1
|
Undercover Agents of Infection: The Stealth Strategies of T4SS-Equipped Bacterial Pathogens. Toxins (Basel) 2021; 13:toxins13100713. [PMID: 34679006 PMCID: PMC8539587 DOI: 10.3390/toxins13100713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Intracellular bacterial pathogens establish their replicative niches within membrane-encompassed compartments, called vacuoles. A subset of these bacteria uses a nanochannel called the type 4 secretion system (T4SS) to inject effector proteins that subvert the host cell machinery and drive the biogenesis of these compartments. These bacteria have also developed sophisticated ways of altering the innate immune sensing and response of their host cells, which allow them to cause long-lasting infections and chronic diseases. This review covers the mechanisms employed by intravacuolar pathogens to escape innate immune sensing and how Type 4-secreted bacterial effectors manipulate host cell mechanisms to allow the persistence of bacteria.
Collapse
|
2
|
Head BM, Graham CI, MacMartin T, Keynan Y, Brassinga AKC. Development of a Fluorescent Tool for Studying Legionella bozemanae Intracellular Infection. Microorganisms 2021; 9:379. [PMID: 33668592 PMCID: PMC7917989 DOI: 10.3390/microorganisms9020379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 01/14/2023] Open
Abstract
Legionnaires' disease incidence is on the rise, with the majority of cases attributed to the intracellular pathogen, Legionella pneumophila. Nominally a parasite of protozoa, L. pneumophila can also infect alveolar macrophages when bacteria-laden aerosols enter the lungs of immunocompromised individuals. L. pneumophila pathogenesis has been well characterized; however, little is known about the >25 different Legionella spp. that can cause disease in humans. Here, we report for the first time a study demonstrating the intracellular infection of an L. bozemanae clinical isolate using approaches previously established for L. pneumophila investigations. Specifically, we report on the modification and use of a green fluorescent protein (GFP)-expressing plasmid as a tool to monitor the L. bozemanae presence in the Acanthamoeba castellanii protozoan infection model. As comparative controls, L. pneumophila strains were also transformed with the GFP-expressing plasmid. In vitro and in vivo growth kinetics of the Legionella parental and GFP-expressing strains were conducted followed by confocal microscopy. Results suggest that the metabolic burden imposed by GFP expression did not impact cell viability, as growth kinetics were similar between the GFP-expressing Legionella spp. and their parental strains. This study demonstrates that the use of a GFP-expressing plasmid can serve as a viable approach for investigating Legionella non-pneumophila spp. in real time.
Collapse
Affiliation(s)
- Breanne M. Head
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Christopher I. Graham
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (C.I.G.); (T.M.); (A.K.C.B.)
| | - Teassa MacMartin
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (C.I.G.); (T.M.); (A.K.C.B.)
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Ann Karen C. Brassinga
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (C.I.G.); (T.M.); (A.K.C.B.)
| |
Collapse
|
3
|
Foissac M, Bergon L, Vidal J, Cauquil P, Mainar A, Mourguet M. Pneumonia and pulmonary abscess due to Legionella micdadei in an immunocompromised patient. Germs 2019; 9:89-94. [PMID: 31341836 DOI: 10.18683/germs.2019.1162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/21/2019] [Accepted: 04/28/2019] [Indexed: 11/08/2022]
Abstract
Introduction Legionella micdadei are gram-negative bacilli living in soil and aquatic habitats. They are responsible for less than 10% of legionellosis, but have a propensity to affect people suffering from immunodeficiency. Lung cavitations may also occur in this population. Isolation of L. micdadei on clinical samples requires specific culture media that are not routinely used. Moreover, serologic methods and urinary assays are specific for Legionella pneumophila serogroup 1 (the most frequent serogroup isolated from clinical specimens), and lack sensitivity for diagnosing L. micdadei infection. As a consequence, this diagnosis is difficult to confirm. Case report We report here a severe case of community-acquired legionellosis due to L. micdadei, in a patient under immunosuppressive medications and high-dose corticosteroids for rheumatoid arthritis. The source of his infection was hypothesized to be his continuous positive airway pressure device, which was regularly cleaned with tap water instead of sterile water, thus potentially resulting in Legionella contamination. Conclusions L. micdadei must be considered as a possible cause of community-acquired severe pneumonia in case of immunodeficiency. For outpatients, advice concerning the cleaning of aerosols-generating devices at home must be emphasized.
Collapse
Affiliation(s)
- Maud Foissac
- MD, Service de Maladies infectieuses, Centre Hospitalier Castres-Mazamet, 6 avenue de la Montagne Noire, 81100 Castres, France
| | - Ludovic Bergon
- MD, Service de Microbiologie, Centre Hospitalier Castres-Mazamet, 6 avenue de la Montagne Noire, 81100 Castres, France
| | - Johanna Vidal
- MD, Service de Réanimation, Centre Hospitalier Castres-Mazamet, 6 avenue de la Montagne Noire, 81100 Castres, France
| | - Paul Cauquil
- MD, Service de Réanimation, Centre Hospitalier Castres-Mazamet, 6 avenue de la Montagne Noire, 81100 Castres, France
| | - Albin Mainar
- MD, Service de Réanimation, Centre Hospitalier Castres-Mazamet, 6 avenue de la Montagne Noire, 81100 Castres, France
| | - Morgane Mourguet
- MD, Service de Maladies infectieuses, Centre Hospitalier Castres-Mazamet, 6 avenue de la Montagne Noire, 81100 Castres, France
| |
Collapse
|
4
|
Bradley BT, Bryan A. Emerging respiratory infections: The infectious disease pathology of SARS, MERS, pandemic influenza, and Legionella. Semin Diagn Pathol 2019; 36:152-159. [PMID: 31054790 PMCID: PMC7125557 DOI: 10.1053/j.semdp.2019.04.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lower respiratory infections remain one of the top global causes of death and the emergence of new diseases continues to be a concern. In the first two decades of the 21st century, we have born witness to the emergence of newly recognized coronaviruses that have rapidly spread around the globe, including severe acute respiratory syndrome virus (SARS) and Middle Eastern respiratory syndrome virus (MERS). We have also experienced the emergence of a novel H1N1 pandemic influenza strain in 2009 that caused substantial morbidity and mortality around the world and has transitioned into a seasonal strain. Although we perhaps most frequently think of viruses when discussing emerging respiratory infections, bacteria have not been left out of the mix, as we have witnessed an increase in the number of infections from Legionella spp. since the organisms' initial discovery in 1976. Here, we explore the basic epidemiology, clinical presentation, histopathology, and clinical laboratory diagnosis of these four pathogens and emphasize themes in humans' evolving relationship with our natural environment that have contributed to the infectious burden. Histology alone is rarely diagnostic for these infections, but has been crucial to bettering our understanding of these diseases. Together, we rely on the diagnostic acumen of pathologists to identify the clinicopathologic features that raise the suspicion of these diseases and lead to the early control of the spread in our populations.
Collapse
Affiliation(s)
- Benjamin T Bradley
- University of Washington, Department of Laboratory Medicine, Box 357110, 1959 NE Pacific Street, NW120, Seattle, WA 98195-7110, United States
| | - Andrew Bryan
- University of Washington, Department of Laboratory Medicine, Box 357110, 1959 NE Pacific Street, NW120, Seattle, WA 98195-7110, United States.
| |
Collapse
|
5
|
Head BM, Trajtman A, Bernard K, Burdz T, Vélez L, Herrera M, Rueda ZV, Keynan Y. Legionella co-infection in HIV-associated pneumonia. Diagn Microbiol Infect Dis 2019; 95:71-76. [PMID: 31072645 DOI: 10.1016/j.diagmicrobio.2019.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/04/2019] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
Due to poor diagnostics and increased co-infections, HIV-associated Legionella infections are underreported. We aimed to retrospectively determine the frequency of Legionella infections in bronchoalveolar lavage (BAL) from HIV-associated pneumonia patients hospitalized in Medellin, Colombia, between February 2007 and April 2014. Although culture was negative, 17 BAL (36%) were positive for Legionella by quantitative polymerase chain reaction, most of which were in the Mycobacterium tuberculosis or Pneumocystis jirovecii co-infected patients, and included L. anisa (n = 6), L. bozemanae (n = 4), L. pneumophila (n = 3), and L. micdadei (n = 2). All L. bozemanae and L. micdadei associated with Pneumocystis, while all L. pneumophila associated with M. tuberculosis. Legionella probable cases had more complications and higher mortality rates (P = 0.02) and were rarely administered empirical anti-Legionella therapy while in hospital. Clinicians should be aware of the possible presence of Legionella in HIV and M. tuberculosis or P. jirovecii co-infected patients.
Collapse
Affiliation(s)
- Breanne M Head
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Adriana Trajtman
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Kathryn Bernard
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada; Special Bacteriology Unit, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.
| | - Tamara Burdz
- Special Bacteriology Unit, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.
| | - Lázaro Vélez
- Grupo Investigador de Problemas en Enfermedades Infecciosas, Universidad de Antioquia, Medellín, Antioquia, Colombia.
| | - Mariana Herrera
- Grupo Investigador de Problemas en Enfermedades Infecciosas, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Zulma Vanessa Rueda
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Antioquia, Colombia.
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada; Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Antioquia, Colombia; Department of Internal Medicine and Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
6
|
Rhoads WJ, Pruden A, Edwards MA. Convective Mixing in Distal Pipes Exacerbates Legionella pneumophila Growth in Hot Water Plumbing. Pathogens 2016; 5:E29. [PMID: 26985908 PMCID: PMC4810150 DOI: 10.3390/pathogens5010029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/15/2016] [Accepted: 03/01/2016] [Indexed: 11/17/2022] Open
Abstract
Legionella pneumophila is known to proliferate in hot water plumbing systems, but little is known about the specific physicochemical factors that contribute to its regrowth. Here, L. pneumophila trends were examined in controlled, replicated pilot-scale hot water systems with continuous recirculation lines subject to two water heater settings (40 °C and 58 °C) and three distal tap water use frequencies (high, medium, and low) with two pipe configurations (oriented upward to promote convective mixing with the recirculating line and downward to prevent it). Water heater temperature setting determined where L. pneumophila regrowth occurred in each system, with an increase of up to 4.4 log gene copies/mL in the 40 °C system tank and recirculating line relative to influent water compared to only 2.5 log gene copies/mL regrowth in the 58 °C system. Distal pipes without convective mixing cooled to room temperature (23-24 °C) during periods of no water use, but pipes with convective mixing equilibrated to 30.5 °C in the 40 °C system and 38.8 °C in the 58 °C system. Corresponding with known temperature effects on L. pneumophila growth and enhanced delivery of nutrients, distal pipes with convective mixing had on average 0.2 log more gene copies/mL in the 40 °C system and 0.8 log more gene copies/mL in the 58 °C system. Importantly, this work demonstrated the potential for thermal control strategies to be undermined by distal taps in general, and convective mixing in particular.
Collapse
Affiliation(s)
- William J Rhoads
- Via Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 401 Durham Hall, Blacksburg, VA 24061, USA.
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 401 Durham Hall, Blacksburg, VA 24061, USA.
| | - Marc A Edwards
- Via Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 401 Durham Hall, Blacksburg, VA 24061, USA.
| |
Collapse
|
7
|
Richards AM, Von Dwingelo JE, Price CT, Abu Kwaik Y. Cellular microbiology and molecular ecology of Legionella-amoeba interaction. Virulence 2013; 4:307-14. [PMID: 23535283 PMCID: PMC3710333 DOI: 10.4161/viru.24290] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Legionella pneumophila is an aquatic organism that interacts with amoebae and ciliated protozoa as the natural hosts, and this interaction plays a central role in bacterial ecology and infectivity. Upon transmission to humans, L. pneumophila infect and replicate within alveolar macrophages causing pneumonia. Intracellular proliferation of L. pneumophila within the two evolutionarily distant hosts is facilitated by bacterial exploitation of evolutionarily conserved host processes that are targeted by bacterial protein effectors injected into the host cell by the Dot/Icm type VIB translocation system. Although cysteine is semi-essential for humans and essential for amoeba, it is a metabolically favorable source of carbon and energy generation by L. pneumophila. To counteract host limitation of cysteine, L. pneumophila utilizes the AnkB Dot/Icm-translocated F-box effector to promote host proteasomal degradation of polyubiquitinated proteins within amoebae and human cells. Evidence indicates ankB and other Dot/Icm-translocated effector genes have been acquired through inter-kingdom horizontal gene transfer.
Collapse
Affiliation(s)
- Ashley M Richards
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, KY, USA
| | | | | | | |
Collapse
|
8
|
Messi P, Bargellini A, Anacarso I, Marchesi I, de Niederhäusern S, Bondi M. Protozoa and human macrophages infection by Legionella pneumophila environmental strains belonging to different serogroups. Arch Microbiol 2013; 195:89-96. [PMID: 23135482 DOI: 10.1007/s00203-012-0851-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/11/2012] [Accepted: 10/29/2012] [Indexed: 12/01/2022]
Abstract
Three Legionella pneumophila strains isolated from municipal hot tap water during a multicentric Italian survey and belonging to serogroups 1, 6, 9 and the reference strain Philadelphia-1 were studied to determine the intracellular replication capability and the cytopathogenicity in human monocyte cell line U937 and in an Acanthamoeba polyphaga strain. Our results show that both serogroups 1 and Philadelphia-1 were able to multiply into macrophages inducing cytopathogenicity, while serogroup 6 and ever more serogroup 9 were less efficient in leading to death of the infected macrophages. Both serogroups 1 and 6 displayed a quite good capability of intracellular replication in A. polyphaga, although serogroup 1 was less cytopathogenic than serogroup 6. Serogroup 9, like Philadelphia-1 strain, showed a reduced efficiency of infection and replication and a low cytopathogenicity towards the protozoan. Our study suggests that bacterial pathogenesis is linked to the difference in the virulence expression of L. pneumophila serogroups in both hosts, as demonstrated by the fact that only L. pneumophila serogroup 1 shows the contextual expression of the two virulence traits. Serogroup 6 proves to be a good candidate as pathogen since it shows a good capacity for intracellular replication in protozoan.
Collapse
Affiliation(s)
- Patrizia Messi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy.
| | | | | | | | | | | |
Collapse
|
9
|
Mouse macrophages are permissive to motile Legionella species that fail to trigger pyroptosis. Infect Immun 2009; 78:423-32. [PMID: 19841075 DOI: 10.1128/iai.00070-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Legionella pneumophila, a motile opportunistic pathogen of humans, is restricted from replicating in the lungs of C57BL/6 mice. Resistance of mouse macrophages to L. pneumophila depends on recognition of cytosolic flagellin. Once detected by the NOD-like receptors Naip5 and Ipaf (Nlrc4), flagellin triggers pyroptosis, a proinflammatory cell death. In contrast, motile strains of L. parisiensis and L. tucsonensis replicate profusely within C57BL/6 macrophages, similar to flagellin-deficient L. pneumophila. To gain insight into how motile species escape innate defense mechanisms of mice, we compared their impacts on macrophages. L. parisiensis and L. tucsonensis do not induce proinflammatory cell death, as measured by lactate dehydrogenase (LDH) release and interleukin-1beta (IL-1beta) secretion. However, flagellin isolated from L. parisiensis and L. tucsonensis triggers cell death and IL-1beta secretion when transfected into the cytosol of macrophages. Neither strain displays three characteristics of the canonical L. pneumophila Dot/Icm type IV secretion system: sodium sensitivity, LAMP-1 evasion, and pore formation. Therefore, we postulate that when L. parisiensis and L. tucsonensis invade a mouse macrophage, flagellin is confined to the phagosome, protecting the bacteria from recognition by the cytosolic surveillance system and allowing Legionella to replicate. Despite their superior capacity to multiply in mouse macrophages, L. parisiensis and L. tucsonensis have been associated with only two cases of disease, both in renal transplant patients. These results point to the complexity of disease, a product of the pathogenic potential of the microbe, as defined in the laboratory, and the capacity of the host to mount a measured defense.
Collapse
|
10
|
Hayashi T, Miyake M, Fukui T, Sugaya N, Daimon T, Itoh S, Oku T, Tsuji T, Toyoshima S, Imai Y. Exclusion of actin-binding protein p57/coronin-1 from bacteria-containing phagosomes in macrophages infected with Legionella. Biol Pharm Bull 2008; 31:861-5. [PMID: 18451508 DOI: 10.1248/bpb.31.861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, is a human pathogen that multiplies within alveolar macrophages. L. pneumophila establishes specialized phagosomes in which it evades the host defense through largely unknown mechanisms. Here we analyzed the role of an actin-binding protein, p57/coronin-1, a member of the coronin protein family, during Legionella infection. On fluorescence microscopy, p57/coronin-1 and F-actin were found to be co-localized at the sites on the plasma membrane where L. pneumophila adhered to U937 human macrophage-like cells. The localization of p57/coronin-1 at the sites of bacterial adherence was inhibited by treatment with cytochalasin D (an inhibitor of actin polymerization), suggesting that p57/coronin-1 is involved in the actin-dependent uptake of L. pneumophila into U937 cells. In addition, we showed that p57/coronin-1 was excluded from phagosomes containing live L. pneumophila throughout the infection, whereas transient accumulation of p57/coronin-1 was observed on phagosomes containing Texas-Red-labeled opsonized zymosan (TROpZ) or heat-killed L. pneumophila at an early stage of phagocytosis. The exclusion of p57/coronin-1 from phagosomes containing live another Legionella species Legionella gratiana at an early stage of infection was also observed. Taken together, these results suggest that the endocytic pathways of live Legionella species are distinct from general phagocytic pathways, which lead to lysosomal degradation.
Collapse
Affiliation(s)
- Tsuyoshi Hayashi
- Laboratory of Microbiology and Immunology and the Global COE Program, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cytopathogenicity and molecular subtyping ofLegionella pneumophilaenvironmental isolates from 17 hospitals. Epidemiol Infect 2008; 137:188-93. [DOI: 10.1017/s0950268808000691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SUMMARYThe cytopathogenicity of 22Legionella pneumophilaisolates from 17 hospitals was determined by assessing the dose of bacteria necessary to produce 50% cytopathic effect (CPED50) in U937 human-derived macrophages. All isolates were able to infect and grow in macrophage-like cells (range log10CPED50: 2·67–6·73 c.f.u./ml). Five groups were established and related to the serogroup, the number of PFGE patterns coexisting in the same hospital water distribution system, and the possible reporting of hospital-acquired Legionnaires' disease cases.L. pneumophilaserogroup 1 isolates had the highest cytopathogenicity (P=0·003). Moreover, a trend to more cytopathogenic groups (groups 1–3) in hospitals with more than one PFGE pattern ofL. pneumophilain the water distribution system (60%vs. 17%) and in hospitals reporting cases of hospital-acquired Legionnaires' disease (36·3%vs. 16·6%) was observed. We conclude that the cytopathogenicty of environmentalL. pneumophilashould be taken into account in evaluating the risk of a contaminated water reservoir in a hospital and hospital acquisition of Legionnaires' disease.
Collapse
|
12
|
Newton HJ, Sansom FM, Bennett-Wood V, Hartland EL. Identification of Legionella pneumophila-specific genes by genomic subtractive hybridization with Legionella micdadei and identification of lpnE, a gene required for efficient host cell entry. Infect Immun 2006; 74:1683-91. [PMID: 16495539 PMCID: PMC1418643 DOI: 10.1128/iai.74.3.1683-1691.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is a ubiquitous environmental organism and a facultative intracellular pathogen of humans. To identify genes that may contribute to the virulence of L. pneumophila, we performed genomic subtractive hybridization between L. pneumophila serogroup 1 strain 02/41 and L. micdadei strain 02/42. A total of 144 L. pneumophila-specific clones were sequenced, revealing 151 genes that were absent in L. micdadei strain 02/42. Low-stringency Southern hybridization was used to determine the distribution of 41 sequences, representing 40 open reading frames (ORFs) with a range of putative functions among L. pneumophila isolates of various serogroups as well as strains of Legionella longbeachae, L. micdadei, Legionella gormanii, and Legionella jordanis. Twelve predicted ORFs were L. pneumophila specific, including the gene encoding the dot/icm effector, lepB, as well as several genes predicted to play a role in lipopolysaccharide biosynthesis and cell wall synthesis and several sequences with similarity to virulence-associated determinants. A further nine predicted ORFs were in all L. pneumophila serotypes tested and an isolate of L. gormanii. These included icmD, the 5' end of a pilMNOPQ locus, and two genes known to be upregulated during growth within macrophages, cadA2 and ceaA. Disruption of an L. pneumophila-specific gene (lpg2222 locus tag) encoding a putative protein with eight tetratricopeptide repeats resulted in reduced entry into the macrophage-like cell line, THP-1, and the type II alveolar epithelial cell line, A549. The gene was subsequently renamed lpnE, for "L. pneumophila entry." In summary, this investigation has revealed important genetic differences between L. pneumophila and other Legionella species that may contribute to the phenotypic and clinical differences observed within this genus.
Collapse
Affiliation(s)
- Hayley J Newton
- Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | | | |
Collapse
|
13
|
Piao Z, Sze CC, Barysheva O, Iida KI, Yoshida SI. Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila. Appl Environ Microbiol 2006; 72:1613-22. [PMID: 16461717 PMCID: PMC1392928 DOI: 10.1128/aem.72.2.1613-1622.2006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fifty strains representing 38 species of the genus Legionella were examined for biofilm formation on glass, polystyrene, and polypropylene surfaces in static cultures at 25 degrees C, 37 degrees C, and 42 degrees C. Strains of Legionella pneumophila, the most common causative agent of Legionnaires' disease, were found to have the highest ability to form biofilms among the test strains. The quantity, rate of formation, and adherence stability of L. pneumophila biofilms showed considerable dependence on both temperature and surface material. Glass and polystyrene surfaces gave between two- to sevenfold-higher yields of biofilms at 37 degrees C or 42 degrees C than at 25 degrees C; conversely, polypropylene surface had between 2 to 16 times higher yields at 25 degrees C than at 37 degrees C or 42 degrees C. On glass surfaces, the biofilms were formed faster but attached less stably at 37 degrees C or 42 degrees C than at 25 degrees C. Both scanning electron microscopy and confocal laser scanning microscopy revealed that biofilms formed at 37 degrees C or 42 degrees C were mycelial mat like and were composed of filamentous cells, while at 25 degrees C, cells were rod shaped. Planktonic cells outside of biofilms or in shaken liquid cultures were rod shaped. Notably, the filamentous cells were found to be multinucleate and lacking septa, but a recA null mutant of L. pneumophila was unaffected in its temperature-regulated filamentation within biofilms. Our data also showed that filamentous cells were able to rapidly give rise to a large number of short rods in a fresh liquid culture at 37 degrees C. The possibility of this biofilm to represent a novel strategy by L. pneumophila to compete for proliferation among the environmental microbiota is discussed.
Collapse
Affiliation(s)
- Zhenyu Piao
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
14
|
Boyadjiev I, Léone M, Martin C. Acute Pneumonia and Importance of Atypical Bacteria. Intensive Care Med 2006. [PMCID: PMC7120356 DOI: 10.1007/0-387-35096-9_53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The term and concept of atypical pneumonia appeared in the 1940s following observations of penicillin-resistant pneumonia [1]. Despite the identification of a large number of microorganisms, the challenge of isolating so-called ‘atypical’ bacteria is the principal cause of failure of the etiologic diagnosis of pneumonia. These pathogenic agents in the tracheobronchial tree include a large variety of bacteria, viruses and even protozoa. Among atypical bacteria, Chlamydia pneumoniae, Mycoplasma pneumoniae, Legionella pneumoniae, Bordetella pertussis, and Coxiella burnetii are the most widespread. Numerous other bacteria are emerging pathogenic species whose virulence is currently being evaluated. Clinical examination only provides a diagnostic orientation in a restricted number of cases. The availability of rapid and specific microbiologic examination improves the diagnostic performance for this type of pneumonia (Table 1) [2]. Since most of these bacteria are intracellular, diagnosis is based principally on serology.
Collapse
|
15
|
Acute Pneumonia and Importance of Atypical Bacteria. YEARBOOK OF INTENSIVE CARE AND EMERGENCY MEDICINE 2006. [PMCID: PMC7123035 DOI: 10.1007/3-540-33396-7_53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diagnosis of pulmonary infection caused by Mycoplasma and Chlamydia pneumoniae, Coxiella burnetii, and different species of Legionella, is often long and challenging although they are the major etiologic agents of pneumonia. For this reason, the treatment of these infections remains probabilistic. Advances in new diagnostic techniques, such as PCR sequencing, show the relative predominance of atypical organisms and serves to identify emerging pathogenic agents. Moreover, these techniques should clarify the correlation between common and atypical pathogens.
Collapse
|
16
|
McDonough EA, Barrozo CP, Russell KL, Metzgar D. A multiplex PCR for detection of Mycoplasma pneumoniae, Chlamydophila pneumoniae, Legionella pneumophila, and Bordetella pertussis in clinical specimens. Mol Cell Probes 2005; 19:314-22. [PMID: 16024220 DOI: 10.1016/j.mcp.2005.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Accepted: 05/27/2005] [Indexed: 11/29/2022]
Abstract
A multiplex PCR was developed that is capable of detecting four of the most important bacterial agents of atypical pneumonia, Mycoplasma pneumoniae, Chlamydophila pneumoniae, Legionella pneumophila, and Bordetella pertussis in uncultured patient specimens. These organisms cause similar symptomologies and are often not diagnosed because they are difficult to identify with classical methods such as culture and serology. Given this, the overall impact of these pathogens on public health may be grossly underestimated. The molecular test presented here provides a simple method for identification of four common, yet diagnostically challenging, pathogens.
Collapse
Affiliation(s)
- Erin A McDonough
- Department of Defense Center for Deployment Health Research, Naval Health Research Center, P.O. Box 85122, San Diego, CA 92186-5122, USA
| | | | | | | |
Collapse
|
17
|
Edelstein PH, Hu B, Shinzato T, Edelstein MAC, Xu W, Bessman MJ. Legionella pneumophila NudA Is a Nudix hydrolase and virulence factor. Infect Immun 2005; 73:6567-76. [PMID: 16177332 PMCID: PMC1230914 DOI: 10.1128/iai.73.10.6567-6576.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 04/12/2005] [Accepted: 05/26/2005] [Indexed: 11/20/2022] Open
Abstract
We studied the identity and function of the 528-bp gene immediately upstream of Legionella pneumophila F2310 ptsP (enzyme I(Ntr)). This gene, nudA, encoded for a Nudix hydrolase based on the inferred protein sequence. NudA had hydrolytic activity typical of other Nudix hydrolases, such as Escherichia coli YgdP, in that Ap(n)A's, in particular diadenosine pentaphosphate (Ap(5)A), were the preferred substrates. NudA hydrolyzed Ap(5)A to ATP plus ADP. Both ptsP and nudA were cotranscribed. Bacterial two-hybrid analysis showed no PtsP-NudA interactions. Gene nudA was present in 19 of 20 different L. pneumophila strains tested and in 5 of 10 different Legionella spp. other than L. pneumophila. An in-frame nudA mutation was made in L. pneumophila F2310 to determine the phenotype. The nudA mutant was an auxotroph that grew slowly in liquid and on solid media and had a smaller colony size than its parent. In addition, the mutant was more salt resistant than its parent and grew very poorly at 25 degrees C; all of these characteristics, as well as auxotrophy and slow-growth rate, were reversed by transcomplementation with nudA. The nudA mutant was outcompeted by about fourfold by the parent in competition studies in macrophages; transcomplementation almost completely restored this defect. Competition studies in guinea pigs with L. pneumophila pneumonia showed that the nudA mutant was outcompeted by its parent in both lung and spleen. NudA is of major importance for resisting stress in L. pneumophila and is a virulence factor.
Collapse
Affiliation(s)
- Paul H Edelstein
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, 19104-4283, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Sexton JA, Miller JL, Yoneda A, Kehl-Fie TE, Vogel JP. Legionella pneumophila DotU and IcmF are required for stability of the Dot/Icm complex. Infect Immun 2004; 72:5983-92. [PMID: 15385502 PMCID: PMC517559 DOI: 10.1128/iai.72.10.5983-5992.2004] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila utilizes a type IV secretion system (T4SS) encoded by 26 dot/icm genes to replicate inside host cells and cause disease. In contrast to all other L. pneumophila dot/icm genes, dotU and icmF have homologs in a wide variety of gram-negative bacteria, none of which possess a T4SS. Instead, dotU and icmF orthologs are linked to a locus encoding a conserved cluster of proteins designated IcmF-associated homologous proteins, which has been proposed to constitute a novel cell surface structure. We show here that dotU is partially required for L. pneumophila intracellular growth, similar to the known requirement for icmF. In addition, we show that dotU and icmF are necessary for optimal plasmid transfer and sodium sensitivity, two additional phenotypes associated with a functional Dot/Icm complex. We found that these effects are due to the destabilization of the T4SS at the transition into the stationary phase, the point at which L. pneumophila becomes virulent. Specifically, three Dot proteins (DotH, DotG, and DotF) exhibit decreased stability in a DeltadotU DeltaicmF strain. Furthermore, overexpression of just one of these proteins, DotH, is sufficient to suppress the intracellular growth defect of the DeltadotU DeltaicmF mutant. This suggests a model where the DotU and IcmF proteins serve to prevent DotH degradation and therefore function to stabilize the L. pneumophila T4SS. Due to their wide distribution among bacterial species and their genetic linkage to known or predicted cell surface structures, we propose that this function in complex stabilization may be broadly conserved.
Collapse
Affiliation(s)
- Jessica A Sexton
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
19
|
Feldman M, Segal G. A specific genomic location within the icm/dot pathogenesis region of different Legionella species encodes functionally similar but nonhomologous virulence proteins. Infect Immun 2004; 72:4503-11. [PMID: 15271909 PMCID: PMC470659 DOI: 10.1128/iai.72.8.4503-4511.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila, the major causative agent of Legionnaires' disease, is a facultative intracellular pathogen that grows within human macrophages and amoebae. Intracellular growth involves the formation of a replicative phagosome that requires the Icm/Dot type IV secretion system. Part of the icm/dot region in L. pneumophila contains the icmTSRQPO genes. The proteins encoded by the icmR and icmQ genes were shown to exhibit a chaperone-substrate relationship. Analysis of this region from other pathogenic Legionella species, i.e., L. micdadei and L. longbeachae, indicated that the overall organization of this region is highly conserved, but it was found to contain a favorable site for gene variation. In the place where the icmR gene was expected to be located, other open reading frames that are nonhomologous to each other or to any entry in the GenBank database were found (migAB in L. micdadei and ligB in L. longbeachae). Examination of these unique genes revealed an outstanding phenomenon; by use of interspecies complementation, the icmR, migB, and ligB gene products were found to be functionally similar. In addition, the function of these proteins was usually dependent on the presence of the corresponding IcmQ proteins. Moreover, each of these proteins (IcmR, LigB, and MigB) was found to interact with the corresponding IcmQ proteins, and the genes encoding these proteins were found to be regulated by CpxR. This study reveals new evidence of gene variation occurring in the same genomic location within the icm/dot locus in various Legionella species. The genes found at this site were shown to be similarly regulated and to encode species-specific, nonhomologous, but functionally similar proteins.
Collapse
Affiliation(s)
- Michal Feldman
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | | |
Collapse
|
20
|
Zusman T, Feldman M, Halperin E, Segal G. Characterization of the icmH and icmF genes required for Legionella pneumophila intracellular growth, genes that are present in many bacteria associated with eukaryotic cells. Infect Immun 2004; 72:3398-409. [PMID: 15155646 PMCID: PMC415720 DOI: 10.1128/iai.72.6.3398-3409.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, replicates intracellularly within a specialized phagosome of mammalian and protozoan host cells, and the Icm/Dot type IV secretion system has been shown to be essential for this process. Unlike all the other known Icm/Dot proteins, the IcmF protein, which was described before, and the IcmH protein, which is characterized here, have homologous proteins in many bacteria (such as Yersinia pestis, Salmonella enterica, Rhizobium leguminosarum, and Vibrio cholerae), all of which associate with eukaryotic cells. Here, we have characterized the L. pneumophila icmH and icmF genes and found that both genes are present in 16 different Legionella species examined. The icmH and icmF genes were found to be absolutely required for intracellular multiplication in Acanthamoeba castellanii and partially required for intracellular growth in HL-60-derived human macrophages, for immediate cytotoxicity, and for salt sensitivity. Mutagenesis of the predicted ATP/GTP binding site of IcmF revealed that the site is partially required for intracellular growth in A. castellanii. Analysis of the regulatory region of the icmH and icmF genes, which were found to be cotranscribed, revealed that it contains at least two regulatory elements. In addition, an icmH::lacZ fusion was shown to be activated during stationary phase in a LetA- and RelA-dependent manner. Our results indicate that although the icmH and icmF genes probably have a different evolutionary origin than the rest of the icm/dot genes, they are part of the icm/dot system and are required for L. pneumophila pathogenesis.
Collapse
Affiliation(s)
- Tal Zusman
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
21
|
Ohnishi H, Mizunoe Y, Takade A, Tanaka Y, Miyamoto H, Harada M, Yoshida SI. Legionella dumoffii DjlA, a member of the DnaJ family, is required for intracellular growth. Infect Immun 2004; 72:3592-603. [PMID: 15155669 PMCID: PMC415686 DOI: 10.1128/iai.72.6.3592-3603.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Legionella dumoffii is one of the common causes of Legionnaires' disease and is capable of replicating in macrophages. To understand the mechanism of survival within macrophages, transposon mutagenesis was employed to isolate the genes necessary for intracellular growth. We identified four defective mutants after screening 790 transposon insertion mutants. Two transposon insertions were in genes homologous to icmB or dotC, within dot/icm loci, required for intracellular multiplication of L. pneumophila. The third was in a gene whose product is homologous to the 17-kDa antigen forming part of the VirB/VirD4 type IV secretion system of Bartonella henselae. The fourth was in the djlA (for "dnaj-like A") gene. DjlA is a member of the DnaJ/Hsp40 family. Transcomplementation of the djlA mutant restored the parental phenotype in J774 macrophages, A549 human alveolar epithelial cells, and the amoeba Acanthamoeba culbertsoni. Using confocal laser-scanning microscopy and transmission electron microscopy, we revealed that in contrast to the wild-type strain, L. dumoffii djlA mutant-containing phagosomes were unable to inhibit phagosome-lysosome fusion. Transmission electron microscopy also showed that in contrast to the virulent parental strain, the djlA mutant was not able to recruit host cell rough endoplasmic reticulum. Furthermore, the stationary-phase L. dumoffii djlA mutants were more susceptible to H2O2, high osmolarity, high temperature, and low pH than was their parental strain. These results indicate that DjlA is required for intracellular growth and organelle trafficking, as well as bacterial resistance to environmental stress. This is the first report demonstrating that a single DjlA-deficient mutant exhibits a distinct phenotype.
Collapse
Affiliation(s)
- Hiroko Ohnishi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Alli OAT, Zink S, von Lackum NK, Abu-Kwaik Y. Comparative assessment of virulence traits in Legionella spp. MICROBIOLOGY (READING, ENGLAND) 2003; 149:631-641. [PMID: 12634332 DOI: 10.1099/mic.0.25980-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Legionella pneumophila is a facultative intracellular pathogen that accounts for the majority of cases of Legionnaires' disease in the USA and Europe, but other Legionella spp. have been shown to cause disease. In contrast, Legionella longbeachae is the leading cause of Legionnaires' disease in Australia. The hallmark of Legionnaires' disease caused by L. pneumophila is the intracellular replication within phagocytes in the alveolar spaces, and the Dot/Icm type IV secretion system is essential for intracellular replication. Although it has been presumed that intracellular replication within phagocytes is the hallmark of other virulent legionellae, the virulence traits of Legionella spp. apart from L. pneumophila are not well defined. In this study, 27 strains of Legionella spp. belonging to 16 species that have been isolated from humans or from the environment were examined for five virulence traits exhibited by L. pneumophila: cytopathogenicity, intracellular replication within macrophages, induction of apoptosis/DNA fragmentation, pore-formation-mediated cytolysis of the host cell, and the presence of the dot/icm loci. The strains were divided into two broad groups (low and high cytopathogenic groups) based on cytopathogenicity assays using U937 human-derived macrophages. The other four virulence traits were evaluated in the low and high cytopathogenic groups of Legionella species. Most L. pneumophila serogroup 1 strains were highly cytopathogenic after 72 h, manifested high levels of intracellular growth, induced apoptosis/DNA fragmentation, and exhibited pore-forming activity. The majority of the other species were the low cytopathogenic group that did not induce apoptosis, neither did they exhibit pore-forming activity. All the species of legionellae tested have all the dot/icm loci, when examined by DNA hybridization. No correlation was found between cytopathogenicity and the other four pathogenic traits.
Collapse
Affiliation(s)
- O A Terry Alli
- Department of Microbiology and Immunology, College of Medicine, University of Kentucky, Chandler Medical Center, Lexington, KY 40503, USA
| | - Steven Zink
- Department of Microbiology and Immunology, College of Medicine, University of Kentucky, Chandler Medical Center, Lexington, KY 40503, USA
| | - N Katherine von Lackum
- Department of Microbiology and Immunology, College of Medicine, University of Kentucky, Chandler Medical Center, Lexington, KY 40503, USA
| | - Yousef Abu-Kwaik
- Department of Microbiology and Immunology, College of Medicine, University of Kentucky, Chandler Medical Center, Lexington, KY 40503, USA
| |
Collapse
|
23
|
Muder RR, Yu VL. Infection due to Legionella species other than L. pneumophila. Clin Infect Dis 2002; 35:990-8. [PMID: 12355387 DOI: 10.1086/342884] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2002] [Revised: 06/03/2002] [Indexed: 11/03/2022] Open
Abstract
In addition to Legionella pneumophila, 19 Legionella species have been documented as human pathogens on the basis of their isolation from clinical material. Like L. pneumophila, other Legionella species are inhabitants of natural and man-made aqueous environments. The major clinical manifestation of infection due to Legionella species is pneumonia, although nonpneumonic legionellosis (Pontiac fever) and extrapulmonary infection may occur. The majority of confirmed infections involving non-pneumophila Legionella species have occurred in immunosuppressed patients. Definitive diagnosis requires culture on selective media. Fluoroquinolones and newer macrolides are effective therapy. A number of nosocomial cases have occurred in association with colonization of hospital water systems; elimination of Legionella species from such systems prevents their transmission to susceptible patients. It is likely that many cases of both community-acquired and nosocomial Legionella infection remain undiagnosed. Application of appropriate culture methodology to the etiologic diagnosis of pneumonia is needed to further define the role of these organisms in disease in humans.
Collapse
Affiliation(s)
- Robert R Muder
- Infectious Diseases Section, VA Pittsburgh Healthcare System and University of Pittsburgh School of Medicine, Pittsburgh, PA 15240 , USA.
| | | |
Collapse
|
24
|
Robey M, Cianciotto NP. Legionella pneumophila feoAB promotes ferrous iron uptake and intracellular infection. Infect Immun 2002; 70:5659-69. [PMID: 12228295 PMCID: PMC128349 DOI: 10.1128/iai.70.10.5659-5669.2002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to determine the role of ferrous iron transport in Legionella pathogenesis, we identified and mutated the feoB gene in virulent Legionella pneumophila strain 130b. As it is in Escherichia coli, the L. pneumophila feoB gene was contained within a putative feoAB operon. L. pneumophila feoB insertion mutants exhibited decreased ferrous but not ferric iron uptake compared to the wild type. Growth on standard buffered charcoal yeast extract agar or buffered yeast extract broth was unaffected by the loss of L. pneumophila FeoB. However, the L. pneumophila feoB mutant had a reduced ability to grow on buffered charcoal yeast extract agar with a reduced amount of its usual iron supplementation, a phenotype that could be complemented by the addition of feoB in trans. In unsupplemented buffered yeast extract broth, the feoB mutant also had a growth defect, which was further exacerbated by the addition of the ferrous iron chelator, 2,2'-dipyridyl. The feoB mutant was also 2.5 logs more resistant to streptonigrin than wild-type 130b, confirming its decreased ability to acquire iron during extracellular growth. Decreased replication of the feoB mutant was noted within iron-depleted Hartmannella vermiformis amoebae and human U937 cell macrophages. The reduced intracellular infectivity of the feoB mutant was complemented by the introduction of a plasmid containing feoAB. The L. pneumophila feoB gene conferred a modest growth advantage for the wild type over the mutant in a competition assay within the lungs of A/J mice. Taken together, these results indicate that L. pneumophila FeoB is a ferrous iron transporter that is important for extracellular and intracellular growth, especially in iron-limited environments. These data represent the first evidence for the importance of ferrous iron transport for intracellular replication by a human pathogen.
Collapse
Affiliation(s)
- Marianne Robey
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|
25
|
Ko KS, Lee HK, Park MY, Park MS, Lee KH, Woo SY, Yun YJ, Kook YH. Population genetic structure of Legionella pneumophila inferred from RNA polymerase gene (rpoB) and DotA gene (dotA) sequences. J Bacteriol 2002; 184:2123-30. [PMID: 11914343 PMCID: PMC134959 DOI: 10.1128/jb.184.8.2123-2130.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The population structure of Legionella pneumophila was studied by using partial RNA polymerase gene (rpoB) and DotA gene (dotA) sequences. Trees inferred from rpoB sequences showed that two subspecies of L. pneumophila, Legionella pneumophila subsp. pneumophila and Legionella pneumophila subsp. fraseri, were clearly separated genetically. In both rpoB and dotA trees, 79 Korean isolates used in this study constituted six clonal populations, four of which (designated subgroups P-I to P-IV) were identified in L. pneumophila subsp. pneumophila and two of which (designated subgroups F-I and F-II) were identified in L. pneumophila subsp. fraseri. Although the relationships among subgroups were not identical, such subgrouping was congruent between the rpoB and dotA trees. Type strains of several serogroups did not belong to any subgroup, presumably because isolates similar to these strains were not present among our local sample of the population. There was evidence that horizontal gene transfer or recombination had occurred within L. pneumophila. Contrary to the phylogeny from rpoB and the taxonomic context, subgroups P-III and P-IV of L. pneumophila subsp. pneumophila proved to be closely related to those of L. pneumophila subsp. fraseri or showed a distinct clustering in the dotA tree. It can be inferred that dotA of subgroups P-III and P-IV has been transferred horizontally from other subspecies. The diverse distribution of serogroup 1 strains through the gene trees suggests that surface antigen-coding genes that determine serogroup can be exchanged. Thus, it can be inferred that genetic recombination has been important in the evolution of L. pneumophila.
Collapse
Affiliation(s)
- Kwan Soo Ko
- Department of Microbiology and Cancer Research Institute, Institute of Endemic Diseases, SNUMRC, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 110-799, Korea
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ogawa M, Takade A, Miyamoto H, Taniguchi H, Yoshida S. Morphological variety of intracellular microcolonies of Legionella species in Vero cells. Microbiol Immunol 2002; 45:557-62. [PMID: 11529563 DOI: 10.1111/j.1348-0421.2001.tb02658.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intracellular microcolonies of six Legionella species growing in Vero cells showed distinctly varied morphologies. The varieties were observed by light microscopy of Gimenez-stained, Legionella-infected Vero cells and by electron microscopy (EM). Legionella pneumophila Philadelphia-1 formed needle-shaped crystal-like microcolonies. Legionella bozemanii WIGA formed microcolonies like wool balls containing filamentous cells. In EM, these organisms proliferated in endosomes, which were adjacent to swollen rough endoplasmic reticula. Legionella oakridgensis OR-10 showed serpentine chains. Many mitochondria were observed around the microcolonies. Legionella jordanis BL-540 formed spherical moss-like microcolonies which were or were not surrounded by endoplasmic membranes. Legionella feeleii WO-44C spread throughout the cytoplasm without making clusters. Legionella dumoffii Tex-KL made big clusters that spread in the cytoplasm, a portion of which was outside the endosome membranes. These different morphologies imply diversity in modes of intracellular multiplication of Legionella spp.
Collapse
Affiliation(s)
- M Ogawa
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
27
|
Molmeret M, Alli OAT, Zink S, Flieger A, Cianciotto NP, Kwaik YA. icmT is essential for pore formation-mediated egress of Legionella pneumophila from mammalian and protozoan cells. Infect Immun 2002; 70:69-78. [PMID: 11748165 PMCID: PMC127627 DOI: 10.1128/iai.70.1.69-78.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The final step of the intracellular life cycle of Legionella pneumophila and other intracellular pathogens is their egress from the host cell after termination of intracellular replication. We have previously isolated five spontaneous mutants of L. pneumophila that replicate intracellularly similar to the wild-type strain but are defective in pore formation-mediated cytolysis and egress from mammalian and protozoan cells, and the mutants have been designated rib (release of intracellular bacteria). Here, we show that the rib mutants are not defective in the activity of enzymes secreted through the type II secretion system, including phospholipase A, lysophospholipase A, and monoacylglycerol lipase, although they are potential candidates for factors that lyse host cell membranes. In addition, the pilD and lspG mutants, which are defective in the type II secretion system, are not defective in the pore-forming toxin. We show that all five rib mutants have an identical point mutation (deletion) following a stretch of poly(T) in the icmT gene. Spontaneous revertants of the rib mutants, due to an insertion of a nucleotide following the poly(T) stretch in icmT, have been isolated and shown to have regained the wild-type phenotype. We constructed an icmT insertion mutant (AA100kmT) in the chromosome of the wild-type strain by allelic exchange. The AA100kmT mutant was as defective as the rib mutant in pore formation-mediated cytolysis and egress from mammalian and protozoan cells. Both the rib mutant and the AA100kmT mutant were complemented by the icmT gene for their phenotypic defect. rtxA, a gene that is thought to have a minor role in pore formation, was not involved in pore formation-mediated cytolysis and egress from mammalian and protozoan cells. We conclude that the icmT gene is essential for pore formation-mediated lysis of mammalian and protozoan cells and the subsequent bacterial egress.
Collapse
Affiliation(s)
- Maelle Molmeret
- Department of Microbiology and Immunology, The University of Kentucky College of Medicine, Lexington, Kentucky 40536-0084, USA
| | | | | | | | | | | |
Collapse
|
28
|
Doyle RM, Cianciotto NP, Banvi S, Manning PA, Heuzenroeder MW. Comparison of virulence of Legionella longbeachae strains in guinea pigs and U937 macrophage-like cells. Infect Immun 2001; 69:5335-44. [PMID: 11500403 PMCID: PMC98643 DOI: 10.1128/iai.69.9.5335-5344.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A guinea pig model of experimental legionellosis was established for assessment of virulence of isolates of Legionella longbeachae. The results showed that there were distinct virulence groupings of L. longbeachae serogroup 1 strains based on the severity of disease produced in this model. Statistical analysis of the animal model data suggests that Australian isolates of L. longbeachae may be inherently more virulent than non-Australian strains. Infection studies performed with U937 cells were consistent with the animal model studies and showed that isolates of this species were capable of multiplying within these phagocytic cells. Electron microscopy studies of infected lung tissue were also undertaken to determine the intracellular nature of L. longbeachae serogroup 1 infection. The data showed that phagosomes containing virulent L. longbeachae serogroup 1 appeared bloated, contained cellular debris and had an apparent rim of ribosomes while those containing avirulent L. longbeachae serogroup 1 were compact, clear and smooth.
Collapse
Affiliation(s)
- R M Doyle
- Infectious Diseases Laboratories, Institute of Medical and Veterinary Science, Adelaide, South Australia 5000, Australia.
| | | | | | | | | |
Collapse
|
29
|
Robey M, O'Connell W, Cianciotto NP. Identification of Legionella pneumophila rcp, a pagP-like gene that confers resistance to cationic antimicrobial peptides and promotes intracellular infection. Infect Immun 2001; 69:4276-86. [PMID: 11401964 PMCID: PMC98497 DOI: 10.1128/iai.69.7.4276-4286.2001] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the course of characterizing a locus involved in heme utilization, we identified a Legionella pneumophila gene predicted to encode a protein with homology to the product of the Salmonella enterica serovar Typhimurium pagP gene. In Salmonella, pagP increases resistance to the bactericidal effects of cationic antimicrobial peptides (CAMPs). Mutants with insertions in the L. pneumophila pagP-like gene were generated and showed decreased resistance to different structural classes of CAMPs compared to the wild type; hence, this gene was designated rcp for resistance to cationic antimicrobial peptides. Furthermore, Legionella CAMP resistance was induced by growth in low-magnesium medium. To determine whether rcp had any role in intracellular survival, mutants were tested in the two most relevant host cells for Legionnaires' disease, i.e., amoebae and macrophages. These mutants exhibited a 1,000-fold-decreased recovery during a Hartmannella vermiformis coculture. Complementation of the infectivity defect could be achieved by introduction of a plasmid containing the intact rcp gene. Mutations in rcp consistently reduced both the numbers of bacteria recovered during intracellular infection and their cytopathic capacity for U937 macrophages. The rcp mutant was also more defective for lung colonization of A/J mice. Growth of rcp mutants in buffered yeast extract broth was identical to that of the wild type, indicating that the observed differences in numbers of bacteria recovered from host cells were not due to a generalized growth defect. However, in low-Mg(2+) medium, the rcp mutant was impaired in stationary-phase survival. This is the first demonstration of a pagP-like gene, involved in resistance to CAMPs, being required for intracellular infection and virulence.
Collapse
Affiliation(s)
- M Robey
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
30
|
Bachman MA, Swanson MS. RpoS co-operates with other factors to induce Legionella pneumophila virulence in the stationary phase. Mol Microbiol 2001; 40:1201-14. [PMID: 11401723 DOI: 10.1046/j.1365-2958.2001.02465.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Legionella pneumophila replicates within amoebae and macrophages and causes the severe pneumonia Legionnaires' disease. When broth cultures enter the post-exponential growth (PE) phase or experience amino acid limitation, L. pneumophila accumulates the stringent response signal (p)ppGpp and expresses traits likely to promote transmission to a new phagocyte. The hypothesis that a stringent response mechanism regulates L. pneumophila virulence was bolstered by our finding that the avirulent mutant Lp120 contains an internal deletion in the gene encoding the stationary phase sigma factor RpoS. To test directly whether RpoS co-ordinates virulence with stationary phase, isogenic wild-type, rpoS-120 and rpoS null mutant strains were constructed and analysed. PE phase L. pneumophila became cytotoxic by an RpoS-independent pathway, but their sodium sensitivity and maximal expression of flagellin required RpoS. Likewise, full induction of sodium sensitivity by experimentally induced (p)ppGpp synthesis required RpoS. To replicate efficiently in macrophages, L. pneumophila used both RpoS-dependent and -independent pathways. Like those containing the dotA type IV secretory apparatus mutant, phagosomes harbouring either rpoS or dotA rpoS mutants rapidly acquired the late endosomal protein LAMP-1, but not the lysosomal marker Texas red-ovalbumin. Together, the data support a model in which RpoS co-operates with other regulators to induce L. pneumophila virulence in the PE phase.
Collapse
Affiliation(s)
- M A Bachman
- Department of Microbiology and Immunology, The University of Michigan Medical School, 6734 Medical Sciences II, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
31
|
Matthews M, Roy CR. Identification and subcellular localization of the Legionella pneumophila IcmX protein: a factor essential for establishment of a replicative organelle in eukaryotic host cells. Infect Immun 2000; 68:3971-82. [PMID: 10858211 PMCID: PMC101675 DOI: 10.1128/iai.68.7.3971-3982.2000] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-negative respiratory pathogen Legionella pneumophila infects and grows within mammalian macrophages and protozoan host cells. Upon uptake into macrophages, L. pneumophila establishes a replicative organelle that avoids fusion with endocytic vesicles. There are 24 dot/icm genes on the L. pneumophila chromosome required for biogenesis of this vacuole. Many of the Dot/Icm proteins are predicted to be components of a membrane-bound secretion apparatus similar to type IV conjugal transfer systems. We have been investigating the function of L. pneumophila dot/icm gene products that do not have obvious orthologs in other type IV transfer systems, since these determinants could govern processes unique to phagosome biogenesis. The icmX gene product falls into this category. To understand the role of the IcmX protein in pathogenesis, we have detailed interactions between an L. pneumophila icmX deletion mutant and murine bone marrow-derived macrophages. These data demonstrate that icmX is required for biogenesis of the L. pneumophila replicative organelle. Immunoblot analysis indicates that the icmX gene product is a polypeptide with an estimated molecular mass of 50 kDa. The IcmX protein was localized to the bacterial periplasm, and periplasmic translocation was mediated by an N-terminal sec-dependent leader peptide. A truncated IcmX product was secreted into culture supernatants by wild-type L. pneumophila growing extracellularly in liquid media; however, transport of the IcmX protein into eukaryotic host cells was not detected. Proteins similar in molecular weight to IcmX were identified in other Legionella species by immunoblot analysis using a monoclonal antibody specific for L. pneumophila IcmX protein. From these data, we conclude that the IcmX protein is an essential component of the dot/icm secretion apparatus, and that a conserved mechanism of host cell parasitism exists for members of the Legionellaceae family.
Collapse
Affiliation(s)
- M Matthews
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, Connecticut 06536-0812, USA
| | | |
Collapse
|
32
|
Harb OS, Gao LY, Abu Kwaik Y. From protozoa to mammalian cells: a new paradigm in the life cycle of intracellular bacterial pathogens. Environ Microbiol 2000; 2:251-65. [PMID: 11200426 DOI: 10.1046/j.1462-2920.2000.00112.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is becoming apparent that several intracellular bacterial pathogens of humans can also survive within protozoa. This interaction with protozoa may protect these pathogens from harsh conditions in the extracellular environment and enhance their infectivity in mammals. This relationship has been clearly established in the case of the interaction between Legionella pneumophila and its protozoan hosts. In addition, the adaptation of bacterial pathogens to the intracellular life within the primitive eukaryotic protozoa may have provided them with the means to infect the more evolved mammalian cells. This is evident from the existence of several similarities, at both the phenotypic and the molecular levels, between the infection of mammalian and protozoan cells by L. pneumophila. Thus, protozoa appear to play a central role in the transition of bacteria from the environment to mammals. In essence, protozoa may be viewed as a 'biological gym', within which intracellular bacterial pathogens train for their encounters with the more evolved mammalian cells. Thus, intracellular bacterial pathogens have benefited from the structural and biochemical conservation of cellular processes in eukaryotes. The interaction of intracellular bacterial pathogens and protozoa highlights this conservation and may constitute a simplified model for the study of these pathogens and the evolution of cellular processes in eukaryotes. Furthermore, in addition to being environmental reservoirs for known intracellular pathogens of humans and animals, protozoa may be sources of emerging pathogenic bacteria. It is thus critical to re-examine the relationship between bacteria and protozoa to further our understanding of current human bacterial pathogenesis and, possibly, to predict the appearance of emerging pathogens.
Collapse
Affiliation(s)
- O S Harb
- Department of Microbiology and Immunology, UKCMC, University of Kentucky, Lexington 40536-0084, USA
| | | | | |
Collapse
|
33
|
Hägele S, Köhler R, Merkert H, Schleicher M, Hacker J, Steinert M. Dictyostelium discoideum: a new host model system for intracellular pathogens of the genus Legionella. Cell Microbiol 2000; 2:165-71. [PMID: 11207573 DOI: 10.1046/j.1462-5822.2000.00044.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The soil amoeba Dictyostelium discoideum is a haploid eukaryote that, upon starvation, aggregates and enters a developmental cycle to produce fruiting bodies. In this study, we infected single-cell stages of D. discoideum with different Legionella species. Intracellular growth of Legionella in this new host system was compared with their growth in the natural host Acanthamoeba castellanii. Transmission electron microscopy of infected D. discoideum cells revealed that legionellae reside within the phagosome. Using confocal microscopy, it was observed that replicating, intracellular, green fluorescent protein (GFP)-tagged legionellae rarely co-localized with fluorescent antibodies directed against the lysosomal protein DdLIMP of D. discoideum. This indicates that the bacteria inhibit the fusion of phagosomes and lysosomes in this particular host system. In addition, Legionella infection of D. discoideum inhibited the differentiation of the host into the multicellular fruiting stage. Co-culture studies with profilin-minus D. discoideum mutants and Legionella resulted in higher rates of infection when compared with infections of wild-type amoebae. Because the amoebae are amenable to genetic manipulation as a result of their haploid genome and because a number of cellular markers are available, we show for the first time that D. discoideum is a valuable model system for studying intracellular pathogenesis of microbial pathogens.
Collapse
Affiliation(s)
- S Hägele
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Liles MR, Scheel TA, Cianciotto NP. Discovery of a nonclassical siderophore, legiobactin, produced by strains of Legionella pneumophila. J Bacteriol 2000; 182:749-57. [PMID: 10633110 PMCID: PMC94339 DOI: 10.1128/jb.182.3.749-757.2000] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms by which Legionella pneumophila, a facultative intracellular parasite and the agent of Legionnaires' disease, acquires iron are largely unexplained. Several earlier studies indicated that L. pneumophila does not elaborate siderophores. However, we now present evidence that supernatants from L. pneumophila cultures can contain a nonproteinaceous, high-affinity iron chelator. More specifically, when aerobically grown in a low-iron, chemically defined medium (CDM), L. pneumophila secretes a substance that is reactive in the chrome azurol S (CAS) assay. Importantly, the siderophore-like activity was only observed when the CDM cultures were inoculated to relatively high density with bacteria that had been grown overnight to log or early stationary phase in CDM or buffered yeast extract. Inocula derived from late-stationary-phase cultures, despite ultimately growing, consistently failed to result in the elaboration of siderophore-like activity. The Legionella CAS reactivity was detected in the culture supernatants of the serogroup 1 strains 130b and Philadelphia-1, as well as those from representatives of other serogroups and other Legionella species. The CAS-reactive substance was resistant to boiling and protease treatment and was associated with the <1-kDa supernatant fraction. As would also be expected for a siderophore, the addition of 0.5 or 2.0 microM iron to the cultures repressed the expression of the CAS-reactive substance. Interestingly, the supernatants were negative in the Arnow, Csáky, and Rioux assays, indicating that the Legionella siderophore was not a classic catecholate or hydroxamate and, hence, might have a novel structure. We have designated the L. pneumophila siderophore legiobactin.
Collapse
Affiliation(s)
- M R Liles
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
35
|
Swanson MS, Hammer BK. Legionella pneumophila pathogesesis: a fateful journey from amoebae to macrophages. Annu Rev Microbiol 2000; 54:567-613. [PMID: 11018138 DOI: 10.1146/annurev.micro.54.1.567] [Citation(s) in RCA: 292] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Legionella pneumophila first commanded attention in 1976, when investigators from the Centers for Disease Control and Prevention identified it as the culprit in a massive outbreak of pneumonia that struck individuals attending an American Legion convention (). It is now clear that this gram-negative bacterium flourishes naturally in fresh water as a parasite of amoebae, but it can also replicate within alveolar macrophages. L. pneumophila pathogenesis is discussed using the following model as a framework. When ingested by phagocytes, stationary-phase L. pneumophila bacteria establish phagosomes which are completely isolated from the endosomal pathway but are surrounded by endoplasmic reticulum. Within this protected vacuole, L. pneumophila converts to a replicative form that is acid tolerant but no longer expresses several virulence traits, including factors that block membrane fusion. As a consequence, the pathogen vacuoles merge with lysosomes, which provide a nutrient-rich replication niche. Once the amino acid supply is depleted, progeny accumulate the second messenger guanosine 3',5'-bispyrophosphate (ppGpp), which coordinates entry into the stationary phase with expression of traits that promote transmission to a new phagocyte. A number of factors contribute to L. pneumophila virulence, including type II and type IV secretion systems, a pore-forming toxin, type IV pili, flagella, and numerous other factors currently under investigation. Because of its resemblance to certain aspects of Mycobacterium, Toxoplasma, Leishmania, and Coxiella pathogenesis, a detailed description of the mechanism used by L. pneumophila to manipulate and exploit phagocyte membrane traffic may suggest novel strategies for treating a variety of infectious diseases. Knowledge of L. pneumophila ecology may also inform efforts to combat the emergence of new opportunistic macrophage pathogens.
Collapse
Affiliation(s)
- M S Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA. ,
| | | |
Collapse
|