1
|
Cohen T, Zemmour C, Cohen OT, Benny O. Elongated Particles Show a Preferential Uptake in Invasive Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1891. [PMID: 39683280 DOI: 10.3390/nano14231891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Mechanically driven cellular preference for drug carriers can enhance selectivity in cancer therapy, underscoring the importance of understanding the physical aspects of particle uptake. In this study, it was hypothesized that elongated particles might be preferentially taken up by deformable, aggressive cancer cells compared to normal cells. Two film-stretching methods were tested for 0.8-2.4 μm polystyrene (PS) particles: one based on solubility in organic solvents and the other on heat-induced softening. The heat-induced method produced more homogenous particle batches, with a standard deviation in the particle aspect ratio of 0.42 compared to 0.91 in the solvent-based method. The ability of cells to engulf elongated PS particles versus spherical particles was assessed in two subsets of human melanoma A375 cells. In the more aggressive cancer cell subset (A375+), uptake of elongated PS particles increased by 10% compared to spherical particles. In contrast, the less aggressive subset (A375-) showed a 25% decrease in uptake of elongated particles. This resulted in an uptake ratio between A375+ and A375- that was 1.5 times higher for elongated PS particles than for spherical ones. To further demonstrate relevance to drug delivery, elongated paclitaxel-loaded biodegradable, slow-releasing poly(lactic-co-glycolic) acid (PLGA) particles were synthesized. No significant difference in cytotoxic effect was observed between A375+ and A375- cells treated with spherical drug-loaded particles. However, treatment with ellipsoidal particles led to a significantly enhanced cytotoxic effect in aggressive cells compared to less aggressive cells. These findings present promising directions for tailored cancer drug delivery and demonstrate the importance of particle physical properties in cellular uptake and drug delivery mechanisms.
Collapse
Affiliation(s)
- Talya Cohen
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Chalom Zemmour
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ora T Cohen
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ofra Benny
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| |
Collapse
|
2
|
Tang L, Sabi MM, Fu M, Guan J, Wang Y, Xia T, Zheng K, Qu H, Han B. Host cell manipulation by microsporidia secreted effectors: Insights into intracellular pathogenesis. J Eukaryot Microbiol 2024; 71:e13029. [PMID: 39030770 DOI: 10.1111/jeu.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 07/22/2024]
Abstract
Microsporidia are prolific producers of effector molecules, encompassing both proteins and nonproteinaceous effectors, such as toxins, small RNAs, and small peptides. These secreted effectors play a pivotal role in the pathogenicity of microsporidia, enabling them to subvert the host's innate immunity and co-opt metabolic pathways to fuel their own growth and proliferation. However, the genomes of microsporidia, despite falling within the size range of bacteria, exhibit significant reductions in both structural and physiological features, thereby affecting the repertoire of secretory effectors to varying extents. This review focuses on recent advances in understanding how microsporidia modulate host cells through the secretion of effectors, highlighting current challenges and proposed solutions in deciphering the complexities of microsporidial secretory effectors.
Collapse
Affiliation(s)
- Liyuan Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Musa Makongoro Sabi
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Ming Fu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Jingyu Guan
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Yongliang Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Tian Xia
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Kai Zheng
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Hongnan Qu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
- Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong, China
| | - Bing Han
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
- Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Fayet M, Long M, Han B, Belkorchia A, Delbac F, Polonais V. New insights into Microsporidia polar tube function and invasion mechanism. J Eukaryot Microbiol 2024; 71:e13043. [PMID: 38973152 DOI: 10.1111/jeu.13043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Microsporidia comprise a large phylum of single-cell and obligate intracellular parasites that can infect a wide range of invertebrate and vertebrate hosts including humans. These fungal-related parasites are characterized by a highly reduced genome, a strong energy dependence on their host, but also by their unique invasion organelle known as the polar tube which is coiled within the resistant spore. Upon appropriate environmental stimulation, the long hollow polar tube (ranging from 50 to 500 μm in length) is extruded at ultra-fast speeds (300 μm/s) from the spore acting as a harpoon-like organelle to transport and deliver the infectious material or sporoplasm into the host cell. To date, seven polar tube proteins (PTPs) with distinct localizations along the extruded polar tube have been described. For example, the specific location of PTP4 and PTP7 at the tip of the polar tube supports their role in interacting with cellular receptor(s). This chapter provides a brief overview on the current understanding of polar tube structure and dynamics of extrusion, primarily through recent advancements in cryo-tomography and 3D reconstruction. It also explores the various mechanisms used for host cell invasion. Finally, recent studies on the structure and maturation of sporoplasm and its moving through the tube are discussed.
Collapse
Affiliation(s)
- Maurine Fayet
- Laboratoire "Microorganismes: Génome et Environnement", CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Mengxian Long
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Bing Han
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Abdel Belkorchia
- Laboratoire "Microorganismes: Génome et Environnement", CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Frédéric Delbac
- Laboratoire "Microorganismes: Génome et Environnement", CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Valerie Polonais
- Laboratoire "Microorganismes: Génome et Environnement", CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
4
|
Sak B, Gottliebová P, Nyčová E, Holubová N, Fenclová J, Kicia M, Zajączkowska Ż, Kváč M. Microsporidia (Encephalitozoon cuniculi) in Patients with Degenerative Hip and Knee Disease, Czech Republic. Emerg Infect Dis 2024; 30:469-477. [PMID: 38289719 PMCID: PMC10902539 DOI: 10.3201/eid3003.231263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Total joint arthroplasty is a commonly used surgical procedure in orthopedics. Revision surgeries are required in >10% of patients mainly because of prosthetic joint infection caused by bacteria or aseptic implant loosening caused by chronic inflammation. Encephalitozoon cuniculi is a microsporidium, an obligate intracellular parasite, capable of exploiting migrating proinflammatory immune cells for dissemination within the host. We used molecular detection methods to evaluate the incidence of E. cuniculi among patients who had total hip or knee arthroplasty revision. Out of 49 patients, E. cuniculi genotypes I, II, or III were confirmed in joint samples from 3 men and 2 women who had implant loosening. Understanding the risks associated with the presence of microsporidia in periprosthetic joint infections is essential for proper management of arthroplasty. Furthermore, E. cuniculi should be considered a potential contributing cause of joint inflammation and arthrosis.
Collapse
|
5
|
Carriere E, Abdul Hamid AI, Feki I, Dubuffet A, Delbac F, Gueirard P. A mouse ear skin model to study the dynamics of innate immune responses against the microsporidian Encephalitozoon cuniculi. Front Microbiol 2023; 14:1168970. [PMID: 37125152 PMCID: PMC10136781 DOI: 10.3389/fmicb.2023.1168970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Microsporidia are obligate intracellular parasites related to fungi that cause severe infections in immunocompromised individuals. Encephalitozoon cuniculi is a microsporidian species capable of infecting mammals, including human and rodents. In response to microsporidian infection, innate immune system serves as the first line of defense and allows a partial clearance of the parasite via the innate immune cells, namely macrophages, neutrophils, dendritic cells, and Natural Killer cells. According to the literature, microsporidia bypass this response in vitro by modulating the response of macrophages. In order to study host-parasites interactions in vivo, we developed a model using the mouse ear pinna in combination with an intravital imaging approach. Fluorescent E. cuniculi spores were inoculated into the skin tissue to follow for the first time in real time in an in vivo model the recruitment dynamics of EGFP + phagocytic cells in response to the parasite. The results show that parasites induce an important inflammatory recruitment of phagocytes, with alterations of their motility properties (speed, displacement length, straightness). This cellular response persists in the injection zone, with spores detected inside the phagocytes up to 72 h post-infection. Immunostainings performed on ear tissue cryosections evoke the presence of developing infectious foci from 5 days post-infection, in favor of parasite proliferation in this tissue. Overall, the newly set up mice ear pinna model will increase our understanding of the immunobiology of microsporidia and in particular, to know how they can bypass and hijack the host immune system of an immunocompetent or immunosuppressed host.
Collapse
|
6
|
Sak B, Holubová N, Květoňová D, Hlásková L, Tinavská J, Kicia M, Zajączkowska Ż, Kváč M. Comparison of the Concentration of Encephalitozoon cuniculi Genotypes I and III in Inflammatory Foci Under Experimental Conditions. J Inflamm Res 2022; 15:2721-2730. [PMID: 35502243 PMCID: PMC9056047 DOI: 10.2147/jir.s363509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Bohumil Sak
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
- Correspondence: Bohumil Sak, Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic, Tel +420387775421, Fax +420385310388, Email
| | - Nikola Holubová
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Dana Květoňová
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Lenka Hlásková
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Jana Tinavská
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Marta Kicia
- Department of Biology and Medical Parasitology, Wroclaw Medical University, Wroclaw, Poland
| | - Żaneta Zajączkowska
- Department of Biology and Medical Parasitology, Wroclaw Medical University, Wroclaw, Poland
| | - Martin Kváč
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
- Faculty of Agriculture, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| |
Collapse
|
7
|
Karunakar P, P B S, V K. In silico modelling and virtual screening for identification of inhibitors for spore wall protein-5 in Nosema bombycis. J Biomol Struct Dyn 2022; 40:1748-1763. [PMID: 33050775 DOI: 10.1080/07391102.2020.1832579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bombyx mori is an insect of economic importance in the production of silk. It often gets infected by Nosema bombycis, an intracellular parasite. The infection causes a fatal disease known as a Pebrine which affects the development of the worm. The infected larvae of silkworms are coated with brown spots and are unable to spin the silkworm thread. They lose appetite, become sluggish, opaque and ultimately die. The Spore Wall Protein 5 is an exospore protein in N. bombycis and interacts with the polar tube proteins PTP2 and PTP3, a part of the extrusion apparatus that facilitates infection of the host. SWP5 also plays an essential part in maintaining the structural integrity of the spore wall and could possibly regulate the route of the infection in N. bombycis. In the present study, the homology modelling of three protein structures SWP5, PTP2 and PTP3 were performed. The protein-protein interaction was studied and a complete complex of SWP5, PTP2 and PTP3 was generated to understand the discharge of the penetrating polar tube. Virtual screening and molecular dynamics simulation was performed and a potential lead-like molecule is identified.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Saarika P B
- Department of Biotechnology, PES University, Bangalore, Karnataka, India
| | - Krishnamurthy V
- Department of Chemistry, Dayanand Sagar University (DSU), Bangalore, Karnataka, India
| |
Collapse
|
8
|
Jaroenlak P, Usmani M, Ekiert DC, Bhabha G. Mechanics of Microsporidian Polar Tube Firing. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:215-245. [PMID: 35544005 DOI: 10.1007/978-3-030-93306-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As obligate intracellular parasites with reduced genomes, microsporidia must infect host cells in order to replicate and cause disease. They can initiate infection by utilizing a harpoon-like invasion organelle called the polar tube (PT). The PT is both visually and functionally a striking organelle and is a characteristic feature of the microsporidian phylum. Outside the host, microsporidia exist as transmissible, single-celled spores. Inside each spore, the PT is arranged as a tight coil. Upon germination, the PT undergoes a large conformational change into a long, linear tube and acts as a tunnel for the delivery of infectious cargo from the spore to a host cell. The firing process is extremely rapid, occurring on a millisecond timescale, and the emergent tube may be as long as 20 times the size of the spore body. In this chapter, we discuss what is known about the structure of the PT, the mechanics of the PT firing process, and how it enables movement of material from the spore body.
Collapse
Affiliation(s)
- Pattana Jaroenlak
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Mahrukh Usmani
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
- Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Aseeja P, Shaikh Y, Bajpai A, Sirsikar P, Kalra SK. Advancement in our understanding of immune response against Encephalitozoon infection. Parasite Immunol 2021; 43:e12828. [PMID: 33682117 DOI: 10.1111/pim.12828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/15/2023]
Abstract
Microsporidia are a group of obligate, intracellular, spore-forming eukaryotic pathogens, which predominantly infects immunocompromised individuals worldwide. Encephalitozoon spp. is one of the most prevalent microsporidia known to infect humans. Host immune system plays a major role in combating pathogens including Encephalitozoon spp. infecting humans. Both innate and adaptive arms of host immune system work together in combating Encephalitozoon infection. Researchers are conducting studies to elucidate the role of both arms of immune system against Encephalitozoon infection. In addition to cell-mediated adaptive immunity, role of innate immunity is also being highlighted in clearance of Encephalitozoon spp. from host body. Therefore, the current review will give a clear and consolidated update on the role of innate as well as adaptive immunity in protection against Encephalitozoon spp.
Collapse
Affiliation(s)
- Praisy Aseeja
- Faculty of Applied Sciences & Biotechnology, Shoolini university of Biotechnology & Management Sciences, Solan, India
| | - Yasmin Shaikh
- Faculty of Applied Sciences & Biotechnology, Shoolini university of Biotechnology & Management Sciences, Solan, India
| | - Anamika Bajpai
- Centre for Translational Medicine, Lewis Katz School of Medicine, Medicine Education & Research Building, Temple University, Philadelphia, PA, USA
| | - Prachitee Sirsikar
- Faculty of Applied Sciences & Biotechnology, Shoolini university of Biotechnology & Management Sciences, Solan, India
| | - Sonali K Kalra
- Faculty of Applied Sciences & Biotechnology, Shoolini university of Biotechnology & Management Sciences, Solan, India
| |
Collapse
|
10
|
Brdíčková K, Sak B, Holubová N, Květoňová D, Hlásková L, Kicia M, Kopacz Ż, Kváč M. Encephalitozoon cuniculi Genotype II Concentrates in Inflammation Foci. J Inflamm Res 2020; 13:583-593. [PMID: 33061524 PMCID: PMC7524191 DOI: 10.2147/jir.s271628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/24/2020] [Indexed: 11/30/2022] Open
Abstract
Background Microsporidia of the genus Encephalitozoon are generally connected with severe infections with lethal outcome in immunodeficient hosts. In immunocompetent hosts, microsporidiosis typically establishes a balanced host–parasite relationship that produces minimal clinically overt disease. Although the alimentary tract represents one of the main primary target tissues, the mechanisms of reaching other tissues during systemic microsporidian infections remain unclear. Methods In the present study, we tested the relation between inflammation induction in immunocompetent and immunodeficient mice and the presence of spores of E. cuniculi genotype II in selected organs and in fecal specimens by using molecular and histology methods. Results We reported the positive connection between inflammation induction and the significant increase of E. cuniculi genotype II occurrence in inflammation foci in both immunocompetent BALB/c and immunodeficient severe combined immunodeficient (SCID) mice in the acute phase of infection and the re-activation of latent microsporidial infection following inflammation induction in immunocompetent mice. Conclusion The results imply possible involvement of immune cells serving as vehicles transporting E. cuniculi genotype II purposefully across the whole host body towards inflammation. With increasing number of records of infections, it is necessary to reconsider microsporidia as agents responsible for various pathologies. The elucidation of possible connection with pro-inflammatory immune responses represents an important challenge with consequences for human health and development of therapeutic strategies.
Collapse
Affiliation(s)
- Klára Brdíčková
- Department of Clinical Microbiology, Bulovka Hospital, Prague, Czech Republic.,Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Bohumil Sak
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Nikola Holubová
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic.,Faculty of Agriculture, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Dana Květoňová
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Lenka Hlásková
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Marta Kicia
- Department of Biology and Medical Parasitology, Wroclaw Medical University, Wroclaw, Poland
| | - Żaneta Kopacz
- Department of Biology and Medical Parasitology, Wroclaw Medical University, Wroclaw, Poland
| | - Martin Kváč
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic.,Faculty of Agriculture, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| |
Collapse
|
11
|
Han B, Takvorian PM, Weiss LM. Invasion of Host Cells by Microsporidia. Front Microbiol 2020; 11:172. [PMID: 32132983 PMCID: PMC7040029 DOI: 10.3389/fmicb.2020.00172] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
Microsporidia are found worldwide and both vertebrates and invertebrates can serve as hosts for these organisms. While microsporidiosis in humans can occur in both immune competent and immune compromised hosts, it has most often been seen in the immune suppressed population, e.g., patients with advanced HIV infection, patients who have had organ transplantation, those undergoing chemotherapy, or patients using other immune suppressive agents. Infection can be associated with either focal infection in a specific organ (e.g., keratoconjunctivitis, cerebritis, or hepatitis) or with disseminated disease. The most common presentation of microsporidiosis being gastrointestinal infection with chronic diarrhea and wasting syndrome. In the setting of advanced HIV infection or other cases of profound immune deficiency microsporidiosis can be extremely debilitating and carries a significant mortality risk. Microsporidia are transmitted as spores which invade host cells by a specialized invasion apparatus the polar tube (PT). This review summarizes recent studies that have provided information on the composition of the spore wall and PT, as well as insights into the mechanism of invasion and interaction of the PT and spore wall with host cells during infection.
Collapse
Affiliation(s)
- Bing Han
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Peter M. Takvorian
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Biological Sciences, Rutgers University, Newark, NJ, United States
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
12
|
de Moura MLC, Alvares-Saraiva AM, Pérez EC, Xavier JG, Spadacci-Morena DD, Moysés CRS, Rocha PRD, Lallo MA. Cyclophosphamide Treatment Mimics Sub-Lethal Infections With Encephalitozoon intestinalis in Immunocompromised Individuals. Front Microbiol 2019; 10:2205. [PMID: 31608035 PMCID: PMC6773878 DOI: 10.3389/fmicb.2019.02205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/09/2019] [Indexed: 01/31/2023] Open
Abstract
Microsporidia, including Encephalitozoon intestinalis, are emerging pathogens which cause opportunistic infections in immunocompromised patients, such as those with AIDS, cancer, the elderly and people on immunosuppressive drugs. Intestinal mucosa (IM) is crucial for developing an efficient adaptive immune response against pathogenic micro-organisms, thereby preventing their colonization and subsequent infection. As immunosuppressive drugs affect the intestinal immune response is little known. In the present study, we investigated the immune response to E. intestinalis infection in the IM and gut-associated lymphoid tissue (GALT) in cyclophosphamide (Cy) immunosuppressed mice, to mimic an immunocompromised condition. Histopathology revealed lymphoplasmacytic enteritis at 7 and 14 days-post-infection (dpi) in all infected groups, however, inflammation diminished at 21 and 28 dpi. Cy treatment also led to a higher number of E. intestinalis spores and lesions, which reduced at 28 dpi. In addition, flow cytometry analysis demonstrated CD4+ and CD8+ T cells to be predominant immune cells, with up-regulation in both Th1 and Th2 cytokines at 7 and 14 dpi, as demonstrated by histopathology. In conclusion, Cy treatment reduced GALT (Peyer’s plaques and mesenteric lymph nodes) and peritoneum populations but increased the T-cell population in the intestinal mucosa and the production of pro-and anti-inflammatory cytokines, which were able to eliminate this opportunistic fungus and reduced the E. intestinalis infection.
Collapse
Affiliation(s)
- Maria Lucia Costa de Moura
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brazil
| | | | - Elizabeth Cristina Pérez
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brazil
| | - José Guilherme Xavier
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brazil
| | | | | | | | - Maria Anete Lallo
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brazil
| |
Collapse
|
13
|
González-Machorro JR, Rodríguez-Tovar LE, Gómez-Flores R, Soto-Dominguez A, Rodríguez-Rocha H, Garcia-García A, Tamez-Guerra P, Castillo-Velázquez U. Increased phagocytosis and growth inhibition of Encephalitozoon cuniculi by LPS-activated J774A.1 murine macrophages. Parasitol Res 2019; 118:1841-1848. [PMID: 31001676 DOI: 10.1007/s00436-019-06310-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 04/03/2019] [Indexed: 11/28/2022]
Abstract
Encephalitozoon cuniculi is an obligate macrophage parasite of vertebrates that commonly infects rodents, monkeys, dogs, birds, and humans. In the present study, we aimed to assess the phagocytosis and intracellular survival of E. cuniculi spores using untreated and lipopolysaccharide (LPS)-activated J774A.1 murine macrophages and assess the macrophage viability. The experimental groups comprised untreated spores, spores killed by heat treatment at 90 °C, and spores killed by treatment with 10% formalin. LPS-activated macrophages significantly increased the phagocytosis of spores and reduced their intracellular growth after 24 and 48 h (P < 0.01); however, after 72 h, we observed an increase in spore replication but no detectable microbicidal activity. These results indicate that LPS activation enhanced E. cuniculi phagocytosis between 24 and 48 h of treatment, but the effect was lost after 72 h, enabling parasitic growth. This study contributes to the understanding of the phagocytosis and survival of E. cuniculi in murine macrophages.
Collapse
Affiliation(s)
- J R González-Machorro
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Inmunología Veterinaria, Campus de Agricultura y Ciencias Biológicas, Universidad Autónoma de Nuevo León, Francisco Villa S/N, Colonia Ex-Hacienda el Canadá, CP 66050, Escobedo, Nuevo León, Mexico
| | - L E Rodríguez-Tovar
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Inmunología Veterinaria, Campus de Agricultura y Ciencias Biológicas, Universidad Autónoma de Nuevo León, Francisco Villa S/N, Colonia Ex-Hacienda el Canadá, CP 66050, Escobedo, Nuevo León, Mexico
| | - R Gómez-Flores
- Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - A Soto-Dominguez
- Facultad de Medicina, Departamento de Histología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - H Rodríguez-Rocha
- Facultad de Medicina, Departamento de Histología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - A Garcia-García
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Inmunología Veterinaria, Campus de Agricultura y Ciencias Biológicas, Universidad Autónoma de Nuevo León, Francisco Villa S/N, Colonia Ex-Hacienda el Canadá, CP 66050, Escobedo, Nuevo León, Mexico
| | - P Tamez-Guerra
- Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - U Castillo-Velázquez
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Inmunología Veterinaria, Campus de Agricultura y Ciencias Biológicas, Universidad Autónoma de Nuevo León, Francisco Villa S/N, Colonia Ex-Hacienda el Canadá, CP 66050, Escobedo, Nuevo León, Mexico.
| |
Collapse
|
14
|
Powell MJ, Letcher PM. Ultrastructure of early stages of Rozella allomycis (Cryptomycota) infection of its host, Allomyces macrogynus (Blastocladiomycota). Fungal Biol 2019; 123:109-116. [PMID: 30709516 DOI: 10.1016/j.funbio.2018.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/28/2018] [Accepted: 11/13/2018] [Indexed: 01/02/2023]
Abstract
This study reconstructs early stages of Rozella allomycis endoparasitic infection of its host, Allomyces macrogynus. Young thalli of A. macrogynus were inoculated with suspensions of R. allomycis zoospores and allowed to develop for 120 h. Infected thalli at intervals were fixed for electron microscopy and observed. Zoospores were attracted to host thalli, encysted on their surfaces, and penetrated their walls with an infection tube. The parasite cyst discharged its protoplast through an infection tube, which invaginated the host plasma membrane. The host plasma membrane then surrounded the parasite protoplast and formed a compartment confining it inside host cytoplasm. The earliest host-parasite interface within host cytoplasm consisted of two membranes, the outer layer the host plasma membrane and the inner layer the parasite plasma membrane. At first a wide space separated the two membranes and no material was observed within this space. Later, as the endoparasite thallus expanded within the compartment, the two membranes became closely appressed. As the endoparasite thallus continued to enlarge, the interface developed into three membrane layers. Thus, host plasma membrane surrounded the parasite protoplast initially without the parasite having to pierce the host plasma membrane for entry. Significantly, host-derived membrane was at the interface throughout development.
Collapse
Affiliation(s)
- Martha J Powell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, USA.
| | - Peter M Letcher
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, USA.
| |
Collapse
|
15
|
Song J, Jung KJ, Yoon SJ, Lee K, Kim B. Polyhexamethyleneguanidine phosphate induces cytotoxicity through disruption of membrane integrity. Toxicology 2019; 414:35-44. [PMID: 30629986 DOI: 10.1016/j.tox.2019.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/17/2018] [Accepted: 01/03/2019] [Indexed: 02/03/2023]
Abstract
Polyhexamethyleneguanidine phosphate (PHMG-P) is a polymeric biocide with a guanidine group. It has multiple positive charges in physiological conditions due to nitrogen atom in the guanidine and this cationic property contributes antimicrobial effect by disrupting cell membranes. To determine whether the cationic nature of PHMG-P results in cytotoxicity in human cell lines, anionic compounds were treated with PHMG-P. The cytotoxic effect was evaluated with ROS production and HMGB1 release into media. To verify the protection effect of anion against PHMG-P-induced cell death in vivo, a zebrafish assay was adopted. In addition, membrane disruption by PHMG-P was evaluated using fluorescein diacetate and propidium iodine staining. As a result, anionic substances such as DNA and poly-l-glutamic acids, decreased PHMG-P induced cell death in a dose-dependent manner. While HMGB1 and ROS production increased with PHMG-P concentration, the addition of anionic compounds with PHMG-P reduced the ROS production and HMGB1 release. The mortality of the zebrafish increased with PHMG-P concentration and co-treatment of anionic compounds with PHMG-P decreased mortality in a dose-dependent manner. In addition, FDA and PI staining confirmed that PHMG-P disrupts plasma membrane. Taken together, a cationic property is considered to be one of the main causes of PHMG-P-induced mammalian cell toxicity.
Collapse
Affiliation(s)
- Jeongah Song
- Animal Disease Research Center, Korea Institute of Toxicology, Jeonbuk 56212, Republic of Korea
| | - Kyung Jin Jung
- Analytical Research Center, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Seok-Joo Yoon
- Systems Toxicology Center, Predictive Toxicology Department, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Research Center, Korea Institute of Toxicology, 30, Baekhak 1-Gil, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea; Human and Environment Toxicology, University of Science and Technology, Daejeon 34114, Republic of Korea.
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, 79, Gobong-ro, Iksan, 54596, Republic of Korea.
| |
Collapse
|
16
|
Cirkel K, Caliskan N, Rebel‐Bauder B, Courtin F. Kitten in the Netherlands with encephalitozoonosis: histopathology, PCR and immunohistochemistry. VETERINARY RECORD CASE REPORTS 2017. [DOI: 10.1136/vetreccr-2017-000519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Koen Cirkel
- Veterinary Pathology Diagnostic CentreUtrecht UniversityUtrechtThe Netherlands
| | - Nermin Caliskan
- Veterinary Pathology Diagnostic CentreUtrecht UniversityUtrechtThe Netherlands
| | - Barbara Rebel‐Bauder
- Department of PathobiologyInstitute of Pathology and Forensic Veterinary MedicineUniversity of Veterinary MedicineViennaAustria
| | - Francois Courtin
- Veterinary Pathology Diagnostic CentreUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
17
|
Duszyc K, Gomez GA, Schroder K, Sweet MJ, Yap AS. In life there is death: How epithelial tissue barriers are preserved despite the challenge of apoptosis. Tissue Barriers 2017; 5:e1345353. [PMID: 28686526 DOI: 10.1080/21688370.2017.1345353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Apoptosis is a ubiquitous mode of programmed cell death that is found in healthy organs and can be stimulated by many toxic stresses. When it occurs in epithelia, apoptosis presents major challenges to tissue integrity. Apoptotic corpses can promote inflammatory and autoimmune responses if they are retained, and the cellular fragmentation that accompanies apoptosis can potentially compromise the epithelial barrier. Here we discuss 2 homeostatic mechanisms that allow epithelia to circumvent these potential risks: clearance of apoptotic corpses by professional and non-professional phagocytes and physical expulsion of apoptotic cells by apical extrusion. Extrusion and phagocytosis may represent complementary responses that preserve epithelial integrity despite the inevitable challenge of apoptosis.
Collapse
Affiliation(s)
- Kinga Duszyc
- a Division of Cell Biology and Molecular Medicine , Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Brisbane , Queensland , Australia
| | - Guillermo A Gomez
- a Division of Cell Biology and Molecular Medicine , Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Brisbane , Queensland , Australia
| | - Kate Schroder
- a Division of Cell Biology and Molecular Medicine , Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Brisbane , Queensland , Australia.,b Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Brisbane , Queensland , Australia
| | - Matthew J Sweet
- a Division of Cell Biology and Molecular Medicine , Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Brisbane , Queensland , Australia.,b Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Brisbane , Queensland , Australia
| | - Alpha S Yap
- a Division of Cell Biology and Molecular Medicine , Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Brisbane , Queensland , Australia
| |
Collapse
|
18
|
Liu H, Li M, Cai S, He X, Shao Y, Lu X. Ricin-B-lectin enhances microsporidia Nosema bombycis infection in BmN cells from silkworm Bombyx mori. Acta Biochim Biophys Sin (Shanghai) 2016; 48:1050-1057. [PMID: 27649890 DOI: 10.1093/abbs/gmw093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/27/2016] [Indexed: 12/25/2022] Open
Abstract
Nosema bombycis is an obligate intracellular parasitic fungus that utilizes a distinctive mechanism to infect Bombyx mori Spore germination can be used for host cell invasion; however, the detailed mechanism remains to be elucidated. The ricin-B-lectin (RBL) gene is significantly differentially regulated after N. bombycis spore germination, and NbRBL might play roles in spore germination and infection. In this study, the biological function of NbRBL was examined. Protein sequence analysis showed that NbRBL is a secreted protein that attaches to carbohydrates. The relative expression level of the NbRBL gene was low during the first 30 h post-infection (hpi) in BmN cells, and high expression was detected from 42 hpi. Gene cloning, prokaryotic expression, and antibody preparation for NbRBL were performed. NbRBL was detected in total and secreted proteins using western blot analysis. Subcellular localization analysis showed that NbRBL is an intracellular protein. Spore adherence and infection assays showed that NbRBL could enhance spore adhesion to BmN cells; the proliferative activities of BmN cells incubated with anti-NbRBL were higher than those in negative control groups after N. bombycis infection; and the treatment groups showed less damage from spore invasion. We therefore, propose that NbRBL is released during spore germination, enhances spore adhesion to BmN cells, and contributes to spore invasion.
Collapse
Affiliation(s)
- Han Liu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingqian Li
- Cancer Institute of Integrative Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310058, China
| | - Shunfeng Cai
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyi He
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongqi Shao
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xingmeng Lu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Latney LV, Bradley CW, Wyre NR. Encephalitozoon cuniculi in pet rabbits: diagnosis and optimal management. VETERINARY MEDICINE-RESEARCH AND REPORTS 2014; 5:169-180. [PMID: 32670857 PMCID: PMC7337189 DOI: 10.2147/vmrr.s49842] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/23/2014] [Indexed: 11/23/2022]
Abstract
Encephalitozoonosis is a significant microsporidial disease of captive pet rabbits (Oryctolagus cuniculus). This article overviews the life cycle, pathogenesis, and host immune response to the parasite. Clinical presentation, differential diagnoses, antemortem diagnostics, and postmortem diagnosis will be discussed. International seroprevalence data and histologic prevalence estimates in the US are presented. A review of current treatment and control recommendations are discussed based on extensive review of controlled studies, which have found fenbendazole to be effective for limiting spread of the disease.
Collapse
Affiliation(s)
| | - Charles W Bradley
- Departments of Pathobiology, Matthew J Ryan Veterinary Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
20
|
Sanders JL, Peterson TS, Kent ML. Early development and tissue distribution of Pseudoloma neurophilia in the zebrafish, Danio rerio. J Eukaryot Microbiol 2014; 61:238-46. [PMID: 24411000 DOI: 10.1111/jeu.12101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/11/2013] [Accepted: 12/17/2013] [Indexed: 11/30/2022]
Abstract
The early proliferative stages of the microsporidian parasite, Pseudoloma neurophilia were visualized in larval zebrafish, Danio rerio, using histological sections with a combination of an in situ hybridization probe specific to the P. neurophilia small-subunit ribosomal RNA gene, standard hematoxylin-eosin stain, and the Luna stain to visualize spores. Beginning at 5 d post fertilization, fish were exposed to P. neurophilia and examined at 12, 24, 36, 48, 72, 96, and 120 h post exposure (hpe). At 12 hpe, intact spores in the intestinal lumen and proliferative stages developing in the epithelial cells of the anterior intestine and the pharynx and within hepatocytes were observed. Proliferative stages were visualized in the pancreas and kidney at 36-48 hpe and in the spinal cord, eye, and skeletal muscle beginning at 72 hpe. The first spore stages of P. neurophilia were observed at 96 hpe in the pharyngeal epithelium, liver, spinal cord, and skeletal muscle. The parasite was only observed in the brain of larval fish at 120 hpe. The distribution of the early stages of P. neurophilia and the lack of mature spores until 96 hpe indicates that the parasite gains access to organs distant from the initial site of entry, likely by penetrating the intestinal wall with the polar tube.
Collapse
Affiliation(s)
- Justin L Sanders
- Department of Microbiology, Oregon State University, Corvallis, Oregon, 97331
| | | | | |
Collapse
|
21
|
Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol Ther 2013; 21:1118-30. [PMID: 23587924 DOI: 10.1038/mt.2013.54] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The ideal nonviral vector delivers its nucleic acid cargo to a specific intracellular target. Vectors enter cells mainly through endocytosis and are distributed to various intracellular organelles. Recent advances in microscopy, lipidomics, and proteomics confirm that the cell membrane is composed of clusters of lipids, organized in the form of lipid raft domains, together with non-raft domains that comprise a generally disordered lipid milieu. The binding of a nonviral vector to either region can determine the pathway for its endocytic uptake and subsequent intracellular itinerary. Given this model of the cell membrane structure, endocytic pathways should be reclassified in relation to lipid rafts. In this review, we attempt to assess the currently recognized endocytic pathways in mammalian cells. The endocytic pathways are classified in relation to the membrane regions that make up the primary endocytic vesicles. This review covers the well-recognized clathrin-mediated endocytosis (CME), phagocytosis, and macropinocytosis in addition to the less addressed pathways that take place in lipid rafts. These include caveolae-mediated, flotillin-dependent, GTPase regulator associated with focal adhesion kinase-1 (GRAF1)-dependent, adenosine diphosphate-ribosylation factor 6 (Arf6)-dependent, and RhoA-dependent endocytic pathways. We summarize the regulators associated with each uptake pathway and methods for interfering with these regulators are discussed. The fate of endocytic vesicles resulting from each endocytic uptake pathway is highlighted.
Collapse
|
22
|
Zhu F, Shen Z, Hou J, Zhang J, Geng T, Tang X, Xu L, Guo X. Identification of a protein interacting with the spore wall protein SWP26 of Nosema bombycis in a cultured BmN cell line of silkworm. INFECTION GENETICS AND EVOLUTION 2013; 17:38-45. [PMID: 23542093 DOI: 10.1016/j.meegid.2013.03.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 03/09/2013] [Accepted: 03/12/2013] [Indexed: 01/02/2023]
Abstract
Nosema bombycis is a silkworm parasite that causes severe economic damage to sericulture worldwide. It is the first microsporidia to be described in the literature, and to date, very little molecular information is available regarding microsporidian physiology and their relationships with their hosts. Therefore, the interaction between the microsporidia N. bombycis and its host silkworm, Bombyx mori, was analyzed in this study. The microsporidian spore wall proteins (SWPs) play a specific role in spore adherence to host cells and recognition by the host during invasion. In this study, SWP26 fused with enhanced green fluorescence protein (EGFP) was expressed in BmN cells by using a Bac-to-Bac expression system. Subsequently, the turtle-like protein of B. mori (BmTLP) was determined to interact with SWP26 via the use of anti-EGFP microbeads. This interaction was then confirmed by yeast two-hybrid analysis. The BmTLP cDNA encodes a polypeptide of 447 amino acids that includes a putative signal peptide of 27 amino acid residues. In addition, the BmTLP protein contains 2 immunoglobulin (IG) domains and 2 IGc2-type domains, which is the typical domain structure of IG proteins. The results of this study indicated that SWP26 interacts with the IG-like protein BmTLP, which contributes to the infectivity of N. bombycis to its host silkworm.
Collapse
Affiliation(s)
- Feng Zhu
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
References. Parasitology 2012. [DOI: 10.1002/9781119968986.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Ghosh K, Weiss LM. T cell response and persistence of the microsporidia. FEMS Microbiol Rev 2011; 36:748-60. [PMID: 22126330 DOI: 10.1111/j.1574-6976.2011.00318.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/28/2011] [Accepted: 11/08/2011] [Indexed: 11/28/2022] Open
Abstract
The microsporidia are a diverse phylum of obligate intracellular parasites related to the fungi that cause significant and sometimes life-threatening disease in immune-compromised hosts, such as AIDS and organ transplant patients. More recently, their role in causing pathology in immune-competent populations has also been appreciated. Interestingly, in several instances, the microsporidia have been shown to persist in their hosts long term, causing at opposite ends of the spectrum either an intractable chronic diarrhea and wasting in patients with advanced-stage AIDS or asymptomatic shedding of spores in healthy populations. Much remains to be studied regarding the immune response to these pathogens, but it seems clear that CD8+ T cells are essential in clearing infection. However, in the infection models examined thus far, the role for CD4+ T cells is unclear at best. Here, we discuss the possible reasons and ramifications of what may be a weak primary CD4+ T cell response against Encephalitozoon cuniculi. Given the central role of the CD4+ T cell in other models of adaptive immunity, a better appreciation of its role in responding to microsporidia may provide insight into the survival strategies of these pathogens, which allow them to persist in hosts of varied immune status.
Collapse
Affiliation(s)
- Kaya Ghosh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
25
|
Valencakova A, Halanova M. Immune response to Encephalitozoon infection review. Comp Immunol Microbiol Infect Dis 2011; 35:1-7. [PMID: 22172576 DOI: 10.1016/j.cimid.2011.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 11/14/2011] [Accepted: 11/16/2011] [Indexed: 11/18/2022]
Abstract
The microsporidia are emerging agents of infectious disease in both immunocompromised and immunocompetent mammals. Recently, there has been an increased interest in studying the immunobiology of microsporidiosis. This paper discusses the humoral and cell-mediated immune responses to Encephalitozoon spp. The T-cell-mediated responses appear to be most important in conferring resistance. This has become evident by the lethal effects of microsporidiosis in T-cell-deficient hosts. However, much still needs to be learned about the immunobiology of microsporidiosis regarding the specific T-cell responses and the cytokines that provide protective immunity and facilitate the macrophage-mediated killing of microsporidia. Such information will become important in developing immunotherapeutic strategies to control microsporidiosis in the future.
Collapse
Affiliation(s)
- Alexandra Valencakova
- Department of Biology and Genetics, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic.
| | | |
Collapse
|
26
|
Abstract
Intracellular parasitism has arisen only a few times during the long ancestry of protozoan parasites including in diverse groups such as microsporidians, kinetoplastids, and apicomplexans. Strategies used to gain entry differ widely from injection (e.g. microsporidians), active penetration of the host cell (e.g. Toxoplasma), recruitment of lysosomes to a plasma membrane wound (e.g. Trypanosoma cruzi), to host cell-mediated phagocytosis (e.g. Leishmania). The resulting range of intracellular niches is equally diverse ranging from cytosolic (e.g. T. cruzi) to residing within a non-fusigenic vacuole (e.g. Toxoplasma, Encephalitozoon) or a modified phagolysosome (e.g. Leishmania). These lifestyle choices influence access to nutrients, interaction with host cell signaling pathways, and detection by pathogen recognition systems. As such, intracellular life requires a repertoire of adaptations to assure entry-exit from the cell, as well as to thwart innate immune mechanisms and prevent clearance. Elucidating these pathways at the cellular and molecular level may identify key steps that can be targeted to reduce parasite survival or augment immunologic responses and thereby prevent disease.
Collapse
Affiliation(s)
- L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63100, USA.
| |
Collapse
|
27
|
Bohne W, Böttcher K, Groß U. The parasitophorous vacuole of Encephalitozoon cuniculi: Biogenesis and characteristics of the host cell–pathogen interface. Int J Med Microbiol 2011; 301:395-9. [DOI: 10.1016/j.ijmm.2011.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
28
|
Kohl Y, Kaiser C, Bost W, Stracke F, Fournelle M, Wischke C, Thielecke H, Lendlein A, Kratz K, Lemor R. Preparation and biological evaluation of multifunctional PLGA-nanoparticles designed for photoacoustic imaging. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 7:228-37. [DOI: 10.1016/j.nano.2010.07.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/07/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
|
29
|
Bouzahzah B, Weiss LM. Glycosylation of the major polar tube protein of Encephalitozoon cuniculi. Parasitol Res 2010; 107:761-4. [PMID: 20556427 DOI: 10.1007/s00436-010-1950-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
Abstract
To infect their host cells the Microsporidia use a unique invasion organelle, the polar tube complex. During infection, the organism is injected into the host cell through the hollow polar tube formed during spore germination. Currently, three proteins, PTP1, PTP2, and PTP3 have been identified by immunological and molecular techniques as being components of this structure. Genomic data suggests that Microsporidia are capable of O-linked, but not N-linked glycosylation as a post-translational protein modification. Cells were infected with Encephalitozoon cunicuili, labeled with radioactive mannose or glucosamine, and the polar tube proteins were examined for glycosylation. PTP1 was clearly demonstrated to be mannosylated consistent with 0-glycosylation. In addition, it was evident that several other proteins were mannosylated, but no labeling was seen with glucosamine. The observed post-translational mannosylation of PTP1 may be involved in the functional properties of the polar tube, including its adherence to host cells during penetration.
Collapse
Affiliation(s)
- Boumediene Bouzahzah
- Department of Pathology, Division of Parasitology and Tropical Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
30
|
Orlik J, Böttcher K, Gross U, Bohne W. Germination of phagocytosed E. cuniculi spores does not significantly contribute to parasitophorous vacuole formation in J774 cells. Parasitol Res 2010; 106:753-5. [PMID: 20107836 PMCID: PMC2815800 DOI: 10.1007/s00436-010-1736-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 01/04/2010] [Indexed: 01/28/2023]
Abstract
The obligate intracellular microsporidia have developed a unique invasion mechanism to infect their host cells. Spores explosively evert a tube-like structure and extrude the infectious spore content through this organelle into the host cell. Spores from species of the genus Encephalitozoon were also shown to be efficiently internalized by phagocytosis, which led to the hypothesis that spore germination from inside a phagosome might contribute to the infection process. Here, we challenge this hypothesis by quantifying Encephalitozoon cuniculi infection rates of J774 cells that were incubated with the phagocytosis inhibitor cytochalasin D. We demonstrate that the invasion rate in cytochalasin D-treated cells is identical to untreated controls, although phagocytic uptake of E. cuniculi spores was less than 10% of control samples. This study suggests that germination of phagocytosed spores is not a significant infection mode for E. cuniculi.
Collapse
Affiliation(s)
- Johanna Orlik
- Institute of Medical Microbiology, University of Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany
| | | | | | | |
Collapse
|
31
|
Urch JE, Hurtado-Guerrero R, Brosson D, Liu Z, Eijsink VGH, Texier C, van Aalten DMF. Structural and functional characterization of a putative polysaccharide deacetylase of the human parasite Encephalitozoon cuniculi. Protein Sci 2009; 18:1197-209. [PMID: 19472335 DOI: 10.1002/pro.128] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The microsporidian Encephalitozoon cuniculi is an intracellular eukaryotic parasite considered to be an emerging opportunistic human pathogen. The infectious stage of this parasite is a unicellular spore that is surrounded by a chitin containing endospore layer and an external proteinaceous exospore. A putative chitin deacetylase (ECU11_0510) localizes to the interface between the plasma membrane and the endospore. Chitin deacetylases are family 4 carbohydrate esterases in the CAZY classification, and several bacterial members of this family are involved in evading lysis by host glycosidases, through partial de-N-acetylation of cell wall peptidoglycan. Similarly, ECU11_0510 could be important for E. cuniculi survival in the host, by protecting the chitin layer from hydrolysis by human chitinases. Here, we describe the biochemical, structural, and glycan binding properties of the protein. Enzymatic analyses showed that the putative deacetylase is unable to deacetylate chitooligosaccharides or crystalline beta-chitin. Furthermore, carbohydrate microarray analysis revealed that the protein bound neither chitooligosaccharides nor any of a wide range of other glycans or chitin. The high resolution crystal structure revealed dramatic rearrangements in the positions of catalytic and substrate binding residues, which explain the loss of deacetylase activity, adding to the unusual structural plasticity observed in other members of this esterase family. Thus, it appears that the ECU11_0510 protein is not a carbohydrate deacetylase and may fulfill an as yet undiscovered role in the E. cuniculi parasite.
Collapse
Affiliation(s)
- Jonathan E Urch
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, Scotland
| | | | | | | | | | | | | |
Collapse
|
32
|
Mathews A, Hotard A, Hale-Donze H. Innate immune responses to Encephalitozoon species infections. Microbes Infect 2009; 11:905-11. [PMID: 19573618 DOI: 10.1016/j.micinf.2009.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 06/23/2009] [Indexed: 11/29/2022]
Abstract
Microsporidia are obligate intracellular, eukaryotic fungi, which have gained recognition as opportunistic parasites in immunocompromised patients. Resistance to lethal microsporidia infections requires a Th1 immune response; how this protection is initiated against Encephalitozoon species is the focus of this review article.
Collapse
Affiliation(s)
- Amber Mathews
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences, Baton Rouge, LA 70803-1715, USA
| | | | | |
Collapse
|
33
|
Monaghan SR, Kent ML, Watral VG, Kaufman RJ, Lee LEJ, Bols NC. Animal cell cultures in microsporidial research: their general roles and their specific use for fish microsporidia. In Vitro Cell Dev Biol Anim 2009; 45:135-47. [PMID: 19184249 PMCID: PMC4760642 DOI: 10.1007/s11626-008-9172-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 12/20/2008] [Indexed: 10/21/2022]
Abstract
The use of animal cell cultures as tools for studying the microsporidia of insects and mammals is briefly reviewed, along with an in depth review of the literature on using fish cell cultures to study the microsporidia of fish. Fish cell cultures have been used less often but have had some success. Very short-term primary cultures have been used to show how microsporidia spores can modulate the activities of phagocytes. The most successful microsporidia/fish cell culture system has been relatively long-term primary cultures of salmonid leukocytes for culturing Nucleospora salmonis. Surprisingly, this system can also support the development of Enterocytozoon bienusi, which is of mammalian origin. Some modest success has been achieved in growing Pseudoloma neurophilia on several different fish cell lines. The eel cell line, EP-1, appears to be the only published example of any fish cell line being permanently infected with microsporidia, in this case Heterosporis anguillarum. These cell culture approaches promise to be valuable in understanding and treating microsporidia infections in fish, which are increasingly of economic importance.
Collapse
Affiliation(s)
- S Richelle Monaghan
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
SUMMARY Clinical isolates from 3 microsporidia species, Encephalitozoon intestinalis and Encephalitozoon hellem, and the insect parasite Anncaliia (Brachiola, Nosema) algerae, were used in spore germination and enterocyte-like (C2Bbe1) cell infection assays to determine the effect of a panel of antimicrobial peptides. Spores were incubated with lactoferrin (Lf), lysozyme (Lz), and human beta defensin 2 (HBD2), human alpha defensin 5 (HD5), and human alpha defensin 1 (HNP1), alone and in combination with Lz, prior to germination. Of the Encephalitozoon species only E. hellem spore germination was inhibited by HNP1, while A. algerae spore germination was inhibited by Lf, HBD2, HD5 and HNP1, although HBD2 and HD5 inhibition required the presence of Lz. The effects of HBD2 and HD5 on microsporidia enterocyte infection paralleled their effects on spore germination. Lysozyme alone only inhibited infection with A. algerae, while Lf inhibited infection by E. intestinalis and A. algerae. HNP1 significantly reduced enterocyte infection by all 3 parasite species and a combination of Lf, Lz and HNP1 caused a further reduced infection with A. algerae. These data suggest that intestinal antimicrobial peptides contribute to the defence of the intestine against infection by luminal microsporidia spores and may partially determine which parasite species infects the intestine.
Collapse
|
35
|
Effects of host temperature and gastric and duodenal environments on microsporidia spore germination and infectivity of intestinal epithelial cells. Parasitol Res 2008; 104:35-42. [PMID: 18751726 DOI: 10.1007/s00436-008-1156-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
Abstract
Approximately 14 of the more than 1,000 species of microsporidia infect humans, only two of which, Enterocytozoon bieneusi and Encephalitozoon intestinalis, cause intestinal microsporidiosis. Clinical isolates of three microsporidia species, E. intestinalis, Encephalitozoon hellem, and the insect parasite, Anncaliia (Brachiola, Nosema) algerae were used in a spore germination assay, and enterocyte attachment and infection assays were performed to model the potential roles of gastric and duodenal environments and host temperature in determining why only one of these microsporidia species causes intestinal microsporidiosis. Enterocyte infection with A. algerae spores was 10% that of the Encephalitozoon species, a difference not attributable to differences in spore attachment to host cells. Prior spore treatment with pepsin in HCl, pancreatic enzymes, or ox bile did not inhibit germination or enterocyte infection by the three microsporidia species. While the Encephalitozoon species differentiated to mature spores within 3 days, the time taken for many enterocytes to turn over, A. algerae took 3-5 days to produce mature spores, near the upper limit for enterocyte turnover in vivo. Thus, host temperature may contribute to A. algerae not causing human intestinal microsporidiosis, but none of the factors tested account for the inability of E. hellem to cause such an infection.
Collapse
|
36
|
Wu Z, Li Y, Pan G, Tan X, Hu J, Zhou Z, Xiang Z. Proteomic analysis of spore wall proteins and identification of two spore wall proteins from Nosema bombycis (Microsporidia). Proteomics 2008; 8:2447-61. [DOI: 10.1002/pmic.200700584] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Fischer J, Tran D, Juneau R, Hale-Donze H. Kinetics of Encephalitozoon Spp. Infection of Human Macrophages. J Parasitol 2008; 94:169-75. [DOI: 10.1645/ge-1303.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
38
|
Affiliation(s)
- Frédéric Delbac
- Equipe Parasitologie Moléculaire et Cellulaire, LBP, UMR CNRS 6023, Université Blaise Pascal, 24 Avenue des Landais 63177 Aubière, France.
| | | |
Collapse
|
39
|
Southern TR, Jolly CE, Lester ME, Hayman JR. EnP1, a microsporidian spore wall protein that enables spores to adhere to and infect host cells in vitro. EUKARYOTIC CELL 2007; 6:1354-62. [PMID: 17557882 PMCID: PMC1951136 DOI: 10.1128/ec.00113-07] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microsporidia are spore-forming fungal pathogens that require the intracellular environment of host cells for propagation. We have shown that spores of the genus Encephalitozoon adhere to host cell surface glycosaminoglycans (GAGs) in vitro and that this adherence serves to modulate the infection process. In this study, a spore wall protein (EnP1; Encephalitozoon cuniculi ECU01_0820) from E. cuniculi and Encephalitozoon intestinalis is found to interact with the host cell surface. Analysis of the amino acid sequence reveals multiple heparin-binding motifs, which are known to interact with extracellular matrices. Both recombinant EnP1 protein and purified EnP1 antibody inhibit spore adherence, resulting in decreased host cell infection. Furthermore, when the N-terminal heparin-binding motif is deleted by site-directed mutagenesis, inhibition of adherence is ablated. Our transmission immunoelectron microscopy reveals that EnP1 is embedded in the microsporidial endospore and exospore and is found in high abundance in the polar sac/anchoring disk region, an area from which the everting polar tube is released. Finally, by using a host cell binding assay, EnP1 is shown to bind host cell surfaces but not to those that lack surface GAGs. Collectively, these data show that given its expression in both the endospore and the exospore, EnP1 is a microsporidian cell wall protein that may function both in a structural capacity and in modulating in vitro host cell adherence and infection.
Collapse
Affiliation(s)
- Timothy R Southern
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, P.O. Box 70579, Johnson City, TN 37614, USA
| | | | | | | |
Collapse
|
40
|
Wang JY, Chambon C, Lu CD, Huang KW, Vivarès CP, Texier C. A proteomic-based approach for the characterization of some major structural proteins involved in host–parasite relationships from the silkworm parasiteNosema bombycis (Microsporidia). Proteomics 2007; 7:1461-72. [PMID: 17407187 DOI: 10.1002/pmic.200600825] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nosema bombycis is the causative agent of the silkworm Bombyx mori pebrine disease which inflicts severe worldwide economical losses in sericulture. Little is known about host-parasite interactions at the molecular level for this spore-forming obligate intracellular parasite which belongs to the fungi-related Microsporidia phylum. Major microsporidian structural proteins from the spore wall (SW) and the polar tube (PT) are known to be involved in host invasion. We developed a proteomic-based approach to identify few N. bombycis proteins belonging to these cell structures. Protein extraction protocols were optimized and four N. bombycis spore protein extracts were compared by SDS-PAGE and 2-DE to establish complementary proteomic profiles. Three proteins were shown to be located at the parasite SW. Moreover, 17 polyclonal antibodies were raised against major N. bombycis proteins from all extracts, and three spots were shown to correspond to polar tube proteins (PTPs) by immunofluorescent assay and transmission electron microscopy immunocytochemistry on cryosections. Specific patterns for each PTP were obtained by MALDI-TOF-MS and MS/MS. Peptide sequence tags were deduced by de novo sequencing using Peaks Online and DeNovoX, then evaluated by MASCOT and SEQUEST searches. Identification parameters were higher than false-positive hits, strengthening our strategy that could be enlarged to a nongenomic context.
Collapse
Affiliation(s)
- Jian-Yang Wang
- Equipe Parasitologie Moléculaire et Cellulaire, LBP, UMR CNRS 6023, Université Blaise Pascal, Aubière, France
| | | | | | | | | | | |
Collapse
|
41
|
Franzen C, Hösl M, Salzberger B, Hartmann P. Uptake of Encephalitozoon spp. and Vittaforma corneae (Microsporidia) by different cells. J Parasitol 2006; 91:745-9. [PMID: 17089738 DOI: 10.1645/ge-468r.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Microsporidia are obligate intracellular parasites infecting a broad range of vertebrates and invertebrates. Various microsporidian species induce different clinical pictures in humans. The reason for this is not clear. It has been speculated that the different microsporidian species are transmitted by various routes, thus causing infections in different organs. Another possibility is that the diverse microsporidia have different tropisms to organ-specific cells, thus causing various diseases. In this study, we investigated the uptake of microsporidian spores by different cells with an immunofluorescence staining technique to investigate whether there is a difference between microsporidian species as well as between different cells. Using this technique, we were able to distinguish between intra- and extracellular microsporidian spores. All examined cell lines were able to internalize microsporidian spores, but the extent of internalization differed significantly between the cells. Although the results showed some patterns that correlate with the distribution of the parasites in humans, the different clinical pictures cannot be sufficiently explained by this phenomenon, so it seems more likely that the various clinical manifestations caused by the different microsporidian species are a consequence of different infection routes rather than of different affinities of the microsporidian species to different cells.
Collapse
Affiliation(s)
- Caspar Franzen
- Department of Internal Medicine I, University of Regensburg, 93042 Regensburg, Germany.
| | | | | | | |
Collapse
|
42
|
Lallo MA, Bondan EF. Experimental meningoencephalomyelitis by Encephalitozoon cuniculi in cyclophosphamide-immunosuppressed mice. ARQUIVOS DE NEURO-PSIQUIATRIA 2006; 63:246-51. [PMID: 16100970 DOI: 10.1590/s0004-282x2005000200010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Encephalitozoonosis is an increasingly important opportunistic protozoan infection in immunocompromised individuals. This study aims to examine the development of an experimental Encephalitozoon cuniculi infection in the central nervous system of immunosuppressed mice. Adult Balb-C mice were inoculated intraperitoneally with E. cuniculi spores, treated with cyclophosphamide during the experimental period and killed from 15 to 75 days post-inoculation. Tissue samples were collected and processed for light and transmission electron microscopy investigation. Multifocal granulomas were seen in all organs. A lymphocytic, diffuse, non-suppurative menigoencephalomyelitis was observed, with neuronal degeneration and necrosis, macrophagic infiltration and reactive astrocytosis. E. cuniculi spores were seen in the microgranulomas or occurred unassociated with inflammatory reaction. The parasites were rarely seen in Hematoxylin-Eosin stained sections, but were Gram-Chromotrope positive. Proliferative forms and spores were found in parasitophorous vacuoles within neural cells and macrophages. Experimental encephalitozoonosis in immunosuppressed mice provides an useful model for the study of brain lesions associated with these protozoans in man.
Collapse
Affiliation(s)
- Maria Anete Lallo
- Veterinary Immunopathology Laboratory, Paulista University (UNIP), São Paulo SP, Brazil
| | | |
Collapse
|
43
|
Leitch GJ, Ward TL, Shaw AP, Newman G. Apical spore phagocytosis is not a significant route of infection of differentiated enterocytes by Encephalitozoon intestinalis. Infect Immun 2005; 73:7697-704. [PMID: 16239574 PMCID: PMC1273909 DOI: 10.1128/iai.73.11.7697-7704.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Encephalitozoon intestinalis is a microsporidian species that infects the intestinal mucosal epithelium, primarily in immunodeficient individuals. The present study employed undifferentiated and differentiated human colonic carcinoma cell lines to determine if this parasite species infected polarized epithelial cells by spore phagocytosis or by impalement with the deployed spore polar tube. Apical surface spore attachment differed between cell lines such that SW480>HT-29>Caco-2>HCT-8, with attachment being greater to undifferentiated Caco-2 cells than differentiated cells and greater to partially differentiated HCT-8 cells than differentiated HCT-8 cells. Attachment was inhibited by chondroitin sulfate A, suggesting that it was mediated by host cell sulfated glycoaminoglycans. Infection rates 3 days postinfection paralleled spore attachment in the various cell lines. The undifferentiated cell line SW480 and undifferentiated Caco-2 and HCT-8 cells exhibited modest spore phagocytosis while the more differentiated cell line HT29 and differentiated Caco-2 and HCT-8 cells did not. All cell lines were impaled by the polar tubes of germinating spores. When normalized to the number of spores attached to the apical membrane, such impalement was greatest in the more differentiated Caco-2 and HCT-8 cells. The host cell apical surface influenced parasite spore germination, as in populations of large undifferentiated Caco-2 cells to which >3 spores had attached, the frequency distribution of the percentages of spores germinated per cell was bimodal, indicating that the surface of some cells favored germination, while others did not. This study suggests that phagocytosis is not a biologically significant mode of infection in differentiated intestinal epithelial cells.
Collapse
Affiliation(s)
- Gordon J Leitch
- Department of Physiology, Morehouse School of Medicine, 720 Westview Dr., Atlanta, GA 30310, USA.
| | | | | | | |
Collapse
|
44
|
Abstract
Microsporidia are obligate intracellular eukaryotic parasites that utilize a unique mechanism to infect host cells. One of the main characteristics of all microsporidia is that they produce spores containing an extrusion apparatus that consists of a coiled polar tube ending in an anchoring disc at the apical part of the spore. With appropriate conditions inside a suitable host, the polar tube is discharged through the thin anterior end of the spore, thereby penetrating a new host cell for inoculating the infective sporoplasm into the new host cell. This method of invading new host cells is one of the most sophisticated infection mechanisms in biology and ensures that the microsporidia enter the host cell unrecognized and protected from the host defence reactions. Recent studies have shown that microsporidia gain access to host cells by phagocytosis as well. However, after phagocytosis, the special infection mechanism of the microsporidia is used to escape from the maturing phagosomes and to infect the cytoplasm of the cells. Gaining access to cells by endocytosis, and escaping destruction in the phago-/endo-/lysosome by egressing quickly from the phagocytic vacuole to multiply outside the lysosome, is a common phenomenon in biology that has been evolved several times during evolution. How this is put into execution by the microsporidia is an inimitable principle by which an obligate intracellular organism has managed this problem. The extrusion apparatus of the microsporidia has obviously ensured the success of this phylum during evolution, resulting in a group of obligate intracellular organisms, capable of infecting almost any type of host and cell.
Collapse
Affiliation(s)
- Caspar Franzen
- Department of Internal Medicine I, University of Regensburg, 93042 Regensburg, Germany.
| |
Collapse
|
45
|
Takvorian PM, Weiss LM, Cali A. The early events of Brachiola algerae (Microsporidia) infection: spore germination, sporoplasm structure, and development within host cells. Folia Parasitol (Praha) 2005; 52:118-29. [PMID: 16004371 DOI: 10.14411/fp.2005.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Brachiola algerae (Vavra et Undeen, 1970) Lowman, Takvorian et Cali, 2000, originally isolated from a mosquito, has been maintained in rabbit kidney cells at 29 degrees C in our laboratory. This culture system has made it possible to study detailed aspects of its development, including spore activation, polar tube extrusion, and the transfer of the infective sporoplasm. Employing techniques to ultrastructurally process and observe parasite activity in situ without disturbance of the cultures has provided details of the early developmental activities of B. algerae during timed intervals ranging from 5 min to 48 h. Activated and nonactivated spores could be differentiated by morphological changes including the position and arrangement of the polar filament and its internal structure. The majority of spores extruded polar tubes and associated sporoplasms within 5 min post inoculation (p.i.). The multilayered interlaced network (MIN) was present in extracellular sporoplasms and appeared morphologically similar to those observed in germination buffer. Sporoplasms, observed inside host cells were ovoid, contained diplokaryotic nuclei, vesicles reminiscent of the MIN remnants, and their plasmalemma was already electron-dense with the "blister-like" structures, typical of B. algerae. By 15 min p.i., the first indication of parasite cell commitment to division was the presence of chromatin condensation within the diplokaryotic nuclei, cytoplasmic vesicular remnants of the MIN were still present in some parasites, and early signs of appendage formation were present. At 30 min p.i., cell division was observed, appendages became more apparent, and some MIN remnants were still present. By two hours p.i., the appendages became more elaborate and branching, and often connected parasite cells to each other. In addition to multiplication of the organisms, changes in parasite morphology from small oval cells to larger elongated "more typical" parasite cells were observed from 5 h through 36 h p.i. Multiplication of proliferative organisms continued and sporogony was well underway by 48 h p.i., producing sporonts and sporoblasts, but not spores. The observation of early or new infections in cell cultures 12-48 h p.i., suggests that there may also exist a population of spores that do not immediately discharge, but remain viable for some period of time. In addition, phagocytized spores were observed with extruded polar tubes in both the host cytoplasm and the extracellular space, suggesting another means of sporoplasm survival. Finally, extracellular discharged sporoplasms tightly abutted to the host plasmalemma, appeared to be in the process of being incorporated into the host cytoplasm by phagocytosis and/or endocytosis. These observations support the possibility of additional methods of microsporidian entry into host cells and will be discussed.
Collapse
Affiliation(s)
- Peter M Takvorian
- Department of Biologic Sciences, Rutgers University, Newark, New Jersey 07102, USA.
| | | | | |
Collapse
|
46
|
Xu Y, Weiss LM. The microsporidian polar tube: a highly specialised invasion organelle. Int J Parasitol 2005; 35:941-53. [PMID: 16005007 PMCID: PMC3109658 DOI: 10.1016/j.ijpara.2005.04.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 03/28/2005] [Accepted: 04/05/2005] [Indexed: 11/30/2022]
Abstract
All of the members of the Microsporidia possess a unique, highly specialised structure, the polar tube. This article reviews the available data on the organisation, structure and function of this invasion organelle. It was over 100 years ago that Thelohan accurately described the microsporidian polar tube and the triggering of its discharge. In the spore, the polar tube is connected at the anterior end, and then coils around the sporoplasm. Upon appropriate environmental stimulation the polar tube rapidly discharges out of the spore pierces a cell membrane and serves as a conduit for sporoplasm passage into the new host cell. The mechanism of germination of spores, however, remains to be definitively determined. In addition, further studies on the characterisation of the early events in the rupture of the anterior attachment complex, eversion of the polar tube as well as the mechanism of host cell attachment and penetration are needed in order to clarify the function and assembly of this structure. The application of immunological and molecular techniques has resulted in the identification of three polar tube proteins referred to as PTP1, PTP2 and PTP3. The interactions of these identified proteins in the formation and function of the polar tube remain to be determined. Data suggest that PTP1 is an O-mannosylated glycoprotein, a post-translational modification that may be important for its function. With the availability of the Encephalitozoon cuniculi genome it is now possible to apply proteomic techniques to the characterisation of the components of the microsporidian spore and invasion organelle.
Collapse
Affiliation(s)
- Yanji Xu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Room 504 Forchheimer Building, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
47
|
Abstract
Microsporidia are long-known parasitic organisms of almost every animal group, including invertebrates and vertebrates. Microsporidia emerged as important opportunistic pathogens in humans when AIDS became pandemic and, more recently, have also increasingly been detected in otherwise immunocompromised patients, including organ transplant recipients, and in immunocompetent persons with corneal infection or diarrhea. Two species causing rare infections in humans, Encephalitozoon cuniculi and Brachiola vesicularum, had previously been described from animal hosts (vertebrates and insects, respectively). However, several new microsporidial species, including Enterocytozoon bieneusi, the most prevalent human microsporidian causing human immunodeficiency virus-associated diarrhea, have been discovered in humans, raising the question of their natural origin. Vertebrate hosts are now identified for all four major microsporidial species infecting humans (E. bieneusi and the three Encephalitozoon spp.), implying a zoonotic nature of these parasites. Molecular studies have identified phenotypic and/or genetic variability within these species, indicating that they are not uniform, and have allowed the question of their zoonotic potential to be addressed. The focus of this review is the zoonotic potential of the various microsporidia and a brief update on other microsporidia which have no known host or an invertebrate host and which cause rare infections in humans.
Collapse
Affiliation(s)
- Alexander Mathis
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
48
|
Fasshauer V, Gross U, Bohne W. The parasitophorous vacuole membrane of Encephalitozoon cuniculi lacks host cell membrane proteins immediately after invasion. EUKARYOTIC CELL 2005; 4:221-4. [PMID: 15643077 PMCID: PMC544160 DOI: 10.1128/ec.4.1.221-224.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microsporidia of the genus Encephalitozoon develop inside a parasitophorous vacuole (PV) of unknown origin. Using colocalization studies, the PV was found to be absent from the endocytic pathway markers early endosomal autoantigen 1, transferrin receptor, and lysosome-associated membrane protein 1 and for the endoplasmic reticulum marker calnexin. The nonfusiogenic characteristic of the PV appears to be acquired as early as 1 min postinfection and is not reversed by drug treatment with albendazole or fumagillin.
Collapse
Affiliation(s)
- Verena Fasshauer
- Institute of Medical Microbiology, University of Göttingen, Göttingen, Germany
| | | | | |
Collapse
|
49
|
Hayman JR, Southern TR, Nash TE. Role of sulfated glycans in adherence of the microsporidian Encephalitozoon intestinalis to host cells in vitro. Infect Immun 2005; 73:841-8. [PMID: 15664924 PMCID: PMC546933 DOI: 10.1128/iai.73.2.841-848.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microsporidia are obligate intracellular opportunistic protists that infect a wide variety of animals, including humans, via environmentally resistant spores. Infection requires that spores be in close proximity to host cells so that the hollow polar tube can pierce the cell membrane and inject the spore contents into the cell cytoplasm. Like other eukaryotic microbes, microsporidia may use specific mechanisms for adherence in order to achieve target cell proximity and increase the likelihood of successful infection. Our data show that Encephalitozoon intestinalis exploits sulfated glycans such as the cell surface glycosaminoglycans (GAGs) in selection of and attachment to host cells. When exogenous sulfated glycans are used as inhibitors in spore adherence assays, E. intestinalis spore adherence is reduced by as much as 88%. However, there is no inhibition when nonsulfated glycans are used, suggesting that E. intestinalis spores utilize sulfated host cell glycans in adherence. These studies were confirmed by exposure of host cells to xylopyranoside, which limits host cell surface GAGs, and sodium chlorate, which decreases surface sulfation. Spore adherence studies with CHO mutant cell lines that are deficient in either surface GAGs or surface heparan sulfate also confirmed the necessity of sulfated glycans. Furthermore, when spore adherence is inhibited, host cell infection is reduced, indicating a direct association between spore adherence and infectivity. These data show that E. intestinalis specifically adheres to target cells by way of sulfated host cell surface GAGs and that this mechanism serves to enhance infectivity.
Collapse
Affiliation(s)
- J Russell Hayman
- Department of Microbiology, J.H. Quillen College of Medicine, East Tennessee State University, Box 70579, Johnson City, TN 37614, USA.
| | | | | |
Collapse
|
50
|
Affiliation(s)
- Caspar Franzen
- Department of Internal Medicine I, University of Regensburg, Franz-Josef Straubeta Allee 11, D-93042 Regensburg, Germany.
| |
Collapse
|