purified OMVs derived from V. cholerae. Independent of the route of immunization, mice induced specific, high-titer immune responses of similar levels against a variety of antigens present in the OMVs. After the last immunization, the half-maximum total immunoglobulin titer was stable over a 3-month period, indicating that the immune response was long lasting. The induction of specific isotypes, however, was dependent on the immunization route. Immunoglobulin A, for example, was induced to a significant level only by mucosal immunization, with the intranasal route generating the highest titers. We challenged the offspring of immunized female mice with V. cholerae via the oral route in two consecutive periods, approximately 30 and 95 days after the last immunization. Regardless of the route of immunization, the offspring was protected against colonization with V. cholerae in both challenge periods. Our results show that mucosal immunizations via both routes with OMVs derived from V. cholerae induce long-term protective immune responses against this gastrointestinal pathogen. These findings may contribute to the development of "nonliving," OMV-based vaccines against V. cholerae and other enteric pathogens, using the oral or intranasal route of immunization.
Collapse
Affiliation(s)
- Stefan Schild
- Department of Molecular Biology and Microbiology, Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
22
|
Exopolysaccharide biosynthesis is important for Mesorhizobium tianshanense: plant host interaction. Arch Microbiol 2008; 189:525-30. [DOI: 10.1007/s00203-007-0345-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 11/14/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
|
23
|
Gullapalli P, Shiji T, Rao D, Yoshihara A, Morimoto K, Takata G, Fleet GW, Izumori K. Bioproduction of a novel sugar 1-deoxy-l-fructose by Enterobacter aerogenes IK7; isomerization of a 6-deoxyhexose to a 1-deoxyhexose. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.tetasy.2007.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Ho TD, Waldor MK. Enterohemorrhagic Escherichia coli O157:H7 gal mutants are sensitive to bacteriophage P1 and defective in intestinal colonization. Infect Immun 2006; 75:1661-6. [PMID: 17158899 PMCID: PMC1865682 DOI: 10.1128/iai.01342-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC), especially E. coli O157:H7, is an emerging cause of food-borne illness. Unfortunately, E. coli O157 cannot be genetically manipulated using the generalized transducing phage P1, presumably because its extensive O antigen obscures the P1 receptor, the lipopolysaccharide (LPS) core subunit. The GalE, GalT, GalK, and GalU proteins are necessary for modifying galactose before it can be assembled into the repeating subunit of the O antigen. Here, we constructed E. coli O157:H7 gal mutants which presumably have little or no O antigen. These strains were able to adsorb P1. P1 lysates grown on the gal mutant strains could be used to move chromosomal markers between EHEC strains, thereby facilitating genetic manipulation of E. coli O157:H7. The gal mutants could easily be reverted to a wild-type Gal(+) strain using P1 transduction. We found that the O157:H7 galETKM::aad-7 deletion strain was 500-fold less able to colonize the infant rabbit intestine than the isogenic Gal(+) parent, although it displayed no growth defect in vitro. Furthermore, in vivo a Gal(+) revertant of this mutant outcompeted the galETKM deletion strain to an extent similar to that of the wild type. This suggests that the O157 O antigen is an important intestinal colonization factor. Compared to the wild type, EHEC gal mutants were 100-fold more sensitive to a peptide derived from bactericidal permeability-increasing protein, a bactericidal protein found on the surface of intestinal epithelial cells. Thus, one way in which the O157 O antigen may contribute to EHEC intestinal colonization is to promote resistance to host-derived antimicrobial polypeptides.
Collapse
Affiliation(s)
- Theresa Deland Ho
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
25
|
Chatterjee SN, Chaudhuri K. Lipopolysaccharides of Vibrio cholerae: III. Biological functions. Biochim Biophys Acta Mol Basis Dis 2005; 1762:1-16. [PMID: 16185850 DOI: 10.1016/j.bbadis.2005.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 08/15/2005] [Accepted: 08/15/2005] [Indexed: 11/26/2022]
Abstract
This review presents the salient features of the biological functions including the (i) endotoxic activities, (ii) antigenic properties, (iii) immunological responses to and (iv) phage receptor activities of the Vibrio cholerae lipopolysaccharides (LPS). The biological functions of the capsular polysaccharide (CPS) of V. cholerae have also been discussed briefly as a relevant topic. The roles of LPS and other extracellular polysaccharides in the (i) intestinal adherence and virulence of the vibrios and (ii) the biofilm formation by the organisms have been analysed on the basis of the available data. Every effort has been made to bring out, wherever applicable, the lacunae in our knowledge. The need for the continuous serogroup surveillance and monitoring of the environmental waters and the role of LPS in the designing of newer cholera vaccines has been discussed briefly in conclusion.
Collapse
Affiliation(s)
- S N Chatterjee
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Sector-1, Calcutta-700 064, India.
| | | |
Collapse
|
26
|
Schild S, Lamprecht AK, Reidl J. Molecular and functional characterization of O antigen transfer in Vibrio cholerae. J Biol Chem 2005; 280:25936-47. [PMID: 15908430 DOI: 10.1074/jbc.m501259200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The majority of Gram-negative bacteria transfer O antigen polysaccharides onto the lipid A-core oligosaccharide via the action of surface polymer:lipid A-core ligases (WaaL). Here, we characterize the WaaL proteins of Vibrio cholerae with emphasis on structural and functional characterization of O antigen transfer and core oligosaccharide recognition. We demonstrate that the activity of two distantly related O antigen ligases is dependent on the presence of N-acetylglucosamine, and substitution of an additional sugar, i.e. galactose, alters the site specificity of the core oligosaccharide necessitating discriminative WaaL types. Protein topology analysis and a conserved domain search identified two distinct conserved motifs in the periplasmic domains of WaaL proteins. Site-directed mutagenesis of the two motifs, shown for WaaLs of V. cholerae and Salmonella enterica, caused a loss of O antigen transfer activity. Moreover, analogy of topology and motifs between WaaLs and O polysaccharide polymerases (Wzy) reveals a relationship between the two protein families, suggesting that the catalyzed reactions are related to each other.
Collapse
Affiliation(s)
- Stefan Schild
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Josef Schneider Strasse 2, E1, Würzburg 97080, Germany
| | | | | |
Collapse
|
27
|
Abstract
The rapid progress in structural and molecular biology over the past fifteen years has allowed chemists to access the structures of enzymes, of their complexes and of mutants. This wealth of structural information has led to a surge in the interest in enzymes as elegant chemical catalysts. Enzymology is a distinguished field and has been making vital contributions to medicine and basic science long before structural biology. This review for the Colworth Medal Lecture discusses work from the author's laboratory. This work has been carried out in collaboration with many other laboratories. The work has mapped out the chemical mechanisms and structures of interesting novel enzymes. The review tries to highlight the interesting chemical aspects of the mechanisms involved and how structural analysis has provided a detailed insight. The review focuses on carbohydrate-processing pathways in bacteria, and includes some recent data on an integral membrane protein.
Collapse
Affiliation(s)
- J H Naismith
- Centre for Biomolecular Sciences, The University, St Andrews, KY16 9ST, UK.
| |
Collapse
|
28
|
Brown II, Häse CC. Flagellum-independent surface migration of Vibrio cholerae and Escherichia coli. J Bacteriol 2001; 183:3784-90. [PMID: 11371543 PMCID: PMC95256 DOI: 10.1128/jb.183.12.3784-3790.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2000] [Accepted: 03/19/2001] [Indexed: 11/20/2022] Open
Abstract
Surface translocation has been described in a large variety of microorganisms, including some gram-negative enteric bacteria. Here, we describe the novel observation of the flagellum-independent migration of Vibrio cholerae and Escherichia coli on semisolid surfaces with remarkable speeds. Important aspects of this motility are the form of inoculation, the medium composition, and the use of agarose rather than agar. Mutations in several known regulatory or surface structure proteins, such as ToxR, ToxT, TCP, and PilA, did not affect migration, whereas a defect in lipopolysaccharide biosynthesis prevented translocation. We propose that the observed surface migration is an active process, since heat, protease, or chloramphenicol treatments of the cells have strong negative effects on this phenotype. Furthermore, several V. cholerae strains strongly expressing the hemagglutinin/protease but not their isogenic hap-negative mutants, lacked the ability of surface motility, and the treatment of migrating strains with culture supernatants from hap strains but not hap-null strains prevented surface translocation.
Collapse
Affiliation(s)
- I I Brown
- Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
29
|
Abstract
Vibrio cholerae causes the diarrheal disease cholera primarily because it expresses a colonization factor (toxin-coregulated pilus; TCP) and a potent toxin (cholera toxin; CT) within the human intestine. While the true environmental signals that induce CT and TCP expression within the intestine remain unknown, much progress has been made identifying the regulatory factors that modulate their expression. Transcriptional regulation of the genes encoding TCP and CT involves a cascade consisting of a number of regulatory factors located on recently acquired mobile genetic elements as well as others residing within the ancestral Vibrio genome. In vivo studies have revealed interesting differences between the regulation of TCP and CT expression in the laboratory and within the intestine.
Collapse
Affiliation(s)
- K E Klose
- Department of Microbiology, University of Texas Health Science Center, 78229-3900, USA.
| |
Collapse
|
30
|
Attridge SR, Fazeli A, Manning PA, Stroeher UH. Isolation and characterization of bacteriophage-resistant mutants of Vibrio cholerae O139. Microb Pathog 2001; 30:237-46. [PMID: 11312617 DOI: 10.1006/mpat.2000.0426] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vibrio cholerae O139 strains produce a capsule which is associated with complement resistance and is used as a receptor by bacteriophage JA1. Spontaneous JA1-resistant mutants were found to have several phenotypes, with loss of capsule and/or O-antigen from the cell surface. Determination of the residual complement resistance and infant mouse colonization potential of each mutant suggested that production of O-antigen is of much greater significance than the presence of capsular material for both of these properties. Two different in vitro assays of complement resistance were compared and the results of one shown to closely reflect the comparative recoveries of bacteria from the colonization experiments. Preliminary complementation studies implicated two rfb region genes, wzz and wbfP, as being essential for the biosynthesis of capsule but not O-antigen.
Collapse
Affiliation(s)
- S R Attridge
- Department of Molecular Biosciences, Department of Microbiology, AstraZeneca R&D Boston, The University of Adelaide, Medical School, 35 Gatehouse Drive, Adelaide, South Australia 5005, Australia.
| | | | | | | |
Collapse
|
31
|
Nesper J, Lauriano CM, Klose KE, Kapfhammer D, Kraiss A, Reidl J. Characterization of Vibrio cholerae O1 El tor galU and galE mutants: influence on lipopolysaccharide structure, colonization, and biofilm formation. Infect Immun 2001; 69:435-45. [PMID: 11119535 PMCID: PMC97901 DOI: 10.1128/iai.69.1.435-445.2001] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2000] [Accepted: 10/04/2000] [Indexed: 11/20/2022] Open
Abstract
Recently we described the isolation of spontaneous bacteriophage K139-resistant Vibrio cholerae O1 El Tor mutants. In this study, we identified phage-resistant isolates with intact O antigen but altered core oligosaccharide which were also affected in galactose catabolism; this strains have mutations in the galU gene. We inactivated another gal gene, galE, and the mutant was also found to be defective in the catabolism of exogenous galactose but synthesized an apparently normal lipopolysaccharide (LPS). Both gal mutants as well as a rough LPS (R-LPS) mutant were investigated for the ability to colonize the mouse small intestine. The galU and R-LPS mutants, but not the galE mutant, were defective in colonization, a phenotype also associated with O-antigen-negative mutants. By investigating several parameters in vitro, we could show that galU and R-LPS mutants were more sensitive to short-chain organic acids, cationic antimicrobial peptides, the complement system, and bile salts as well as other hydrophobic agents, indicating that their outer membrane no longer provides an effective barrier function. O-antigen-negative strains were found to be sensitive to complement and cationic peptides, but they displayed significant resistance to bile salts and short-chain organic acids. Furthermore, we found that galU and galE are essential for the formation of a biofilm in a spontaneous phage-resistant rugose variant, suggesting that the synthesis of UDP-galactose via UDP-glucose is necessary for biosynthesis of the exopolysaccharide. In addition, we provide evidence that the production of exopolysaccharide limits the access of phage K139 to its receptor, the O antigen. In conclusion, our results indicate involvement of galU in V. cholerae virulence, correlated with the observed change in LPS structure, and a role for galU and galE in environmental survival of V. cholerae.
Collapse
Affiliation(s)
- J Nesper
- Zentrum für Infektionsforschung, Universität Würzburg, 97070 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
L-Rhamnose is a deoxy sugar found widely in bacteria and plants. Evidence continues to emerge about its essential role in many pathogenic bacteria. The crystal structures of two of the four enzymes involved in its biosynthetic pathway have been reported and the other two have been submitted for publication. This pathway does not exist in humans, making enzymes of this pathway very attractive targets for therapeutic intervention.
Collapse
Affiliation(s)
- M F Giraud
- Institut de Biochimie et de Génétique Cellulaires du CNRS, Université Victor Segalen, Bordeaux 2, 1 rue Camille Saint-Saëns, F-33 077 cedex, Bordeaux, France
| | | |
Collapse
|
33
|
Nesper J, Kapfhammer D, Klose KE, Merkert H, Reidl J. Characterization of vibrio cholerae O1 antigen as the bacteriophage K139 receptor and identification of IS1004 insertions aborting O1 antigen biosynthesis. J Bacteriol 2000; 182:5097-104. [PMID: 10960093 PMCID: PMC94657 DOI: 10.1128/jb.182.18.5097-5104.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2000] [Accepted: 06/23/2000] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage K139 was recently characterized as a temperate phage of O1 Vibrio cholerae. In this study we have determined the phage adsorption site on the bacterial cell surface. Phage-binding studies with purified lipopolysaccharide (LPS) of different O1 serotypes and biotypes revealed that the O1 antigen serves as the phage receptor. In addition, phage-resistant O1 El Tor strains were screened by using a virulent isolate of phage K139. Analysis of the LPS of such spontaneous phage-resistant mutants revealed that most of them synthesize incomplete LPS molecules, composed of either defective O1 antigen or core oligosaccharide. By applying phage-binding studies, it was possible to distinguish between receptor mutants and mutations which probably caused abortion of later steps of phage infection. Furthermore, we investigated the genetic nature of O1-negative strains by Southern hybridization with probes specific for the O antigen biosynthesis cluster (rfb region). Two of the investigated O1 antigen-negative mutants revealed insertions of element IS1004 into the rfb gene cluster. Treating one wbeW::IS1004 serum-sensitive mutant with normal human serum, we found that several survivors showed precise excision of IS1004, restoring O antigen biosynthesis and serum resistance. Investigation of clinical isolates by screening for phage resistance and performing LPS analysis of nonlysogenic strains led to the identification of a strain with decreased O1 antigen presentation. This strain had a significant reduction in its ability to colonize the mouse small intestine.
Collapse
Affiliation(s)
- J Nesper
- Zentrum für Infektionsforschung, Universität Würzburg, Germany
| | | | | | | | | |
Collapse
|
34
|
Spears PA, Temple LM, Orndorff PE. A role for lipopolysaccharide in turkey tracheal colonization by Bordetella avium as demonstrated in vivo and in vitro. Mol Microbiol 2000; 36:1425-35. [PMID: 10931292 PMCID: PMC3121563 DOI: 10.1046/j.1365-2958.2000.01963.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We isolated two insertion mutants of Bordetella avium that exhibited a peculiar clumped-growth phenotype and found them to be attenuated in turkey tracheal colonization. The mutants contained transposon insertions in homologues of the wlbA and wlbL genes of Bordetella pertussis. The wlb genetic locus of B. pertussis has been previously described as containing 12 genes involved in lipopolysaccharide (LPS) biosynthesis. Polyacrylamide gel analysis of LPS from B. avium wlbA and wlbL insertion mutants confirmed an alteration in the LPS profile. Subsequent cloning and complementation of the wlbA and wlbL mutants in trans with a recombinant plasmid containing the homologous wlb locus from B. avium eliminated the clumped-growth phenotype and restored the LPS profile to that of wild-type B. avium. Also, a parental level of tracheal colonization was restored to both mutants by the recombinant plasmid. Interestingly, complementation of the wlbA and wlbL mutants with a recombinant plasmid containing the heterologous wlb locus from B. pertussis, B. bronchiseptica, or Bordetella parapertussis eliminated the clumped-growth phenotype and resulted in a change in the LPS profile, although not to that of wild-type B. avium. The mutants also acquired resistance to a newly identified B. avium-specific bacteriophage, Ba1. Complementation of both wlbA and wlbL mutants with the homologous wlb locus of B. avium, but not the heterologous B. pertussis locus, restored sensitivity to Ba1. Complementation of the wlbL mutant, but not the wlbA mutant, with the heterologous wlb locus of Bordetella bronchiseptica or B. parapertussis restored partial sensitivity to Ba1. Comparisons of the LPS profile and phage sensitivity of the mutants upon complementation by wlb loci from the heterologous species and by B. avium suggested that phage sensitivity required the presence of O-antigen. At the mechanistic level, both mutants showed a dramatic decrease in serum resistance and a decrease in binding to turkey tracheal rings in vitro. In the case of serum resistance, complementation of both mutants with the homologous wlb locus of B. avium restored serum resistance to wild-type levels. However, in the case of epithelial cell binding, only complementation of the wlbA mutant completely restored binding to wild-type levels (binding was only partially restored in the wlbL mutant). This is the first characterization of LPS mutants of B. avium at the genetic level and the first report of virulence changes by both in vivo and in vitro measurements.
Collapse
Affiliation(s)
- P A Spears
- Department of Microbiology, Pathology, and Parasitology, College of Veterinary Medicine, North Carolina State University, Raleigh 27606, USA.
| | | | | |
Collapse
|
35
|
Mukhopadhyay S, Nandi B, Ghose AC. Antibodies (IgG) to lipopolysaccharide of Vibrio cholerae O1 mediate protection through inhibition of intestinal adherence and colonisation in a mouse model. FEMS Microbiol Lett 2000; 185:29-35. [PMID: 10731603 DOI: 10.1111/j.1574-6968.2000.tb09036.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
An antiserum raised against purified lipopolysaccharide (LPS) of a Vibrio cholerae O1 strain (Co366) induced passive protection against challenge with the parent as well as other O1 organisms but not against O139 or non-O1/non-O139 organisms. A considerable level of protection against O1 strains was also observed with the IgG fraction of the antiserum which inhibited intestinal adherence and colonisation. The monovalent Fab(IgG) fragment, on the other hand, showed only a low level of protection. Interestingly, purified LPS failed to inhibit intestinal colonisation by the parent strain (Co366), thereby suggesting that the cell surface LPS moieties of vibrios may not be directly involved in the colonisation process. It may be concluded that the anti-LPS antibodies induce passive protection through microagglutination and/or immobilisation of vibrios which do not allow the organisms to adhere to and colonise the intestine.
Collapse
Affiliation(s)
- S Mukhopadhyay
- Department of Microbiology, Bose Institute, P-1/12, CIT Scheme VIIM, Calcutta, India
| | | | | |
Collapse
|