1
|
Vanbaelen T, De Baetselier I, Libois A, Kenyon C. Does frequent chlamydia screening lead to higher bacterial load in MSM taking PrEP? Sex Transm Infect 2025:sextrans-2025-056550. [PMID: 40204431 DOI: 10.1136/sextrans-2025-056550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Affiliation(s)
- Thibaut Vanbaelen
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Irith De Baetselier
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Agnès Libois
- Infectious Diseases Department, University Hospital Saint-Pierre, Brussels, Belgium
| | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| |
Collapse
|
2
|
He Y, Wang Y, He R, Abdelsalam AM, Zhong G. IL-23 receptor signaling licenses group 3-like innate lymphoid cells to restrict a live-attenuated oral Chlamydia vaccine in the gut. Infect Immun 2023; 91:e0037123. [PMID: 37850749 PMCID: PMC10652955 DOI: 10.1128/iai.00371-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023] Open
Abstract
An IFNγ-susceptible mutant of Chlamydia muridarum is attenuated in pathogenicity in the genital tract and was recently licensed as an intracellular Oral vaccine vector or intrOv. Oral delivery of intrOv induces transmucosal protection in the genital tract, but intrOv itself is cleared from the gut (without shedding any infectious particles externally) by IFNγ from group 3-like innate lymphoid cells (ILC3s). We further characterized the intrOv interactions with ILC3s in the current study, since the interactions may impact both the safety and efficacy of intrOv as an oral Chlamydia vaccine. Intracolonic inoculation with intrOv induced IFNγ that in return inhibited intrOv. The intrOv-IFNγ interactions were dependent on RORγt, a signature transcriptional factor of ILC3s. Consistently, the transfer of oral intrOv-induced ILC3s from RORγt-GFP reporter mice to IFNγ-deficient mice rescued the inhibition of intrOv. Thus, IFNγ produced by intrOv-induced ILC3s is likely responsible for inhibiting intrOv, which is further supported by the observation that oral intrOv did induce significant levels of IFNγ-producing LC3s (IFNγ+ILC3s). Interestingly, IL-23 receptor knockout (IL-23R-/-) mice no longer inhibited intrOv, which was accompanied by reduced colonic IFNγ. Transfer of oral intrOv-induced ILC3s rescued the IL-23R-/- mice to inhibit intrOv, validating the dependence of ILC3s on IL-23R signaling for inhibiting intrOv. Clearly, intrOv induces intestinal IFNγ+ILC3s for its own inhibition in the gut, which is facilitated by IL-23R signaling. These findings have provided a mechanism for ensuring the safety of intrOv as an oral Chlamydia vaccine and a platform for investigating how oral intrOv induces transmucosal protection in the genital tract.
Collapse
Affiliation(s)
- Ying He
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yihui Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Rongze He
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ahmed Mohamed Abdelsalam
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
3
|
Lu C, Wang J, Zhong G. Preclinical screen for protection efficacy of chlamydial antigens that are immunogenic in humans. Infect Immun 2023; 91:e0034923. [PMID: 37889004 PMCID: PMC10652899 DOI: 10.1128/iai.00349-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
To search for subunit vaccine candidates, immunogenic chlamydial antigens identified in humans were evaluated for protection against both infection and pathology in a mouse genital tract infection model under three different immunization regimens. The intramuscular immunization regimen was first used to evaluate 106 chlamydial antigens, which revealed that two antigens significantly reduced while 11 increased genital chlamydial burden. The two infection-reducing antigens failed to prevent pathology and 23 additional antigens even exacerbated pathology. Thus, intranasal mucosal immunization was tested next since intranasal inoculation with live Chlamydia muridarum prevented both genital infection and pathology. Two of the 29 chlamydial antigens evaluated were found to prevent genital infection but not pathology and three exacerbate pathology. To further improve protection efficacy, a combinational regimen (intranasal priming + intramuscular boosting + a third intraperitoneal/subcutaneous boost) was tested. This regimen identified four infection-reducing antigens, but only one of them prevented pathology. Unfortunately, this protective antigen was not advanced further due to its amino acid sequence homology with several human molecules. Two pathology-exacerbating antigens were also found. Nevertheless, intranasal mucosal priming with viable C. muridarum in control groups consistently prevented both genital infection and pathology regardless of the subsequent boosters. Thus, screening 140 different chlamydial antigens with 21 repeated multiple times in 17 experiments failed to identify a subunit vaccine candidate but demonstrated the superiority of viable chlamydial organisms in inducing immunity against both genital infection and pathology, laying the foundation for developing a live-attenuated Chlamydia vaccine.
Collapse
Affiliation(s)
- Chunxue Lu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jie Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
4
|
Modulation of T helper 1 and T helper 2 immune balance in a murine stress model during Chlamydia muridarum genital infection. PLoS One 2020; 15:e0226539. [PMID: 32413046 PMCID: PMC7228091 DOI: 10.1371/journal.pone.0226539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/22/2020] [Indexed: 02/08/2023] Open
Abstract
A murine model to study the effect of cold-induced stress (CIS) on Chlamydia muridarum genital infection and immune response has been developed in our laboratory. Previous results in the lab show that CIS increases the intensity of chlamydia genital infection, but little is known about the effects and mechanisms of CIS on the differentiation and activities of CD4+ T cell subpopulations and bone marrow-derived dendritic cells (BMDCs). The factors that regulate the production of T helper 1 (Th1) or T helper 2 (Th2) cytokines are not well defined. In this study, we examined whether CIS modulates the expressions of beta-adrenergic receptor (β-AR), transcription factors, hallmark cytokines of Th1 and Th2, and differentiation of BMDCs during C. muridarum genital infection in the murine model. Our results show that the mRNA level of the beta2-adrenergic receptor (β2-AR) compared to β1-AR and β3-AR was high in the mixed populations of CD4+ T cells and BMDCs. Furthermore, we observed decreased expression of T-bet, low level of Interferon-gamma (IFN-γ) production, increased expression of GATA-3, and Interleukin-4 (IL-4) production in CD4+ T cells of stressed mice. Exposure of BMDCs to Fenoterol, β2-AR agonist, or ICI118,551, β2-AR antagonist, revealed significant β2-AR stimulation or inhibition, respectively, in stressed mice. Moreover, co-culturing of mature BMDCs and naïve CD4+ T cells increased the production of IL-4, IL-10, L-17, and IL-23 cytokines, suggesting that stimulation of β2-AR leads to the increased production of Th2 cytokines. Overall, our results show for the first time that CIS promotes the switching from a Th1 to Th2 cytokine environment. This was evidenced in the murine stress model by the overexpression of GATA-3 concurrent with elevated IL-4 production, reduced T-bet expression, and IFN-γ secretion.
Collapse
|
5
|
Albritton HL, Kozlowski PA, Lillis RA, McGowin CL, Siren JD, Taylor SN, Ibana JA, Buckner LR, Shen L, Quayle AJ. A novel whole-bacterial enzyme linked-immunosorbant assay to quantify Chlamydia trachomatis specific antibodies reveals distinct differences between systemic and genital compartments. PLoS One 2017; 12:e0183101. [PMID: 28797112 PMCID: PMC5552291 DOI: 10.1371/journal.pone.0183101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/29/2017] [Indexed: 11/19/2022] Open
Abstract
Chlamydia trachomatis (CT) is the leading sexually transmitted bacterial infection. The continued global burden of CT infection strongly predicates the need for a vaccine to supplement current chlamydial control programs. The correlates of protection against CT are currently unknown, but they must be carefully defined to guide vaccine design. The localized nature of chlamydial infection in columnar epithelial cells of the genital tract necessitates investigation of immunity at the site of infection. The purpose of this study was to develop a sensitive whole bacterial enzyme-linked immunosorbent assay (ELISA) to quantify and compare CT-specific IgG and IgA in sera and genital secretions from CT-infected women. To achieve this, elementary bodies (EBs) from two of the most common genital serovars (D and E) were attached to poly-L-lysine-coated microtiter plates with glutaraldehyde. EB attachment and integrity were verified by the presence of outer membrane antigens and the absence of bacterial cytoplasmic antigens. EB-specific IgG and IgA standards were developed by pooling sera with high titers of CT-specific antibodies from infected women. Serum, endocervical and vaginal secretions, and endocervical cytobrush specimens from CT-infected women were used to quantify CT-specific IgG and IgA which were then normalized to total IgG and IgA, respectively. Analyses of paired serum and genital samples revealed significantly higher proportions of EB-specific antibodies in genital secretions compared to sera. Cervical and vaginal secretions and cytobrush specimens had similar proportions of EB-specific antibodies, suggesting any one of these genital sampling techniques could be used to quantify CT-specific antibodies when appropriate normalization methodologies are implemented. Overall, these results illustrate the need to investigate genital tract CT antibody responses, and our assay provides a useful quantitative tool to assess natural immunity in defined clinical groups and CT vaccine trials.
Collapse
Affiliation(s)
- Hannah L. Albritton
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Rebecca A. Lillis
- Department of Medicine, Division of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Chris L. McGowin
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Julia D. Siren
- Department of Medicine, Division of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Stephanie N. Taylor
- Department of Medicine, Division of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Joyce A. Ibana
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
- Institute of Biology, University of the Philippines Diliman, Quezon City, National Capital Region, Philippines
| | - Lyndsey R. Buckner
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Alison J. Quayle
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
- * E-mail:
| |
Collapse
|
6
|
Belay T, Woart A, Graffeo V. Effect of cold water-induced stress on immune response, pathology and fertility in mice during Chlamydia muridarum genital infection. Pathog Dis 2017; 75:3738188. [PMID: 28431099 PMCID: PMC5808652 DOI: 10.1093/femspd/ftx045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/14/2017] [Indexed: 11/13/2022] Open
Abstract
Genital infection by Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. It causes serious reproductive health complications, including pelvic inflammatory disease and infertility. Stress is implicated as a risk factor for various infections; however, its effect on chlamydia genital infection is unknown. We previously showed that repeated exposure of mice to cold water results in increased severity of chlamydia genital infection. In this study, cold water-induced stress resulted in (i) elevated levels of norepinephrine (NE) and epinephrine in the spleen and genital tract of stressed mice; (ii) elevated IL-1β, TNF-α, IL-6 and nitric oxide production in macrophage-rich peritoneal cells of mice; (iii) supplement of NE in vitro exerts an immunosuppressive effect on splenic T-cell production of cytokines; (iv) decreased C. muridarum shedding in the genital tract of β1Adr/β2Adr receptor KO mice; and (v) a higher rate of infertility in infected mice. These results suggest that cold water stress induces the production of catecholamines, which may play a critical role in the modulation of the immune system leading to increased intensity of C. muridarum genital infection.
Collapse
|
7
|
Ganda IS, Zhong Q, Hali M, Albuquerque RLC, Padilha FF, da Rocha SRP, Whittum-Hudson JA. Dendrimer-conjugated peptide vaccine enhances clearance of Chlamydia trachomatis genital infection. Int J Pharm 2017; 527:79-91. [PMID: 28546072 PMCID: PMC5522616 DOI: 10.1016/j.ijpharm.2017.05.045] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/07/2017] [Accepted: 05/21/2017] [Indexed: 12/12/2022]
Abstract
Peptide-based vaccines have emerged in recent years as promising candidates in the prevention of infectious diseases. However, there are many challenges to maintaining in vivo peptide stability and enhancement of peptide immunogenicity to generate protective immunity which enhances clearance of infections. Here, a dendrimer-based carrier system is proposed for peptide-based vaccine delivery, and shows its anti-microbial feasibility in a mouse model of Chlamydia trachomatis. Chlamydiae are the most prevalent sexually transmitted bacteria worldwide, and also the causal agent of trachoma, the leading cause of preventable infectious blindness. In spite of the prevalence of this infectious agent and the many previous vaccine-related studies, there is no vaccine commercially available. The carrier system proposed consists of generation 4, hydroxyl-terminated, polyamidoamine (PAMAM) dendrimers (G4OH), to which a peptide mimic of a chlamydial glycolipid antigen-Peptide 4 (Pep4, AFPQFRSATLLL) was conjugated through an ester bond. The ester bond between G4OH and Pep4 is expected to break down mainly in the intracellular environment for antigen presentation. Pep4 conjugated to dendrimer induced Chlamydia-specific serum antibodies after subcutaneous immunizations. Further, this new vaccine formulation significantly protected immunized animals from vaginal challenge with infectious Chlamydia trachomatis, and it reduced infectious loads and tissue (genital tract) damage. Pep4 conjugated to G4OH or only mixed with peptide provided enhanced protection compared to Pep4 and adjuvant (i.e. alum), suggesting a potential adjuvant effect of the PAMAM dendrimer. Combined, these results demonstrate that hydroxyl-terminated PAMAM dendrimer is a promising polymeric nanocarrier platform for the delivery of peptide vaccines and this approach has potential to be expanded to other infectious intracellular bacteria and viruses of public health significance.
Collapse
Affiliation(s)
- Ingrid S Ganda
- Biomaterials Laboratory, Technology and Research Institute, Tiradentes University, Aracaju, SE, 49032-490, Brazil; Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA; Departments of Immunology and Microbiology, Internal Medicine (Rheumatology), and Ophthalmology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | - Qian Zhong
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA.
| | - Mirabela Hali
- Departments of Immunology and Microbiology, Internal Medicine (Rheumatology), and Ophthalmology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | - Ricardo L C Albuquerque
- Laboratory of Morphology and Structural Biology, Technology and Research Institute, Tiradentes University, Aracaju, SE, 49032-490, Brazil.
| | - Francine F Padilha
- Biomaterials Laboratory, Technology and Research Institute, Tiradentes University, Aracaju, SE, 49032-490, Brazil.
| | - Sandro R P da Rocha
- Biomaterials Laboratory, Technology and Research Institute, Tiradentes University, Aracaju, SE, 49032-490, Brazil; Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA.
| | - Judith A Whittum-Hudson
- Departments of Immunology and Microbiology, Internal Medicine (Rheumatology), and Ophthalmology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
8
|
Pais R, Omosun Y, He Q, Blas-Machado U, Black C, Igietseme JU, Fujihashi K, Eko FO. Rectal administration of a chlamydial subunit vaccine protects against genital infection and upper reproductive tract pathology in mice. PLoS One 2017; 12:e0178537. [PMID: 28570663 PMCID: PMC5453548 DOI: 10.1371/journal.pone.0178537] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/15/2017] [Indexed: 11/18/2022] Open
Abstract
In this study, we tested the hypothesis that rectal immunization with a VCG-based chlamydial vaccine would cross-protect mice against heterologous genital Chlamydia trachomatis infection and Chlamydia-induced upper genital tract pathologies in mice. Female mice were immunized with a C. trachomatis serovar D-derived subunit vaccine or control or live serovar D elementary bodies (EBs) and the antigen-specific mucosal and systemic immune responses were characterized. Vaccine efficacy was determined by evaluating the intensity and duration of genital chlamydial shedding following intravaginal challenge with live serovar E chlamydiae. Protection against upper genital tract pathology was determined by assessing infertility and tubal inflammation. Rectal immunization elicited high levels of chlamydial-specific IFN-gamma-producing CD4 T cells and humoral immune responses in mucosal and systemic tissues. The elicited immune effectors cross-reacted with the serovar E chlamydial antigen and reduced the length and intensity of genital chlamydial shedding. Furthermore, immunization with the VCG-vaccine but not the rVCG-gD2 control reduced the incidence of tubal inflammation and protected mice against Chlamydia-induced infertility. These results highlight the potential of rectal immunization as a viable mucosal route for inducing protective immunity in the female genital tract.
Collapse
Affiliation(s)
- Roshan Pais
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Yusuf Omosun
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Qing He
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Uriel Blas-Machado
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
| | - Carolyn Black
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | - Joseph U. Igietseme
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | - Kohtaro Fujihashi
- Department of Pediatric Dentistry, Immunobiology Vaccine Center, The University of Alabama at Birmingham, Birmingham Alabama, United States of America
| | - Francis O. Eko
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
9
|
Update on Chlamydia trachomatis Vaccinology. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00543-16. [PMID: 28228394 DOI: 10.1128/cvi.00543-16] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Attempts to produce a vaccine to protect against Chlamydia trachomatis-induced trachoma were initiated more than 100 years ago and continued for several decades. Using whole organisms, protective responses were obtained. However, upon exposure to C. trachomatis, disease exacerbation developed in some immunized individuals, precluding the implementation of the vaccine. Evidence of the role of C. trachomatis as a sexually transmitted pathogen started to emerge in the 1960s, and it soon became evident that it can cause acute infections and long-term sequelae in women, men, and newborns. The main focus of this minireview is to summarize recent findings and discuss formulations, including antigens, adjuvants, routes, and delivery systems for immunization, primarily explored in the female mouse model, with the goal of implementing a vaccine against C. trachomatis genital infections.
Collapse
|
10
|
Ramsey KH, Sigar IM, Schripsema JH, Townsend KE, Barry RJ, Peters J, Platt KB. Detection of Chlamydia infection in Peromyscus species rodents from sylvatic and laboratory sources. Pathog Dis 2016; 74:ftv129. [PMID: 26733499 DOI: 10.1093/femspd/ftv129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2015] [Indexed: 11/14/2022] Open
Abstract
To determine if Chlamydia muridarum, or other chlamydiae, are enzootic in rodents, we probed a serum bank of wild Peromyscus spp. mice for immunoglobulin G-antibody reactivity to ultraviolet light-inactivated C. muridarum elementary bodies (EBs) using an enzyme-linked immunoassay. Applying a cut-off for a positive reaction of OD(405) nm = 0.1 at a 1:20 dilution, we found titratable antibody reactivity in 190 of 247 specimens surveyed (77%, mean OD(405) = 0.33 ± 0.26, range = 0.11-1.81, median = 0.25). In addition, serum samples were obtained from a colony of specific pathogen-free Peromyscus spp. maintained at the University of South Carolina and six of 12 samples were reactive (50%, mean OD(405) = 0.19 +/- 0.08, range = 0.1-0.32, median = 0.18). Lastly, 40 additional wild Peromyscus spp. were captured in a disparate region of Midwestern USA and 22 serum specimens were reactive (55%, mean OD(405) = 0.22 +/- 0.11, range = 0.1-0.48, median = 0.2). Specificity of selected reactive sera for chlamydial antigen was confirmed on Western blot using resolved purified EBs as the detecting antigen. From tissues removed from several mice at necropsy, the gene for chlamydial 16S ribosomal ribonucleic acid (rRNA) was amplified by polymerase chain reaction (PCR). Positive samples of 16S rRNA were subjected to additional PCR for the major outer membrane protein gene (ompA). The amplicons of three select ompA positive samples were sequenced with ≥99% homology with C. muridarum. Our findings indicate that chlamydial infection is enzootic for Peromyscus spp., and that C. muridarum, or a closely related species or strain, is likely the agent in the tested rodent species.
Collapse
Affiliation(s)
- Kyle H Ramsey
- Microbiology and Immunology Department, Midwestern University, Downers Grove, Illinois, 60515, USA
| | - Ira M Sigar
- Microbiology and Immunology Department, Midwestern University, Downers Grove, Illinois, 60515, USA
| | - Justin H Schripsema
- Microbiology and Immunology Department, Midwestern University, Downers Grove, Illinois, 60515, USA
| | - Kathryn E Townsend
- Anatomy Department, Midwestern University, Glendale, Arizona, 85308, USA
| | - Randall J Barry
- Department of the Army, Joliet Training Area, Elwood, Illinois, 60421, USA
| | - Jan Peters
- Regional Biocontainment Laboratory and the Microbiology and Immunology Department, University of Tennessee Health Sciences Center, Memphis, Tennessee, 38163, USA
| | - Kenneth B Platt
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, USA
| |
Collapse
|
11
|
Jasper DK, Sigar IM, Schripsema JH, Sainvil CK, Smith CL, Yeruva L, Rank RG, Murthy AK, Widder JR, Ramsey KH. Genomic variant representation in a Chlamydia population is dynamic and adaptive with dependence on in vitro and in vivo passage. Pathog Dis 2015; 73:1-12. [PMID: 25673672 PMCID: PMC4399565 DOI: 10.1093/femspd/ftv003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We have previously shown that Chlamydia muridarum has multiple genomic variants that concomitantly vary in their in vitro and in vivo phenotype. Herein, we used real-time polymerase chain reaction-based genotyping assays to query plaque-cloned isolates of C. muridarum for the frequency of eight selected polymorphisms. These strains had no history of passage in vivo since their original isolation from laboratory mice. There was significant variance in the frequency of two of the eight polymorphisms assessed with the remaining exhibiting a low rate of variance. To determine if any of these polymorphisms were more favorable for in vivo conditions, we blindly passaged non-clonal C. muridarum three times at 7-day intervals through the urogenital tract of mice. Seven of the eight polymorphisms varied in frequency following in vivo passage and four of these varied between C. muridarum strains. Selected isolates displayed variable growth rates and cytopathic effect in vitro. We conclude that multiple genotypic variants are present within the existing known C. muridarum strains and that the frequency of these variants changes upon introduction into the mouse host. These findings lend support to the concept that genotypic proportional representation in a chlamydial population is dynamic and adaptive.
Collapse
Affiliation(s)
- Deana K Jasper
- Department of Microbiology and Immunology, Chicago College Of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Ira M Sigar
- Department of Microbiology and Immunology, Chicago College Of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Justin H Schripsema
- Department of Microbiology and Immunology, Chicago College Of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Carlyn K Sainvil
- Department of Microbiology and Immunology, Chicago College Of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Christopher L Smith
- Department of Microbiology and Immunology, Chicago College Of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Laxmi Yeruva
- Department of Pediatrics and Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, USA
| | - Roger G Rank
- Department of Pediatrics and Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, USA
| | - Ashlesh K Murthy
- Department of Pathology, Midwestern University, Downers Grove, IL 60515, USA
| | - Jared R Widder
- Department of Microbiology and Immunology, Chicago College Of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Kyle H Ramsey
- Department of Microbiology and Immunology, Chicago College Of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
12
|
Plasmid CDS5 influences infectivity and virulence in a mouse model of Chlamydia trachomatis urogenital infection. Infect Immun 2014; 82:3341-9. [PMID: 24866804 DOI: 10.1128/iai.01795-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The native plasmid of both Chlamydia muridarum and Chlamydia trachomatis has been shown to control virulence and infectivity in mice and in lower primates. We recently described the development of a plasmid-based genetic transformation protocol for Chlamydia trachomatis that for the first time provides a platform for the molecular dissection of the function of the chlamydial plasmid and its individual genes or coding sequences (CDS). In the present study, we transformed a plasmid-free lymphogranuloma venereum isolate of C. trachomatis, serovar L2, with either the original shuttle vector (pGFP::SW2) or a derivative of pGFP::SW2 carrying a deletion of the plasmid CDS5 gene (pCDS5KO). Female mice were inoculated with these strains either intravaginally or transcervically. We found that transformation of the plasmid-free isolate with the intact pGFP::SW2 vector significantly enhanced infectivity and induction of host inflammatory responses compared to the plasmid-free parental isolate. Transformation with pCDS5KO resulted in infection courses and inflammatory responses not significantly different from those observed in mice infected with the plasmid-free isolate. These results indicate a critical role of plasmid CDS5 in in vivo fitness and in induction of inflammatory responses. To our knowledge, these are the first in vivo observations ascribing infectivity and virulence to a specific plasmid gene.
Collapse
|
13
|
Li W, Murthy AK, Lanka GK, Chetty SL, Yu JJ, Chambers JP, Zhong G, Forsthuber TG, Guentzel MN, Arulanandam BP. A T cell epitope-based vaccine protects against chlamydial infection in HLA-DR4 transgenic mice. Vaccine 2013; 31:5722-8. [PMID: 24096029 DOI: 10.1016/j.vaccine.2013.09.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/05/2013] [Accepted: 09/19/2013] [Indexed: 01/01/2023]
Abstract
Vaccination with recombinant chlamydial protease-like activity factor (rCPAF) has been shown to provide robust protection against genital Chlamydia infection. Adoptive transfer of IFN-γ competent CPAF-specific CD4⁺ T cells was sufficient to induce early resolution of chlamydial infection and reduction of subsequent pathology in recipient IFN-γ-deficient mice indicating the importance of IFN-γ secreting CD4⁺ T cells in host defense against Chlamydia. In this study, we identify CD4⁺ T cell reactive CPAF epitopes and characterize the activation of epitope-specific CD4⁺ T cells following antigen immunization or Chlamydia challenge. Using the HLA-DR4 (HLA-DRB1*0401) transgenic mouse for screening overlapping peptides that induced T cell IFN-γ production, we identified at least 5 CPAF T cell epitopes presented by the HLA-DR4 complex. Immunization of HLA-DR4 transgenic mice with a rCPAFep fusion protein containing these 5 epitopes induced a robust cell-mediated immune response and significantly accelerated the resolution of genital and pulmonary Chlamydia infection. rCPAFep vaccination induced CPAF-specific CD4⁺ T cells in the spleen were detected using HLA-DR4/CPAF-epitope tetramers. Additionally, CPAF-specific CD4⁺ clones could be detected in the mouse spleen following Chlamydia muridarum and a human Chlamydia trachomatis strain challenge using these novel tetramers. These results provide the first direct evidence that a novel CPAF epitope vaccine can provide protection and that HLA-DR4/CPAF-epitope tetramers can detect CPAF epitope-specific CD4⁺ T cells in HLA-DR4 mice following C. muridarum or C. trachomatis infection. Such tetramers could be a useful tool for monitoring CD4⁺ T cells in immunity to Chlamydia infection and in developing epitope-based human vaccines using the murine model.
Collapse
Affiliation(s)
- Weidang Li
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States; Department of Pathology and Department of Dental Medicine, Midwestern University, Downers Grove, IL 60515, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sigar IM, Schripsema JH, Wang Y, Clarke IN, Cutcliffe LT, Seth-Smith HMB, Thomson NR, Bjartling C, Unemo M, Persson K, Ramsey KH. Plasmid deficiency in urogenital isolates of Chlamydia trachomatis reduces infectivity and virulence in a mouse model. Pathog Dis 2013; 70:61-9. [PMID: 24022847 PMCID: PMC4300952 DOI: 10.1111/2049-632x.12086] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 11/28/2022] Open
Abstract
We hypothesized that the plasmid of urogenital isolates of Chlamydia trachomatis would modulate infectivity and virulence in a mouse model. To test this hypothesis, we infected female mice in the respiratory or urogenital tract with graded doses of a human urogenital isolate of C. trachomatis, serovar F, possessing the cognate plasmid. For comparison, we inoculated mice with a plasmid‐free serovar F isolate. Following urogenital inoculation, the plasmid‐free isolate displayed significantly reduced infectivity compared with the wild‐type strain with the latter yielding a 17‐fold lower infectious dose to yield 50% infection. When inoculated via the respiratory tract, the plasmid‐free isolate exhibited reduced infectivity and virulence (as measured by weight change) when compared to the wild‐type isolate. Further, differences in infectivity, but not in virulence were observed in a C. trachomatis, serovar E isolate with a deletion within the plasmid coding sequence 1 when compared to a serovar E isolate with no mutations in the plasmid. We conclude that plasmid loss reduces virulence and infectivity in this mouse model. These findings further support a role for the chlamydial plasmid in infectivity and virulence in vivo.
Collapse
Affiliation(s)
- Ira M Sigar
- Microbiology and Immunology Department, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Animal models for studying female genital tract infection with Chlamydia trachomatis. Infect Immun 2013; 81:3060-7. [PMID: 23836817 DOI: 10.1128/iai.00357-13] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chlamydia trachomatis is a Gram-negative obligate intracellular bacterial pathogen. It is the leading cause of bacterial sexually transmitted disease in the world, with more than 100 million new cases of genital tract infections with C. trachomatis occurring each year. Animal models are indispensable for the study of C. trachomatis infections and the development and evaluation of candidate vaccines. In this paper, the most commonly used animal models to study female genital tract infections with C. trachomatis will be reviewed, namely, the mouse, guinea pig, and nonhuman primate models. Additionally, we will focus on the more recently developed pig model.
Collapse
|
16
|
Tifrea DF, Ralli-Jain P, Pal S, de la Maza LM. Vaccination with the recombinant major outer membrane protein elicits antibodies to the constant domains and induces cross-serovar protection against intranasal challenge with Chlamydia trachomatis. Infect Immun 2013; 81:1741-50. [PMID: 23478318 PMCID: PMC3648024 DOI: 10.1128/iai.00734-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/01/2013] [Indexed: 12/27/2022] Open
Abstract
To determine the ability of the major outer membrane protein (MOMP) to elicit cross-serovar protection, groups of mice were immunized by the intramuscular (i.m.) and subcutaneous (s.c.) routes with recombinant MOMP (rMOMP) from Chlamydia trachomatis serovars D (UW-3/Cx), E (Bour), or F (IC-Cal-3) or Chlamydia muridarum strain Nigg II using CpG-1826 and Montanide ISA 720 VG as adjuvants. Negative-control groups were immunized i.m. and s.c. with Neisseria gonorrhoeae recombinant porin B (Ng-rPorB) or i.n. with Eagle's minimal essential medium (MEM-0). Following vaccination, the mice developed antibodies not only against the homologous serovar but also against heterologous serovars. The rMOMP-vaccinated animals also mounted cell-mediated immune responses as assessed by a lymphoproliferative assay. Four weeks after the last immunization, mice were challenged i.n. with 10(4) inclusion-forming units (IFU) of C. muridarum. The mice were weighed for 10 days and euthanized, and the number of IFU in their lungs was determined. At 10 days postinfection (p.i.), mice immunized with the rMOMP of C. muridarum or C. trachomatis D, E, or F had lost 4%, 6%, 8%, and 8% of their initial body weight, respectively, significantly different from the negative-control groups (Ng-rPorB, 13%; MEM-0, 19%; P < 0.05). The median number of IFU recovered from the lungs of mice immunized with C. muridarum rMOMP was 0.13 × 10(6). The median number of IFU recovered from mice immunized with rMOMP from serovars D, E, and F were 0.38 × 10(6), 7.56 × 10(6), and 11.94 × 10(6) IFU, respectively. All the rMOMP-immunized animals had significantly less IFU than the Ng-rPorB (40 × 10(6))- or MEM-0 (70 × 10(6))-immunized mice (P < 0.05). In conclusion, vaccination with rMOMP can elicit protection against homologous and heterologous Chlamydia serovars.
Collapse
Affiliation(s)
- Delia F Tifrea
- Department of Pathology and Laboratory Medicine, Medical Sciences I, University of California, Irvine, Irvine, California, USA
| | | | | | | |
Collapse
|
17
|
Morrison SG, Farris CM, Sturdevant GL, Whitmire WM, Morrison RP. Murine Chlamydia trachomatis genital infection is unaltered by depletion of CD4+ T cells and diminished adaptive immunity. J Infect Dis 2011; 203:1120-8. [PMID: 21321103 DOI: 10.1093/infdis/jiq176] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chlamydia muridarum and Chlamydia trachomatis mouse models of genital infection have been used to study chlamydial immunity and vaccine development. To assess the protective role of CD4(+) T cells in resolving C. trachomatis and C. muridarum genital tract infections, we used the female mouse model and evaluated infection in the presence and absence of CD4(+) T cells. In contrast to C. muridarum infection, C. trachomatis infection was unaltered in the absence of CD4(+) T cells. Mice infected with C. trachomatis developed protective immunity to re-challenge, but unlike C. muridarum infection, optimum resistance required multiple infectious challenges, despite the generation of adaptive serum and local chlamydial specific immune responses. Thus, understanding the chlamydial pathogenic and host immunologic factors that result in a diminished protective role for CD4(+) T cells in C. trachomatis murine infection might lead to new insights important to human immunity and vaccine development.
Collapse
Affiliation(s)
- Sandra G Morrison
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7194, USA
| | | | | | | | | |
Collapse
|
18
|
Lee HY, Schripsema JH, Sigar IM, Lacy SR, Kasimos JN, Murray CM, Ramsey KH. A role for CXC chemokine receptor-2 in the pathogenesis of urogenital Chlamydia muridarum infection in mice. ACTA ACUST UNITED AC 2011; 60:49-56. [PMID: 20602634 DOI: 10.1111/j.1574-695x.2010.00715.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We tested the hypothesis that a specific chemokine receptor, CXC chemokine receptor-2 (CXCR2), mediates acute inflammatory damage during chlamydial urogenital infection, which ultimately leads to the chronic sequelae of hydrosalpinx - a surrogate marker of infertility. Homozygous CXCR2 genetic knockouts (CXCR2-/-), heterozygous littermates (CXCR2+/-) or homozygous wild-type (wt) controls (CXCR2+/+) were infected intravaginally with Chlamydia muridarum. Although no change was observed in the infection in the lower genital tract based on CXCR zygosity, a delay in the ascension of infection into the upper genital tract was seen in CXCR2-/- mice. Significantly elevated peripheral blood neutrophil counts were observed in CXCR2-/- mice when compared with controls. Reduced rates of acute inflammatory indices were observed in the affected tissue, indicating reduced neutrophil extravasation capacity in the absence of CXCR2. Of note was a reduction in the postinfection development of hydrosalpinx that correlated with CXCR2 zygosity, with both CXCR2-/- (13%) and their CXCR2+/- (35%) littermates displaying significantly lower rates of hydrosalpinx formation than the wt CXCR2-sufficient mice (93%). We conclude that CXCR2 ligands are a major chemotactic signal that induces damaging acute inflammation and the resulting chronic pathology during the repair phase of the host response, but are dispensable for the resolution of infection.
Collapse
Affiliation(s)
- Hyo Y Lee
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, IL, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Lee HY, Schripsema JH, Sigar IM, Murray CM, Lacy SR, Ramsey KH. A link between neutrophils and chronic disease manifestations of Chlamydia muridarum urogenital infection of mice. ACTA ACUST UNITED AC 2010; 59:108-16. [PMID: 20370824 DOI: 10.1111/j.1574-695x.2010.00668.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vigorous acute inflammatory responses accompany Chlamydia muridarum infections in mice and are positively correlated with adverse urogenital and respiratory tract infection outcomes in the mouse model. Thus, we tested the hypothesis that neutrophils induce an acute inflammatory insult that, in the repair phase, leads to the chronic sequelae of hydrosalpinx - a surrogate marker of infertility in the mouse model. To this end, we induced neutropenia in mice using a neutrophil-depleting monoclonal antibody during acute phases of C. muridarum urogenital infection only (days 2-21 postinfection). To prove induced neutropenia, peripheral blood was monitored for neutrophils during the treatment regimen. Neutropenic mice had a similar infection course as control mice, but had significantly reduced levels of certain histopathological parameters, reduced production of matrix metalloproteinase-9 (MMP-9) and reduced rates of hydrosalpinx following resolution of the infection. We conclude that neutrophils are a major source of MMP-9, a previously proved pathological factor in this model. Further, we conclude that acute inflammation in the form of neutrophils and neutrophil activation products are at least partially responsible for inducing the histological changes that ultimately result in fibrosis and infertility in the mouse model of chlamydial upper genital tract disease.
Collapse
Affiliation(s)
- Hyo Y Lee
- The Microbiology and Immunology Department, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
The mouse chlamydial pathogen Chlamydia muridarum has been used as a model organism for the study of human Chlamydia trachomatis urogenital and respiratory tract infections. To date, two commonly used C. muridarum isolates have been used interchangeably and are essentially taken to be identical. Herein, we present data that indicate that this is not the case. The C. muridarum Weiss isolate and C. muridarum Nigg isolate varied significantly in their virulences in vivo and possessed different growth characteristics in vitro. Distinct differences were observed in intravaginal 50% infectious doses and in challenge infections, with the Weiss isolate displaying greater virulence. Respiratory infection by the intranasal route also indicated a greater virulence of the Weiss isolate. In vitro, morphometric analysis revealed that the Weiss isolate produced consistently smaller inclusions in human cervical adenocarcinoma cells (HeLa 229) and smaller plaques in monolayers of mouse fibroblasts (L929) than did the Nigg isolate. In addition, the Weiss isolate possessed significantly higher replicative yields in vitro than did the Nigg isolate. In plaque-purified isolates derived from our stocks of these two strains, total genomic sequencing identified several unique nonsynonymous single nucleotide polymorphisms and insertion/deletion mutations when our Weiss (n = 4) and Nigg (n = 5) isolates were compared with the published Nigg sequence. In addition, the two isolates shared 11 mutations compared to the published Nigg sequence. These results prove that there is genotypic and virulence diversity among C. muridarum isolates. These findings can be exploited to determine factors related to chlamydial virulence and immunity.
Collapse
|
22
|
Abstract
Infection with the bacterium Chlamydia trachomatis can lead to a variety of diseases, including ectopic pregnancy, infertility and blindness. Exposure of the host to C. trachomatis stimulates multiple innate and adaptive immune effectors that can contribute towards controlling bacterial replication. However, these effectors are often insufficient to resolve the infection and prevent re-infection, and the continued presence of C. trachomatis within the host may induce immune effectors to chronically produce inflammatory cytokines. This may eventually lead to the tissue pathologies associated with the infection. Reducing the incidence and sequelae of infection will ultimately require the development of a C. trachomatis vaccine that can stimulate sterilizing immunity while avoiding immune-mediated pathology.
Collapse
Affiliation(s)
- Nadia R Roan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
23
|
Imtiaz MT, Distelhorst JT, Schripsema JH, Sigar IM, Kasimos JN, Lacy SR, Ramsey KH. A role for matrix metalloproteinase-9 in pathogenesis of urogenital Chlamydia muridarum infection in mice. Microbes Infect 2007; 9:1561-6. [PMID: 18023394 PMCID: PMC2180419 DOI: 10.1016/j.micinf.2007.08.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 08/22/2007] [Accepted: 08/29/2007] [Indexed: 11/18/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of host-derived enzymes involved in the turnover of extracellular matrix (ECM) molecules and the processing of cytokines, chemokines and growth factors. We have previously reported that global inhibition of MMP in Chlamydia muridarum urogenital tract infection of susceptible strains of female mice impeded ascension of C. muridarum into the upper genital tract, blunted acute inflammatory responses and reduced the rate of formation of chronic disease. Because we have also observed that MMP-9 (also known as gelatinase B) is expressed in relatively large quantities in susceptible strains of mice in response to infection during acute phases of infection, we explored this further in a more selected fashion. We infected MMP-9 gene knockout mice and wild type controls intravaginally with C. muridarum. Both groups of mice had similar isolation rates from the lower urogenital tract but the absence of MMP-9 resulted in a slightly lower isolation rate in the upper genital tract, blunted acute inflammatory indices in the affected tissues and a reduced rate of formation of hydrosalpinx-a surrogate marker of infertility. These results imply that MMP-9 is involved in pathogenesis of chlamydial infection in this model possibly by amplifying inflammatory responses.
Collapse
Affiliation(s)
- Muhammad T. Imtiaz
- Department of Microbiology and Immunology Chicago College of Osteopathic Medicine Midwestern University 555 31 Street Downers Grove, IL 60515
| | - John T. Distelhorst
- Department of Microbiology and Immunology Chicago College of Osteopathic Medicine Midwestern University 555 31 Street Downers Grove, IL 60515
| | - Justin H. Schripsema
- Department of Microbiology and Immunology Chicago College of Osteopathic Medicine Midwestern University 555 31 Street Downers Grove, IL 60515
| | - Ira M. Sigar
- Department of Microbiology and Immunology Chicago College of Osteopathic Medicine Midwestern University 555 31 Street Downers Grove, IL 60515
| | - John N. Kasimos
- Department of Pathology, Chicago College of Osteopathic Medicine Midwestern University 555 31 Street Downers Grove, IL 60515
| | | | - Kyle H. Ramsey
- Department of Microbiology and Immunology Chicago College of Osteopathic Medicine Midwestern University 555 31 Street Downers Grove, IL 60515
| |
Collapse
|
24
|
Roan NR, Starnbach MN. Antigen-specific CD8+ T cells respond to Chlamydia trachomatis in the genital mucosa. THE JOURNAL OF IMMUNOLOGY 2007; 177:7974-9. [PMID: 17114470 DOI: 10.4049/jimmunol.177.11.7974] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Following sexual transmission, Chlamydia trachomatis specifically targets genital tract epithelial cells. Because epithelial cells are readily recognized by CD8+ T cells, the response of CD8+ T cells to Chlamydia infection has been explored in a number of studies. It has been shown that CD8+ T cells are present in the genital tracts of mice following C. trachomatis infection, but the specificity of these T cells has remained undefined. To determine whether Chlamydia-specific CD8+ T cells migrate to the genital tract in response to Chlamydia infection, we generated retrogenic mice that express a TCR specific for a Chlamydia-specific T cell Ag CrpA. T cells from the retrogenic mice were transferred into naive recipient animals to increase the frequency of Chlamydia-specific T cells to a level at which they could be tracked during primary infection. We observed that the Chlamydia-specific retrogenic T cells proliferated in lymph nodes draining the genital tract in response to genital infection with C. trachomatis. Furthermore, we found that these cells acquired the ability to produce IFN-gamma and migrated into the genital mucosa of the infected mice.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/microbiology
- Chemotaxis, Leukocyte/immunology
- Chlamydia Infections/immunology
- Chlamydia trachomatis/immunology
- Female
- Flow Cytometry
- Gene Transfer Techniques
- Genitalia, Female/immunology
- Genitalia, Female/microbiology
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Mice
- Mice, Inbred C57BL
- Mucous Membrane/cytology
- Mucous Membrane/immunology
- Mucous Membrane/microbiology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Nadia R Roan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
25
|
Imtiaz MT, Schripsema JH, Sigar IM, Kasimos JN, Ramsey KH. Inhibition of matrix metalloproteinases protects mice from ascending infection and chronic disease manifestations resulting from urogenital Chlamydia muridarum infection. Infect Immun 2006; 74:5513-21. [PMID: 16988226 PMCID: PMC1594914 DOI: 10.1128/iai.00730-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 06/27/2006] [Accepted: 07/20/2006] [Indexed: 01/18/2023] Open
Abstract
Matrix metalloproteinases (MMP) are a family of host-derived enzymes involved in the turnover of extracellular matrix molecules. We have previously reported enhanced expression of matrix metalloproteinases in Chlamydia muridarum urogenital tract infection of female mice. Kinetics and patterns of MMP expression as well as enhanced expression in susceptible strains of mice in the prior study implied a role for MMP in pathogenesis. To explore this further, we infected a susceptible strain of mice (C3H/HeN) with C. muridarum and treated two groups of mice with either one of two chemical inhibitors of MMP (MMPi; captopril and a chemically modified tetracycline) and reserved infected sham-treated mice as controls. Neither of the treatments affected shedding of viable chlamydiae from the lower urogenital tract, but the administration of either MMPi protected mice from the formation of hydrosalpinx-a surrogate marker of oviduct occlusion and infertility. Interestingly, the mechanism of protection for mice treated with chemically modified tetracycline 3, appeared to be related to prevention of ascending upper genital tract infection. These results imply that MMP are involved in pathogenesis of chlamydial infection in this model by mediating ascension of the infection into the upper genital tract.
Collapse
Affiliation(s)
- Muhammad T Imtiaz
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st St., Downers Grove, IL 60516, USA.
| | | | | | | | | |
Collapse
|
26
|
Roan NR, Gierahn TM, Higgins DE, Starnbach MN. Monitoring the T cell response to genital tract infection. Proc Natl Acad Sci U S A 2006; 103:12069-74. [PMID: 16880389 PMCID: PMC1567698 DOI: 10.1073/pnas.0603866103] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To date, it has not been possible to study antigen-specific T cell responses during primary infection of the genital tract. The low frequency of pathogen-specific T cells in a naïve mouse makes it difficult to monitor the initial events after antigen encounter. We developed a system to examine the response of pathogen-specific T cells in the genital mucosa after intrauterine infection. We identified the protective CD4(+) T cell antigen Cta1 from Chlamydia trachomatis and generated T cell receptor (TCR) transgenic (tg) mice with specificity for this protein. By transferring TCR tg T cells into naïve animals, we determined that Chlamydia-specific T cells were activated and proliferated in the lymph nodes draining the genital tract after primary intrauterine infection. Activated T cells migrated into the genital mucosa and secreted IFN-gamma. The development of Chlamydia-specific TCR tg mice provides an approach for dissecting how pathogen-specific T cells function in the genital tract.
Collapse
Affiliation(s)
- Nadia R. Roan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | - Todd M. Gierahn
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | - Darren E. Higgins
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | - Michael N. Starnbach
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Pal S, Peterson EM, de la Maza LM. Vaccination with the Chlamydia trachomatis major outer membrane protein can elicit an immune response as protective as that resulting from inoculation with live bacteria. Infect Immun 2006; 73:8153-60. [PMID: 16299310 PMCID: PMC1307068 DOI: 10.1128/iai.73.12.8153-8160.2005] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BALB/c mice were vaccinated by the intramuscular (i.m.) and subcutaneous (s.c.) routes with a native preparation of the Chlamydia trachomatis mouse pneumonitis (MoPn) major outer membrane protein (MOMP), using Montanide ISA 720 and CpG-1826 as adjuvants. A negative control group was immunized with ovalbumin and the two adjuvants, and a positive control group was immunized intranasally (i.n.) with 10(4) inclusion-forming units (IFU) of C. trachomatis. Four weeks after the last i.m.-plus-s.c. immunization, mice were challenged in the ovarian bursa with 10(5) IFU of C. trachomatis MoPn. Six weeks after the genital challenge, animals were mated, and the pregnancies were monitored. After vaccination with MOMP, the mice developed strong Chlamydia-specific humoral and cellular immune responses. Following the genital challenge, of the mice vaccinated with the MOMP, only 15% (3/20) had positive vaginal cultures, while 85% (17/20) of the animals immunized with ovalbumin had positive cultures over the 6 weeks of observation (P < 0.05). Also, only 14% (3/21) of the animals inoculated i.n. with Chlamydia had positive vaginal cultures. After mating, 75% (15/20) of the mice vaccinated with MOMP carried embryos in both uterine horns. Of the animals vaccinated i.n. with the Chlamydia, 81% (17/21) had embryos in both uterine horns (P > 0.05). In contrast, only 10% (2/20) of the mice immunized with ovalbumin had embryos in both uterine horns (P < 0.05). In conclusion, immunization with a purified preparation of the MOMP is as effective as vaccination with viable C. trachomatis in eliciting a protective immune response against a genital challenge in mice.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | | | | |
Collapse
|
28
|
Igietseme J, Eko F, He Q, Bandea C, Lubitz W, Garcia-Sastre A, Black C. Delivery of Chlamydia vaccines. Expert Opin Drug Deliv 2005; 2:549-62. [PMID: 16296774 DOI: 10.1517/17425247.2.3.549] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The plethora of ocular, genital and respiratory diseases of Chlamydia, including nongonococcal urethritis, cervicitis pelvic inflammatory disease, ectopic pregnancy, tubal factor infertility, conjunctivitis, blinding trachoma and interstitial pneumonia, and chronic diseases that may include atherosclerosis, multiple sclerosis, adult onset asthma and Alzheimer's disease, still pose a considerable public health challenge to many nations. Although antibiotics are effective against Chlamydia when effectively diagnosed, asymptomatic infections are rampart, making clinical presentation of complications often the first evidence of an infection. Consequently, the current medical opinion is that an effective prophylactic vaccine would constitute the best approach to protect the human population from the most severe consequences of these infections. Clinical and experimental studies have demonstration that Chlamydia immunity in animals and humans is mediated by T cells and a complementary antibody response, and the completion of the genome sequencing of several isolates of Chlamydia is broadening our knowledge of the immunogenic antigens with potential vaccine value. Thus, major advances have been made in defining the essential elements of a potentially effective subunit vaccine design and parameters for evaluation. However, the challenge to develop effective delivery systems and human compatible adjuvants that would boost the immune response to achieve long-lasting protective immunity remains an elusive objective in chlamydial vaccine research. In response to evolving molecular and cellular technologies and novel vaccinology approaches, considerable progress is being made in the construction of novel delivery systems, such as DNA and plasmid expression systems, viral vectors, living and nonliving bacterial delivery systems, the use of chemical adjuvants, lipoprotein constructs and the codelivery of vaccines and specific immuno-modulatory biological agonists targeting receptors for chemokines, Toll-like receptors, and costimulatory molecules. The application of these novel delivery strategies to Chlamydia vaccine design could culminate in timely achievement of an efficacious vaccine.
Collapse
Affiliation(s)
- Joseph Igietseme
- National Center for Infectious Disease/CDC, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Lyons JM, Morré SA, Airo-Brown LP, Peña AS, Ito JI. Acquired homotypic and heterotypic immunity against oculogenital Chlamydia trachomatis serovars following female genital tract infection in mice. BMC Infect Dis 2005; 5:105. [PMID: 16293190 PMCID: PMC1318460 DOI: 10.1186/1471-2334-5-105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 11/17/2005] [Indexed: 11/23/2022] Open
Abstract
Background Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen causing female genital tract infection throughout the world. Reinfection with the same serovar, as well as multiple infections with different serovars, occurs in humans. Using a murine model of female C. trachomatis genital tract infection, we determined if homotypic and/or heterotypic protection against reinfection was induced following infection with human oculogenital strains of C. trachomatis belonging to two serovars (D and H) that have been shown to vary significantly in the course of infection in the murine model. Methods Groups of outbred CF-1 mice were reinfected intravaginally with a strain of either serovar D or H, two months after initial infection with these strains. Cellular immune and serologic status, both quantitative and qualitative, was assessed following initial infection, and the course of infection was monitored by culturing vaginal samples collected every 2–7 days following reinfection. Results Serovar D was both more virulent (longer duration of infection) and immunogenic (higher level of circulating and vaginal IgG and higher incidence of IgA in vaginal secretions) in the mouse genital tract. Although both serovars induced cross-reacting antibodies during the course of primary infection, prior infection with serovar H resulted in only a slight reduction in the median duration of infection against homotypic reinfection (p ~ 0.10), while prior infection with serovar D resulted in significant reduction in the median duration of infection against both homotypic (p < 0.01) and heterotypic reinfection (p < 0.01) when compared to primary infection in age and conditions matched controls. Conclusion Serovar D infection resulted in significant homotypic and heterotypic protection against reinfection, while primary infection with serovar H resulted in only slight homotypic protection. In addition to being the first demonstration of acquired heterotypic immunity between human oculogenital serovars, the differences in the level and extent of this immunity could in part explain the stable difference in serovar prevalence among human isolates.
Collapse
Affiliation(s)
- Joseph M Lyons
- Department of Infectious Diseases, City of Hope National Medical Center and Beckman Research Institute, Duarte, California 91010, USA
| | - Servaas A Morré
- Laboratory of Immunogenetics, Section Immunogenetics of Infectious Diseases, VU University Medical Center, Amsterdam, The Netherlands
| | - Lucy P Airo-Brown
- Analytical Cytometry Laboratory, City of Hope National Medical Center and Beckman Research Institute, Duarte, California 91010, USA
| | - A Salvador Peña
- Laboratory of Immunogenetics, Section Immunogenetics of Infectious Diseases, VU University Medical Center, Amsterdam, The Netherlands
| | - James I Ito
- Department of Infectious Diseases, City of Hope National Medical Center and Beckman Research Institute, Duarte, California 91010, USA
| |
Collapse
|
30
|
Ramsey KH, Sigar IM, Schripsema JH, Shaba N, Cohoon KP. Expression of matrix metalloproteinases subsequent to urogenital Chlamydia muridarum infection of mice. Infect Immun 2005; 73:6962-73. [PMID: 16177376 PMCID: PMC1230927 DOI: 10.1128/iai.73.10.6962-6973.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/02/2005] [Accepted: 05/30/2005] [Indexed: 11/20/2022] Open
Abstract
The central hypothesis of this study was that matrix metalloproteinases (MMPs) would be enhanced following murine chlamydial infection and that their expression would vary in mouse strains that differ in their susceptibility to chronic chlamydia-induced disease. To address this hypothesis, female C3H/HeN and C57BL/6 mice were infected intravaginally with Chlamydia muridarum. Uterine and oviduct tissues were assessed for transcription of MMP genes and their tissue inhibitors. An increased activity of MMP genes relative to preinfection tissues was observed in the C3H/HeN mice when compared to C57BL/6 mice. Using gelatin zymography, we detected constitutive MMP-2 activity in both strains of mice but an increase in MMP-9. Casein zymography indicated the presence of two elastase-like activities consistent with MMP-12 and possibly MMP-7. Western blotting and antigen capture enzyme-linked immunoassay also confirmed an increase in MMP-9 but constitutive MMP-2 expression subsequent to the infection in both strains of mice. In C57BL/6 mice, MMP-9 was present in monomer and dimer form throughout the 56-day monitoring period. C3H/HeN mice produced dimeric MMP-9, but increases in the monomer form were also observed through day 14. Post-translational modification of MMP-9 between the two strains also differed. Immunohistochemistry revealed neutrophils as a prominent source for MMP-9 in both strains of mice. We conclude that differences in the relative expression and activity of MMPs, particularly MMP-9, occur in mice differing in their susceptibility to the development of chronic chlamydial disease. These differences may account for disparate outcomes with regard to chronic sequelae of the disease.
Collapse
Affiliation(s)
- K H Ramsey
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, IL 60516, USA.
| | | | | | | | | |
Collapse
|
31
|
Shah AA, Schripsema JH, Imtiaz MT, Sigar IM, Kasimos J, Matos PG, Inouye S, Ramsey KH. Histopathologic Changes Related to Fibrotic Oviduct Occlusion After Genital Tract Infection of Mice With Chlamydia muridarum. Sex Transm Dis 2005; 32:49-56. [PMID: 15614121 DOI: 10.1097/01.olq.0000148299.14513.11] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES We sought to determine if intraluminal occluding fibrosis of the oviduct occurs after urogenital Chlamydia muridarum infection in mice. STUDY Oviduct occlusion was assessed by infusing dye into the distal uterus and tracking the diffusion of the dye into the oviduct. We also conducted histologic assessment of the affected tissues using hematoxylin and eosin (H&E) and Masson trichrome stains. RESULTS All previously infected susceptible mice had occluded oviducts compared with 17.5% of previously uninfected mice. Oviduct occlusion correlated with hydrosalpinx formation and infertility. Intraluminal oviduct fibrosis was observed in several sections of tissue displaying hydrosalpinx but not in tissues without hydrosalpinx. Fibrosis was localized to the oviduct isthmus and oviduct proper, proximal to the uterus. CONCLUSION Intralumenal occluding fibrosis of the oviduct is a sequela of infection with C. muridarum in this model. These observations support the use of the murine model to study pathogenesis of chlamydial upper genital tract infection.
Collapse
Affiliation(s)
- Anita A Shah
- Department of Microbiology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Maxion HK, Liu W, Chang MH, Kelly KA. The infecting dose of Chlamydia muridarum modulates the innate immune response and ascending infection. Infect Immun 2004; 72:6330-40. [PMID: 15501762 PMCID: PMC523032 DOI: 10.1128/iai.72.11.6330-6340.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine vaginal infection with the obligate intracellular bacterium Chlamydia muridarum is commonly used as a model for ascending Chlamydia infections of the human female genital tract. Gamma interferon-producing Th1 cells, in concert with other mononuclear infiltrates, primarily mediate antichlamydial immunity. However, many factors modify this response, including the bacterial load. To investigate the manner in which the inoculating dose of C. muridarum modulates a genital infection, we measured innate and adaptive cell numbers, CD4+ lymphocyte cytokine profile, chemokine expression, course of infection, and pathological sequelae in genital tracts of BALB/c mice infected with doses of C. muridarum ranging from 10(4) to 10(7) inclusion-forming units. We found that the influx of both innate and adaptive immune cells responded similarly in the lower genital tract (cervical-vaginal tissues) and upper genital tract (oviduct tissues) to increasing inoculating doses. However, cells expressing the innate markers Gr-1 and CD11c were affected to a greater degree by increasing dose than lymphocytes of the adaptive immune response (Th1, CD4+, CD8+, CD19+), resulting in a change in the balance of innate and adaptive cell numbers to favor innate cells at higher infecting doses. Surprisingly, we detected greater numbers of viable chlamydiae in the oviducts at lower inoculating doses, and the number of organisms appeared to directly correlate with hydrosalpinx formation after both primary infection and repeat infection. Taken together, these data suggest that innate immune cells contribute to control of ascending infection.
Collapse
Affiliation(s)
- Heather K Maxion
- David Geffen School of Medicine at UCLA, Department of Pathology & Laboratory Medicine, Los Angeles, CA 90095-1732, USA
| | | | | | | |
Collapse
|
33
|
Stuart ES, Webley WC, Norkin LC. Lipid rafts, caveolae, caveolin-1, and entry by Chlamydiae into host cells. Exp Cell Res 2003; 287:67-78. [PMID: 12799183 DOI: 10.1016/s0014-4827(03)00059-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obligate intracellular bacterial pathogens of the genus Chlamydia are reported to enter host cells by both clathrin-dependent and clathrin-independent processes. C. trachomatis serovar K recently was shown to enter cells via caveolae-like lipid raft domains. We asked here how widespread raft-mediated entry might be among the Chlamydia. We show that C. pneumoniae, an important cause of respiratory infections in humans that additionally is associated with cardiovascular disease, and C. psittaci, an important pathogen in domestic mammals and birds that also infects humans, each enter host cells via cholesterol-rich lipid raft microdomains. Further, we show that C. trachomatis serovars E and F also use these domains to enter host cells. The involvement of these membrane domains in the entry of these organisms was indicated by the sensitivity of their entry to the raft-disrupting agents Nystatin and filipin, and by their intracellular association with caveolin-1, a 22-kDa protein associated with the formation of caveolae in rafts. In contrast, caveolin-marked lipid raft domains do not mediate entry of C. trachomatis serovars A, 36B, and C, nor of LGV serovar L2 and MoPn. Finally, we show that entry of each of these chlamydial strains is independent of cellular expression of caveolin-1. Thus, entry via the Nystatin and filipin-sensitive pathway is dependent on lipid rafts containing cholesterol, rather than invaginated caveolae per se.
Collapse
Affiliation(s)
- Elizabeth S Stuart
- Department of Microbiology, University of Massachusetts, 203 Morrill Science Center IVN, Amherst, MA 01003-5720, USA.
| | | | | |
Collapse
|
34
|
Igietseme JU, Eko FO, Black CM. Contemporary approaches to designing and evaluating vaccines against Chlamydia. Expert Rev Vaccines 2003; 2:129-46. [PMID: 12901604 DOI: 10.1586/14760584.2.1.129] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The clinically relevant pathologic consequences of primary ocular, genital, or respiratory human infection by members of the genus Chlamydia are conjunctivitis, cervicitis, urethritis and sinusitis. The major complications and sometimes debilitating evolutionary outcomes of these infections include: trichiasis and cicatrizing trachoma, endometritis or pelvic inflammatory disease and involuntary tubal factor infertility and bronchopulmonary pneumonia. These diseases, in addition to other chlamydia-associated chronic syndromes (e.g., artherosclerosis, multiple sclerosis and Alzheimer's disease), pose serious public healthcare and huge budgetary concerns. The current medical opinion is that an efficacious prophylactic vaccine is a sine qua non--to control the morbidity of chiamydial infection in the human population. The research goal for an efficacious human chlamydial vaccine has faced key challenges to define the elements of protective immunity to facilitate vaccine evaluation, the judicious selection of appropriate vaccine candidates that possess stable antigenic and immunologic properties and the development of effective delivery vehicles and adjuvants to boost immune effectors to achieve long-term protective immunity. Progress in the functional immunobiology of Chlamydia has established the essential immunologic paradigms for vaccine selection and evaluation, including the obligatory requirement for a vaccine to induce T-helper Type 1 immune response that controls chlamydiae. Recent advances in chlamydial genomics and proteomics should enhance the identification of likely chlamydial gene products that fulfill the antigenic requirements of putative vaccine candidates. Major inroads are however needed in the construction and development of novel and effective delivery systems, such as vectors and adjuvants. This review summarizes the status of contemporary chlamydial vaccine research and promising trends fueling the growing optimism for an efficacious vaccine. The unified approach to vaccines for the genus Chlamydia is validated by the several conserved genes and common immunogenic proteins among member species and the similarity of immune effectors controlling Chlamydia species in animals and humans.
Collapse
Affiliation(s)
- Joseph U Igietseme
- Molecular Pathogenesis Laboratory, National Center for Infectious Disease, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | |
Collapse
|
35
|
Kelly KA. Cellular immunity and Chlamydia genital infection: induction, recruitment, and effector mechanisms. Int Rev Immunol 2003; 22:3-41. [PMID: 12710502 DOI: 10.1080/08830180305229] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chlamydia trachomatis is one of the major causes of bacterial sexually transmitted disease worldwide. The initial infection of endocervical epithelium in females is asymptomatic and commonly ascends to fallopian tubes when left untreated. Immunity to Chlamydia develops after infection and appears to provide short-term protection. Consequently, a significant rate of reinfection occurs among sexually active individuals, which can result in reproductive disability. T helper type 1 responses are implicated in providing protective immunity but may also contribute to tubal infertility. The purpose of this chapter is to review the factors that regulate the induction and recruitment of protective cellular immune responses within the local genital mucosa. An understanding of these events is important for the design of a protective vaccine and control of immunopathologic reactions.
Collapse
Affiliation(s)
- Kathleen A Kelly
- Department of Pathology and Laboratory Medicine, David Geffen Medical Center at University of California Los Angeles, Los Angeles, California 90095-1732, USA.
| |
Collapse
|
36
|
Hawkins RA, Rank RG, Kelly KA. A Chlamydia trachomatis-specific Th2 clone does not provide protection against a genital infection and displays reduced trafficking to the infected genital mucosa. Infect Immun 2002; 70:5132-9. [PMID: 12183563 PMCID: PMC128225 DOI: 10.1128/iai.70.9.5132-5139.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A T helper type 1 (Th1) response is essential for resolving genital infections with the mouse pneumonitis biovar of Chlamydia trachomatis (MoPn). However, T-cell-dependent anti-chlamydial antibody is produced and may also contribute to protective immunity. We produced a MoPn-specific CD4 Th2 clone (Th2-MoPn) to study the role of a Th2 response during infection. We found that Th2-MoPn was unable to eradicate chlamydiae from the genital tract (GT) when it was transferred into MoPn-infected nude mice. Mice that received Th2-MoPn produced greater titers of MoPn-specific serum immunoglobulin G (IgG) antibody than mice that received a MoPn-specific Th1 clone (Th1-MoPn) (log(10) titers, 1.89 +/- 0.84 and 0.58 +/- 0.76 [mean +/- standard deviation], respectively [P < 0.01]). Also, the IgG isotypes were different for the two groups; whereas IgG1 was associated with Th2-MoPn, IgG2a was associated with Th1-MoPn. Also, infected nude mice that received Th2-MoPn produced higher levels of IgA in vaginal secretions. Although clone Th2-MoPn was detected in the GT, it was less efficient at migrating (112 +/- 35.6 labeled Th2 clone cells/10(5) GT cells) than Th1-MoPn (505 +/- 51.6 Th1 clone cells/10(5) GT cells) (P < 0.001, as determined by a t test). This may have been due to reduced expression of alpha4beta7 and P-selectin ligand 1 on Th2-MoPn. However, Th2-MoPn cells were retained in the GT during chronic infection and comprised 10 to 15% of the total GT cells 80 days after transfer. The data show that the MoPn-specific Th2 cells are important for serum and vaginal antibody production and may accumulate in the GT during chronic infection.
Collapse
Affiliation(s)
- Raymond A Hawkins
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | |
Collapse
|
37
|
Johansson M, Lycke N. Immunological memory in B-cell-deficient mice conveys long-lasting protection against genital tract infection with Chlamydia trachomatis by rapid recruitment of T cells. Immunology 2001; 102:199-208. [PMID: 11260325 PMCID: PMC1783171 DOI: 10.1046/j.1365-2567.2001.01167.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2000] [Revised: 09/13/2000] [Accepted: 10/17/2000] [Indexed: 12/22/2022] Open
Abstract
The role of antibodies and antigen deposition for the development of immunological memory has been incompletely investigated. We addressed whether long-term protection and T-cell memory can be stimulated against a genital tract infection with human Chlamydia trachomatis serovar D in B-cell-deficient (muMT) mice. At 6 months following a primary infection with C. trachomatis, both muMT and wild-type (WT) mice exhibited strong and comparable protection against reinfection. Evidence of long-lasting CD4+ T-cell memory was found in both muMT and WT mice, typified by comparable delayed-type hypersensitivity (DTH) reactions against chlamydial antigens. No bacterial or chlamydial DNA was found in the genital tract of muMT memory mice, suggesting that immunological memory was maintained in the absence of antigen. Whereas few T cells were present in the genital tract of memory mice, rapid recruitment of CD4+, and some CD8+, T cells into the genital tract tissue was observed after challenge with live bacteria. Accumulation of T cells in the genital tract was preceded by a short transient infection of similar magnitude in both muMT and WT memory mice, arguing against a long-term protective role of local antibodies. The rapid recruitment of CD4+ T cells into the genital tract was associated with a transient detection of interferon-gamma (IFN-gamma) mRNA in the genital tract in chlamydia-immune memory mice, which was not found in naïve, challenged mice. Thus, long-term protection in the genital tract against C. trachomatis infection is conveyed by IFN-gamma-producing CD4+ memory T cells, which appear to be maintained in the absence of antibodies and local antigen deposition.
Collapse
Affiliation(s)
- M Johansson
- Department of Medical Microbiology and Immunology, University of Göteborg, Göteborg, Sweden
| | | |
Collapse
|
38
|
Ramsey KH, DeWolfe JL, Salyer RD. Disease outcome subsequent to primary and secondary urogenital infection with murine or human biovars of Chlamydia trachomatis. Infect Immun 2000; 68:7186-9. [PMID: 11083853 PMCID: PMC97838 DOI: 10.1128/iai.68.12.7186-7189.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2000] [Accepted: 09/25/2000] [Indexed: 11/20/2022] Open
Abstract
A susceptible strain of mice infected intravaginally with the mouse pneumonitis biovar of Chlamydia trachomatis became infertile and sustained high rates of hydrosalpinx formation regardless of prior infection with a human serovar. Conversely, susceptible mice infected with human serovars remained fertile unless challenged with a homologous human serovar.
Collapse
Affiliation(s)
- K H Ramsey
- Microbiology Department, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois 60515, USA.
| | | | | |
Collapse
|
39
|
Mygind PH, Christiansen G, Roepstorff P, Birkelund S. Membrane proteins PmpG and PmpH are major constituents of Chlamydia trachomatis L2 outer membrane complex. FEMS Microbiol Lett 2000; 186:163-9. [PMID: 10802165 DOI: 10.1111/j.1574-6968.2000.tb09098.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The outer membrane complex of Chlamydia is involved in the initial adherence and ingestion of Chlamydia by the host cell. In order to identify novel proteins in the outer membrane of Chlamydia trachomatis L2, proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. By silver staining of the protein profile, a major protein doublet of 100-110 kDa was detected. In-gel tryptic digestion and matrix-assisted laser desorption/ionization mass spectrometry identified these proteins as the putative outer membrane proteins PmpG and PmpH.
Collapse
Affiliation(s)
- P H Mygind
- Department of Medical Microbiology and Immunology, The Bartholin Building, University of Aarhus, DK-8000, Aarhus, Denmark.
| | | | | | | |
Collapse
|
40
|
Su H, Messer R, Whitmire W, Hughes S, Caldwell HD. Subclinical chlamydial infection of the female mouse genital tract generates a potent protective immune response: implications for development of live attenuated chlamydial vaccine strains. Infect Immun 2000; 68:192-6. [PMID: 10603387 PMCID: PMC97120 DOI: 10.1128/iai.68.1.192-196.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis is a major cause of sexually transmitted disease (STD) for which a vaccine is needed. CD4(+) T-helper type 1 (Th1) cell-mediated immunity is an important component of protective immunity against murine chlamydial genital infection. Conventional vaccine approaches have not proven effective in eliciting chlamydial-specific CD4 Th1 immunity at the genital mucosa. Thus, it is possible that the development of a highly efficacious vaccine against genital infection will depend on the generation of a live attenuated C. trachomatis vaccine. Attenuated strains of C. trachomatis do not exist, so their potential utility as vaccines cannot be tested in animal models of infection. We have developed a surrogate model to study the effect of chlamydial attenuation on infection and immunity of the female genital tract by treating mice with a subchlamydiacidal concentration of oxytetracycline following vaginal infection. Compared to untreated control mice, antibiotic-treated mice shed significantly fewer infectious organisms (3 log(10)) from the cervico-vagina, produced a minimal inflammatory response in urogenital tissue, and did not experience infection-related sequelae. Antibiotic-treated mice generated levels of chlamydia-specific antibody and cell-mediated immunity equivalent to those of control mice. Importantly, antibiotic-treated mice were found to be as immune as control untreated mice when rechallenged vaginally. These findings demonstrate that subclinical chlamydial infection of the murine female genital tract is sufficient to stimulate a potent protective immune response. They also present indirect evidence supporting the possible use of live attenuated chlamydial organisms in the development of vaccines against chlamydial STDs.
Collapse
Affiliation(s)
- H Su
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratory, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | | | | | |
Collapse
|