1
|
Schiavone M, Dagkesamanskaya A, Vieu PG, Duperray M, Duplan-Eche V, François JM. A flow cytometry method for quantitative measurement and molecular investigation of the adhesion of bacteria to yeast cells. Sci Rep 2024; 14:20935. [PMID: 39251857 PMCID: PMC11385505 DOI: 10.1038/s41598-024-72030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
The study of microorganism interactions is important for understanding the organization and functioning of microbial consortia. Additionally, the interaction between yeast and bacteria is of interest in the field of health and nutrition area for the development of probiotics. To investigate these microbial interactions at the cellular and molecular levels, a simple, reliable, and quantitative method is proposed. We demonstrated that flow cytometry enables the measurement of interactions at a single-cell level by detecting and counting yeast cells with bound fluorescent bacteria. Imaging flow cytometry revealed that the number of bacteria attached to yeast followed a Gaussian distribution whose maximum reached 14 bacterial cells using a clinical Escherichia coli strain E22 and the laboratory yeast strain BY4741. We found that the dynamics of adhesion resemble a Langmuir adsorption model, albeit it is a rapid and almost irreversible process. This adhesion is dependent on the mannose-specific type 1 fimbriae, as E. coli mutants lacking these appendages no longer adhere to yeast. However, this type 1 fimbriae-dependent adhesion could involve additional yeast cell wall factors, since the interaction between bacteria and yeast mutants with altered mannan content remained comparable to that of wild-type yeast. In summary, flow cytometry is an appropriate method for studying bacteria-yeast adhesion, as well as for the high-throughput screening of candidate molecules likely to promote or counteract this interaction.
Collapse
Affiliation(s)
- Marion Schiavone
- Toulouse Biotechnology Institute (TBI), UMR INSA-CNRS 5504 & INRA 792, 135 Avenue de Rangeuil, 31077, Toulouse, France
- Lallemand SAS, 19, Rue Des Briquetiers, 31702, Blagnac, France
| | - Adilya Dagkesamanskaya
- Toulouse Biotechnology Institute (TBI), UMR INSA-CNRS 5504 & INRA 792, 135 Avenue de Rangeuil, 31077, Toulouse, France
| | - Pierre-Gilles Vieu
- Toulouse Biotechnology Institute (TBI), UMR INSA-CNRS 5504 & INRA 792, 135 Avenue de Rangeuil, 31077, Toulouse, France
| | - Maëlle Duperray
- Toulouse Biotechnology Institute (TBI), UMR INSA-CNRS 5504 & INRA 792, 135 Avenue de Rangeuil, 31077, Toulouse, France
| | - Valérie Duplan-Eche
- Institut Toulousain Des Maladies Infectieuses Et Inflammatoires (Infinity), CNRS U5051, INSERM U1291, University Toulouse III, 31000, Toulouse, France
| | - Jean Marie François
- Toulouse Biotechnology Institute (TBI), UMR INSA-CNRS 5504 & INRA 792, 135 Avenue de Rangeuil, 31077, Toulouse, France.
| |
Collapse
|
2
|
Availability of the Molecular Switch XylR Controls Phenotypic Heterogeneity and Lag Duration during Escherichia coli Adaptation from Glucose to Xylose. mBio 2020; 11:mBio.02938-20. [PMID: 33443125 PMCID: PMC8534289 DOI: 10.1128/mbio.02938-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The glucose-xylose metabolic transition is of growing interest as a model to explore cellular adaption since these molecules are the main substrates resulting from the deconstruction of lignocellulosic biomass. Here, we investigated the role of the XylR transcription factor in the length of the lag phases when the bacterium Escherichia coli needs to adapt from glucose- to xylose-based growth. First, a variety of lag times were observed when different strains of E. coli were switched from glucose to xylose. These lag times were shown to be controlled by XylR availability in the cells with no further effect on the growth rate on xylose. XylR titration provoked long lag times demonstrated to result from phenotypic heterogeneity during the switch from glucose to xylose, with a subpopulation unable to resume exponential growth, whereas the other subpopulation grew exponentially on xylose. A stochastic model was then constructed based on the assumption that XylR availability influences the probability of individual cells to switch to xylose growth. The model was used to understand how XylR behaves as a molecular switch determining the bistability set-up. This work shows that the length of lag phases in E. coli is controllable and reinforces the role of stochastic mechanism in cellular adaptation, paving the way for new strategies for the better use of sustainable carbon sources in bioeconomy.
Collapse
|
3
|
Dhanda AS, Yang D, Kooner A, Guttman JA. Distribution of PDLIM1 at actin-rich structures generated by invasive and adherent bacterial pathogens. Anat Rec (Hoboken) 2020; 304:919-938. [PMID: 33022122 DOI: 10.1002/ar.24523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/06/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022]
Abstract
The enteric bacterial pathogens Listeria monocytogenes (Listeria) and enteropathogenic Escherichia coli (EPEC) remodel the eukaryotic actin cytoskeleton during their disease processes. Listeria generate slender actin-rich comet/rocket tails to move intracellularly, and later, finger-like membrane protrusions to spread amongst host cells. EPEC remain extracellular, but generate similar actin-rich membranous protrusions (termed pedestals) to move atop the host epithelia. These structures are crucial for disease as diarrheal (and systemic) infections are significantly abrogated during infections with mutant strains that are unable to generate the structures. The current repertoire of host components enriched within these structures is vast and diverse. In this protein catalog, we and others have found that host actin crosslinkers, such as palladin and α-actinin-1, are routinely exploited. To expand on this list, we set out to investigate the distribution of PDLIM1, a scaffolding protein and binding partner of palladin and α-actinin-1, during bacterial infections. We show that PDLIM1 localizes to the site of initial Listeria entry into cells. Following this, PDLIM1 localizes to actin filament clouds surrounding immotile bacteria, and then colocalizes with actin once the comet/rocket tails are generated. Unlike palladin or α-actinin-1, PDLIM1 is maintained within the actin-rich core of membrane protrusions. Conversely, α-actinin-1, but not PDLIM1 (or palladin), is enriched at the membrane invagination that internalizes the Listeria-containing membrane protrusion. We also show that PDLIM1 is a component of the EPEC pedestal core and that its recruitment is dependent on the bacterial effector Tir. Our findings highlight PDLIM1 as another protein present within pathogen-induced actin-rich structures.
Collapse
Affiliation(s)
- Aaron S Dhanda
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Diana Yang
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Avneen Kooner
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Julian A Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
4
|
Dhanda AS, Yang D, Guttman JA. Localization of alpha-actinin-4 during infections by actin remodeling bacteria. Anat Rec (Hoboken) 2020; 304:1400-1419. [PMID: 33099893 DOI: 10.1002/ar.24548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Accepted: 09/12/2020] [Indexed: 11/12/2022]
Abstract
Bacterial pathogens cause disease by subverting the structure and function of their target host cells. Several foodborne agents such as Listeria monocytogenes (L. monocytogenes), Shigella flexneri (S. flexneri), Salmonella enterica serovar Typhimurium (S. Typhimurium) and enteropathogenic Escherichia coli (EPEC) manipulate the host actin cytoskeleton to cause diarrheal (and systemic) infections. During infections, these invasive and adherent pathogens hijack the actin filaments of their host cells and rearrange them into discrete actin-rich structures that promote bacterial adhesion (via pedestals), invasion (via membrane ruffles and endocytic cups), intracellular motility (via comet/rocket tails) and/or intercellular dissemination (via membrane protrusions and invaginations). We have previously shown that actin-rich structures generated by L. monocytogenes contain the host actin cross-linker α-actinin-4. Here we set out to examine α-actinin-4 during other key steps of the L. monocytogenes infectious cycle as well as characterize the subcellular distribution of α-actinin-4 during infections with other model actin-hijacking bacterial pathogens (S. flexneri, S. Typhimurium and EPEC). Although α-actinin-4 is absent at sites of initial L. monocytogenes invasion, we show that it is a new component of the membrane invaginations formed during secondary infections of neighboring host cells. Importantly, we reveal that α-actinin-4 also localizes to the major actin-rich structures generated during cell culture infections with S. flexneri (comet/rocket tails and membrane protrusions), S. Typhimurium (membrane ruffles) and EPEC (pedestals). Taken together, these findings suggest that α-actinin-4 is a host factor that is exploited by an assortment of actin-hijacking bacterial pathogens.
Collapse
Affiliation(s)
- Aaron S Dhanda
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Diana Yang
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Julian A Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
5
|
Chen Z, Zhou R, Zhang Y, Hao D, Wang Y, Huang S, Liu N, Xia C, Yissachar N, Huang F, Chu Y, Yan D. β-arrestin 2 quenches TLR signaling to facilitate the immune evasion of EPEC. Gut Microbes 2020; 11:1423-1437. [PMID: 32403971 PMCID: PMC7524320 DOI: 10.1080/19490976.2020.1759490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The protein translocated intimin receptor (Tir) from enteropathogenic Escherichia coli shares sequence similarity with the host cellular immunoreceptor tyrosine-based inhibition motifs (ITIMs). The ITIMs of Tir are required for Tir-mediated immune inhibition and evasion of host immune responses. However, the underlying molecular mechanism by which Tir regulates immune inhibition remains unclear. Here we demonstrated that β-arrestin 2, which is involved in the G-protein-coupled receptor (GPCR) signal pathway, interacted with Tir in an ITIM-dependent manner. For the molecular mechanism, we found that β-arrestin 2 enhanced the recruitment of SHP-1 to Tir. The recruited SHP-1 inhibited K63-linked ubiquitination of TRAF6 by dephosphorylating TRAF6 at Tyr288, and inhibited K63-linked ubiquitination and phosphorylation of TAK1 by dephosphorylating TAK1 at Tyr206, which cut off the downstream signal transduction and subsequent cytokine production. Moreover, the inhibitory effect of Tir on immune responses was diminished in β-arrestin 2-deficient mice and macrophages. These findings suggest that β-arrestin 2 is a key regulator in Tir-mediated immune evasion, which could serve as a new therapeutic target for bacterial infectious diseases.
Collapse
Affiliation(s)
- Zijuan Chen
- Department of Immunology, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ruixue Zhou
- Department of Immunology, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yihua Zhang
- Department of Immunology, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Doudou Hao
- Department of Immunology, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yu Wang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Centre of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Shichao Huang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, the Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ningning Liu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nissan Yissachar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Feng Huang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Dapeng Yan
- Department of Immunology, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,CONTACT Dapeng Yan Department of Immunology, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai200032, China
| |
Collapse
|
6
|
Is Shiga Toxin-Producing Escherichia coli O45 No Longer a Food Safety Threat? The Danger is Still Out There. Microorganisms 2020; 8:microorganisms8050782. [PMID: 32455956 PMCID: PMC7285328 DOI: 10.3390/microorganisms8050782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 01/03/2023] Open
Abstract
Many Shiga toxin-producing Escherichia coli (STEC) strains, including the serogroups of O157 and most of the top six non-O157 serotypes, are frequently associated with foodborne outbreaks. Therefore, they have been extensively studied using next-generation sequencing technology. However, related information regarding STEC O45 strains is scarce. In this study, three environmental E. coli O45:H16 strains (RM11911, RM13745, and RM13752) and one clinical E. coli O45:H2 strain (SJ7) were sequenced and used to characterize virulence factors using two reference E. coli O45:H2 strains of clinical origin. Subsequently, whole-genome-based phylogenetic analysis was conducted for the six STEC O45 strains and nine other reference STEC genomes, in order to evaluate their evolutionary relationship. The results show that one locus of enterocyte effacement pathogenicity island was found in all three STEC O45:H2 strains, but not in the STEC O45:H16 strains. Additionally, E. coli O45:H2 strains were evolutionarily close to E. coli O103:H2 strains, sharing high homology in terms of virulence factors, such as Stx prophages, but were distinct from E. coli O45:H16 strains. The findings show that E. coli O45:H2 may be as virulent as E. coli O103:H2, which is frequently associated with severe illness and can provide genomic evidence to facilitate STEC surveillance.
Collapse
|
7
|
Kupczyński R, Szumny A, Bednarski M, Piasecki T, Śpitalniak-Bajerska K, Roman A. Application of Pontentilla anserine, Polygonum aviculare and Rumex crispus Mixture Extracts in a Rabbit Model with Experimentally Induced E. coli Infection. Animals (Basel) 2019; 9:E774. [PMID: 31601049 PMCID: PMC6826411 DOI: 10.3390/ani9100774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
The study evaluated the anti-colibacteriosis efficacy of herbs in experimental infection by rabbit pathogenic strain of E. coli O103 eae+. It also studied the effects of herbal mixture added to feed or water on blood parameters. This animal model was used since some E. coli strains pathogenic for rabbits are similar to the strains that are pathogenic to humans. The components of herbal extracts were Rumex crispus, Pontentilla anserine, and Polygonum aviculare. Supplementation was carried out in water (ExpW group) or feed (ExpF group), and four weeks later the animals were infected with the E. coli O103 eae+ strain. The administration of herbs increased the mean concentration of total protein and serum albumin (p < 0.01) without causing disturbances of electrolyte and acid-base balance. The highest total antioxidant capacity (TAS) value (p < 0.01) was observed in the ExpF group. The administration of a mixture of herbs and feed caused more reduction in the number of E. coli in cecum than supplementation into water after an experimental infection. The herbs applied in rabbits did not harm the secretory functions of liver, electrolyte, and acid-base balance of the blood. The application of the tested herbal mixtures can control the activity of the intestinal microbial community.
Collapse
Affiliation(s)
- Robert Kupczyński
- Department of Environment, Animal Hygiene and Welfare, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.Ś.-B.); (A.R.)
| | - Antoni Szumny
- Department of Chemistry, Wroclaw University of Environmental and Life Science, 50-375 Wrocław, Poland;
| | - Michał Bednarski
- Department of Epizootiology with Clinic of Birds and Exotic Animals, Wroclaw University of Environmental and Life Science, 50-366 Wrocław, Poland; (M.B.); (T.P.)
| | - Tomasz Piasecki
- Department of Epizootiology with Clinic of Birds and Exotic Animals, Wroclaw University of Environmental and Life Science, 50-366 Wrocław, Poland; (M.B.); (T.P.)
| | - Kinga Śpitalniak-Bajerska
- Department of Environment, Animal Hygiene and Welfare, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.Ś.-B.); (A.R.)
| | - Adam Roman
- Department of Environment, Animal Hygiene and Welfare, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.Ś.-B.); (A.R.)
| |
Collapse
|
8
|
Kang E, Crouse A, Chevallier L, Pontier SM, Alzahrani A, Silué N, Campbell-Valois FX, Montagutelli X, Gruenheid S, Malo D. Enterobacteria and host resistance to infection. Mamm Genome 2018; 29:558-576. [PMID: 29785663 DOI: 10.1007/s00335-018-9749-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Enterobacteriaceae are a large family of Gram-negative, non-spore-forming bacteria. Although many species exist as part of the natural flora of animals including humans, some members are associated with both intestinal and extraintestinal diseases. In this review, we focus on members of this family that have important roles in human disease: Salmonella, Escherichia, Shigella, and Yersinia, providing a brief overview of the disease caused by these bacteria, highlighting the contribution of animal models to our understanding of their pathogenesis and of host genetic determinants involved in susceptibility or resistance to infection.
Collapse
Affiliation(s)
- Eugene Kang
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada
| | - Alanna Crouse
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Lucie Chevallier
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, École Nationale Vétérinaire d'Alfort, UPEC, Maisons-Alfort, France
- Mouse Genetics Laboratory, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Stéphanie M Pontier
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - Ashwag Alzahrani
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - Navoun Silué
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - François-Xavier Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Xavier Montagutelli
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, École Nationale Vétérinaire d'Alfort, UPEC, Maisons-Alfort, France
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada
| | - Danielle Malo
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Runte CS, Jain U, Getz LJ, Secord S, Kuwae A, Abe A, LeBlanc JJ, Stadnyk AW, Kaper JB, Hansen AM, Thomas NA. Tandem tyrosine phosphosites in the Enteropathogenic Escherichia coli chaperone CesT are required for differential type III effector translocation and virulence. Mol Microbiol 2018; 108:536-550. [PMID: 29509331 DOI: 10.1111/mmi.13948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2018] [Indexed: 11/29/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) use a type 3 secretion system (T3SS) for injection of effectors into host cells and intestinal colonization. Here, we demonstrate that the multicargo chaperone CesT has two strictly conserved tyrosine phosphosites, Y152 and Y153 that regulate differential effector secretion in EPEC. Conservative substitution of both tyrosine residues to phenylalanine strongly attenuated EPEC type 3 effector injection into host cells, and limited Tir effector mediated intimate adherence during infection. EPEC expressing a CesT Y152F variant were deficient for NleA effector expression and exhibited significantly reduced translocation of NleA into host cells during infection. Other effectors were observed to be dependent on CesT Y152 for maximal translocation efficiency. Unexpectedly, EPEC expressing a CesT Y153F variant exhibited significantly enhanced effector translocation of many CesT-interacting effectors, further implicating phosphosites Y152 and Y153 in CesT functionality. A mouse infection model of intestinal disease using Citrobacter rodentium revealed that CesT tyrosine substitution variants displayed delayed colonization and were more rapidly cleared from the intestine. These data demonstrate genetically separable functions for tandem tyrosine phosphosites within CesT. Therefore, CesT via its C-terminal tyrosine phosphosites, has relevant roles beyond typical type III secretion chaperones that interact and stabilize effector proteins.
Collapse
Affiliation(s)
- Cameron S Runte
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Umang Jain
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Landon J Getz
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sabrina Secord
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Asaomi Kuwae
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Akio Abe
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Jason J LeBlanc
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Medicine, Division of Infectious Diseases, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew W Stadnyk
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - James B Kaper
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anne-Marie Hansen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nikhil A Thomas
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Medicine, Division of Infectious Diseases, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
10
|
Velle KB, Campellone KG. Extracellular motility and cell-to-cell transmission of enterohemorrhagic E. coli is driven by EspFU-mediated actin assembly. PLoS Pathog 2017; 13:e1006501. [PMID: 28771584 PMCID: PMC5557606 DOI: 10.1371/journal.ppat.1006501] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/15/2017] [Accepted: 06/30/2017] [Indexed: 12/20/2022] Open
Abstract
Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) are closely-related pathogens that attach tightly to intestinal epithelial cells, efface microvilli, and promote cytoskeletal rearrangements into protrusions called actin pedestals. To trigger pedestal formation, EPEC employs the tyrosine phosphorylated transmembrane receptor Tir, while EHEC relies on the multivalent scaffolding protein EspFU. The ability to generate these structures correlates with bacterial colonization in several animal models, but the precise function of pedestals in infection remains unclear. To address this uncertainty, we characterized the colonization properties of EPEC and EHEC during infection of polarized epithelial cells. We found that EPEC and EHEC both formed distinct bacterial communities, or "macrocolonies," that encompassed multiple host cells. Tir and EspFU, as well as the host Arp2/3 complex, were all critical for the expansion of macrocolonies over time. Unexpectedly, EspFU accelerated the formation of larger macrocolonies compared to EPEC Tir, as EspFU-mediated actin assembly drove faster bacterial motility to cell junctions, where bacteria formed a secondary pedestal on a neighboring cell and divided, allowing one of the daughters to disengage and infect the second cell. Collectively, these data reveal that EspFU enhances epithelial colonization by increasing actin-based motility and promoting an efficient method of cell-to-cell transmission.
Collapse
Affiliation(s)
- Katrina B. Velle
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
| | - Kenneth G. Campellone
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
11
|
Neher S, Hazarika AK, Barkalita LM, Borah P, Bora DP, Sharma RK. Isolation and characterization of Shiga toxigenic Escherichia coli of animal and bird origin by multiplex polymerase chain reaction. Vet World 2016; 9:123-7. [PMID: 27051196 PMCID: PMC4819360 DOI: 10.14202/vetworld.2016.123-127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 11/16/2022] Open
Abstract
AIM The purpose of this study was to determine the virulence genes and serotype of Shiga toxin producing Escherichia coli (STEC) strains isolated from animals and birds. MATERIALS AND METHODS A total of 226 different samples viz., fecal, intestinal content, rectal swab and heart blood were collected from different clinically affected/healthy animals and birds and were streaked on McConkeys' lactose agar and eosin methylene blue agar for isolation of E. coli, confirmed by staining characteristics and biochemical tests. By polymerase chain reaction (PCR) all the E. coli isolates were screened for certain virulence genes, viz., Shiga toxin 1 (stx1), stx2 and eae and enterohemolytic (Ehly) phenotype was observed in washed sheep blood agar plate. All the isolated E. coli strains were forwarded to the National Salmonella and Escherichia Centre, Central Research Institute, Kasauli (Himachal Pradesh) for serotyping. RESULTS Out of 226 samples 138 yielded E. coli. All the isolates were screened for molecular detection of different virulent genes, viz. stx1, stx2 and eae, based on which 36 (26.08%) were identified as STEC. Among those STEC isolates, 15 (41.67%), 14 (38.89%), 1 (2.78%) exhibited eae, stx2, stx1 alone, respectively, whereas 4 (11.11%) and 2 (5.56%) carried both stx1 and stx2, stx2 and eae, respectively. Among the STEC isolates 22 were belonged to 15 different sero-groups, viz., O2, O20, O22, O25, O43, O60, O69, O90, O91, O95, O106, O118, O130, O162 and O170 and others were untypable. Ehly phenotype was observed in 10 (27.78%) the STEC isolates. CONCLUSION The present study concluded that STEC could be isolated from both clinically affected as well as healthy animals and birds. Regular monitoring of more samples from animal and bird origin is important to identify natural reservoir of STEC to prevent zoonotic infection.
Collapse
Affiliation(s)
- S. Neher
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - A. K. Hazarika
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - L. M. Barkalita
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - P. Borah
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - D. P. Bora
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - R. K. Sharma
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| |
Collapse
|
12
|
Deligianni DD. MWCNTs enhance hBMSCs spreading but delay their proliferation in the direction of differentiation acceleration. Cell Adh Migr 2015; 8:404-17. [PMID: 25482637 DOI: 10.4161/19336918.2014.969993] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Investigating the ability of films of pristine multiwalled nanotubes (MWCNTs) to influence human mesenchymal stem cells' proliferation, morphology, and differentiation into osteoblasts, we concluded to the following: A. MWCNTs delay the proliferation of hBMS cells but increase their differentiation. The enhancement of the differentiation markers could be a result of decreased proliferation and maturation of the extracellular matrix B. Cell spread on MWCNTs toward a polygonal shape with many thin filopodia to attach to the surfaces. Spreading may be critical in supporting osteogenic differentiation in pre-osteoblastic progenitors, being related with cytoskeletal tension. C. hBMS cells prefer MWCNTs than tissue plastic to attach and grow, being non-toxic to these cells. MWCNTs can be regarded as osteoinductive biomaterial topographies for bone regenerative engineering.
Collapse
Affiliation(s)
- Despina D Deligianni
- a Department of Mechanical Engineering & Aeronautics ; University of Patras ; Rion , Greece
| |
Collapse
|
13
|
The RpoE Stress Response Pathway Mediates Reduction of the Virulence of Enteropathogenic Escherichia coli by Zinc. Appl Environ Microbiol 2015; 81:3766-74. [PMID: 25819956 DOI: 10.1128/aem.00507-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/19/2015] [Indexed: 11/20/2022] Open
Abstract
Zinc supplements are an effective clinical treatment for infantile diarrheal disease caused by enteric pathogens. Previous studies demonstrated that zinc acts on enteropathogenic Escherichia coli (EPEC) bacteria directly to suppress several virulence-related genes at a concentration that can be achieved by oral delivery of dietary zinc supplements. Our in vitro studies showed that a micromolar concentration of zinc induced the envelope stress response and suppressed virulence in EPEC, providing a possible mechanistic explanation for zinc's therapeutic action. In this report, we investigated the molecular and physiological changes in EPEC induced by zinc. We found that micromolar concentrations of zinc reduced the bacterial growth rate without affecting viability. We observed increased membrane permeability caused by zinc. Zinc upregulated the RpoE-dependent envelope stress response pathway and suppressed EPEC virulence gene expression. RpoE alone was sufficient to inhibit virulence factor expression and to attenuate attaching and effacing lesion formation on human host cells. By mutational analysis we demonstrate that the DNA-binding motif of RpoE is necessary for suppression of the LEE1, but not the LEE4, operon. Predictably, inhibition of the RpoE-mediated envelope stress response in combination with micromolar concentrations of zinc reduced EPEC viability. In conclusion, zinc induces the RpoE and stress response pathways in EPEC, and the alternate sigma factor RpoE downregulates EPEC LEE and non-LEE virulence genes by multiple mechanisms.
Collapse
|
14
|
The secreted effector protein EspZ is essential for virulence of rabbit enteropathogenic Escherichia coli. Infect Immun 2015; 83:1139-49. [PMID: 25561713 DOI: 10.1128/iai.02876-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Attaching and effacing (A/E) pathogens adhere intimately to intestinal enterocytes and efface brush border microvilli. A key virulence strategy of A/E pathogens is the type III secretion system (T3SS)-mediated delivery of effector proteins into host cells. The secreted protein EspZ is postulated to promote enterocyte survival by regulating the T3SS and/or by modulating epithelial signaling pathways. To explore the role of EspZ in A/E pathogen virulence, we generated an isogenic espZ deletion strain (ΔespZ) and corresponding cis-complemented derivatives of rabbit enteropathogenic Escherichia coli and compared their abilities to regulate the T3SS and influence host cell survival in vitro. For virulence studies, rabbits infected with these strains were monitored for bacterial colonization, clinical signs, and intestinal tissue alterations. Consistent with data from previous reports, espZ-transfected epithelial cells were refractory to infection-dependent effector translocation. Also, the ΔespZ strain induced greater host cell death than did the parent and complemented strains. In rabbit infections, fecal ΔespZ strain levels were 10-fold lower than those of the parent strain at 1 day postinfection, while the complemented strain was recovered at intermediate levels. In contrast to the parent and complemented mutants, ΔespZ mutant fecal carriage progressively decreased on subsequent days. ΔespZ mutant-infected animals gained weight steadily over the infection period, failed to show characteristic disease symptoms, and displayed minimal infection-induced histological alterations. Terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining of intestinal sections revealed increased epithelial cell apoptosis on day 1 after infection with the ΔespZ strain compared to animals infected with the parent or complemented strains. Thus, EspZ-dependent host cell cytoprotection likely prevents epithelial cell death and sloughing and thereby promotes bacterial colonization.
Collapse
|
15
|
Leo JC, Oberhettinger P, Schütz M, Linke D. The inverse autotransporter family: intimin, invasin and related proteins. Int J Med Microbiol 2014; 305:276-82. [PMID: 25596886 DOI: 10.1016/j.ijmm.2014.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Intimin and invasin are adhesins and central virulence factors of attaching and effacing bacteria, such as enterohaemorrhagic Escherichia coli, and enteropathogenic Yersiniae, respectively. These proteins are prototypes of a large family of adhesins distributed widely in Gram-negative bacteria. It is now evident that this protein family represents a previously unrecognized autotransporter secretion system, termed type Ve secretion. In contrast to classical autotransport, where the transmembrane β-barrel domain or translocation unit is C-terminal to the extracellular region or passenger domain, type Ve-secreted proteins have an inverted topology with the passenger domain C-terminal to the translocation unit; hence the term inverse autotransporter. This minireview covers the recent advances in elucidating the structure and biogenesis of inverse autotransporters.
Collapse
Affiliation(s)
- Jack C Leo
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Philipp Oberhettinger
- Interfaculty Institute for Microbiology and Infection Medicine, University Clinics Tübingen, 72076 Tübingen, Germany
| | - Monika Schütz
- Interfaculty Institute for Microbiology and Infection Medicine, University Clinics Tübingen, 72076 Tübingen, Germany
| | - Dirk Linke
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway; Max Planck Institute for Developmental Biology, Department of Protein Evolution, 72076 Tübingen, Germany.
| |
Collapse
|
16
|
Kumar A, Taneja N, Bharti B, Sharma M. Characterization of Shiga-toxigenic Escherichia coli isolated from cases of diarrhoea & haemolytic uremic syndrome in north India. Indian J Med Res 2014; 140:778-84. [PMID: 25758577 PMCID: PMC4365352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND & OBJECTIVES Shiga toxin producing Escherichia coli (STEC) is an important zoonotic foodborne pathogen, capable of causing haemorrhagic colitis (HC) and haemolytic uremic syndrome (HUS). As data from India on human infections caused by STEC are limited, this study was carried out for hospital based surveillance for STEC as a causative agent of diarrhoea, bloody diarrhoea and HUS at a tertiary care centre and to study the virulence gene profile and strain relatedness by multi locus variable tandem repeat analysis (MLVA). METHODS A total of 600 stool samples were studied. Stool samples of every fifth patient presenting with non-bloody diarrhoea, all cases of bloody diarrhoea and diarrhoea associated HUS (D+HUS) were collected from October 2009 to September 2011. Stool samples were cultured for STEC and characterization of STEC was done by serogrouping, virulence genes analysis, and MLVA typing. RESULTS STEC were isolated as a sole pathogen from 11 stool samples [5 of 290 (1.7%) non-blood diarrhoea and 5 of 300 (1.6%) blood diarrhoea cases]. STEC was also isolated from one fatal case of HUS who was an eight month old child. Only six of 11 isolates were positive for stx2 gene, whereas stx1 was present in all 11 isolates. Only one isolate was positive for eae. Other adhesion genes present were iha in five isolates, followed by toxB and efa1 in two each and saa gene in one, isolate. Among the plasmid encoded genes, espP, hly and etpD were each present in one isolate each. In the MLVA typing, diverse profiles were obtained except two untypeable isolates from different patients shared the same MLVA profile. Both these isolates were not epidemiologically linked. INTERPRETATION & CONCLUSIONS This study demonstrated that STEC could be a causative agent of diarrhoea, bloody diarrhoea and sporadic HUS. However, further work needs to be done to study and explore the prevalence of these organisms in the food chain in this region.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India,Reprint requests: Dr Neelam Taneja, Additional Professor, Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research. Chandigarh 160 012, India e-mail:
| | - Bhavneet Bharti
- Advanced Pediatric Centre, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Meera Sharma
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
17
|
Actin pedestal formation by enterohemorrhagic Escherichia coli enhances bacterial host cell attachment and concomitant type III translocation. Infect Immun 2014; 82:3713-22. [PMID: 24958711 DOI: 10.1128/iai.01523-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Attachment of enterohemorrhagic Escherichia coli (EHEC) to intestinal epithelial cells is critical for colonization and is associated with localized actin assembly beneath bound bacteria. The formation of these actin "pedestals" is dependent on the translocation of effectors into mammalian cells via a type III secretion system (T3SS). Tir, an effector required for pedestal formation, localizes in the host cell plasma membrane and promotes attachment of bacteria to mammalian cells by binding to the EHEC outer surface protein Intimin. Actin pedestal formation has been shown to foster intestinal colonization by EHEC in some animal models, but the mechanisms responsible for this remain undefined. Investigation of the role of Tir-mediated actin assembly promoting host cell binding is complicated by other, potentially redundant EHEC-encoded binding pathways, so we utilized cell binding assays that specifically detect binding mediated by Tir-Intimin interaction. We also assessed the role of Tir-mediated actin assembly in two-step assays that temporally segregated initial translocation of Tir from subsequent Tir-Intimin interaction, thereby permitting the distinction of effects on translocation from effects on cell attachment. In these experimental systems, we compromised Tir-mediated actin assembly by chemically inhibiting actin assembly or by infecting mammalian cells with EHEC mutants that translocate Tir but are specifically defective in Tir-mediated pedestal formation. We found that an inability of Tir to promote actin assembly resulted in a significant and striking decrease in bacterial binding mediated by Tir and Intimin. Bacterial mutants defective for pedestal formation translocated type III effectors to mammalian cells with reduced efficiency, but the decrease in translocation could be entirely accounted for by the decrease in host cell attachment.
Collapse
|
18
|
Mallick EM, Garber JJ, Vanguri VK, Balasubramanian S, Blood T, Clark S, Vingadassalom D, Louissaint C, McCormick B, Snapper SB, Leong JM. The ability of an attaching and effacing pathogen to trigger localized actin assembly contributes to virulence by promoting mucosal attachment. Cell Microbiol 2014; 16:1405-24. [PMID: 24780054 DOI: 10.1111/cmi.12302] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/09/2014] [Accepted: 04/13/2014] [Indexed: 12/30/2022]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) colonizes the intestine and causes bloody diarrhoea and kidney failure by producing Shiga toxin. Upon binding intestinal cells, EHEC triggers a change in host cell shape, generating actin 'pedestals' beneath bound bacteria. To investigate the importance of pedestal formation to disease, we infected genetically engineered mice incapable of supporting pedestal formation by an EHEC-like mouse pathogen, or wild type mice with a mutant of that pathogen incapable of generating pedestals. We found that pedestal formation promotes attachment of bacteria to the intestinal mucosa and vastly increases the severity of Shiga toxin-mediated disease.
Collapse
Affiliation(s)
- Emily M Mallick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 2014; 77:380-439. [PMID: 24006470 DOI: 10.1128/mmbr.00064-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses.
Collapse
|
20
|
Nieto-Pelegrin E, Meiler E, Martín-Villa JM, Benito-León M, Martinez-Quiles N. Crk adaptors negatively regulate actin polymerization in pedestals formed by enteropathogenic Escherichia coli (EPEC) by binding to Tir effector. PLoS Pathog 2014; 10:e1004022. [PMID: 24675776 PMCID: PMC3968158 DOI: 10.1371/journal.ppat.1004022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 02/05/2014] [Indexed: 01/04/2023] Open
Abstract
Infections by enteropathogenic Escherichia coli (EPEC) cause diarrhea linked to high infant mortality in developing countries. EPEC adheres to epithelial cells and induces the formation of actin pedestals. Actin polymerization is driven fundamentally through signaling mediated by Tir bacterial effector protein, which inserts in the plasma membrane of the infected cell. Tir binds Nck adaptor proteins, which in turn recruit and activate N-WASP, a ubiquitous member of the Wiskott-Aldrich syndrome family of proteins. N-WASP activates the Arp2/3 complex to promote actin polymerization. Other proteins aside from components of the Tir-Nck-N-WASP pathway are recruited to the pedestals but their functions are unknown. Here we investigate the function of two alternatively spliced isoforms of Crk adaptors (CrkI/II) and the paralog protein CrkL during pedestal formation by EPEC. We found that the Crk isoforms act as redundant inhibitors of pedestal formation. The SH2 domain of CrkII and CrkL binds to phosphorylated tyrosine 474 of Tir and competes with Nck to bind Tir, preventing its recruitment to pedestals and thereby inhibiting actin polymerization. EPEC infection induces phosphorylation of the major regulatory tyrosine in CrkII and CrkL, possibly preventing the SH2 domain of these proteins from interacting with Tir. Phosphorylated CrkII and CrkL proteins localize specifically to the plasma membrane in contact with EPEC. Our study uncovers a novel role for Crk adaptors at pedestals, opening a new perspective in how these oncoproteins regulate actin polymerization.
Collapse
Affiliation(s)
- Elvira Nieto-Pelegrin
- Department of Microbiology, School of Pharmacy, Complutense University, Madrid, Spain
| | - Eugenia Meiler
- Division of Immunology, School of Medicine, Complutense University, Madrid, Spain
| | | | - María Benito-León
- Division of Immunology, School of Medicine, Complutense University, Madrid, Spain
| | - Narcisa Martinez-Quiles
- Department of Microbiology, School of Pharmacy, Complutense University, Madrid, Spain
- Division of Immunology, School of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
21
|
Molecular characterization of Shiga-toxigenic Escherichia coli isolated from diverse sources from India by multi-locus variable number tandem repeat analysis (MLVA). Epidemiol Infect 2014; 142:2572-82. [PMID: 24534324 DOI: 10.1017/s0950268814000065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In a first study from India, a diverse collection of 140 environmental and clinical non-O157 Shiga-toxigenic Escherichia coli strains from a large geographical area in north India was typed by multi-locus variable number tandem repeat analysis (MLVA). The distribution of major virulence genes stx1, stx2 and eae was found to be 78%, 70% and 10%, respectively; 15 isolates were enterohaemorrhagic E. coli (stx1 +/stx2 + and eae +). By MLVA analysis, 44 different alleles were obtained. Dendrogram analysis revealed 104 different genotypes and 19 MLVA-type complexes divided into two main lineages, i.e. mutton and animal stool. Human isolates presented a statistically significant greater odds ratio for clustering with mutton samples compared to animal stool isolates. Five human isolates clustered with animal stool strains suggesting that some of the human infections may be from cattle, perhaps through milk, contact or the environment. Further epidemiological studies are required to explore these sources in context with occurrence of human cases.
Collapse
|
22
|
Reprint of "GELFrEE fractionation combined with mass spectrometry for proteome analysis of secreted toxins from Enteropathogenic Escherichia coli (EPEC)". Mol Cell Probes 2014; 28:83-90. [PMID: 24486296 DOI: 10.1016/j.mcp.2014.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/05/2013] [Accepted: 06/21/2013] [Indexed: 11/22/2022]
Abstract
Enteropathogenic Escherichia coli, or EPEC, is a human pathogen associated with gastroenteritis and diarrheal disease whose pathogenicity is related to the secretion of effector proteins (exotoxins). Determining exotoxin expression level is of considerable interest to those studying toxin function and pathological phenotypes. Mass spectrometry (MS) provides an ideal platform for detection and quantification of proteins from complex mixtures. Here, we apply a solution-phase electrophoretic platform (GELFrEE) followed by MS to characterize the secreted proteome of a wild type and mutant strain of EPEC (ΔsepD), exhibiting enhanced secretion of effector proteins. Through peptide-level analysis, a total of 363 and 155 proteins were identified from the wild type and mutant strains, respectively. Semi-quantitative analysis of the MS data reveals the effector proteins EspB, EspC, and EspD appear in a relatively greater abundance from wild type EPEC, while two major virulence factors in EPEC, Tir and NleA appear in greater abundance from the secreted proteome of the mutant strain. Additionally, intact proteins may further be characterized following GELFrEE with MS to improve throughput of analysis. This study demonstrates the application of GELFrEE-MS to differentiate wild type and mutant strains of EPEC. This platform is therefore a powerful tool to study exotoxin secretion from pathogenic bacteria.
Collapse
|
23
|
Srikhanta YN, Hocking DM, Wakefield MJ, Higginson E, Robins-Browne RM, Yang J, Tauschek M. Control of bacterial virulence by the RalR regulator of the rabbit-specific enteropathogenic Escherichia coli strain E22. Infect Immun 2013; 81:4232-43. [PMID: 24002063 PMCID: PMC3811808 DOI: 10.1128/iai.00710-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/24/2013] [Indexed: 11/20/2022] Open
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) causes endemic diarrhea, diarrheal outbreaks, and persistent diarrhea in humans, but the mechanism by which aEPEC causes disease is incompletely understood. Virulence regulators and their associated regulons, which often include adhesins, play key roles in the expression of virulence factors in enteric pathogenic bacteria. In this study we identified a transcriptional regulator, RalR, in the rabbit-specific aEPEC strain, E22 (O103:H2) and examined its involvement in the regulation of virulence. Microarray analysis and quantitative real-time reverse transcription-PCR demonstrated that RalR enhances the expression of a number of genes encoding virulence-associated factors, including the Ral fimbria, the Aap dispersin, and its associated transport system, and downregulates several housekeeping genes, including fliC. These observations were confirmed by proteomic analysis of secreted and heat-extracted surface-associated proteins and by adherence and motility assays. To investigate the mechanism of RalR-mediated activation, we focused on its most highly upregulated target operons, ralCDEFGHI and aap. By using primer extension, electrophoretic mobility shift assay, and mutational analysis, we identified the promoter and operator sequences for these two operons. By employing promoter-lacZ reporter systems, we demonstrated that RalR activates the expression of its target genes by binding to one or more 8-bp palindromic sequences (with the consensus of TGTGCACA) located immediately upstream of the promoter core regions. Importantly, we also demonstrated that RalR is essential for virulence since infection of rabbits with E22 carrying a knockout mutation in the ralR gene completely abolished its ability to cause disease.
Collapse
Affiliation(s)
- Yogitha N. Srikhanta
- Department of Microbiology and Immunology, The University of Melbourne, Victoria, Australia
| | - Dianna M. Hocking
- Department of Microbiology and Immunology, The University of Melbourne, Victoria, Australia
| | - Matthew J. Wakefield
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Genetics, The University of Melbourne, Victoria, Australia
| | - Ellen Higginson
- Department of Microbiology and Immunology, The University of Melbourne, Victoria, Australia
| | - Roy M. Robins-Browne
- Department of Microbiology and Immunology, The University of Melbourne, Victoria, Australia
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Ji Yang
- Department of Microbiology and Immunology, The University of Melbourne, Victoria, Australia
| | - Marija Tauschek
- Department of Microbiology and Immunology, The University of Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Lai Y, Rosenshine I, Leong JM, Frankel G. Intimate host attachment: enteropathogenic and enterohaemorrhagic Escherichia coli. Cell Microbiol 2013; 15:1796-808. [PMID: 23927593 PMCID: PMC4036124 DOI: 10.1111/cmi.12179] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/19/2013] [Accepted: 07/01/2013] [Indexed: 12/30/2022]
Abstract
Enteropathogenic and enterohaemorrhagic Escherichia coli use a novel infection strategy to colonize the gut epithelium, involving translocation of their own receptor, Tir, via a type III secretion system and subsequent formation of attaching and effecting (A/E) lesions. Following integration into the host cell plasma membrane of cultured cells, and clustering by the outer membrane adhesin intimin, Tir triggers multiple actin polymerization pathways involving host and bacterial adaptor proteins that converge on the host Arp2/3 actin nucleator. Although initially thought to be involved in A/E lesion formation, recent data have shown that the known Tir-induced actin polymerization pathways are dispensable for this activity, but can play other major roles in colonization efficiency, in vivo fitness and systemic disease. In this review we summarize the roadmap leading from the discovery of Tir, through the different actin polymerization pathways it triggers, to our current understanding of their physiological functions.
Collapse
Affiliation(s)
- YuShuan Lai
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester MA, USA
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of
Medicine, The Hebrew University of Jerusalem, Israel
| | - John M. Leong
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester MA, USA
- Molecular Biology and Microbiology Department, Tufts University,
Boston MA, USA
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Imperial
College London, London, UK
| |
Collapse
|
25
|
GELFrEE fractionation combined with mass spectrometry for proteome analysis of secreted toxins from Enteropathogenic Escherichia coli (EPEC). Mol Cell Probes 2013; 27:200-7. [DOI: 10.1016/j.mcp.2013.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/05/2013] [Accepted: 06/21/2013] [Indexed: 11/21/2022]
|
26
|
Yang J, Hocking DM, Cheng C, Dogovski C, Perugini MA, Holien JK, Parker MW, Hartland EL, Tauschek M, Robins-Browne RM. Disarming bacterial virulence through chemical inhibition of the DNA binding domain of an AraC-like transcriptional activator protein. J Biol Chem 2013; 288:31115-26. [PMID: 24019519 DOI: 10.1074/jbc.m113.503912] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The misuse of antibiotics during past decades has led to pervasive antibiotic resistance in bacteria. Hence, there is an urgent need for the development of new and alternative approaches to combat bacterial infections. In most bacterial pathogens the expression of virulence is tightly regulated at the transcriptional level. Therefore, targeting pathogens with drugs that interfere with virulence gene expression offers an effective alternative to conventional antimicrobial chemotherapy. Many Gram-negative intestinal pathogens produce AraC-like proteins that control the expression of genes required for infection. In this study we investigated the prototypical AraC-like virulence regulator, RegA, from the mouse attaching and effacing pathogen, Citrobacter rodentium, as a potential drug target. By screening a small molecule chemical library and chemical optimization, we identified two compounds that specifically inhibited the ability of RegA to activate its target promoters and thus reduced expression of a number of proteins required for virulence. Biophysical, biochemical, genetic, and computational analyses indicated that the more potent of these two compounds, which we named regacin, disrupts the DNA binding capacity of RegA by interacting with amino acid residues within a conserved region of the DNA binding domain. Oral administration of regacin to mice, commencing 15 min before or 12 h after oral inoculation with C. rodentium, caused highly significant attenuation of intestinal colonization by the mouse pathogen comparable to that of an isogenic regA-deletion mutant. These findings demonstrate that chemical inhibition of the DNA binding domains of transcriptional regulators is a viable strategy for the development of antimicrobial agents that target bacterial pathogens.
Collapse
Affiliation(s)
- Ji Yang
- From the Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yan D, Quan H, Wang L, Liu F, Liu H, Chen J, Cao X, Ge B. Enteropathogenic Escherichia coli Tir recruits cellular SHP-2 through ITIM motifs to suppress host immune response. Cell Signal 2013; 25:1887-94. [PMID: 23707390 DOI: 10.1016/j.cellsig.2013.05.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/09/2013] [Accepted: 05/12/2013] [Indexed: 11/26/2022]
Abstract
Immune responses to pathogens are regulated by immune receptors containing either an immunoreceptor tyrosine-based activation motif (ITAM) or an immunoreceptor tyrosine-based inhibitory motif (ITIM). The important diarrheal pathogen enteropathogenic Escherichia coli (EPEC) require delivery and insertion of the bacterial translocated intimin receptor (Tir) into the host plasma membrane for pedestal formation. The C-terminal region of Tir, encompassing Y483 and Y511, shares sequence similarity with cellular ITIMs. Here, we show that EPEC Tir suppresses the production of inflammatory cytokines by recruitment of SHP-2 and subsequent deubiquitination of TRAF6 in an ITIM dependent manner. Our findings revealed a novel mechanism by which the EPEC utilize its ITIM motifs to suppress and evade the host innate immune response, which could lead to the development of novel therapeutics to prevent bacterial infection.
Collapse
Affiliation(s)
- Dapeng Yan
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Law RJ, Gur-Arie L, Rosenshine I, Finlay BB. In vitro and in vivo model systems for studying enteropathogenic Escherichia coli infections. Cold Spring Harb Perspect Med 2013; 3:a009977. [PMID: 23457294 DOI: 10.1101/cshperspect.a009977] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) belong to a group of bacteria known as attaching and effacing (A/E) pathogens that cause disease by adhering to the lumenal surfaces of their host's intestinal epithelium. EPEC and EHEC are major causes of infectious diarrhea that result in significant childhood morbidity and mortality worldwide. Recent advances in in vitro and in vivo modeling of these pathogens have contributed to our knowledge of how EPEC and EHEC attach to host cells and subvert host-cell signaling pathways to promote infection and cause disease. A more detailed understanding of how these pathogenic microbes infect their hosts and how the host responds to infection could ultimately lead to new therapeutic strategies to help control these significant enteric pathogens.
Collapse
Affiliation(s)
- Robyn J Law
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | |
Collapse
|
29
|
Ahmed S, Byrd W, Kumar S, Boedeker EC. A directed intimin insertion mutant of a rabbit enteropathogenic Escherichia coli (REPEC) is attenuated, immunogenic and elicits serogroup specific protection. Vet Immunol Immunopathol 2013; 152:146-55. [PMID: 23084628 DOI: 10.1016/j.vetimm.2012.09.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sibtain Ahmed
- New Mexico Veterans Administration Health Care System, Albuquerque, NM, USA
| | | | | | | |
Collapse
|
30
|
Byrd W, Boedeker EC. Attenuated Escherichia coli strains expressing the colonization factor antigen I (CFA/I) and a detoxified heat-labile enterotoxin (LThK63) enhance clearance of ETEC from the lungs of mice and protect mice from intestinal ETEC colonization and LT-induced fluid accumulation. Vet Immunol Immunopathol 2013; 152:57-67. [DOI: 10.1016/j.vetimm.2012.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
RegR virulence regulon of rabbit-specific enteropathogenic Escherichia coli strain E22. Infect Immun 2013; 81:1078-89. [PMID: 23340312 DOI: 10.1128/iai.01325-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AraC-like regulators play a key role in the expression of virulence factors in enteric pathogens, such as enteropathogenic Escherichia coli (EPEC), enterotoxigenic E. coli, enteroaggregative E. coli, and Citrobacter rodentium. Bioinformatic analysis of the genome of rabbit-specific EPEC (REPEC) strain E22 (O103:H2) revealed the presence of a gene encoding an AraC-like regulatory protein, RegR, which shares 71% identity to the global virulence regulator, RegA, of C. rodentium. Microarray analysis demonstrated that RegR exerts 25- to 400-fold activation on transcription of several genes encoding putative virulence-associated factors, including a fimbrial operon (SEF14), a serine protease, and an autotransporter adhesin. These observations were confirmed by proteomic analysis of secreted and heat-extracted surface-associated proteins. The mechanism of RegR-mediated activation was investigated by using its most highly upregulated gene target, sefA. Transcriptional analyses and electrophoretic mobility shift assays showed that RegR activates the expression of sefA by binding to a region upstream of the sefA promoter, thereby relieving gene silencing by the global regulatory protein H-NS. Moreover, RegR was found to contribute significantly to virulence in a rabbit infection experiment. Taken together, our findings indicate that RegR controls the expression of a series of accessory adhesins that significantly enhance the virulence of REPEC strain E22.
Collapse
|
32
|
Mallick EM, McBee ME, Vanguri VK, Melton-Celsa AR, Schlieper K, Karalius BJ, O'Brien AD, Butterton JR, Leong JM, Schauer DB. A novel murine infection model for Shiga toxin-producing Escherichia coli. J Clin Invest 2012; 122:4012-24. [PMID: 23041631 DOI: 10.1172/jci62746] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 08/09/2012] [Indexed: 01/10/2023] Open
Abstract
Enterohemorrhagic E. coli (EHEC) is an important subset of Shiga toxin-producing (Stx-producing) E. coli (STEC), pathogens that have been implicated in outbreaks of food-borne illness and can cause intestinal and systemic disease, including severe renal damage. Upon attachment to intestinal epithelium, EHEC generates "attaching and effacing" (AE) lesions characterized by intimate attachment and actin rearrangement upon host cell binding. Stx produced in the gut transverses the intestinal epithelium, causing vascular damage that leads to systemic disease. Models of EHEC infection in conventional mice do not manifest key features of disease, such as AE lesions, intestinal damage, and systemic illness. In order to develop an infection model that better reflects the pathogenesis of this subset of STEC, we constructed an Stx-producing strain of Citrobacter rodentium, a murine AE pathogen that otherwise lacks Stx. Mice infected with Stx-producing C. rodentium developed AE lesions on the intestinal epithelium and Stx-dependent intestinal inflammatory damage. Further, the mice experienced lethal infection characterized by histopathological and functional kidney damage. The development of a murine model that encompasses AE lesion formation and Stx-mediated tissue damage will provide a new platform upon which to identify EHEC alterations of host epithelium that contribute to systemic disease.
Collapse
Affiliation(s)
- Emily M Mallick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yan D, Wang X, Luo L, Cao X, Ge B. Inhibition of TLR signaling by a bacterial protein containing immunoreceptor tyrosine-based inhibitory motifs. Nat Immunol 2012; 13:1063-71. [PMID: 23001144 DOI: 10.1038/ni.2417] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/02/2012] [Indexed: 12/12/2022]
Abstract
The protein Tir (translocated intimin receptor) in enteric bacteria shares sequence similarity with the host cellular immunoreceptor tyrosine-based inhibition motifs (ITIMs). Despite the importance of Tir in pedestal formation, relatively little is known about the role of Tir and its ITIMs in the regulation of the host immune response. Here we demonstrate that Tir from enteropathogenic Escherichia coli (EPEC) interacted with the host cellular tyrosine phosphatase SHP-1 in an ITIM phosphorylation-dependent manner. The association of Tir with SHP-1 facilitated the recruitment of SHP-1 to the adaptor TRAF6 and inhibited the ubiquitination of TRAF6. Moreover, the ITIMs of Tir suppressed EPEC-stimulated expression of proinflammatory cytokines and inhibited intestinal immunity to infection with Citrobacter rodentium. Our findings identify a previously unknown mechanism by which bacterial ITIM-containing proteins can inhibit innate immune responses.
Collapse
Affiliation(s)
- Dapeng Yan
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
34
|
Brouwers E, Ma I, Thomas NA. Dual temporal transcription activation mechanisms control cesT expression in enteropathogenic Escherichia coli. Microbiology (Reading) 2012; 158:2246-2261. [DOI: 10.1099/mic.0.059444-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Erin Brouwers
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Irene Ma
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Nikhil A. Thomas
- Department of Medicine (Division of Infectious Diseases), Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
35
|
Role of lipid rafts and flagellin in invasion of colonic epithelial cells by Shiga-toxigenic Escherichia coli O113:H21. Infect Immun 2012; 80:2858-67. [PMID: 22689816 DOI: 10.1128/iai.00336-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Shiga-toxigenic Escherichia coli (STEC) O113:H21 strains that lack the locus of enterocyte effacement (LEE) efficiently invade eukaryotic cells in vitro, unlike LEE-positive O157:H7 strains. We used a fliC deletion mutant of the O113:H21 STEC strain 98NK2 (98NK2ΔfliC) to show that invasion of colonic epithelial (HCT-8) cells is heavily dependent on production of flagellin, even though adherence to the cells was actually enhanced in the mutant. Flagellin binds and signals through Toll-like receptor 5 (TLR5), but there was no evidence that either TLR5, the adaptor protein myeloid differentiation primary response gene 88 (MyD88), or the serine kinase interleukin-1 receptor-associated kinase (IRAK) were required for invasion of HCT-8 cells by strain 98NK2, as judged by transfection, RNA knockdown, or inhibitor studies. However, pretreatment of cells with anti-asialo-GM1 significantly decreased 98NK2 invasion (by 40.8%), while neuraminidase treatment (which cleaves terminal sialic acid residues, thus converting GM1 into asialo-GM1) significantly increased invasion (by 70.7%). Pretreatment of HCT-8 cells with either the cholesterol-depleting agent methyl-β-cyclodextrin (MβCD) or the tyrosine kinase inhibitor genistein significantly decreased invasion by 98NK2, indicating a potential role for lipid rafts in the invasion mechanism. Confocal microscopy also showed invading 98NK2 colocalized with lipid raft markers caveolin-1 and GM1. Interestingly, anti-asialo-GM1, neuraminidase, MβCD, and genistein have similar effects on the vestigial level of STEC invasion seen for STEC strain 98NK2ΔfliC, indicating that lipid rafts mediate a common step in flagellin-dependent and flagellin-independent cellular invasion.
Collapse
|
36
|
Expanded roles for multicargo and class 1B effector chaperones in type III secretion. J Bacteriol 2012; 194:3767-73. [PMID: 22636784 DOI: 10.1128/jb.00406-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial type III secretion systems (T3SS) are complex protein assemblies that mediate the secretion of protein substrates outside the cell. Type III secretion chaperones (T3SC) are always found associated with T3SS, and they serve in multiple roles to ensure that protein substrates are efficiently targeted for secretion. Bacterial pathogens with T3SS express T3SC proteins that bind effectors, a process important for effector protein delivery into eukaryotic cells during infection. In this minireview, we focus on multicargo and class 1B T3SC that associate with effectors within significant pathogens of animals and plants. As a primary role, multicargo and class 1B T3SC form homodimers and specifically bind different effectors within the cytoplasm, maintaining the effectors in a secretion-competent state. This role makes T3SC initial and central contributors to effector-mediated pathogenesis. Recent findings have greatly expanded our understanding of cellular events linked to multicargo T3SC function. New binding interactions with T3SS components have been reported in different systems, thereby implicating multicargo T3SC in critical roles beyond effector binding. Three notable interactions with the YscN, YscV, and YscQ family members are well represented in the literature. Similar T3SC interactions are reported in the putative related flagellar T3SS, suggesting that secretion mechanisms may be more similar than previously thought. The evidence implicates multicargo and class 1B T3SC in effector binding and stabilization, in addition to T3SS recruitment and docking events.
Collapse
|
37
|
The type II secretion system and its ubiquitous lipoprotein substrate, SslE, are required for biofilm formation and virulence of enteropathogenic Escherichia coli. Infect Immun 2012; 80:2042-52. [PMID: 22451516 DOI: 10.1128/iai.06160-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrhea in infants in developing countries. We have identified a functional type II secretion system (T2SS) in EPEC that is homologous to the pathway responsible for the secretion of heat-labile enterotoxin by enterotoxigenic E. coli. The wild-type EPEC T2SS was able to secrete a heat-labile enterotoxin reporter, but an isogenic T2SS mutant could not. We showed that the major substrate of the T2SS in EPEC is SslE, an outer membrane lipoprotein (formerly known as YghJ), and that a functional T2SS is essential for biofilm formation by EPEC. T2SS and SslE mutants were arrested at the microcolony stage of biofilm formation, suggesting that the T2SS is involved in the development of mature biofilms and that SslE is a dominant effector of biofilm development. Moreover, the T2SS was required for virulence, as infection of rabbits with a rabbit-specific EPEC strain carrying a mutation in either the T2SS or SslE resulted in significantly reduced intestinal colonization and milder disease.
Collapse
|
38
|
Mallick EM, Brady MJ, Luperchio SA, Vanguri VK, Magoun L, Liu H, Sheppard BJ, Mukherjee J, Donohue-Rolfe A, Tzipori S, Leong JM, Schauer DB. Allele- and tir-independent functions of intimin in diverse animal infection models. Front Microbiol 2012; 3:11. [PMID: 22347213 PMCID: PMC3269026 DOI: 10.3389/fmicb.2012.00011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 01/07/2012] [Indexed: 11/16/2022] Open
Abstract
Upon binding to intestinal epithelial cells, enterohemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli (EPEC), and Citrobacter rodentium trigger formation of actin pedestals beneath bound bacteria. Pedestal formation has been associated with enhanced colonization, and requires intimin, an adhesin that binds to the bacterial effector translocated intimin receptor (Tir), which is translocated to the host cell membrane and promotes bacterial adherence and pedestal formation. Intimin has been suggested to also promote cell adhesion by binding one or more host receptors, and allelic differences in intimin have been associated with differences in tissue and host specificity. We assessed the function of EHEC, EPEC, or C. rodentium intimin, or a set of intimin derivatives with varying Tir-binding abilities in animal models of infection. We found that EPEC and EHEC intimin were functionally indistinguishable during infection of gnotobiotic piglets by EHEC, and that EPEC, EHEC, and C. rodentium intimin were functionally indistinguishable during infection of C57BL/6 mice by C. rodentium. A derivative of EHEC intimin that bound Tir but did not promote robust pedestal formation on cultured cells was unable to promote C. rodentium colonization of conventional mice, indicating that the ability to trigger actin assembly, not simply to bind Tir, is required for intimin-mediated intestinal colonization. Interestingly, streptomycin pre-treatment of mice eliminated the requirement for Tir but not intimin during colonization, and intimin derivatives that were defective in Tir-binding still promoted colonization of these mice. These results indicate that EPEC, EHEC, and C. rodentium intimin are functionally interchangeable during infection of gnotobiotic piglets or conventional C57BL/6 mice, and that whereas the ability to trigger Tir-mediated pedestal formation is essential for colonization of conventional mice, intimin provides a Tir-independent activity during colonization of streptomycin pre-treated mice.
Collapse
Affiliation(s)
- Emily M Mallick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School Worcester, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lai Y, Riley K, Cai A, Leong JM, Herman IM. Calpain mediates epithelial cell microvillar effacement by enterohemorrhagic Escherichia coli. Front Microbiol 2011; 2:222. [PMID: 22073041 PMCID: PMC3210503 DOI: 10.3389/fmicb.2011.00222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 10/20/2011] [Indexed: 11/13/2022] Open
Abstract
A member of the attaching and effacing (AE) family of pathogens, enterohemorrhagic Escherichia coli (EHEC) induces dramatic changes to the intestinal cell cytoskeleton, including effacement of microvilli. Effacement by the related pathogen enteropathogenic E. coli (EPEC) requires the activity of the Ca+2-dependent host protease, calpain, which participates in a variety of cellular processes, including cell adhesion and motility. We found that EHEC infection results in an increase in epithelial (CaCo-2a) cell calpain activity and that EHEC-induced microvillar effacement was blocked by ectopic expression of calpastatin, an endogenous calpain inhibitor, or by pretreatment of intestinal cells with a cell-penetrating version of calpastatin. In addition, ezrin, a known calpain substrate that links the plasma membrane to axial actin filaments in microvilli, was cleaved in a calpain-dependent manner during EHEC infection and lost from its normal locale within microvilli. Calpain may be a central conduit through which EHEC and other AE pathogens induce enterocyte cytoskeletal remodeling and exert their pathogenic effects.
Collapse
Affiliation(s)
- Yushuan Lai
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School Worcester, MA, USA
| | | | | | | | | |
Collapse
|
40
|
Bustamante VH, Villalba MI, García-Angulo VA, Vázquez A, Martínez LC, Jiménez R, Puente JL. PerC and GrlA independently regulate Ler expression in enteropathogenic Escherichia coli. Mol Microbiol 2011; 82:398-415. [DOI: 10.1111/j.1365-2958.2011.07819.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
41
|
Jubelin G, Taieb F, Duda DM, Hsu Y, Samba-Louaka A, Nobe R, Penary M, Watrin C, Nougayrède JP, Schulman BA, Stebbins CE, Oswald E. Pathogenic bacteria target NEDD8-conjugated cullins to hijack host-cell signaling pathways. PLoS Pathog 2010; 6:e1001128. [PMID: 20941356 PMCID: PMC2947998 DOI: 10.1371/journal.ppat.1001128] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 09/01/2010] [Indexed: 11/22/2022] Open
Abstract
The cycle inhibiting factors (Cif), produced by pathogenic bacteria isolated from vertebrates and invertebrates, belong to a family of molecules called cyclomodulins that interfere with the eukaryotic cell cycle. Cif blocks the cell cycle at both the G1/S and G2/M transitions by inducing the stabilization of cyclin-dependent kinase inhibitors p21waf1 and p27kip1. Using yeast two-hybrid screens, we identified the ubiquitin-like protein NEDD8 as a target of Cif. Cif co-compartmentalized with NEDD8 in the host cell nucleus and induced accumulation of NEDD8-conjugated cullins. This accumulation occurred early after cell infection and correlated with that of p21 and p27. Co-immunoprecipitation revealed that Cif interacted with cullin-RING ubiquitin ligase complexes (CRLs) through binding with the neddylated forms of cullins 1, 2, 3, 4A and 4B subunits of CRL. Using an in vitro ubiquitylation assay, we demonstrate that Cif directly inhibits the neddylated CUL1-associated ubiquitin ligase activity. Consistent with this inhibition and the interaction of Cif with several neddylated cullins, we further observed that Cif modulates the cellular half-lives of various CRL targets, which might contribute to the pathogenic potential of diverse bacteria. Among the arsenal of virulence factors used by bacterial pathogens to infect and manipulate their hosts, cyclomodulins are a growing family of bacterial toxins that interfere with the eukaryotic cell-cycle. Cif is one of these cyclomodulins produced by both mammalian and invertebrate pathogenic bacteria. Cif blocks the host cell cycle by inducing the accumulation of two regulators of cell cycle progression: the cyclin-dependent kinase inhibitors p21 and p27. To decipher the mode of action of Cif, we performed yeast two-hybrid screenings. We show that Cif binds to NEDD8 and induce accumulation of neddylated cullins early after infection. Cullins are scaffold components of cullin-RING ubiquitin ligases (CRLs), which ubiquitinate proteins and target them for degradation by the 26S proteasome. We demonstrate that Cif directly inhibits the ubiquitin ligase activity of these CRLs and consequently the targeting of p21 and p27 for ubiquitin-dependent degradation. Targeting at NEDD8 represents a novel strategy for modulation of host cell functions by bacterial pathogens. By inhibiting the most prominent class of ubiquitin-ligases, Cif controls the stability of a cohort of key regulators and impinge on not only cell cycle progression but also on many cellular and biological processes such as immunity, development, transcription, and cell signaling.
Collapse
Affiliation(s)
- Grégory Jubelin
- INRA, UMR 1225, Toulouse, France
- Université de Toulouse; ENVT; UMR 1225; Toulouse, France
| | - Frédéric Taieb
- INRA, UMR 1225, Toulouse, France
- Université de Toulouse; ENVT; UMR 1225; Toulouse, France
| | - David M. Duda
- Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Department of Structural Biology, Memphis, Tennessee, United States of America
| | - Yun Hsu
- Laboratory of Structural Microbiology, Rockefeller University, New York, New York, United States of America
| | - Ascel Samba-Louaka
- INRA, UMR 1225, Toulouse, France
- Université de Toulouse; ENVT; UMR 1225; Toulouse, France
| | - Rika Nobe
- INRA, UMR 1225, Toulouse, France
- Université de Toulouse; ENVT; UMR 1225; Toulouse, France
| | - Marie Penary
- INRA, UMR 1225, Toulouse, France
- Université de Toulouse; ENVT; UMR 1225; Toulouse, France
| | - Claude Watrin
- INRA, UMR 1225, Toulouse, France
- Université de Toulouse; ENVT; UMR 1225; Toulouse, France
| | | | - Brenda A. Schulman
- Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Department of Structural Biology, Memphis, Tennessee, United States of America
| | - C. Erec Stebbins
- Laboratory of Structural Microbiology, Rockefeller University, New York, New York, United States of America
- * E-mail: (CES); (EO)
| | - Eric Oswald
- INRA, UMR 1225, Toulouse, France
- Université de Toulouse; ENVT; UMR 1225; Toulouse, France
- Université de Toulouse; UPS; Faculté de Médecine; Toulouse, France
- CHU de Toulouse; Institut Fédératif de Biologie; Laboratoire de Bactériologie-Hygiène; Toulouse, France
- * E-mail: (CES); (EO)
| |
Collapse
|
42
|
Vingadassalom D, Campellone KG, Brady MJ, Skehan B, Battle SE, Robbins D, Kapoor A, Hecht G, Snapper SB, Leong JM. Enterohemorrhagic E. coli requires N-WASP for efficient type III translocation but not for EspFU-mediated actin pedestal formation. PLoS Pathog 2010; 6:e1001056. [PMID: 20808845 PMCID: PMC2924363 DOI: 10.1371/journal.ppat.1001056] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 07/21/2010] [Indexed: 12/19/2022] Open
Abstract
Upon infection of mammalian cells, enterohemorrhagic E. coli (EHEC) O157:H7 utilizes a type III secretion system to translocate the effectors Tir and EspFU (aka TccP) that trigger the formation of F-actin-rich ‘pedestals’ beneath bound bacteria. EspFU is localized to the plasma membrane by Tir and binds the nucleation-promoting factor N-WASP, which in turn activates the Arp2/3 actin assembly complex. Although N-WASP has been shown to be required for EHEC pedestal formation, the precise steps in the process that it influences have not been determined. We found that N-WASP and actin assembly promote EHEC-mediated translocation of Tir and EspFU into mammalian host cells. When we utilized the related pathogen enteropathogenic E. coli to enhance type III translocation of EHEC Tir and EspFU, we found surprisingly that actin pedestals were generated on N-WASP-deficient cells. Similar to pedestal formation on wild type cells, Tir and EspFU were the only bacterial effectors required for pedestal formation, and the EspFU sequences required to interact with N-WASP were found to also be essential to stimulate this alternate actin assembly pathway. In the absence of N-WASP, the Arp2/3 complex was both recruited to sites of bacterial attachment and required for actin assembly. Our results indicate that actin assembly facilitates type III translocation, and reveal that EspFU, presumably by recruiting an alternate host factor that can signal to the Arp2/3 complex, exhibits remarkable versatility in its strategies for stimulating actin polymerization. The food-borne pathogen enterohemorrhagic E. coli (EHEC) O157:H7 can cause severe diarrhoea and life-threatening systemic illnesses. During infection, EHEC attaches to cells lining the human intestine and injects Tir and EspFU, two bacterial molecules that alter the host cell actin cytoskeleton and stimulate the formation of “pedestals” just beneath bound bacteria. Pedestal formation promotes colonization during the later stages of infection. N-WASP, a host protein known to regulate actin assembly in mammalian cells, was previously shown to be manipulated by Tir and EspFU to stimulate actin assembly, and to be required for EHEC to generate actin pedestals. Surprisingly, we show here that N-WASP promotes the efficient delivery of Tir and EspFU into mammalian cells, and that when we utilized a related E. coli to enhance type III delivery of Tir and EspFU, actin pedestals assembled even in its absence. Thus, EHEC stimulates at least two pathways of actin assembly to generate pedestals, one mediated by N-WASP and one by an unidentified alternate factor. This flexibility likely reflects an important function of pedestal formation by EHEC, and study of the underlying mechanisms may provide new insights into the pathogenesis of infection as well as the regulation of the actin cytoskeleton of mammalian cells.
Collapse
Affiliation(s)
- Didier Vingadassalom
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kenneth G. Campellone
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Michael J. Brady
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Brian Skehan
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Scott E. Battle
- Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Douglas Robbins
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Archana Kapoor
- Department of Medicine and Immunology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Gail Hecht
- Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Scott B. Snapper
- Department of Medicine and Immunology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - John M. Leong
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
43
|
Abstract
Central to the pathogenesis of many bacterial pathogens is the ability to deliver effector proteins directly into the cells of their eukaryotic host. EspF is one of many effector proteins exclusive to the attaching and effacing pathogen family that includes enteropathogenic (EPEC) and enterohemorrhagic (EHEC) Escherichia coli. Work in recent years has revealed EspF to be one of the most multifunctional effector proteins known, with defined roles in several host cellular processes, including disruption of the epithelial barrier, antiphagocytosis, microvillus effacement, host membrane remodelling, modulation of the cytoskeleton, targeting and disruption of the nucleolus, intermediate filament disruption, cell invasion, mitochondrial dysfunction, apoptosis, and inhibition of several important epithelial transporters. Surprisingly, despite this high number of functions, EspF is a relatively small effector protein, and recent work has begun to decipher the molecular events that underlie its multifunctionality. This review focuses on the activities of EspF within the host cell and discusses recent findings and molecular insights relating to the virulence functions of this fascinating bacterial effector.
Collapse
|
44
|
Wang H, Gu J, Yu S, Zhang W, Zhu Y, Zou Q, Zhu F, Mao X. Characterization of enterohemorrhagicEscherichia coliO157:H7 00B015: a Shiga toxin producing but virulence-attenuated isolate. Can J Microbiol 2010; 56:651-6. [DOI: 10.1139/w10-049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) causes a wide range of systematic diseases in human and animals in 2 main ways: (1) production of Shiga toxin (Stx) and (2) induction of actin polymerization characterized by attaching and effacing (A/E) lesions. Stx is commonly targeted in the development of drugs and vaccines to control EHEC infection for its indispensible contribution to EHEC pathogenisis. In this study, we isolated a Stx-producing EHEC O157:H7 isolate 00B015 and found that its ability to induce actin polymerization was impaired. In addition, it reduces pathogenicity and decreases mortality in mice. Our results report a Stx-producing but virulence-attenuated EHEC isolate 00B015 and suggest that the formation of actin polymerization may help Stx-induced pathogenesis and have a more important contribution in EHEC infections.
Collapse
Affiliation(s)
- Haiguang Wang
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory Science, Third Military Medical University, Chongqing 400038, P.R. China
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, P.R. China
| | - Jiang Gu
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory Science, Third Military Medical University, Chongqing 400038, P.R. China
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, P.R. China
| | - Shu Yu
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory Science, Third Military Medical University, Chongqing 400038, P.R. China
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, P.R. China
| | - Weijun Zhang
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory Science, Third Military Medical University, Chongqing 400038, P.R. China
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, P.R. China
| | - Yefei Zhu
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory Science, Third Military Medical University, Chongqing 400038, P.R. China
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, P.R. China
| | - Quanming Zou
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory Science, Third Military Medical University, Chongqing 400038, P.R. China
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, P.R. China
| | - Fengcai Zhu
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory Science, Third Military Medical University, Chongqing 400038, P.R. China
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, P.R. China
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory Science, Third Military Medical University, Chongqing 400038, P.R. China
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, P.R. China
| |
Collapse
|
45
|
Lefoll C, Caubet C, Tasca C, Milon A, Boullier S. Simultaneous inactivation of espB and tir abrogates the strong, but non-protective, inflammatory response induced by EPEC. Vet Immunol Immunopathol 2010; 138:34-44. [PMID: 20633933 DOI: 10.1016/j.vetimm.2010.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 04/23/2010] [Accepted: 06/15/2010] [Indexed: 01/09/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) belong to the attaching and effacing (A/E) family of bacterial pathogens that represent a worldwide health concern. These non-invasive bacteria attach to intestinal enterocytes through a type III secretion system (T3SS), leading to intestinal inflammation and severe diarrhea. To dissect the signals leading to the induction of the inflammatory response and to understand its role in the pathogenesis of infection, we used the rabbit model, which represents a close model of human infections. Rabbits were orally inoculated with either the wild type O103:K-:H2 E22 EPEC strain or with the E22Δtir/espB strain, which bears mutations in two genes involved in the injectisome structure and function. To monitor the development of the inflammatory response, we developed a quantitative real-time RT-PCR (qPCR) assay specific for a panel of rabbit genes. Using combined immunohistochemistry and qPCR, we show here that the inflammatory response triggered by wild type EPEC occurs very early, preceding the bacterial colonization of the epithelium. However, this early response is unable to prevent bacterial attachment on enterocytes. Moreover, our results show that expression of a complete bacterial injectisome is required for the development of inflammation. Finally, infection by the virulent strain, but not by the doubly mutated strain, rapidly induces the development of a specific immune response in the mesenteric lymph nodes, which is not associated with protection. Our findings suggest that the induction of a strong inflammatory response by T3SS dependent components represents a selective advantage for T3SS+ bacteria, thereby facilitating their colonization.
Collapse
Affiliation(s)
- Catherine Lefoll
- Université de Toulouse, ENVT, UMR 1225, F-31076 Toulouse, France
| | | | | | | | | |
Collapse
|
46
|
Shiga toxin 2 and flagellin from shiga-toxigenic Escherichia coli superinduce interleukin-8 through synergistic effects on host stress-activated protein kinase activation. Infect Immun 2010; 78:2984-94. [PMID: 20439475 DOI: 10.1128/iai.00383-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Shiga toxins expressed in the intestinal lumen during infection with Shiga-toxigenic Escherichia coli must translocate across the epithelium and enter the systemic circulation to cause systemic (pathological) effects, including hemolytic uremic syndrome. The transepithelial migration of polymorphonuclear leukocytes in response to chemokine expression by intestinal epithelial cells is thought to promote uptake of Stx from the intestinal lumen by compromising the epithelial barrier. In the present study, we investigated the hypothesis that flagellin acts in conjunction with Shiga toxin to augment this chemokine expression. We investigated the relative contributions of nuclear factor kappaB (NF-kappaB) and mitogen-activated protein kinase (MAPK) signaling to transcription and translation of interleukin-8. Using reporter gene constructs, we showed that flagellin-mediated interleukin-8 gene transcription is heavily dependent on both NF-kappaB and extracellular signal-regulated kinase 1 and 2 (ERK-1/2) activation. In contrast, inhibition of p38 has no detectable effect on interleukin-8 gene transcription, even though flagellin-mediated activation of host p38 is critical for maximal interleukin-8 protein expression. Inhibition of MAPK-interacting kinase 1 suggests that p38 signaling affects the posttranscriptional regulation of interleukin-8 protein expression induced by flagellin. Cotreatment with Stx2 and flagellin results in a synergistic upregulation of c-Jun N-terminal protein kinases (JNKs), p38 activation, and a superinduction of interleukin-8 mRNA. This synergism was also evident at the protein level, with increased interleukin-8 protein detectable following cotreatment with flagellin and Stx2. We propose that flagellin, in conjunction with Shiga toxin, synergistically upregulates stress-activated protein kinases, resulting in superinduction of interleukin-8 and, ultimately, absorption of Stx into the systemic circulation.
Collapse
|
47
|
Dean P, Mühlen S, Quitard S, Kenny B. The bacterial effectors EspG and EspG2 induce a destructive calpain activity that is kept in check by the co-delivered Tir effector. Cell Microbiol 2010; 12:1308-21. [PMID: 20345487 PMCID: PMC2955966 DOI: 10.1111/j.1462-5822.2010.01469.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial pathogens deliver multiple effector proteins into eukaryotic cells to subvert host cellular processes and an emerging theme is the cooperation between different effectors. Here, we reveal that a fine balance exists between effectors that are delivered by enteropathogenic E. coli (EPEC) which, if perturbed can have marked consequences on the outcome of the infection. We show that absence of the EPEC effector Tir confers onto the bacterium a potent ability to destroy polarized intestinal epithelia through extensive host cell detachment. This process was dependent on the EPEC effectors EspG and EspG2 through their activation of the host cysteine protease calpain. EspG and EspG2 are shown to activate calpain during EPEC infection, which increases significantly in the absence of Tir – leading to rapid host cell loss and necrosis. These findings reveal a new function for EspG and EspG2 and show that Tir, independent of its bacterial ligand Intimin, is essential for maintaining the integrity of the epithelium during EPEC infection by keeping the destructive activity of EspG and EspG2 in check.
Collapse
Affiliation(s)
- Paul Dean
- Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle, Newcastle-Upon-Tyne NE2 4HH, UK
| | | | | | | |
Collapse
|
48
|
Backert S, Kenny B, Gerhard R, Tegtmeyer N, Brandt S. PKA-mediated phosphorylation of EPEC-Tir at serine residues 434 and 463: A novel pathway in regulating Rac1 GTPase function. Cell Signal 2010; 21:462-9. [PMID: 19091303 DOI: 10.1016/j.cellsig.2008.11.013] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 11/15/2008] [Indexed: 01/29/2023]
Abstract
Type-III or type-IV secretion systems of many Gram-negative bacterial pathogens inject effector proteins into host cells that modulate cellular functions in their favour. A preferred target of these effectors is the actin-cytoskeleton as shown by studies using the gastric pathogens Helicobacter pylori (H. pylori) and enteropathogenic Escherichia coli (EPEC). We recently developed a co-infection approach to study effector protein function and molecular mechanisms by which they highjack cellular signalling cascades. This is exemplified by our observation that EPEC profoundly blocks H. pylori-induced epithelial cell scattering and elongation, a disease-related event requiring the activity of small Rho GTPase Rac1. While this suppressive effect is dependent on the effector protein Tir and the outer-membrane protein Intimin, it unexpectedly revealed evidence for Tir-signalling independent of phosphorylation of Tir at tyrosine residues 454 and 474. Instead, our studies revealed a previously unidentified function for protein kinase A (PKA)-mediated phosphorylation of Tir at serine residues 434 and 463. We demonstrated that EPEC infection activates PKA for Tir phosphorylation. Activated PKA then phosphorylates Rac1 at its serine residue 71 associated with reduced GTP-load and inhibited cell elongation. Phosphorylation of Rho GTPases such as Rac1 might be an interesting novel strategy in microbial pathogenesis.
Collapse
Affiliation(s)
- Steffen Backert
- University College Dublin; School of Biomolecular and Biomedical Sciences; Dublin, Ireland
| | | | | | | | | |
Collapse
|
49
|
Backert S, Kenny B, Gerhard R, Tegtmeyer N, Brandt S, Li DB, Li Y, Che GW. PKA-mediated phosphorylation of EPEC-Tir at serine residues 434 and 463: A novel pathway in regulating Rac1 GTPase function. Gut Microbes 2010; 1:94-99. [PMID: 21326916 PMCID: PMC3023586 DOI: 10.4161/gmic.1.2.11437] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/11/2010] [Accepted: 02/08/2010] [Indexed: 02/03/2023] Open
Abstract
Type-III or type-IV secretion systems of many Gram-negative bacterial pathogens inject effector proteins into host cells that modulate cellular functions in their favour. A preferred target of these effectors is the actin-cytoskeleton as shown by studies using the gastric pathogens Helicobacter pylori (H. pylori) and enteropathogenic Escherichia coli (EPEC). We recently developed a co-infection approach to study effector protein function and molecular mechanisms by which they highjack cellular signalling cascades. This is exemplified by our observation that EPEC profoundly blocks H. pylori-induced epithelial cell scattering and elongation, a disease-related event requiring the activity of small Rho GTPase Rac1. While this suppressive effect is dependent on the effector protein Tir and the outer-membrane protein Intimin, it unexpectedly revealed evidence for Tir-signalling independent of phosphorylation of Tir at tyrosine residues 454 and 474. Instead, our studies revealed a previously unidentified function for protein kinase A (PKA)-mediated phosphorylation of Tir at serine residues 434 and 463. We demonstrated that EPEC infection activates PKA for Tir phosphorylation. Activated PKA then phosphorylates Rac1 at its serine residue 71 associated with reduced GTP-load and inhibited cell elongation. Phosphorylation of Rho GTPases such as Rac1 might be an interesting novel strategy in microbial pathogenesis.
Collapse
Affiliation(s)
- Steffen Backert
- University College Dublin; School of Biomolecular and Biomedical Sciences; Dublin, Ireland
| | - Brendan Kenny
- Institute for Cell and Molecular Biosciences; Medical School; University of Newcastle; Newcastle, UK
| | - Ralf Gerhard
- Institute for Toxicology; Medical School Hannover; Hannover, Germany
| | - Nicole Tegtmeyer
- University College Dublin; School of Biomolecular and Biomedical Sciences; Dublin, Ireland
| | - Sabine Brandt
- Department of Medical Microbiology; Otto von Guericke University; Magdeburg, Germany
| | | | | | | |
Collapse
|
50
|
Keller R, Hilton TD, Rios H, Boedeker EC, Kaper JB. Development of a live oral attaching and effacing Escherichia coli vaccine candidate using Vibrio cholerae CVD 103-HgR as antigen vector. Microb Pathog 2009; 48:1-8. [PMID: 19878715 DOI: 10.1016/j.micpath.2009.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 12/29/2022]
Abstract
Attaching and effacing Escherichia coli (AEEC) share the ability to induce pedestal formation and intimate adherence of the bacteria to the intestinal epithelial cell and effacement of microvilli of epithelial tissue. The Locus of Enterocyte Effacement (LEE) pathogenicity island encodes the ability to induce attaching and effacing (A/E) lesions and contains the gene eae, which encodes intimin, an outer membrane protein that is an adhesin for A/E lesion formation. Here we show the utility of using intimin as a vaccine to protect rabbits from challenge with rabbit Enteropathogenic E. coli (REPEC), a member of the AEEC family. The C-terminal portion of intimin was delivered by the attenuated Vibrio cholerae vaccine strain CVD 103-HgR. To export intimin, a fusion was engineered with ClyA, a secreted protein from Salmonella enterica serovar Typhi. After immunization, antibodies specific to intimin from serum and bile samples were detected and moderate protection against challenge with a virulent REPEC strain was observed. Compared to animals immunized with vector alone, intimin-immunized rabbits exhibited reduced fecal bacterial shedding, milder diarrheal symptoms, lower weight loss, and reduced colonization of REPEC in the cecum. V. cholerae CVD 103-HgR shows promise as a vector to deliver antigens and confer protection against AEEC pathogens.
Collapse
Affiliation(s)
- Rogeria Keller
- Center for Vaccine Development and Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|