1
|
Shah SAR, Farukh M, Rehman A, Al Shehri ZS, Alshehri FF, Aba Alkhayl FF, Noor F. Characterization of Helicobacter pylori immunoreactive proteins NusB, isoprenyl transferase, and hypothetical protein via immunoproteomics and molecular modeling approaches. Int J Biol Macromol 2025; 291:139037. [PMID: 39722395 DOI: 10.1016/j.ijbiomac.2024.139037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/18/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
The microaerophilic Gram-negative bacterium H. pylori is associated with various gastric complications and affects nearly half of the global population. Current sero-diagnostic methods for H. pylori diagnosis are often insensitive or lack specificity. This study aimed to detect H. pylori immunoreactive proteins to improve diagnostic tools. H. pylori isolates from biopsy samples were characterized using biochemical and molecular techniques. An immunoproteomics approach involving immunoprecipitation and mass spectrometry identified three immunoreactive proteins: Transcription antitermination protein NusB, Isoprenyl transferase, and a hypothetical protein associated with a transposase gene. Bioinformatics analysis revealed that these proteins are involved in RNA binding, termination of DNA-templated transcription, cell and energy metabolism, transferase activity, regulation, and ribosomal biosynthesis pathways. CD4 T cell and Class-I immunogenicity predictions highlighted NusB's strong potential to stimulate an immune response. Immune simulations demonstrated robust antibody production, particularly in response to NusB. Additionally, molecular docking studies with phenolic compounds (Gnetol, Isohomovanillic acid, Licoisoflavone A, and Chrysosplenol D) against the three proteins, followed by molecular dynamics (MD) simulations, confirmed the stability and favorable interactions of these protein-phenolic compound complexes. This integrative approach, combining immunoproteomics, bioinformatics, molecular docking, and MD simulations, underscores the potential of these immunoreactive proteins for vaccine development and improved diagnostic methods.
Collapse
Affiliation(s)
- Syed Ali Raza Shah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Farukh
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Abdur Rehman
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Zafer Saad Al Shehri
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Dawadmi 19257, Saudi Arabia.
| | - Faez Falah Alshehri
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Dawadmi 19257, Saudi Arabia
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452 Buraydah, Saudi Arabia
| | - Fatima Noor
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| |
Collapse
|
2
|
Elbehiry A, Marzouk E, Abalkhail A, Sindi W, Alzahrani Y, Alhifani S, Alshehri T, Anajirih NA, ALMutairi T, Alsaedi A, Alzaben F, Alqrni A, Draz A, Almuzaini AM, Aljarallah SN, Almujaidel A, Abu-Okail A. Pivotal role of Helicobacter pylori virulence genes in pathogenicity and vaccine development. Front Med (Lausanne) 2025; 11:1523991. [PMID: 39850097 PMCID: PMC11756510 DOI: 10.3389/fmed.2024.1523991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/13/2024] [Indexed: 01/25/2025] Open
Abstract
One of the most prevalent human infections is Helicobacter pylori (H. pylori), which affects more than half of the global population. Although H. pylori infections are widespread, only a minority of individuals develop severe gastroduodenal disorders. The global resistance of H. pylori to antibiotics has reached concerning levels, significantly impacting the effectiveness of treatment. Consequently, the development of vaccines targeting virulence factors may present a viable alternative for the treatment and prevention of H. pylori infections. This review aims to provide a comprehensive overview of the current understanding of H. pylori infection, with a particular focus on its virulence factors, pathophysiology, and vaccination strategies. This review discusses various virulence factors associated with H. pylori, such as cytotoxin-associated gene A (cagA), vacuolating cytotoxin gene (vacA), outer membrane proteins (OMPs), neutrophil-activated protein (NAP), urease (ure), and catalase. The development of vaccines based on these virulence characteristics is essential for controlling infection and ensuring long-lasting protection. Various vaccination strategies and formulations have been tested in animal models; however, their effectiveness and reproducibility in humans remain uncertain. Different types of vaccines, including vector-based vaccines, inactivated whole cells, genetically modified protein-based subunits, and multiepitope nucleic acid (DNA) vaccines, have been explored. While some vaccines have demonstrated promising results in murine models, only a limited number have been successfully tested in humans. This article provides a thorough evaluation of recent research on H. pylori virulence genes and vaccination methods, offering valuable insights for future strategies to address this global health challenge.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Eman Marzouk
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Wael Sindi
- Department of Population, Public and Environmental Health, General Administration of Health Services, Ministry of Defense, Riyadh, Saudi Arabia
| | - Yasir Alzahrani
- Department of Psychiatry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Salem Alhifani
- Department of Psychiatry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Turki Alshehri
- Department of Dental, Alhada Armed Forces Hospital, Taif, Saudi Arabia
| | - Nuha Abdulaziz Anajirih
- Department of Medical Emergency Services, Faculty of Health Sciences, Umm Al-Qura University, Al-Qunfudah, Saudi Arabia
| | - Turki ALMutairi
- Department of Education and Training, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Ahmad Alsaedi
- Department of Education and Training, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Abdullah Alqrni
- Department of Preventive Medicine, King Fahad Armed Hospital, Jeddah, Saudi Arabia
| | - Abdelmaged Draz
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Sahar N. Aljarallah
- Department of Pharmacy Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Abdulrahman Almujaidel
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Akram Abu-Okail
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
3
|
González Segovia R, Romo Lozano Y, Rodríguez MG, Montañez Flores AL, González Macías J. Identification of serologically active Helicobacter pylori antigens related to alterations in serum pepsinogen levels. Rev Argent Microbiol 2023; 55:355-365. [PMID: 37385833 DOI: 10.1016/j.ram.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/20/2022] [Accepted: 04/14/2023] [Indexed: 07/01/2023] Open
Abstract
Gastric adenocarcinoma is associated with Helicobacter pylori infection. The transition to a carcinogenic process is preceded by glandular atrophy and serum levels of pepsinogen I and II (PGI and PGII) correlate with this type of gastric lesions. Possible associations of serum PG levels in relation to the frequency of serological activity against H. pylori antigens were studied. Serum samples from patients with gastric pathology associated with H. pylori (n=26) and asymptomatic individuals as controls (n=37) were used. Seroactive antigens were identified by immunoblot using a protein extract of H. pylori. The antibody titers anti-H. pylori and the concentration of PGs in serum was determined by ELISA. Thirty-one seroactive antigens were identified, nine of which exhibited a differential frequency between both groups (116.7, 68.8, 61.9, 54.9, 45.6, 38.3, 36.5, 33.8 and 30.1kDa) and only 3 were related to altered levels of PGs in serum. In the control group, the seropositivity of the 33.8kDa antigen was related to an increase in PGII, while the 68.8kDa antigen was related to normal PG values (decreased PGII and elevated PGI/PGII levels) indicating that seropositivity to this antigen could be a protective factor to gastric pathology. The seropositivity of the 54.9kDa antigen was related to altered values of PGs indicative of inflammation and gastric atrophy (increased in PGII and decreased in PGI/PGII). The identification of serum alterations in pepsinogen levels related to seropositivity to H. pylori 33.8, 54.9 and 68.8kDa antigens sets a precedent for further study as possible prognostic serological biomarkers.
Collapse
Affiliation(s)
- Rodolfo González Segovia
- Departamento de Microbiología, Universidad Autónoma de Aguascalientes, Av. Universidad 940, CP 20100, Aguascalientes, Mexico.
| | - Yolanda Romo Lozano
- Departamento de Microbiología, Universidad Autónoma de Aguascalientes, Av. Universidad 940, CP 20100, Aguascalientes, Mexico
| | - Martín Gerardo Rodríguez
- Departamento de Fisiología y Farmacología, Universidad Autónoma de Aguascalientes, Av. Universidad 940, CP 20100, Aguascalientes, Mexico
| | | | - Juan González Macías
- Servicio de Gastroenterología, Unidad Médica de Atención Ambulatoria del IMSS, Av. de la Convención de 1914 Nte. No. 102, Col. Industrial, CP 20030, Aguascalientes, Mexico
| |
Collapse
|
4
|
Bugaytsova JA, Moonens K, Piddubnyi A, Schmidt A, Edlund JO, Lisiutin G, Brännström K, Chernov YA, Thorel K, Tkachenko I, Sharova O, Vikhrova I, Butsyk A, Shubin P, Chyzhma R, Johansson DX, Marcotte H, Sjöström R, Shevtsova A, Bylund G, Rakhimova L, Lundquist A, Berhilevych O, Kasianchuk V, Loboda A, Ivanytsia V, Hultenby K, Persson MAA, Gomes J, Matos R, Gartner F, Reis CA, Whitmire JM, Merrell DS, Pan-Hammarström Q, Landström M, Oscarson S, D’Elios MM, Agreus L, Ronkainen J, Aro P, Engstrand L, Graham DY, Kachkovska V, Mukhopadhyay A, Chaudhuri S, Karmakar BC, Paul S, Kravets O, Camorlinga M, Torres J, Berg DE, Moskalenko R, Haas R, Remaut H, Hammarström L, Borén T. Helicobacter pylori attachment-blocking antibodies protect against duodenal ulcer disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542096. [PMID: 37292721 PMCID: PMC10245814 DOI: 10.1101/2023.05.24.542096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The majority of the world population carry the gastric pathogen Helicobacter pylori. Fortunately, most individuals experience only low-grade or no symptoms, but in many cases the chronic inflammatory infection develops into severe gastric disease, including duodenal ulcer disease and gastric cancer. Here we report on a protective mechanism where H. pylori attachment and accompanying chronic mucosal inflammation can be reduced by antibodies that are present in a vast majority of H. pylori carriers. These antibodies block binding of the H. pylori attachment protein BabA by mimicking BabA's binding to the ABO blood group glycans in the gastric mucosa. However, many individuals demonstrate low titers of BabA blocking antibodies, which is associated with an increased risk for duodenal ulceration, suggesting a role for these antibodies in preventing gastric disease.
Collapse
Affiliation(s)
- Jeanna A. Bugaytsova
- Department of Medical Biochemistry and Biophysics, Umeå University, SE90187 Umeå, Sweden
- SUMEYA, The Ukrainian-Swedish Research Center, Sumy State University, 40022 Sumy, Ukraine
| | - Kristof Moonens
- Structural and Molecular Microbiology, VIB Department of Structural Biology, VIB, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Present address: Ablynx, a Sanofi Company, Technologiepark 21, 9052 Zwijnaarde, Belgium
| | - Artem Piddubnyi
- Department of Medical Biochemistry and Biophysics, Umeå University, SE90187 Umeå, Sweden
- SUMEYA, The Ukrainian-Swedish Research Center, Sumy State University, 40022 Sumy, Ukraine
- Department of Pathology, Medical Institute, Sumy State University, 40007 Sumy, Ukraine
| | - Alexej Schmidt
- Department of Medical Biochemistry and Biophysics, Umeå University, SE90187 Umeå, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital, SE14186 Huddinge, Sweden
- Present address: Department of Medical Biosciences, Umeå University, SE90185 Umeå, Sweden
| | - Johan Olofsson Edlund
- Department of Medical Biochemistry and Biophysics, Umeå University, SE90187 Umeå, Sweden
- The Biochemical Imaging Center Umeå (BICU), Umeå University, SE90187 Umeå, Sweden
| | - Gennadii Lisiutin
- Department of Medical Biochemistry and Biophysics, Umeå University, SE90187 Umeå, Sweden
- Department of Microbiology, Virology and Biotechnology, Odesa Mechnikov National University, 65082 Odesa, Ukraine
| | - Kristoffer Brännström
- Department of Medical Biochemistry and Biophysics, Umeå University, SE90187 Umeå, Sweden
- The Biochemical Imaging Center Umeå (BICU), Umeå University, SE90187 Umeå, Sweden
- Present address: Pfizer Worldwide R&D, BioMedicine Design, 10 555 Science Center Drive, San Diego CA, 92121 USA
| | - Yevgen A. Chernov
- Department of Medical Biochemistry and Biophysics, Umeå University, SE90187 Umeå, Sweden
| | - Kaisa Thorel
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Iryna Tkachenko
- Department of Medical Biochemistry and Biophysics, Umeå University, SE90187 Umeå, Sweden
- Department of Public Health, Medical Institute, Sumy State University, 40007 Sumy, Ukraine
| | - Oleksandra Sharova
- Department of Medical Biochemistry and Biophysics, Umeå University, SE90187 Umeå, Sweden
- Department of Pediatrics, Medical Institute, Sumy State University, 40018 Sumy, Ukraine
| | - Iryna Vikhrova
- Department of Medical Biochemistry and Biophysics, Umeå University, SE90187 Umeå, Sweden
- Department of Pediatrics, Medical Institute, Sumy State University, 40018 Sumy, Ukraine
| | - Anna Butsyk
- Department of Medical Biochemistry and Biophysics, Umeå University, SE90187 Umeå, Sweden
- Department of Public Health, Medical Institute, Sumy State University, 40007 Sumy, Ukraine
| | - Pavlo Shubin
- Department of Medical Biochemistry and Biophysics, Umeå University, SE90187 Umeå, Sweden
- Department of Public Health, Medical Institute, Sumy State University, 40007 Sumy, Ukraine
| | - Ruslana Chyzhma
- Department of Medical Biochemistry and Biophysics, Umeå University, SE90187 Umeå, Sweden
- SUMEYA, The Ukrainian-Swedish Research Center, Sumy State University, 40022 Sumy, Ukraine
- Department of Pathology, Medical Institute, Sumy State University, 40007 Sumy, Ukraine
| | - Daniel X. Johansson
- Department of Clinical Neuroscience, Karolinska Institutet at Center for Molecular Medicine, Karolinska University Hospital, Solna, SE17176 Stockholm, Sweden
| | - Harold Marcotte
- Department of Medical Biochemistry and Biophysics, Umeå University, SE90187 Umeå, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital, SE14186 Huddinge, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, SE14183, Huddinge, Sweden
| | - Rolf Sjöström
- Department of Medical Biochemistry and Biophysics, Umeå University, SE90187 Umeå, Sweden
| | - Anna Shevtsova
- Department of Medical Biochemistry and Biophysics, Umeå University, SE90187 Umeå, Sweden
| | - Göran Bylund
- Department of Medical Biochemistry and Biophysics, Umeå University, SE90187 Umeå, Sweden
| | - Lena Rakhimova
- Department of Medical Biochemistry and Biophysics, Umeå University, SE90187 Umeå, Sweden
- Present address: Department of Odontology, Umeå University, SE90187 Umeå, Sweden
| | - Anders Lundquist
- Department of Statistics, USBE, Umeå University, SE90187 Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, SE90187 Umeå, Sweden
| | - Oleksandra Berhilevych
- Department of Public Health, Medical Institute, Sumy State University, 40007 Sumy, Ukraine
| | - Victoria Kasianchuk
- Department of Public Health, Medical Institute, Sumy State University, 40007 Sumy, Ukraine
| | - Andrii Loboda
- Department of Pediatrics, Medical Institute, Sumy State University, 40018 Sumy, Ukraine
| | - Volodymyr Ivanytsia
- Department of Microbiology, Virology and Biotechnology, Odesa Mechnikov National University, 65082 Odesa, Ukraine
| | - Kjell Hultenby
- Departments of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet at Karolinska University Hospital, SE14186 Huddinge, Sweden
| | - Mats A. A. Persson
- Department of Clinical Neuroscience, Karolinska Institutet at Center for Molecular Medicine, Karolinska University Hospital, Solna, SE17176 Stockholm, Sweden
| | - Joana Gomes
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Rita Matos
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Fátima Gartner
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Celso A. Reis
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | | | - D. Scott Merrell
- Department of Microbiology and Immunology, USUHS, Bethesda, MD 20814, USA
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, SE14183, Huddinge, Sweden
| | - Maréne Landström
- Present address: Department of Medical Biosciences, Umeå University, SE90185 Umeå, Sweden
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mario M. D’Elios
- Department of Experimental and Clinical Medicine, Largo Brambilla 3, 50134 Firenze, Italy
| | - Lars Agreus
- Division of Family Medicine and Primary Care, Karolinska Institutet, SE14183 Huddinge, Sweden
| | - Jukka Ronkainen
- University of Oulu, Center for Life Course Health Research and Primary Health Care Center, Tornio Finland
| | - Pertti Aro
- University of Oulu, Center for Life Course Health Research and Primary Health Care Center, Tornio Finland
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE17177 Stockholm, Sweden
- Present address: Science for Life Laboratory, SE17165, Solna, Sweden
| | - David Y. Graham
- Department of Medicine, Molecular Virology and Microbiology, Baylor College of Medicine, Michael E. DeBakey VAMC, 2002 Holcombe Blvd. Houston, TX, 77030 USA
| | - Vladyslava Kachkovska
- Department of Internal Medicine, Medical Institute, Sumy State University, 40007 Sumy, Ukraine
| | - Asish Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases P 33, CIT Road, Scheme XM, Kolkata 700010, India
| | - Sujit Chaudhuri
- Department of Gastroenterology, AMRI Hospital, Salt Lake City. Kolkata, West Bengal 700098, India
| | - Bipul Chandra Karmakar
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases P 33, CIT Road, Scheme XM, Kolkata 700010, India
| | - Sangita Paul
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases P 33, CIT Road, Scheme XM, Kolkata 700010, India
| | - Oleksandr Kravets
- Department of Surgery, Traumatology, Orthopedics and Physiology, Medical Institute, Sumy State University, 40007 Sumy, Ukraine
| | - Margarita Camorlinga
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, CMN SXXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Javier Torres
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, CMN SXXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Douglas E. Berg
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Roman Moskalenko
- SUMEYA, The Ukrainian-Swedish Research Center, Sumy State University, 40022 Sumy, Ukraine
- Department of Pathology, Medical Institute, Sumy State University, 40007 Sumy, Ukraine
| | - Rainer Haas
- German Center for Infection Research (DZIF), Munich Site, 80336 Munich, Germany
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer-Institute, Faculty of Medicine, LMU Munich, Germany
| | - Han Remaut
- Structural and Molecular Microbiology, VIB Department of Structural Biology, VIB, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Lennart Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, SE14183, Huddinge, Sweden
| | - Thomas Borén
- Department of Medical Biochemistry and Biophysics, Umeå University, SE90187 Umeå, Sweden
- SUMEYA, The Ukrainian-Swedish Research Center, Sumy State University, 40022 Sumy, Ukraine
- Lead contact
| |
Collapse
|
5
|
Calado CRC. Antigenic and conserved peptides from diverse Helicobacter pylori antigens. Biotechnol Lett 2022; 44:535-545. [PMID: 35277779 PMCID: PMC8916697 DOI: 10.1007/s10529-022-03238-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
Abstract
Since the revolutionary finding of Helicobacter pylori as a common bacterial infection, that a high research effort for its eradication has been conducted. Epitope based-vaccine presents advantages over protein-based, as they can be designed to contain epitopes from diverse proteins, therefore, more easily representing the immune-variability of the bacterial population, while minimizing the toxicity associated to some whole proteins. In the present work, an iterative method, to design antigenic and conserved B-epitopes from diverse virulent factors of H. pylori, was established. The method considered the trade-off between epitopes antigenicity and conservation among the bacterial population. For the method validation, five virulent factors from H. pylori were selected. From each virulent factor, two epitopes were predicted, each with twelve residues of aminoacids. The corresponding ten peptides were synthesised and evaluated by enzyme-linked immunosorbent assay using polyclonal antibodies raised against a specific H. pylori strain. All ten peptides were recognised by the antibodies and were consequently antigenic and conserved. This result could strongly contribute to the design of a multivalent epitope-based vaccine, representing the immunogenetic variability within the bacterial population, leading to a sustained and effective immunogenic protection.
Collapse
Affiliation(s)
- Cecília R C Calado
- CIMOSM - Centro de Investigação em Modelação e Otimização de Sistemas Multifuncionais, ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007, Lisboa, Portugal.
| |
Collapse
|
6
|
FBPAII and rpoBC, the Two Novel Secreted Proteins Identified by the Proteomic Approach from a Comparative Study between Antibiotic-Sensitive and Antibiotic-Resistant Helicobacter pylori-Associated Gastritis Strains. Infect Immun 2021; 89:IAI.00053-21. [PMID: 33782154 DOI: 10.1128/iai.00053-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/17/2021] [Indexed: 11/20/2022] Open
Abstract
Helicobacter pylori infection is the leading cause of chronic gastritis, which can develop into gastric cancer. Eliminating H. pylori infection with antibiotics achieves the prevention of gastric cancer. Currently, the prevalence of H. pylori resistance to clarithromycin and metronidazole, and the dual resistance to metronidazole and clarithromycin (C_R, M_R, and C/M_R, respectively), remains at a high level worldwide. As a means of exploring new candidate proteins for the management of H. pylori infection, secreted proteins from antibiotic-susceptible and antibiotic-resistant H. pylori-associated gastritis strains were obtained by in-solution tryptic digestion coupled with nano-liquid chromatography tandem mass spectrometry (nano-LC-MS/MS). A total of 583, 582, 590, and 578 differential expressed proteins were identified from C_R, M_R, C/M_R, and antibiotic-sensitive strain (S_S) samples, respectively. Of these, 23 overlapping proteins were found by Venn diagram analysis. Based on heat map analyses, the most and least differing protein expressions were observed from C/M_R strains and S_S strains, respectively. Of the proteins secreted by the S_S strain, only nine were found. After predicting the protein interaction with metronidazole and clarithromycin via the STITCH database, the two most interesting proteins were found to be rpoBC and FBPAII. After quantitative real-time reverse transcription PCR (qRT-PCR) analysis, a downregulation of rpoB from M_R strains was observed, suggesting a relationship of rpoB to metronidazole sensitivity. Inversely, an upregulation of fba from C_R, M_R, and C/M_R strains was noticed, suggesting the paradoxical expression of FBPAII and the fba gene. This report is the first to demonstrate the association of these two novel secreted proteins, namely, rpoBC and FBPAII, with antibiotic-sensitive H. pylori -associated gastritis strains.
Collapse
|
7
|
Salih BA, Karakus C, Ulupinar Z, Akbas F, Uslu M, Yazici D, Bolek BK, Bayyurt N, Turkay C. Cloning, expression and characterization of recombinant CagA protein of Helicobacter pylori using monoclonal antibodies: Its potential in diagnostics. Biologicals 2020; 68:26-31. [DOI: 10.1016/j.biologicals.2020.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023] Open
|
8
|
Chiok KLR, Shah DH. Identification of common highly expressed genes of Salmonella Enteritidis by in silico prediction of gene expression and in vitro transcriptomic analysis. Poult Sci 2019; 98:2948-2963. [PMID: 30953073 DOI: 10.3382/ps/pez119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/27/2019] [Indexed: 01/02/2023] Open
Abstract
Chickens are the reservoir host of Salmonella Enteritidis. Salmonella Enteritidis colonizes the gastro-intestinal tract of chickens and replicates within macrophages without causing clinically discernable illness. Persistence of S. Enteritidis in the hostile environments of intestinal tract and macrophages allows it to disseminate extra-intestinally to liver, spleen, and reproductive tract. Extra-intestinal dissemination into reproductive tract leads to contamination of internal contents of eggs, which is a major risk factor for human infection. Understanding the genes that contribute to S. Enteritidis persistence in the chicken host is central to elucidate the genetic basis of the unique pathobiology of this public health pathogen. The aim of this study was to identify a succinct set of genes associated with infection-relevant in vitro environments to provide a rational foundation for subsequent biologically-relevant research. We used in silico prediction of gene expression and RNA-seq technology to identify a core set of 73 S. Enteritidis genes that are consistently highly expressed in multiple S. Enteritidis strains cultured at avian physiologic temperature under conditions that represent intestinal and intracellular environments. These common highly expressed (CHX) genes encode proteins involved in bacterial metabolism, protein synthesis, cell-envelope biogenesis, stress response, and a few proteins with uncharacterized functions. Further studies are needed to dissect the contribution of these CHX genes to the pathobiology of S. Enteritidis in the avian host. Several of the CHX genes could serve as promising targets for studies towards the development of immunoprophylactic and novel therapeutic strategies to prevent colonization of chickens and their environment with S. Enteritidis.
Collapse
Affiliation(s)
- Kim Lam R Chiok
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040
| | - Devendra H Shah
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040
| |
Collapse
|
9
|
Hu J, Chen L, Yang W, Li B, Sun H, Wei S, He Y, Zhao Z, Yang S, Zou Q, Chen W, Guo H, Wu C. Systematic identification of immunodominant CD4+ T cell responses to HpaA in Helicobacter pylori infected individuals. Oncotarget 2018; 7:54380-54391. [PMID: 27509059 PMCID: PMC5342349 DOI: 10.18632/oncotarget.11092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/29/2016] [Indexed: 12/20/2022] Open
Abstract
In mice, antigen-specific CD4+ T cell response is indispensible for the protective immunity against Helicobacter pylori (H. pylori). It has been demonstrated that neuraminyllactose-binding hemagglutinin (HpaA) immunization protected mice from H. pylori infection in a CD4+ T cell dependent manner. However, much remains unclear concerning the human CD4+ T cell responses to HpaA. We conducted a systematic study here to explore the immunodominant, HpaA-specific CD4+ T cell responses in H. pylori infected individuals. We found that HpaA-specific CD4+ T cell responses varied remarkably in their magnitude and had broad epitope-specificity. Importantly, the main responses focused on two regions: HpaA76-105 and HpaA130-159. The HLA-DRB1*0901 restricted HpaA142-159 specific CD4+ T cell response was the most immunodominant response at a population level. The immunodominant epitope HpaA142-159 was naturally presented and highly conserved. We also demonstrated that it was not the broad peptide specificity, but the strength of HpaA specific CD4+ T cell responses associated with gastric diseases potentially caused by H. pylori infection. Such investigation will aid development of novel vaccines against H. pylori infection.
Collapse
Affiliation(s)
- Jian Hu
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China.,Department of Intensive Care Unit, Chengdu Military General Hospital, Chengdu, PR China
| | - Li Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China.,Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China
| | - Wuchen Yang
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China.,Department of Hematology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China
| | - Bin Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Heqiang Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Shanshan Wei
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China
| | - Yafei He
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Shiming Yang
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Weisan Chen
- T Cell Laboratory, La Trobe Institute for Molecular Science, School of Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Hong Guo
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China
| | - Chao Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
10
|
Sun H, Yuan H, Tan R, Li B, Guo G, Zhang J, Jing H, Qin Y, Zhao Z, Zou Q, Wu C. Immunodominant antigens that induce Th1 and Th17 responses protect mice against Helicobacter pylori infection. Oncotarget 2018; 9:12050-12063. [PMID: 29552292 PMCID: PMC5844728 DOI: 10.18632/oncotarget.23927] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/30/2017] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori has infected more than half of the world's population, causing gastritis, gastric ulcers, gastric mucosa-associated lymphoid tissue lymphoma and gastric cancer. The oral recombinant Helicobacter pylori vaccine currently used has made great progress in addressing this problem, however, its efficacy and longevity still need to be improved. Th1 and Th17 cells play essential roles in local protection against Helicobacter pylori in the stomach mucosa. Additionally, protective immunodominant antigens are the preferred for a vaccine. In this work, Helicobacter pylori whole cell lysate was separated into 30 groups based on molecular weight by molecular sieve chromatography. The group best promoting CD4 T cells proliferation was selected and evaluated by immunization. The detail proteins were then analyzed by LC-MS/MS and expressed in Escherichia coli. Eleven proteins were selected and the dominant ones were demonstrated. As a result, three protective immunodominant antigens, inosine 5'-monophosphate dehydrogenase, type II citrate synthase, and urease subunit beta, were selected from Helicobacter pylori whole cell. Two of them (inosine 5'-monophosphate dehydrogenase and type II citrate synthase) were newly identified, and one (urease subunit beta) was confirmed as previously reported. The mixture of the three antigens showed satisfactory protective efficiency, with significant lower H. pylori colonization level (P < 0.001) and stronger Th1 (P < 0.001) and Th17 (P < 0.001) responses than PBS control group. Thus, inosine 5'-monophosphate dehydrogenase, type II citrate synthase, and urease subunit beta are three protective antigens inducing dominant Th1 and Th17 responses to defend against Helicobacter pylori infection.
Collapse
Affiliation(s)
- Heqiang Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Hanmei Yuan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Ranjing Tan
- Department of Dermatology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Bin Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Gang Guo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Yi Qin
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Chao Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
11
|
Li H, Zhang B, Hu X, Dong Y, Fan Q, Guo F, Ren X, Zhou H, Tian W, Zhao Y. Serum Helicobacter pylori FliD antibody and the risk of gastric cancer. Oncotarget 2017; 7:22397-408. [PMID: 26968951 PMCID: PMC5008368 DOI: 10.18632/oncotarget.7981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/23/2016] [Indexed: 02/06/2023] Open
Abstract
FliD and CagA are important virulence factors of H. pylori. We aimed to evaluate the screening values of FliD and CagA for gastric cancer (GC). Serum samples were obtained from 232 cases and 266 controls in a case-control study. Unconditional multivariate logistic regression with odds ratios (ORs) and 95% confidence intervals (CIs) was used to analyze the relationships between FliD, CagA and GC. The sensitivities, specificities and receiver operating characteristic (ROC) curves were calculated. Finally, the combined screening values of FliD, FlaA, NapA and CagA were assessed based on discriminant analysis. In all subjects, the associations of FliD and CagA with GC were evident with ORs (95% CIs) of 7.6 (4.7-12.3) and 2.5 (1.6-3.8), respectively (*p<0.001). The areas under ROC curves (AUCs) for FliD and CagA were 0.800 and 0.653, respectively. The AUC for the combination of FliD, FlaA and NapA was 0.915, which represented an increase of 0.115 over that of FliD alone (*p<0.001). These findings indicate that the FliD antibody is associated with GC and could exhibit high validity as a biomarker in screening for GC patients. The combination of FliD, FlaA and NapA improved the screening validity.
Collapse
Affiliation(s)
- Hailin Li
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Bing Zhang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Xiaomeng Hu
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yingzi Dong
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Qing Fan
- Xiangfang Center for Disease Control and Prevention, Harbin, Heilongjiang Province, P. R. China
| | - Fang Guo
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Xiyun Ren
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Haibo Zhou
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Wenjing Tian
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yashuang Zhao
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| |
Collapse
|
12
|
Bernardini G, Figura N, Ponzetto A, Marzocchi B, Santucci A. Application of proteomics to the study of Helicobacter pylori and implications for the clinic. Expert Rev Proteomics 2017; 14:477-490. [PMID: 28513226 DOI: 10.1080/14789450.2017.1331739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) is a gram-negative bacterium that colonizes the gastric epithelium and mucous layer of more than half the world's population. H. pylori is a primary human pathogen, responsible for the development of chronic gastritis, peptic ulceration and gastric cancer. Proteomics is impacting several aspects of medical research: understanding the molecular basis of infection and disease manifestation, identification of therapeutic targets and discovery of clinically relevant biomarkers. Areas covered: The main aim of the present review is to provide a comprehensive overview of the contribution of proteomics to the study of H. pylori infection pathophysiology. In particular, we focused on the role of the bacterium and its most important virulence factor, CagA, in the progression of gastric cells transformation and cancer progression. We also discussed the proteomic approaches aimed at the investigation of the host response to bacterial infection. Expert commentary: In the field of proteomics of H. pylori, comprehensive analysis of clinically relevant proteins (functional proteomics) rather than entire proteomes will result in important medical outcomes. Finally, we provided an outlook on the potential development of proteomics in H. pylori research.
Collapse
Affiliation(s)
- Giulia Bernardini
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| | - Natale Figura
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| | - Antonio Ponzetto
- b Dipartimento di Scienze Mediche , Università degli Studi di Torino , Torino , Italy
| | - Barbara Marzocchi
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| | - Annalisa Santucci
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| |
Collapse
|
13
|
Dynamic Expression of the BabA Adhesin and Its BabB Paralog during Helicobacter pylori Infection in Rhesus Macaques. Infect Immun 2017; 85:IAI.00094-17. [PMID: 28396320 DOI: 10.1128/iai.00094-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/02/2017] [Indexed: 02/07/2023] Open
Abstract
Most Helicobacter pylori strains express the BabA adhesin, which binds to ABO/Leb blood group antigens on gastric mucin and epithelial cells and is found more commonly in strains that cause peptic ulcers or gastric cancer, rather than asymptomatic infection. We and others have previously reported that in mice, gerbils, and rhesus macaques, expression of babA is lost, either by phase variation or by gene conversion, in which the babB paralog recombines into the babA locus. The functional significance of loss of babA expression is unknown. Here we report that in rhesus monkeys, there is independent selective pressure for loss of babA and for overexpression of BabB, which confers a fitness advantage. Surprisingly, loss of babA by phase variation or gene conversion is not dependent on the capacity of BabA protein to bind Leb, which suggests that it may have other, unrecognized functions. These findings have implications for the role of outer membrane protein diversity in persistent H. pylori infection.
Collapse
|
14
|
El-Khlousy M, Rahman EA, Mostafa S, Bassam A, Elgawad HA, Elnasr MS, Mohey M, Ghaith D. Study of the clinical relevance of Helicobacter pylori virulence genes to gastric diseases among Egyptian patients. Arab J Gastroenterol 2016; 17:90-94. [PMID: 27344093 DOI: 10.1016/j.ajg.2016.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/24/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND STUDY AIMS Helicobacter pylori infection is common in Egypt. It has been associated with gastritis, ulcers and it is a risk factor for gastric cancer. We aimed to study the correlation between the presence of H. pylori virulence factors and the histopathological and endoscopic findings in gastric biopsies. PATIENTS AND METHODS Gastric biopsies from thirty seven patients scheduled for diagnostic endoscopy in Cairo University hospital were included in the study. All gastric biopsies were subjected to histopathological examination and PCR assay for detection of 16S rRNA gene to diagnose H. pylori infection, detection of H. pylori virulence factors by PCR for cagA and vacA genotypes and serological analysis of H. pylori (cagA, vacA, P25, and P19) IgG antibodies by immunoblot assay were done. RESULTS H. pylori infection was detected in 23 (62.2%) cases by histopathology while 28/37 (75.7%) were positive for H. pylori 16S rRNA gene by PCR. By PCR seventeen samples out of 37 (45.9%) were positive for cagA gene and five (13.5%) for cag empty site gene. CONCLUSION The most common vacA genotype identified was vacA s2m2 genotype in 10 (27.02%). No statistical correlation was found between IgG antibodies against different antigens of H. pylori virulence factors (cagA, vacA, p25, and p19) and the degree of gastritis except for IgG antibodies against the UreA antigen.
Collapse
Affiliation(s)
- Mona El-Khlousy
- Clinical and Chemical Pathology Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Eiman A Rahman
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sally Mostafa
- Clinical and Chemical Pathology Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Amira Bassam
- Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba A Elgawad
- Clinical and Chemical Pathology Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Mohamed S Elnasr
- Endemic Medicine and Hepatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohammad Mohey
- Endemic Medicine and Hepatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Doaa Ghaith
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
15
|
Khalilpour A, Kazemzadeh-Narbat M, Tamayol A, Oklu R, Khademhosseini A. Biomarkers and diagnostic tools for detection of Helicobacter pylori. Appl Microbiol Biotechnol 2016; 100:4723-34. [PMID: 27084783 DOI: 10.1007/s00253-016-7495-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/13/2022]
|
16
|
Karakus C. Development of A Lateral Flow Immunoassay Strip for Rapid Detection of CagA Antigen ofHelicobacter pylori. J Immunoassay Immunochem 2014; 36:324-33. [DOI: 10.1080/15321819.2014.952440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Patel SK, Pratap CB, Jain AK, Gulati AK, Nath G. Diagnosis of Helicobacter pylori: What should be the gold standard? World J Gastroenterol 2014; 20:12847-12859. [PMID: 25278682 PMCID: PMC4177467 DOI: 10.3748/wjg.v20.i36.12847] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/10/2014] [Accepted: 06/26/2014] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of Helicobacter pylori (H. pylori) in 1983, numerous detection methods for the presence of the bacterium have been developed. Each one of them has been associated with advantages and disadvantages. Noninvasive tests such as serology, 13C urea breath test (UBT) and stool antigen tests are usually preferred by the clinicians. Serology has its own limitation especially in endemic areas while 13C UBT is technically very demanding. The stool antigen detection method, although specific, is usually associated with poor sensitivity. The 13C UBT is believed to be specific, but with present revelation of the fact that stomach is colonized by many other urease producing bacteria makes it questionable. Histology, culture, rapid urease test and polymerase chain reaction (PCR) are the tests which are carried out on antral biopsies collected by invasive means. Histology has been proposed to be very sensitive and specific but the question is how by simply looking the morphology of the bacteria in the microscope, one can claim that the curved bacterium is exclusively H. pylori. Rapid urease test (RUT), the doctor’s test, is also challenged because the presence of other urease producing bacteria in the stomach cannot be denied. Moreover, RUT has been reported with poor sensitivity specially, when density of the bacterium is low. Isolation of H. pylori is essential to investigate its growth requirements, antibiotic susceptibility testing, studying virulence factor to develop vaccine and many more explorations. It has also got several disadvantages i.e., special condition for transporting, media, incubation and few days waiting for the colonies to appear, apart from the speed essentially needed to process the specimens. Till date, majority of the microbiological laboratories in the world are not equipped and trained to isolate such fastidious bacterium. The option left is PCR methods to detect H. pylori’s DNA in gastric mucosa, gastric juice, saliva, dental plaques and environmental specimens. There are speculations for false positivity due to detection of non-pylori Helicobacters due to genetic sharing; and false negativity due to low bacterial counts and presence of PCR inhibitors. However, specimen collection, transportation and processing do not require speed and special conditions. PCR based diagnosis may be considered as gold standard by designing primers extremely specific to H. pylori and targeting at least more than one conserved genes. Similarly specificity of PCR may be improved by use of internal Primers. Further, nested PCR will take care of false negatives by countering the effect of PCR inhibitors and low bacterial counts. Therefore, nested PCR based methods if performed properly, may be proposed as gold standard test.
Collapse
|
18
|
Akada J, Okuda M, Hiramoto N, Kitagawa T, Zhang X, Kamei S, Ito A, Nakamura M, Uchida T, Hiwatani T, Fukuda Y, Nakazawa T, Kuramitsu Y, Nakamura K. Proteomic characterization of Helicobacter pylori CagA antigen recognized by child serum antibodies and its epitope mapping by peptide array. PLoS One 2014; 9:e104611. [PMID: 25141238 PMCID: PMC4139317 DOI: 10.1371/journal.pone.0104611] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/09/2014] [Indexed: 12/12/2022] Open
Abstract
Serum antibodies against pathogenic bacteria play immunologically protective roles, and can be utilized as diagnostic markers of infection. This study focused on Japanese child serum antibodies against Helicobacter pylori, a chronically-infected gastric bacterium which causes gastric cancer in adults. Serological diagnosis for H. pylori infection is well established for adults, but it needs to be improved for children. Serum samples from 24 children, 22 H. pylori (Hp)-positive and 2 Hp-negative children, were used to catalogue antigenic proteins of a Japanese strain CPY2052 by two-dimensional electrophoresis followed by immunoblot and LC-MS/MS analysis. In total, 24 proteins were identified as candidate antigen proteins. Among these, the major virulence factor, cytotoxin-associated gene A protein (CagA) was the most reactive antigen recognized by all the Hp-positive sera even from children under the age of 3 years. The major antigenic part of CagA was identified in the middle region, and two peptides containing CagA epitopes were identified using a newly developed peptide/protein-combined array chip method, modified from our previous protein chip method. Each of the epitopes was found to contain amino acid residue(s) unique to East Asian CagA. Epitope analysis of CagA indicated importance of the regional CagA antigens for serodiagnosis of H. pylori infection in children.
Collapse
Affiliation(s)
- Junko Akada
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- * E-mail: (JA); (KN)
| | - Masumi Okuda
- Sasayama Medical Center, Hyogo College of Medicine, Sasayama, Hyogo, Japan
- Department of General Medicine and Community Health Science, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Narumi Hiramoto
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Takao Kitagawa
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Xiulian Zhang
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Shuichi Kamei
- Technical Research Laboratory, Toyo Kohan Company, Ltd., Kudamatsu, Yamaguchi, Japan
| | - Akane Ito
- Technical Research Laboratory, Toyo Kohan Company, Ltd., Kudamatsu, Yamaguchi, Japan
| | - Mikiko Nakamura
- Innovation Center with University-Industry-Public Cooperation, Organization for Research Initiatives, Yamaguchi University, Tokiwadai, Ube, Yamaguchi, Japan
| | - Tomohisa Uchida
- Department of Molecular Pathology, Oita University, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | | | - Yoshihiro Fukuda
- Sasayama Medical Center, Hyogo College of Medicine, Sasayama, Hyogo, Japan
- Department of General Medicine and Community Health Science, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Teruko Nakazawa
- Department of Microbiology and Immunology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yasuhiro Kuramitsu
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Kazuyuki Nakamura
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- * E-mail: (JA); (KN)
| |
Collapse
|
19
|
Ki MR, Hwang M, Kim AY, Lee EM, Lee EJ, Lee MM, Sung SE, Kim SH, Lee HS, Jeong KS. Role of vacuolating cytotoxin VacA and cytotoxin-associated antigen CagA of Helicobacter pylori in the progression of gastric cancer. Mol Cell Biochem 2014; 396:23-32. [DOI: 10.1007/s11010-014-2138-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/17/2014] [Indexed: 12/28/2022]
|
20
|
Cho Y, Sun J, Han JH, Jang JH, Kang ZW, Hahn TW. An immunoproteomic approach for characterization of the outer membrane proteins ofSalmonellaGallinarum. Electrophoresis 2014; 35:888-94. [DOI: 10.1002/elps.201300199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Youngjae Cho
- College of Veterinary Medicine and Institute of Veterinary Science; Kangwon National University; Chuncheon Korea
| | - Jisun Sun
- College of Veterinary Medicine and Institute of Veterinary Science; Kangwon National University; Chuncheon Korea
| | - Jang Hyuck Han
- KBNP Technology Institute; KBNP Inc.; Yesan Chungnam Korea
| | - Joo Hyun Jang
- KBNP Technology Institute; KBNP Inc.; Yesan Chungnam Korea
| | - Zheng Wu Kang
- KBNP Technology Institute; KBNP Inc.; Yesan Chungnam Korea
| | - Tae-Wook Hahn
- College of Veterinary Medicine and Institute of Veterinary Science; Kangwon National University; Chuncheon Korea
| |
Collapse
|
21
|
Aziz F, Sherwani SK, Akhtar SS, Kazmi SU. Development of an in-house enzyme-linked immunosorbent assay based on surface whole cell antigen for diagnosis of Helicobacter pylori infection in patients with gastroduodenal ulcer disease. World J Microbiol Biotechnol 2014; 30:305-15. [PMID: 23921679 DOI: 10.1007/s11274-013-1448-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/25/2013] [Indexed: 01/01/2023]
Abstract
Helicobacter pylori (H. pylori) is a causative agent of gastritis, gastroduodenal ulcers and gastric adenocarcinoma. More than 50% world population is colonized by H. pylori, which is closely related to the chronic gastritis and gastric ulcer infection. In this study, a total of 214 gastritis patient's serum samples were screened for anti-H. pylori IgG antibody. A 96-well plate coated with 20 μg/ml antigen and hundred-fold diluted patient's serum was allowed to react. After extensive washing with buffer, 1:2,500 diluted conjugated secondary antibody was added. Later substrate was added to observe positivity by measuring the intensity of color. Statistical analyses were performed, and p value of <0.01 was taken as significant; 84% male patients and 89% female patients, respectively, tested positive for H. pylori, while agewise distribution was 35-45 years males (40%) and 35-55 years females (52%) were found highest number of H. pylori infected patients. In-house ELISA based on surface whole cell antigen (wELISA) showed a sensitivity of 93%, specificity of 100%, accuracy 94% and κ value 0.86 with significant correlation R-0.77020; p < 0.0001. We conclude that H. pylori local isolates surface antigen was satisfactory for diagnosis as different parameters were adjusted according to the local H. pylori isolates. Fluctuations in serum antibody titer predict the variation in an individual's response of the host against H. pylori. In-house wELISA could provide a reliable and a clinically useful method for the diagnosis of H. pylori infection in patients of Karachi, Pakistan.
Collapse
Affiliation(s)
- Faisal Aziz
- Immunology and Infectious Diseases Research Laboratory (IIDRL), Department of Microbiology, University of Karachi, Karachi, 75270, Pakistan,
| | | | | | | |
Collapse
|
22
|
Karakus C, Salih BA. Comparison of the lateral flow immunoassays (LFIA) for the diagnosis of Helicobacter pylori infection. J Immunol Methods 2013; 396:8-14. [PMID: 23994110 DOI: 10.1016/j.jim.2013.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
Helicobacter pylori infection is the most common human infection where approximately 50% of the world populations are infected. The diagnosis of such infection is mainly done by endoscopy where gastric biopsies are examined for the presence of H. pylori. Such invasive approach is costly, time consuming and generally requires more than one test to confirm the infection. Serology on the other hand is a non-invasive approach that can detect H. pylori exposure. The lateral flow immunoassays (LFIA) support the serological approach and have the advantage of being fast, economic and require no additional equipment or experience. In this review the principles, components of the LFIA, sensitivities and specificities of the commercially available H. pylori test strips were compared and discussed.
Collapse
Affiliation(s)
- Cebrail Karakus
- Fatih University, Faculty of Science, Department of Biology, B.cekmece, 34500 Istanbul, Turkey
| | | |
Collapse
|
23
|
Chen L, Li B, Yang WC, He JL, Li NY, Hu J, He YF, Yu S, Zhao Z, Luo P, Zhang JY, Li HB, Zeng M, Lu DS, Li BS, Guo H, Yang SM, Guo G, Mao XH, Chen W, Wu C, Zou QM. A dominant CD4(+) T-cell response to Helicobacter pylori reduces risk for gastric disease in humans. Gastroenterology 2013; 144:591-600. [PMID: 23232294 DOI: 10.1053/j.gastro.2012.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 11/10/2012] [Accepted: 12/03/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Immunodominance is an important feature of antiviral, antitumor, and antibacterial cellular immune responses, but it is not well demonstrated in the immune responses against Helicobacter pylori. Antigen-specific CD4(+) T cells protect mice against infection with H pylori. We investigated the immunodominant CD4(+) T-cell response to neuraminyllactose-binding hemagglutinin (HpaA), which is a conserved, H pylori-specific colonization factor that is being investigated as an antigen for vaccination strategies. METHODS HpaA-specific CD4(+) T cells were expanded with autologous peripheral blood mononuclear cells that had been incubated with recombinant HpaA and characterized using overlapping synthetic peptides. We compared the percentage of CD4(+) T cells with specificity for HpaA(88-100), restricted to HLA-DRB1*1501, among 59 H pylori-infected subjects with different gastric diseases. RESULTS We identified and characterized several immunodominant CD4(+) T-cell epitopes derived from HpaA. The immunodominant CD4(+) T-cell responses specific to HpaA(88-100) were observed in most H pylori-infected individuals who expressed HLA-DRB1*1501 and were significantly more abundant in patients with less severe diseases (P < .05). CONCLUSIONS The HLA-DRB1*1501-restricted immunodominant CD4(+) T-cell response to HpaA(88-100) is associated with reduced risk of severe gastric diseases. Further study of these and other immunodominant CD4(+) T-cell responses to H pylori will provide insight into mechanisms of protective immunity and aid in vaccine design.
Collapse
Affiliation(s)
- Li Chen
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory Science, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lanotte P, Perivier M, Haguenoer E, Mereghetti L, Burucoa C, Claverol S, Atanassov C. Proteomic biomarkers associated with Streptococcus agalactiae invasive genogroups. PLoS One 2013; 8:e54393. [PMID: 23372719 PMCID: PMC3553121 DOI: 10.1371/journal.pone.0054393] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/11/2012] [Indexed: 11/18/2022] Open
Abstract
Group B streptococcus (GBS, Streptococcus agalactiae) is a leading cause of meningitis and sepsis in newborns and an etiological agent of meningitis, endocarditis, osteoarticular and soft tissue infections in adults. GBS isolates are routinely clustered in serotypes and in genotypes. At present one GBS sequence type (i.e. ST17) is considered to be closely associated with bacterial invasiveness and novel proteomic biomarkers could make a valuable contribution to currently available GBS typing data. For that purpose we analyzed the protein profiles of 170 genotyped GBS isolates by Surface-Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (SELDI). Univariate statistical analysis of the SELDI profiles identified four protein biomarkers significantly discriminating ST17 isolates from those of the other sequence types. Two of these biomarkers (MW of 7878 Da and 12200 Da) were overexpressed and the other two (MW of 6258 Da and 10463 Da) were underexpressed in ST17. The four proteins were isolated by mass spectrometry-assisted purification and their tryptic peptides analyzed by LC-MS/MS. They were thereby identified as the small subunit of exodeoxyribonuclease VII, the 50S ribosomal protein L7/L12, a CsbD-like protein and thioredoxin, respectively. In conclusion, we identified four candidate biomarkers of ST17 by SELDI for high-throughput screening. These markers may serve as a basis for further studies on the pathophysiology of GBS infection, and for the development of novel vaccines.
Collapse
Affiliation(s)
- Philippe Lanotte
- Equipe “Bactéries et risque materno-fœtal”, UMR 1282 ISP, Université François Rabelais de Tours, Tours, France
- Equipe “Bactéries et risque materno-fœtal”, UMR 1282 ISP, INRA, Nouzilly, France
- Service de Bactériologie et de Virologie, CHRU de Tours, Tours, France
| | | | - Eve Haguenoer
- Equipe “Bactéries et risque materno-fœtal”, UMR 1282 ISP, Université François Rabelais de Tours, Tours, France
- Equipe “Bactéries et risque materno-fœtal”, UMR 1282 ISP, INRA, Nouzilly, France
- Service de Bactériologie et de Virologie, CHRU de Tours, Tours, France
| | - Laurent Mereghetti
- Equipe “Bactéries et risque materno-fœtal”, UMR 1282 ISP, Université François Rabelais de Tours, Tours, France
- Equipe “Bactéries et risque materno-fœtal”, UMR 1282 ISP, INRA, Nouzilly, France
- Service de Bactériologie et de Virologie, CHRU de Tours, Tours, France
| | - Christophe Burucoa
- Service de Bactériologie-Hygiène, CHU de Poitiers, Poitiers, France
- Equipe d'accueil 4331 “Laboratoire Inflammation, Tissus Epithéliaux et Cytokines”, Université de Poitiers, Poitiers, France
| | - Stéphane Claverol
- Pôle Protéomique - Centre de Génomique Fonctionnelle, Université Victor Segalen - Bordeaux 2, Bordeaux, France
| | - Christo Atanassov
- Service de Bactériologie-Hygiène, CHU de Poitiers, Poitiers, France
- Equipe d'accueil 4331 “Laboratoire Inflammation, Tissus Epithéliaux et Cytokines”, Université de Poitiers, Poitiers, France
- * E-mail:
| |
Collapse
|
25
|
Vermoote M, Van Steendam K, Flahou B, Smet A, Pasmans F, Glibert P, Ducatelle R, Deforce D, Haesebrouck F. Immunization with the immunodominant Helicobacter suis urease subunit B induces partial protection against H. suis infection in a mouse model. Vet Res 2012; 43:72. [PMID: 23101660 PMCID: PMC3542004 DOI: 10.1186/1297-9716-43-72] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/15/2012] [Indexed: 12/14/2022] Open
Abstract
Helicobacter (H.) suis is a porcine and human gastric pathogen. Previous studies in mice showed that an H. suis infection does not result in protective immunity, whereas immunization with H. suis whole-cell lysate (lysate) protects against a subsequent experimental infection. Therefore, two-dimensional gel electrophoresis of H. suis proteins was performed followed by immunoblotting with pooled sera from H. suis- infected mice or mice immunized with lysate. Weak reactivity against H. suis proteins was observed in post-infection sera. Sera from lysate-immunized mice, however, showed immunoreactivity against a total of 19 protein spots which were identified using LC-MS/MS. The H. suis urease subunit B (UreB) showed most pronounced reactivity against sera from lysate-immunized mice and was not detected with sera from infected mice. None of the pooled sera detected H. suis neutrophil-activating protein A (NapA). The protective efficacy of intranasal vaccination of BALB/c mice with H. suis UreB and NapA, both recombinantly expressed in Escherichia coli (rUreB and rNapA, respectively), was compared with that of H. suis lysate. All vaccines contained choleratoxin as adjuvant. Immunization of mice with rUreB and lysate induced a significant reduction of H. suis colonization compared to non-vaccinated H. suis-infected controls, whereas rNapA had no significant protective effect. Probably, a combination of local Th1 and Th17 responses, complemented by antibody responses play a role in the protective immunity against H. suis infections.
Collapse
Affiliation(s)
- Miet Vermoote
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vitoriano I, Rocha-Gonçalves A, Carvalho T, Oleastro M, Calado CRC, Roxo-Rosa M. Antigenic diversity among Portuguese clinical isolates of Helicobacter pylori. Helicobacter 2011; 16:153-68. [PMID: 21435094 DOI: 10.1111/j.1523-5378.2011.00825.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The human gastroduodenal pathogen, Helicobacter pylori, is characterized by an unusual extent of genetic heterogeneity. This dictates differences in the antigenic pattern of strains resulting in heterogeneous human humoral immune responses. Here, we examined the antigenic variability among a group of 10 strains isolated from Portuguese patients differing in age, gender, and H. pylori-associated gastric diseases. MATERIAL AND METHODS Immunoassays were performed on two-dimensional electrophoresis gels obtained for the proteome of each strain, using a commercial pool of antibodies produced in rabbit, against the whole cell lysate of an Australian H. pylori strain. Relevant proteins were identified by mass spectrometry. RESULTS Immunoproteomes of the Portuguese strains showed no correlation between the number of antigenic proteins or the antigenic profile, and the disease to which each strain was associated. The Heat shock protein B was the unique immunoreactive protein common to all of them. Additionally, seven proteins were found to be antigenic in at least 80% of strains: enoyl-(acyl-carrier-protein) reductase (NADH); Catalase; Flagellin A; 2 isoforms of alkyl hydroperoxide reductase; succinyl-CoA transferase subunit B; and an unidentified protein. These proteins were present in the proteome of all tested strains, suggesting that differences in their antigenicity are related to antigenic variance. CONCLUSIONS This study showed evidence of the variability of antigenic pattern among H. pylori strains. We believe that this fact contributes to the failure of anti-H. pylori vaccines and the low accuracy of serological tests based on a low number of proteins or antigens of only one strain.
Collapse
Affiliation(s)
- Inês Vitoriano
- Faculdade de Engenharia, Universidade Católica Portuguesa, Rio de Mouro, Portugal Chymiotechnon, Departamento de Química, Universidade de Coimbra, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
27
|
Le Maréchal C, Jardin J, Jan G, Even S, Pulido C, Guibert JM, Hernandez D, François P, Schrenzel J, Demon D, Meyer E, Berkova N, Thiéry R, Vautor E, Le Loir Y. Staphylococcus aureus seroproteomes discriminate ruminant isolates causing mild or severe mastitis. Vet Res 2011; 42:35. [PMID: 21324116 PMCID: PMC3052181 DOI: 10.1186/1297-9716-42-35] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/15/2011] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is a major cause of mastitis in ruminants. In ewe mastitis, symptoms range from subclinical to gangrenous mastitis. S. aureus factors or host-factors contributing to the different outcomes are not completely elucidated. In this study, experimental mastitis was induced on primiparous ewes using two S. aureus strains, isolated from gangrenous (strain O11) or subclinical (strain O46) mastitis. Strains induced drastically distinct clinical symptoms when tested in ewe and mice experimental mastitis. Notably, they reproduced mild (O46) or severe (O11) mastitis in ewes. Ewe sera were used to identify staphylococcal immunoreactive proteins commonly or differentially produced during infections of variable severity and to define core and accessory seroproteomes. Such SERological Proteome Analysis (SERPA) allowed the identification of 89 immunoreactive proteins, of which only 52 (58.4%) were previously identified as immunogenic proteins in other staphylococcal infections. Among the 89 proteins identified, 74 appear to constitute the core seroproteome. Among the 15 remaining proteins defining the accessory seroproteome, 12 were specific for strain O11, 3 were specific for O46. Distribution of one protein specific for each mastitis severity was investigated in ten other strains isolated from subclinical or clinical mastitis. We report here for the first time the identification of staphylococcal immunogenic proteins common or specific to S. aureus strains responsible for mild or severe mastitis. These findings open avenues in S. aureus mastitis studies as some of these proteins, expressed in vivo, are likely to account for the success of S. aureus as a pathogen of the ruminant mammary gland.
Collapse
Affiliation(s)
- Caroline Le Maréchal
- INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kilmury SLN, Twine SM. The francisella tularensis proteome and its recognition by antibodies. Front Microbiol 2011; 1:143. [PMID: 21687770 PMCID: PMC3109489 DOI: 10.3389/fmicb.2010.00143] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 12/18/2010] [Indexed: 01/31/2023] Open
Abstract
Francisella tularensis is the causative agent of a spectrum of diseases collectively known as tularemia. The extreme virulence of the pathogen in humans, combined with the low infectious dose and the ease of dissemination by aerosol have led to concerns about its abuse as a bioweapon. Until recently, nothing was known about the virulence mechanisms and even now, there is still a relatively poor understanding of pathogen virulence. Completion of increasing numbers of Francisella genome sequences, combined with comparative genomics and proteomics studies, are contributing to the knowledge in this area. Tularemia may be treated with antibiotics, but there is currently no licensed vaccine. An attenuated strain, the Live Vaccine Strain (LVS) has been used to vaccinate military and at risk laboratory personnel, but safety concerns mean that it is unlikely to be licensed by the FDA for general use. Little is known about the protective immunity induced by vaccination with LVS, in humans or animal models. Immunoproteomics studies with sera from infected humans or vaccinated mouse strains, are being used in gel-based or proteome microarray approaches to give insight into the humoral immune response. In addition, these data have the potential to be exploited in the identification of new diagnostic or protective antigens, the design of next generation live vaccine strains, and the development of subunit vaccines. Herein, we briefly review the current knowledge from Francisella comparative proteomics studies and then focus upon the findings from immunoproteomics approaches.
Collapse
Affiliation(s)
- Sara L. N. Kilmury
- Institute for Biological Sciences, National Research Council CanadaOttawa, ON, Canada
| | - Susan M. Twine
- Institute for Biological Sciences, National Research Council CanadaOttawa, ON, Canada
| |
Collapse
|
29
|
Moore ME, Borén T, Solnick JV. Life at the margins: modulation of attachment proteins in Helicobacter pylori. Gut Microbes 2011; 2:42-6. [PMID: 21637017 PMCID: PMC3225796 DOI: 10.4161/gmic.2.1.14626] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Helicobacter pylori is the primary cause of peptic ulcer disease and is estimated to account for about 60% of all cases of gastric cancer, the second most common cause of cancer death worldwide. Among the H. pylori virulence factors associated with disease, in addition to the well-known cag pathogenicity island, is the BabA adhesin, an outer membrane protein that binds with high affinity to fucosylated glycans on the gastric epithelium, such as Lewis B (Le(b)) and related terminal fucose residues found on the blood group O (H antigen), A and B antigens. BabA-mediated attachment to the gastric mucosa promotes chronic inflammation and gastric pathology, which from the bacterial perspective carries both risks and benefits. We recently described modulation in expression of BabA and related outer membrane proteins that occurs during colonization of experimental animals. Here we put these findings into a broader context, and speculate on their implications for the host-pathogen relationship.
Collapse
Affiliation(s)
- Mary E Moore
- Departments of Medicine and Microbiology and Immunology; Center for Comparative Medicine; California National Primate Research Center; University of California; Davis School of Medicine; Davis, CA USA
| | - Thomas Borén
- Department of Medical Biochemistry and Biophysics; Umeå University; Umeå, Sweden
| | - Jay V Solnick
- Departments of Medicine and Microbiology and Immunology; Center for Comparative Medicine; California National Primate Research Center; University of California; Davis School of Medicine; Davis, CA USA
| |
Collapse
|
30
|
Bernarde C, Lehours P, Lasserre JP, Castroviejo M, Bonneu M, Mégraud F, Ménard A. Complexomics study of two Helicobacter pylori strains of two pathological origins: potential targets for vaccine development and new insight in bacteria metabolism. Mol Cell Proteomics 2010; 9:2796-826. [PMID: 20610778 PMCID: PMC3101863 DOI: 10.1074/mcp.m110.001065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori infection plays a causal role in the development of gastric mucosa-associated lymphoid tissue (MALT) lymphoma (LG-MALT) and duodenal ulcer (DU). Although many virulence factors have been associated with DU, many questions remain unanswered regarding the evolution of the infection toward this exceptional event, LG-MALT. The present study describes and compares the complexome of two H. pylori strains, strain J99 associated with DU and strain B38 associated with LG-MALT, using the two-dimensional blue native/SDS-PAGE method. It was possible to identify 90 different complexes (49 and 41 in the B38 and J99 strains, respectively); 12 of these complexes were common to both strains (seven and five in the membrane and cytoplasm, respectively), reflecting the variability of H. pylori strains. The 44 membrane complexes included numerous outer membrane proteins, such as the major adhesins BabA and SabA retrieved from a complex in the B38 strain, and also proteins from the hor family rarely studied. BabA and BabB adhesins were found to interact independently with HopM/N in the B38 and J99 strains, respectively. The 46 cytosolic complexes essentially comprised proteins involved in H. pylori physiology. Some orphan proteins were retrieved from heterooligomeric complexes, and a function could be proposed for a number of them via the identification of their partners, such as JHP0119, which may be involved in the flagellar function. Overall, this study gave new insights into the membrane and cytoplasm structure, and those which could help in the design of molecules for vaccine and/or antimicrobial agent development are highlighted.
Collapse
Affiliation(s)
- Cédric Bernarde
- From ‡INSERM U853, 33076 Bordeaux, France and
- §Laboratoire de Bactériologie
| | - Philippe Lehours
- From ‡INSERM U853, 33076 Bordeaux, France and
- §Laboratoire de Bactériologie
| | - Jean-Paul Lasserre
- From ‡INSERM U853, 33076 Bordeaux, France and
- §Laboratoire de Bactériologie
| | - Michel Castroviejo
- ‖Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, and
| | - Marc Bonneu
- **Pôle Protéomique, Plateforme Génomique Fonctionnelle, Université Victor Segalen Bordeaux 2, Bordeaux, F 33076 France
| | - Francis Mégraud
- From ‡INSERM U853, 33076 Bordeaux, France and
- §Laboratoire de Bactériologie
| | - Armelle Ménard
- From ‡INSERM U853, 33076 Bordeaux, France and
- §Laboratoire de Bactériologie
| |
Collapse
|
31
|
Immunology. CLINICAL MICROBIOLOGY PROCEDURES HANDBOOK 2010. [DOI: 10.1128/9781555817435.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
32
|
Lahner E, Bernardini G, Santucci A, Annibale B. Helicobacter pylori immunoproteomics in gastric cancer and gastritis of the carcinoma phenotype. Expert Rev Proteomics 2010; 7:239-248. [PMID: 20377390 DOI: 10.1586/epr.10.5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Helicobacter pylori infection is linked to the development of gastric cancer. Atrophic body gastritis is considered the first important step in the histogenesis of such neoplasia. H. pylori infection is involved in the induction of atrophic body gastritis, but documentation of H. pylori infection is difficult because of the progressive disappearance of the bacterium. Host-pathogen interactions may be investigated by means of immunoproteomics, which provides global information regarding the host humoral response to H. pylori infection and allows the identification of relevant specific and nonspecific antigens, and can be used for diagnostic or prognostic purposes. In the present review, we describe how several research groups used H. pylori immunoproteomics to investigate highly immunoreactive bacterial antigens related to the development of gastric cancer.
Collapse
Affiliation(s)
- Edith Lahner
- Digestive and Liver Disease Unit, University La Sapienza, Dipartimento di Scienze Cliniche, Ospedale Sant'Andrea, Rome, Italy
| | | | | | | |
Collapse
|
33
|
Kaakoush NO, Man SM, Lamb S, Raftery MJ, Wilkins MR, Kovach Z, Mitchell H. The secretome of Campylobacter concisus. FEBS J 2010; 277:1606-17. [PMID: 20148967 DOI: 10.1111/j.1742-4658.2010.07587.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A higher prevalence of Campylobacter concisus and higher levels of IgG antibodies specific to C. concisus in Crohn's disease patients than in controls were recently detected. In this study, 1D and 2D gel electrophoresis coupled with LTQ FT-MS and QStar tandem MS, respectively, were performed to characterize the secretome of a C. concisus strain isolated from a Crohn's disease patient. Two hundred and one secreted proteins were identified, of which 86 were bioinformatically predicted to be secreted. Searches were performed on the genome of C. concisus strain 13826, and 25 genes that have been associated with virulence or colonization in other organisms were identified. The zonula occludens toxin was found only in C. concisus among the Campylobacterales, although expanded searches revealed that this protein was present in two epsilon-proteobacterial species from extreme marine environments. Alignments and structural threading indicated that this toxin shared features with that of other virulent pathogens, including Neisseria meningitidis and Vibrio cholerae. Further comparative analyses identified several associations between the secretome of C. consisus and putative virulence factors of this bacterium. This study has identified several factors putatively associated with disease outcome, suggesting that C. concisus is a pathogen of the gastrointestinal tract.
Collapse
Affiliation(s)
- Nadeem O Kaakoush
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
34
|
Expression of the BabA adhesin during experimental infection with Helicobacter pylori. Infect Immun 2010; 78:1593-600. [PMID: 20123715 DOI: 10.1128/iai.01297-09] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Helicobacter pylori babA gene encodes an outer membrane protein that mediates binding to fucosylated ABH antigens of the ABO blood group. We recently demonstrated that BabA expression is lost during experimental infection of rhesus macaques with H. pylori J166. We sought to test the generality of this observation by comparison of different H. pylori strains and different animal hosts. Challenge of macaques with H. pylori J99 yielded output strains that lost BabA expression, either by selection and then expansion of a subpopulation of J99 that had a single-base-pair mutation that encoded a stop codon or by gene conversion of babA with a duplicate copy of babB, a paralog of unknown function. Challenge of mice with H. pylori J166, which unlike J99, has 5' CT repeats in babA, resulted in loss of BabA expression due to phase variation. In the gerbil, Leb binding was lost by replacement of the babA gene that encoded Leb binding with a nonbinding allele that differed at six amino acid residues. Complementation experiments confirmed that change in these six amino acids of BabA was sufficient to eliminate binding to Leb and to gastric tissue. These results demonstrate that BabA expression in vivo is highly dynamic, and the findings implicate specific amino acid residues as critical for binding to fucosylated ABH antigens. We hypothesize that modification of BabA expression during H. pylori infection is a mechanism to adapt to changing conditions of inflammation and glycan expression at the epithelial surface.
Collapse
|
35
|
Molina DM, Pal S, Kayala MA, Teng A, Kim PJ, Baldi P, Felgner PL, Liang X, de la Maza LM. Identification of immunodominant antigens of Chlamydia trachomatis using proteome microarrays. Vaccine 2009; 28:3014-24. [PMID: 20044059 DOI: 10.1016/j.vaccine.2009.12.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 12/02/2009] [Accepted: 12/14/2009] [Indexed: 12/26/2022]
Abstract
Chlamydia trachomatis is the most common bacterial sexually transmitted pathogen in the world. In order to control this infection there is an urgent need to formulate a vaccine. Identification of protective antigens is required to implement a subunit vaccine. To identify potential antigen vaccine candidates, three strains of mice, BALB/c, C3H/HeN and C57BL/6, were inoculated with live and inactivated C. trachomatis mouse pneumonitis (MoPn) by different routes of immunization. Using a protein microarray, serum samples collected after immunization were tested for the presence of antibodies against specific chlamydial antigens. A total of 225 open reading frames (ORF) of the C. trachomatis genome were cloned, expressed, and printed in the microarray. Using this protein microarray, a total of seven C. trachomatis dominant antigens were identified (TC0052, TC0189, TC0582, TC0660, TC0726, TC0816 and, TC0828) as recognized by IgG antibodies from all three strains of animals after immunization. In addition, the microarray was probed to determine if the antibody response exhibited a Th1 or Th2 bias. Animals immunized with live organisms mounted a predominant Th1 response against most of the chlamydial antigens while mice immunized with inactivated Chlamydia mounted a Th2-biased response. In conclusion, using a high throughput protein microarray we have identified a set of novel proteins that can be tested for their ability to protect against a chlamydial infection.
Collapse
Affiliation(s)
- Douglas M Molina
- ImmPORT Therapeutics, 1 Technology Drive, Suite E309, Irvine, CA 92618, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Duckworth MJ, Okoli AS, Mendz GL. Novel Helicobacter pylori therapeutic targets: the unusual suspects. Expert Rev Anti Infect Ther 2009; 7:835-67. [PMID: 19735225 DOI: 10.1586/eri.09.61] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding the current status of the discovery and development of anti-Helicobacter therapies requires an overview of the searches for therapeutic targets performed to date. A summary is given of the very substantial body of work conducted in the quest to find Helicobacter pylori genes that could be suitable candidates for therapeutic intervention. The products of most of these genes perform metabolic functions, and others have roles in growth, cell motility and colonization. The genes identified as potential targets have been organized into three categories according to their degree of characterization. A short description and evaluation is provided of the main candidates in each category. Investigations of potential therapeutic targets have generated a wealth of information about the physiology and genetics of H. pylori, and its interactions with the host, but have yielded little by way of new therapies.
Collapse
Affiliation(s)
- Megan J Duckworth
- School of Medicine, Sydney, The University of Notre Dame Australia, 160 Oxford Street, Darlinghurst, NSW 2010, Australia.
| | | | | |
Collapse
|
37
|
Gao L, Michel A, Weck MN, Arndt V, Pawlita M, Brenner H. Helicobacter pylori infection and gastric cancer risk: evaluation of 15 H. pylori proteins determined by novel multiplex serology. Cancer Res 2009; 69:6164-70. [PMID: 19602590 DOI: 10.1158/0008-5472.can-09-0596] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Infection with Helicobacter pylori is a major cause of gastric cancer (GC). The association likely has been underestimated in the past due to disease-related clearance of the infection. On the other hand, only a minority of the infected individuals develop GC, and better risk stratification is therefore highly desirable. We aimed to assess the association of GC with antibodies to 15 individual H. pylori proteins, determined by novel multiplex serology, to identify potentially relevant risk markers. This analysis was based on 123 GC cases aged 50 to 74 years and 492 age-matched and sex-matched controls from Saarland, Germany. Eight of the antibodies were significantly associated with noncardia GC and seven of them were significantly related to GC at any site. More pronounced associations were observed for noncardia GC; adjusted odds ratios (95% confidence intervals) ranged from 1.60 (1.01-2.54) for HyuA to 5.63 (3.20-9.91) for cytotoxin-associated antigen A (CagA). A dose-response relationship was found between the number of seropositivities and GC (P < 0.001). The seropositivities of CagA and GroEL were found to be independent predictors of GC, which were strongly related to GC risk in a dose-response manner (P < 0.001). In conclusion, GroEL was identified as a new independent risk marker that may contribute to enhanced quantification of H. pylori-related GC risk.
Collapse
Affiliation(s)
- Lei Gao
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Bernarde C, Khoder G, Lehours P, Burucoa C, Fauchère JL, Delchier JC, Mégraud F, Atanassov C. Proteomic Helicobacter pylori
biomarkers discriminative of low-grade gastric MALT lymphoma and duodenal ulcer. Proteomics Clin Appl 2009; 3:672-81. [DOI: 10.1002/prca.200800158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
39
|
Gao L, Weck MN, Michel A, Pawlita M, Brenner H. Association between chronic atrophic gastritis and serum antibodies to 15 Helicobacter pylori proteins measured by multiplex serology. Cancer Res 2009; 69:2973-80. [PMID: 19318564 DOI: 10.1158/0008-5472.can-08-3477] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Infection with Helicobacter pylori is a major risk factor for chronic atrophic gastritis (CAG), a precursor lesion of intestinal gastric cancer. The pathogenicity of the bacterium is thought to play an important role in determining the extent and severity of clinical outcome. We aimed to assess the associations between CAG and the serostatus of antibodies to 15 H. pylori proteins. The analyses were based on 534 cases with serologically defined CAG and 1,068 age-matched and sex-matched controls participating in a population-based study conducted in Saarland, Germany among 9,953 men and women ages 50 to 74 years. A newly developed H. pylori multiplex serology method was used to detect antibodies specific to 15 H. pylori antigens. Significant associations were observed between seropositivity for all 15 specific antibodies and the presence of CAG. Exclusion of severe cases, who might have lost the infection in the course of CAG progression, substantially increased the observed associations. In H. pylori-seropositive subjects, cytotoxin-associated gene A (CagA), vacuolating toxin (VacA), helicobacter cysteine-rich protein C (HcpC), and the chaperonin GroEL were identified as independent virulence factors for CAG with adjusted odds ratios (95% confidence interval) of 3.52 (2.01-6.10), 3.19 (1.44-7.05), 4.03 (1.53-10.65), and 2.65 (1.06-6.62), respectively; the simultaneous presence of all four independent virulence factors was associated with an 18-fold risk of CAG. In conclusion, HcpC and GroEL were identified as new independent virulence factors, and in combination with the established virulence factors, CagA and VacA, were strongly associated with CAG.
Collapse
Affiliation(s)
- Lei Gao
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
40
|
Abstract
Infectious agents have been postulated to play a pathogenic role in the loss of immunological tolerance and the induction of primary biliary cirrhosis, an immune-mediated cholestatic liver disease characterized by progressive destruction of the small intrahepatic bile ducts and subsequent cirrhosis and liver failure. This review discusses emerging issues implicating infectious agents such as Escherichia coli, mycobacteria, chlamydia, helicobacter species, lactobacilli, Novosphingobium aromaticivorans, and betaretroviruses in the pathogenesis of primary biliary cirrhosis. We also review the immunopathological mechanisms responsible for the induction of the disease with special emphasis on the role of molecular mimicry and microbial/self immunological cross-reactivity.
Collapse
|
41
|
Khoder G, Yamaoka Y, Fauchère JL, Burucoa C, Atanassov C. Proteomic Helicobacter pylori biomarkers discriminating between duodenal ulcer and gastric cancer. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:1193-9. [PMID: 19328750 DOI: 10.1016/j.jchromb.2009.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 02/25/2009] [Accepted: 03/02/2009] [Indexed: 12/12/2022]
Abstract
Protein patterns of 129 Helicobacter pylori strains isolated from Korean and Colombian patients suffering from duodenal ulcer or gastric cancer were analyzed by the high-throughput methodology SELDI-TOF-MS. Eighteen statistically significant candidate biomarkers discriminating between the two clinical outcomes were selected by using the Mann-Whitney test. Three biomarker proteins were purified and identified as a neutrophil-activating protein NapA (HU HPAG1_0821), a RNA-binding protein (HPAG1_0813), and a DNA-binding histone-like protein HU, respectively (jhp0228). These novel biomarkers can be used for development of diagnostic assays predicting the evolution to gastric cancer in H. pylori-infected patients.
Collapse
Affiliation(s)
- Ghalia Khoder
- EA 4331 LITEC, Université de Poitiers, Poitiers, France
| | | | | | | | | |
Collapse
|
42
|
Lü L, Cao HD, Zeng HQ, Wang PL, Wang LJ, Liu SN, Xiang TX. Recombinant Mycobacterium smegmatis mc(2)155 vaccine expressing outer membrane protein 26 kDa antigen affords therapeutic protection against Helicobacter pylori infection. Vaccine 2008; 27:972-8. [PMID: 19111590 DOI: 10.1016/j.vaccine.2008.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 12/04/2008] [Accepted: 12/05/2008] [Indexed: 11/30/2022]
Abstract
Orally administered recombinant Mycobacterium smegmatis (rM. smegmatis) vaccines represent an attractive option for mass vaccination programmes against various infectious diseases. Therefore, in the present study, we evaluated the capacity of the outer membrane protein 26kDa antigen (Omp26) of Helicobacter pylori (H. pylori) to induce therapeutic protection against H. pylori infection in mice. Omp26 was cloned and expressed in M. smegmatis mc(2)155 as a fusion with the Mycobacterium fortuitum beta-lactamase protein under the control of the up-regulated M. fortuitum beta-lactamase promoter, pBlaF. The rM. smegmatis strain was shown to be relatively stable in vitro in terms of plasmid stability and bacterial persistence. We found that oral immunization of H. pylori-infected mice with rM. smegmatis-Omp26 induced protection, i.e., significant reduction in bacterial colonization in the stomach. The protection was strongly related to serum specific antibodies with a Th(1) and Th(2) profile as well as to local cytokines in the stomach and spleen. These findings suggest that Omp26 is a promising vaccine candidate antigen for use in a therapeutic vaccine against H. pylori. The rM. smegmatis expressing Omp26 antigen could constitute an effective, low-cost combined vaccine against H. pylori.
Collapse
Affiliation(s)
- Lin Lü
- Department of Gastroenterology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Oleastro M, Cordeiro R, Ferrand J, Nunes B, Lehours P, Carvalho-Oliveira I, Mendes AI, Penque D, Monteiro L, Mégraud F, Ménard A. Evaluation of the clinical significance of homB, a novel candidate marker of Helicobacter pylori strains associated with peptic ulcer disease. J Infect Dis 2008; 198:1379-87. [PMID: 18811585 DOI: 10.1086/592166] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND homB codes for a putative Helicobacter pylori outer membrane protein and has previously been associated with peptic ulcer disease (PUD) in children. METHODS A total of 190 H. pylori strains isolated from children and adults were studied to evaluate the clinical importance of the homB gene. In vitro experiments were performed to identify HomB mechanisms of bacterial pathogenicity. RESULTS Characterization of the isolates demonstrated that homB was significantly associated with PUD in 86 children (odds ratio [OR], 7.64 [95% confidence interval {CI}, 2.65-22.05]) and in 32 adults < or =40 years of age (OR, 11.25 [95% CI, 1.86-68.13]). homB was correlated with the presence of cagA, babA2, vacAs1, hopQI, and oipA "on" genotype (P< .001) The HomB protein was found to be expressed in the H. pylori outer membrane and was noted to be antigenic in humans. H. pylori homB knockout mutant strains presented reduced ability to induce interleukin-8 secretion from human gastric epithelial cells, as well as reduced capacity to bind to these cells. Both of these functions correlated with the number of homB copies present in a strain. CONCLUSION homB can be considered a comarker of H. pylori strains associated with PUD. Moreover, results strongly suggest that HomB is involved in the inflammatory response and in H. pylori adherence, constituting a novel putative virulence factor.
Collapse
Affiliation(s)
- Mónica Oleastro
- Departamento de Doenças Infecciosas, Instituto Nacional Saúde Dr Ricardo Jorge, Lisbon, Portugal.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Song YY, Zhao F, Xiao D, Ma GY, Meng FL, He LH, Zhang JZ. Sequential proteomic characteristics of AGS cells co-cultured with H. pylori strain. Shijie Huaren Xiaohua Zazhi 2008; 16:1260-1265. [DOI: 10.11569/wcjd.v16.i12.1260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the differential expression of proteome in human gastric adenocarcinoma epithelial AGS cells co-cultured with H. pylori.
METHODS: The samples of AGS cells co-cultured with H. pylori 26695 strain at three time-points (0.5, 2 and 4 h) were collected and separated by 2-dimensional polyacrylamide gel electrophoresis (2-DE) technique and computer-assisted image analysis was used to analyze the differential proteomic expression. The significantly differentially expressed proteins were recognized and identified with the 4700 proteomics discovery system.
RESULTS: There were 66 protein spots that were significantly differentially expressed at different time-points, 34 (corresponding to 16 kinds of proteins) of which were identified with matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF-TOF). At 2-h time-point, 8 kinds of proteins were up-regulated obviously, of which 2 originated from the cells and 6 from H. pylori. At the 4-h time-point, 4 kinds of cell-originated proteins were down-regulated, and 4 kinds of new proteins were observed. Succinate dehydrogenase iron-sulfur subunit, HpaA, HSP 60 and peroxiredoxin were up-regulated at the early stage of co-infection. However, at the late stage of co-infection, two cell-originated proteins (cyclophilin A, nascent-polypeptide-associated complex alpha polypeptide) and two H. pylori-originated proteins (urease, non-heme iron protein) were found to express.
CONCLUSION: During the interaction between AGS cells and H. pylori, the expression of proteins is associated with adhesion change in the early stage, followed by a favorable alteration in the survival and proliferation of H. pylori as well as immunologic escape and pathological erosion.
Collapse
|
45
|
Hussain MA, Naveed SA, Sechi LA, Ranjan S, Alvi A, Ahmed I, Ranjan A, Mukhopadhyay S, Ahmed N. Isocitrate dehydrogenase of Helicobacter pylori potentially induces humoral immune response in subjects with peptic ulcer disease and gastritis. PLoS One 2008; 3:e1481. [PMID: 18213389 PMCID: PMC2195454 DOI: 10.1371/journal.pone.0001481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 12/24/2007] [Indexed: 01/11/2023] Open
Abstract
Background H. pylori causes gastritis and peptic ulcers and is a risk factor for the development of gastric carcinoma. Many of the proteins such as urease, porins, flagellins and toxins such as lipo-polysaccharides have been identified as potential virulence factors which induce proinflammatory reaction. We report immunogenic potentials of isocitrate dehydrogenase (ICD), an important house keeping protein of H. pylori. Methodology/Principal Findings Amino acid sequences of H. pylori ICD were subjected to in silico analysis for regions with predictably high antigenic indexes. Also, computational modelling of the H. pylori ICD as juxtaposed to the E. coli ICD was carried out to determine levels of structure similarity and the availability of surface exposed motifs, if any. The icd gene was cloned, expressed and purified to a very high homogeneity. Humoral response directed against H. pylori ICD was detected through an enzyme linked immunosorbent assay (ELISA) in 82 human subjects comprising of 58 patients with H. pylori associated gastritis or ulcer disease and 24 asymptomatic healthy controls. The H. pylori ICD elicited potentially high humoral immune response and revealed high antibody titers in sera corresponding to endoscopically-confirmed gastritis and ulcer disease subjects. However, urea-breath-test negative healthy control samples and asymptomatic control samples did not reveal any detectable immune responses. The ELISA for proinflammatory cytokine IL-8 did not exhibit any significant proinflammatory activity of ICD. Conclusions/Significance ICD of H. pylori is an immunogen which interacts with the host immune system subsequent to a possible autolytic-release and thereby significantly elicits humoral responses in individuals with invasive H. pylori infection. However, ICD could not significantly stimulate IL8 induction in a cultured macrophage cell line (THP1) and therefore, may not be a notable proinflammatory agent.
Collapse
Affiliation(s)
- M. Abid Hussain
- Pathogen Evolution Laboratory, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Shaik A. Naveed
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences and Allied Hospitals, Hyderabad, India
| | - Leonardo A. Sechi
- Dipartimento di Scienze Biomediche, Sezione Microbiologia sperimentale e clinica, Facoltà di Medicina, Universiti degli studi de Sassari, Sassari, Italy
| | - Sarita Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Ayesha Alvi
- Pathogen Evolution Laboratory, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Irshad Ahmed
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences and Allied Hospitals, Hyderabad, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular and Cellular Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Niyaz Ahmed
- Pathogen Evolution Laboratory, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Godlewska R, Pawlowski M, Dzwonek A, Mikula M, Ostrowski J, Drela N, Jagusztyn-Krynicka EK. Tip-alpha (hp0596 gene product) is a highly immunogenic Helicobacter pylori protein involved in colonization of mouse gastric mucosa. Curr Microbiol 2008; 56:279-86. [PMID: 18172719 DOI: 10.1007/s00284-007-9083-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 11/06/2007] [Indexed: 02/06/2023]
Abstract
A product of the Helicobacter pylori hp0596 gene (Tip-alpha) is a highly immunogenic homodimeric protein, unique for this bacterium. Cell fractionation experiments indicate that Tip-alpha is anchored to the inner membrane. In contrast, the three-dimensional model of the protein suggests that Tip-alpha is soluble or, at least, largely exposed to the solvent. hp0596 gene knockout resulted in a significant decrease in the level of H. pylori colonization as measured by real-time PCR assay. In addition, the Tip-alpha recombinant protein was determined to stimulate macrophage to produce IL-1alpha and TNF-alpha. Both results imply that Tip-alpha is rather loosely connected to the inner membrane and potentially released during infection.
Collapse
Affiliation(s)
- Renata Godlewska
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
47
|
Lee J, Lee SY, Lee JH. [Production of Antibody against Helicobacter pylori HP0231.]. Korean J Lab Med 2007; 26:98-102. [PMID: 18156708 DOI: 10.3343/kjlm.2006.26.2.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Stool antigen detection kits for diagnosis of infection of Helicobacter pylori have been widely used for their convenience, but are mostly imported. Since Helicobacter pylori strains show a distinctive genetic diversity, it is important to find a protein that is a common antigen among various strains and shows a strong immunogenicity for the development of a stool antigen detection kit. HP0231 protein strongly reacts with the sera of patients suffering from gastritis and peptic ulcer. Therefore, HP0231 is an excellent candidate as a target gene for this study. METHODS Chromosomal DNA from H. pylori was isolated. HP0231 gene was amplified by PCR, cloned into pET28a(+) vector, and overexpressed using isopropyl-beta-D-thiogalactopyranoside in E. coli BL21 (DE3). HP0231 protein was purified by Ni-NTA affinity chromatography followed by electroelution after SDS-PAGE. Rabbits were immunized with the purified HP0231 protein for the production of antibodies. Rabbit anti-HP0231 antibody was partially purified and tested for the sensitivity and specificity using ELISA and Western Blot Analysis. RESULTS The sequence of the cloned HP0231 gene was identical with the gene sequence from Genbank (AA216016). HP0231 gene was overexpressed and HP0231 protein was purified. Rabbit anti-HP0231 antibody produced after immunization with the purified HP0231 protein reacted with the purified HP0231 protein, cell extracts from cultured H. pylori, and stomach biopsy tissue from patients, but not with cell extracts from cultured E. coli used as a negative control. After 1 million fold dilution, rabbit anti-HP0231 antibody still reacted with 1 microg of HP0231 protein. CONCLUSIONS Rabbit anti-HP0231 antibody was produced to detect HP0231 protein of H. pylori and will be tested for the development of a stool antigen detection kit for H. pylori.
Collapse
Affiliation(s)
- Jongwook Lee
- Department of Laboratory Medicine, College of Medicine, Konyang University, Daejeon, Korea.
| | | | | |
Collapse
|
48
|
Affiliation(s)
- Michael F Loughlin
- The University of Nottingham, Division of Food Sciences, School of Biosciences, Sutton Bonnington Campus, Loughborough, Leicestershire, LE12 5RD, UK ;
| |
Collapse
|
49
|
Abstract
Helicobacter pylori, a Gram-negative flagellate bacterium that infects the stomach of more than half of the global population, is regarded as the leading cause of chronic gastritis, peptic ulcer disease, and even gastric adenocarcinoma in some individuals. Although the bacterium induces strong humoral and cellular immune responses, it can persist in the host for decades. It has several virulence factors, some of them having vaccine potential as judged by immunoproteomic analysis. A few vaccination studies involving a small number of infected or uninfected humans with various H. pylori formulations such as the recombinant urease, killed whole cells, and live Salmonella vectors presenting the subunit antigens have not provided satisfactory results. One trial that used the recombinant H. pylori urease coadministered with native Escherichia coli enterotoxin (LT) demonstrated a reduction of H. pylori load in infected participants. Although extensive studies in the mouse model have demonstrated the feasibility of both therapeutic and prophylactic immunizations, the mechanism of vaccine-induced protection is poorly understood as several factors such as immunoglobulin and various cytokines do not contribute to protection. Transcriptome analyses in mice have indicated the role of nonclassical immune factors in vaccine-induced protection. The role of regulatory T cells in the persistence of H. pylori infection has also been suggested. A recently developed experimental H. pylori infection model in humans may be used for testing several new adjuvants and vaccine delivery systems that have been currently obtained. The use of vaccines with appropriate immunogens, routes of immunization, and adjuvants along with a better understanding of the mechanism of immune protection may provide more favorable results.
Collapse
Affiliation(s)
- Shahjahan Kabir
- Academic Research and Information Management, Uppsala, Sweden.
| |
Collapse
|
50
|
Lin YF, Chen CY, Tsai MH, Wu MS, Wang YC, Chuang EY, Lin JT, Yang PC, Chow LP. Duodenal ulcer-related antigens from Helicobacter pylori: immunoproteome and protein microarray approaches. Mol Cell Proteomics 2007; 6:1018-26. [PMID: 17317659 DOI: 10.1074/mcp.m700009-mcp200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Helicobacter pylori is an important risk factor of duodenal ulcer (DU). Although many virulence factors of H. pylori have been identified, few have been reported to show an association with the pathogenesis of DU. The aims of this study were to identify H. pylori antigens showing a high seropositivity in DU and to develop a platform for rapid and easy diagnosis for DU. Because DU and gastric cancer (GC) are considered clinical divergent gastroduodenal diseases, we compared two-dimensional immunoblots of an acid-glycine extract of an H. pylori strain from a patient with DU probed with serum samples from 10 patients with DU and 10 with GC to identify DU-related antigens. Of the 11 proteins that were strongly recognized by serum IgG from DU patients, translation elongation factor EF-G (FusA), catalase (KatA), and urease alpha subunit (UreA) were identified as DU-related antigens, showing a higher seropositivity in DU samples (n = 124) than in GC samples (n = 95) (FusA, 70.2 versus 45.3%; KatA, 50.8 versus 41.1%; UreA, 44.4 versus 27.4%). In addition, we found that the use of multiple antigens improved the discrimination between patients with DU and those with GC as the odds ratios increased from 1.82 (95% confidence interval (CI), 0.79-4.21; p = 0.1607) for seropositivity for FusA, KatA, or UreA alone to 4.95 (95% CI, 2.05-12.0; p = 0.0004) for two of the three antigens and to 5.71 (95% CI, 1.86-17.6; p = 0.0024) for all three antigens. Moreover a protein array containing the three DU-related antigens was developed to test the idea of using multiple biomarkers in diagnosis. We conclude that FusA, KatA, and UreA are DU-related antigens of H. pylori, and the combination of these on a protein array provided a rapid and convenient method for detecting serum antibody patterns of DU patients.
Collapse
Affiliation(s)
- Yu-Fen Lin
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|