1
|
Kokilakanit P, Dungkhuntod N, Serikul N, Koontongkaew S, Utispan K. Caffeic acid phenethyl ester inhibits multispecies biofilm formation and cariogenicity. PeerJ 2025; 13:e18942. [PMID: 39981044 PMCID: PMC11841590 DOI: 10.7717/peerj.18942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
Background Caffeic acid phenethyl ester (CAPE), a natural phenolic compound, has demonstrated antibacterial effects. Dental caries etiology is multifactorial, including a cariogenic biofilm containing multispecies bacteria. However, the antibacterial property of CAPE on multispecies biofilm is unclear. The aim of this study was to assess the effect of CAPE on the formation and cariogenicity in biofilm containing Streptococcus mutans, Streptococcus oralis, and Streptococcus mitis. Methods S. mutans (ATCC 25175), S. oralis (ATCC 35037), and S. mitis (ATCC 49456T) were employed in this investigation. Each bacterial strain was cultured in the presence of CAPE, followed by susceptibility assessment through optical density measurements at a 600 nm wavelength. Multispecies biofilm formation was achieved by co-culturing S. mutans, S. oralis, and S. mitis at a 1:1:1 ratio on hydroxyapatite-coated 96-well plates. The anti-adherence activity of CAPE on multispecies biofilm was evaluated using a crystal violet staining assay. Cariogenic gene expression level and glucosyltransferase (GTF) function in CAPE-treated mixed bacteria were evaluated using real-time PCR and enzyme activity assay, respectively. The thickness and bacterial viability in CAPE-treated multispecies biofilm were examined using confocal laser scanning microscopy. Results CAPE demonstrated a significant antimicrobial effect on S. mutans, S. oralis, and S. mitis (p < 0.05). The inhibition concentration 50% (IC50) of CAPE against S. mutans, S. oralis, and S. mitis ranged from 1.6-6.4 mg/ml. CAPE significantly hindered the multispecies biofilm adherence (p < 0.05). Furthermore, the expression of genes involved in acidogenicity, aciduricity, sucrose-dependent adhesion and quorum sensing mechanism and GTF activity were significantly decreased in CAPE-treated mixed bacteria (p < 0.05). In a multispecies biofilm, CAPE significantly reduced its thickness and viable bacteria population (p < 0.05). In conclusion, CAPE exhibited antimicrobial, anti-adherence and anti-cariogenic effects within a multispecies biofilm. These findings suggest the potential use of CAPE as an adjunctive anti-cariogenic agent in future dental applications.
Collapse
Affiliation(s)
| | | | | | | | - Kusumawadee Utispan
- Faculty of Dentistry, Thammasat University, Klong Luang, Pathum Thani, Thailand
| |
Collapse
|
2
|
Pezzotti G, Ofuji S, Imamura H, Adachi T, Yamamoto T, Kanamura N, Ohgitani E, Marin E, Zhu W, Mazda O, Togo A, Kimura S, Iwata T, Shiba H, Ouhara K, Aoki T, Kawai T. In Situ Raman Analysis of Biofilm Exopolysaccharides Formed in Streptococcus mutans and Streptococcus sanguinis Commensal Cultures. Int J Mol Sci 2023; 24:ijms24076694. [PMID: 37047667 PMCID: PMC10095091 DOI: 10.3390/ijms24076694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
This study probed in vitro the mechanisms of competition/coexistence between Streptococcus sanguinis (known for being correlated with health in the oral cavity) and Streptococcus mutans (responsible for aciduric oral environment and formation of caries) by means of quantitative Raman spectroscopy and imaging. In situ Raman assessments of live bacterial culture/coculture focusing on biofilm exopolysaccharides supported the hypothesis that both species engaged in antagonistic interactions. Experiments of simultaneous colonization always resulted in coexistence, but they also revealed fundamental alterations of the biofilm with respect to their water-insoluble glucan structure. Raman spectra (collected at fixed time but different bacterial ratios) showed clear changes in chemical bonds in glucans, which pointed to an action by Streptococcus sanguinis to discontinue the impermeability of the biofilm constructed by Streptococcus mutans. The concurrent effects of glycosidic bond cleavage in water-insoluble α - 1,3-glucan and oxidation at various sites in glucans' molecular chains supported the hypothesis that secretion of oxygen radicals was the main "chemical weapon" used by Streptococcus sanguinis in coculture.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Satomi Ofuji
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Hayata Imamura
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Azusa Togo
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kimura
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tadahisa Iwata
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideki Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Takashi Aoki
- Faculty of Fiber Science and Engineering, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3301 College Ave, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
3
|
Okahashi N, Nakata M, Kuwata H, Kawabata S. Oral mitis group streptococci: A silent majority in our oral cavity. Microbiol Immunol 2022; 66:539-551. [PMID: 36114681 DOI: 10.1111/1348-0421.13028] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022]
Abstract
Members of the oral mitis group streptococci including Streptococcus oralis, Streptococcus sanguinis, and Streptococcus gordonii are the most abundant inhabitants of human oral cavity and dental plaque, and have been implicated in infectious complications such as bacteremia and infective endocarditis. Oral mitis group streptococci are genetically close to Streptococcus pneumoniae; however, they do not produce cytolysin (pneumolysin), which is a key virulence factor of S. pneumoniae. Similar to S. pneumoniae, oral mitis group streptococci possess several cell surface proteins that bind to the cell surface components of host mammalian cells. S. sanguinis expresses long filamentous pili that bind to the matrix proteins of host cells. The cell wall-anchored nuclease of S. sanguinis contributes to the evasion of the neutrophil extracellular trap by digesting its web-like extracellular DNA. Oral mitis group streptococci produce glucosyltransferases, which synthesize glucan (glucose polymer) from sucrose of dietary origin. Neuraminidase (NA) is a virulent factor in oral mitis group streptococci. Influenza type A virus (IAV) relies on viral NA activity to release progeny viruses from infected cells and spread the infection, and NA-producing oral streptococci elevate the risk of IAV infection. Moreover, oral mitis group streptococci produce hydrogen peroxide (H2 O2 ) as a by-product of sugar metabolism. Although the concentrations of streptococcal H2 O2 are low (1-2 mM), they play important roles in bacterial competition in the oral cavity and evasion of phagocytosis by host macrophages and neutrophils. In this review, we intended to describe the diverse pathogenicity of oral mitis group streptococci.
Collapse
Affiliation(s)
- Nobuo Okahashi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.,Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hirotaka Kuwata
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
4
|
Hoshino T, Fujiwara T. The findings of glucosyltransferase enzymes derived from oral streptococci. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:328-335. [PMID: 36340584 PMCID: PMC9630777 DOI: 10.1016/j.jdsr.2022.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022] Open
Abstract
Glucosyltransferase enzymes (Gtfs) distribute among some streptococcal species in oral cavity and are known as key enzymes contributing to the development of oral biofilm such as dental plaque. In 18 streptococcal species, 45 glucosyltransferase genes (gtf) are detected from genome database. Gtfs catalyze the synthesis of the glucans, which are polymers of glucose, from sucrose and they are main component of oral biofilm. Especially, the Gtfs from Streptococcus mutans are recognized as one of dental caries pathogens since they contribute to the formation of dental plaque and the establishment of S. mutans in the tooth surface. Therefore, Gtfs has been studied particularly by many researchers in the dentistry field to develop the anti- caries vaccine. However, it is not still accomplished. In these days, the phylogenetic and crystal structure analyses of Gtfs were performed and the study of Gtfs will enter new situation from the technique in the past old viewpoint. The findings from those analyses will affect the development of the anti-caries vaccine very much after this. In this review, we summarize the findings of oral streptococcal Gtfs and consider the perspectives of the dental caries prevention which targeted Gtf.
Collapse
|
5
|
Costa RC, Bertolini M, Costa Oliveira BE, Nagay BE, Dini C, Benso B, Klein MI, Barāo VAR, Souza JGS. Polymicrobial biofilms related to dental implant diseases: unravelling the critical role of extracellular biofilm matrix. Crit Rev Microbiol 2022; 49:370-390. [PMID: 35584310 DOI: 10.1080/1040841x.2022.2062219] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biofilms are complex tri-dimensional structures that encase microbial cells in an extracellular matrix comprising self-produced polymeric substances. The matrix rich in extracellular polymeric substance (EPS) contributes to the unique features of biofilm lifestyle and structure, enhancing microbial accretion, biofilm virulence, and antimicrobial resistance. The role of the EPS matrix of biofilms growing on biotic surfaces, especially dental surfaces, is largely unravelled. To date, there is a lack of a broad overview of existing literature concerning the relationship between the EPS matrix and the dental implant environment and its role in implant-related infections. Here, we discuss recent advances in the critical role of the EPS matrix on biofilm growth and virulence on the dental implant surface and its effect on the etiopathogenesis and progression of implant-related infections. Similar to other biofilms associated with human diseases/conditions, EPS-enriched biofilms on implant surfaces promote microbial accumulation, microbiological shift, cross-kingdom interaction, antimicrobial resistance, biofilm virulence, and, consequently, peri-implant tissue damage. But intriguingly, the protagonism of EPS role on implant-related infections and the development of matrix-target therapeutic strategies has been neglected. Finally, we highlight the need for more in-depth analyses of polymicrobial interactions within EPS matrix and EPS-targeting technologies' rationale for disrupting the complex biofilm microenvironment with more outstanding translation to implant applications in the near future.
Collapse
Affiliation(s)
- Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Martinna Bertolini
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | | | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Bruna Benso
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, CA, Chile
| | - Marlise I Klein
- Department of Dental Materials and Prosthodontics, São Paulo State University, São Paulo, Brazil
| | - Valentim A R Barāo
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Joāo Gabriel S Souza
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil.,Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Brazil.,Dental Research Division, Guarulhos University, Sāo Paulo, Brazil
| |
Collapse
|
6
|
Molina M, Cioci G, Moulis C, Séverac E, Remaud-Siméon M. Bacterial α-Glucan and Branching Sucrases from GH70 Family: Discovery, Structure-Function Relationship Studies and Engineering. Microorganisms 2021; 9:microorganisms9081607. [PMID: 34442685 PMCID: PMC8398850 DOI: 10.3390/microorganisms9081607] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 01/12/2023] Open
Abstract
Glucansucrases and branching sucrases are classified in the family 70 of glycoside hydrolases. They are produced by lactic acid bacteria occupying very diverse ecological niches (soil, buccal cavity, sourdough, intestine, dairy products, etc.). Usually secreted by their producer organisms, they are involved in the synthesis of α-glucans from sucrose substrate. They contribute to cell protection while promoting adhesion and colonization of different biotopes. Dextran, an α-1,6 linked linear α-glucan, was the first microbial polysaccharide commercialized for medical applications. Advances in the discovery and characterization of these enzymes have remarkably enriched the available diversity with new catalysts. Research into their molecular mechanisms has highlighted important features governing their peculiarities thus opening up many opportunities for engineering these catalysts to provide new routes for the transformation of sucrose into value-added molecules. This article reviews these different aspects with the ambition to show how they constitute the basis for promising future developments.
Collapse
|
7
|
Gaytán MO, Singh AK, Woodiga SA, Patel SA, An SS, Vera-Ponce de León A, McGrath S, Miller AR, Bush JM, van der Linden M, Magrini V, Wilson RK, Kitten T, King SJ. A novel sialic acid-binding adhesin present in multiple species contributes to the pathogenesis of Infective endocarditis. PLoS Pathog 2021; 17:e1009222. [PMID: 33465168 PMCID: PMC7846122 DOI: 10.1371/journal.ppat.1009222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/29/2021] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Bacterial binding to platelets is a key step in the development of infective endocarditis (IE). Sialic acid, a common terminal carbohydrate on host glycans, is the major receptor for streptococci on platelets. So far, all defined interactions between streptococci and sialic acid on platelets are mediated by serine-rich repeat proteins (SRRPs). However, we identified Streptococcus oralis subsp. oralis IE-isolates that bind sialic acid but lack SRRPs. In addition to binding sialic acid, some SRRP- isolates also bind the cryptic receptor β-1,4-linked galactose through a yet unknown mechanism. Using comparative genomics, we identified a novel sialic acid-binding adhesin, here named AsaA (associated with sialic acid adhesion A), present in IE-isolates lacking SRRPs. We demonstrated that S. oralis subsp. oralis AsaA is required for binding to platelets in a sialic acid-dependent manner. AsaA comprises a non-repeat region (NRR), consisting of a FIVAR/CBM and two Siglec-like and Unique domains, followed by 31 DUF1542 domains. When recombinantly expressed, Siglec-like and Unique domains competitively inhibited binding of S. oralis subsp. oralis and directly interacted with sialic acid on platelets. We further demonstrated that AsaA impacts the pathogenesis of S. oralis subsp. oralis in a rabbit model of IE. Additionally, we found AsaA orthologues in other IE-causing species and demonstrated that the NRR of AsaA from Gemella haemolysans blocked binding of S. oralis subsp. oralis, suggesting that AsaA contributes to the pathogenesis of multiple IE-causing species. Finally, our findings provide evidence that sialic acid is a key factor for bacterial-platelets interactions in a broader range of species than previously appreciated, highlighting its potential as a therapeutic target. Infective endocarditis (IE) is typically a bacterial infection of the heart valves that causes high mortality. Infective endocarditis can affect people with preexisting lesions on their heart valves (Subacute IE). These lesions contain platelets and other host factors to which bacteria can bind. Growth of bacteria and accumulation of host factors results in heart failure. Therefore, the ability of bacteria to bind platelets is key to the development of IE. Here, we identified a novel bacterial protein, AsaA, which helps bacteria bind to platelets and contributes to the development of disease. Although this virulence factor was characterized in Streptococcus oralis, a leading cause of IE, we demonstrated that AsaA is also present in several other IE-causing bacterial species and is likely relevant to their ability to cause disease. We showed that AsaA binds to sialic acid, a terminal sugar present on platelets, thereby demonstrating that sialic acid serves as a receptor for a wider range of IE-causing bacteria than previously appreciated, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Meztlli O. Gaytán
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Anirudh K. Singh
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Shireen A. Woodiga
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Surina A. Patel
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Seon-Sook An
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Arturo Vera-Ponce de León
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Sean McGrath
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Anthony R. Miller
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Jocelyn M. Bush
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Mark van der Linden
- Institute of Medical Microbiology, German National Reference Center for Streptococci, University Hospital (RWTH), Aachen, Germany
| | - Vincent Magrini
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Richard K. Wilson
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Samantha J. King
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
8
|
Souza JGS, Bertolini M, Thompson A, Mansfield JM, Grassmann AA, Maas K, Caimano MJ, Barao VAR, Vickerman MM, Dongari-Bagtzoglou A. Role of glucosyltransferase R in biofilm interactions between Streptococcus oralis and Candida albicans. THE ISME JOURNAL 2020; 14:1207-1222. [PMID: 32042100 PMCID: PMC7174356 DOI: 10.1038/s41396-020-0608-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/08/2020] [Accepted: 01/30/2020] [Indexed: 02/08/2023]
Abstract
Streptococcal glucosyltransferases (Gtf) synthesize α-glucan exopolymers which contribute to biofilm matrix. Streptococcus oralis interacts with the opportunistic pathogen Candida albicans to form hypervirulent biofilms. S. oralis 34 has a single gtf gene (gtfR). However, the role of gtfR in single and mixed species biofilms with C. albicans has never been examined. A gtfR deletion mutant, purified GtfR, and recombinant GtfR glucan-binding domain were tested in single and mixed biofilms on different substrata in vitro. A mouse oral infection model was also used. We found that in single species biofilms growing with sucrose on abiotic surfaces S. oralis gtfR increased biofilm matrix, but not bacterial biomass. In biofilms with C. albicans, S. oralis encoding gtfR showed increased bacterial biomass on all surfaces. C. albicans had a positive effect on α-glucan synthesis, and α-glucans increased C. albicans accretion on abiotic surfaces. In single and mixed infection of mice receiving sucrose S. oralis gtfR enhanced mucosal burdens. However, sucrose had a negative impact on C. albicans burdens and reduced S. oralis burdens in co-infected mice. Our data provide new insights on the GtfR-mediated interactions between the two organisms and the influence of biofilm substratum and the mucosal environment on these interactions.
Collapse
Affiliation(s)
- João Gabriel Silva Souza
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Martinna Bertolini
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - Angela Thompson
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - Jillian M Mansfield
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - André Alex Grassmann
- Departments of Medicine, Pediatrics and Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Kendra Maas
- Microbial Analysis, Resources, and Services Core, University of Connecticut, Storrs, CT, USA
| | - Melissa J Caimano
- Departments of Medicine, Pediatrics and Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Valentim Adelino Ricardo Barao
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - M Margaret Vickerman
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA.
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA.
| |
Collapse
|
9
|
Cocco AR, Cuevas-Suárez CE, Liu Y, Lund RG, Piva E, Hwang G. Anti-biofilm activity of a novel pit and fissure self-adhesive sealant modified with metallic monomers. BIOFOULING 2020; 36:245-255. [PMID: 32326753 PMCID: PMC7270982 DOI: 10.1080/08927014.2020.1748603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 05/25/2023]
Abstract
Dental plaque is a biofilm composed of a complex oral microbial community. The accumulation of plaque in the pit and fissures of dental elements often leads to the development of tooth decay (dental caries). Here, potent anti-biofilm materials were developed by incorporating zinc methacrylates or di-n-butyl-dimethacrylate-tin into the light-curable sealant and their physical, mechanical, and biological properties were evaluated. The data revealed that 5% di-n-butyl-dimethacrylate-tin (SnM 5%) incorporated sealant showed strong anti-biofilm efficacy against various single-species (Streptococcus mutans or Streptococcus oralis or Candida albicans) and S. mutans-C. albicans cross-kingdom dual-species biofilms without either impairing the mechanical properties of the sealant or causing cytotoxicities against mouse fibroblasts. The findings indicate that the incorporation of SnM 5% in the experimental pit and fissure self-adhesive sealant may have the potential to be part of current chemotherapeutic strategies to prevent the formation of cariogenic oral biofilms that cause dental caries.
Collapse
Affiliation(s)
- Alexandra Rubin Cocco
- School of Dentistry, Federal University of Pelotas, Pelotas, Brazil
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Yuan Liu
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Evandro Piva
- School of Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Geelsu Hwang
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Streptococcus oralis subsp. dentisani Produces Monolateral Serine-Rich Repeat Protein Fibrils, One of Which Contributes to Saliva Binding via Sialic Acid. Infect Immun 2019; 87:IAI.00406-19. [PMID: 31308084 DOI: 10.1128/iai.00406-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022] Open
Abstract
Our studies reveal that the oral colonizer and cause of infective endocarditis Streptococcus oralis subsp. dentisani displays a striking monolateral distribution of surface fibrils. Furthermore, our data suggest that these fibrils impact the structure of adherent bacterial chains. Mutagenesis studies indicate that these fibrils are dependent on three serine-rich repeat proteins (SRRPs), here named fibril-associated protein A (FapA), FapB, and FapC, and that each SRRP forms a different fibril with a distinct distribution. SRRPs are a family of bacterial adhesins that have diverse roles in adhesion and that can bind to different receptors through modular nonrepeat region domains. Amino acid sequence and predicted structural similarity searches using the nonrepeat regions suggested that FapA may contribute to interspecies interactions, that FapA and FapB may contribute to intraspecies interactions, and that FapC may contribute to sialic acid binding. We demonstrate that a fapC mutant was significantly reduced in binding to saliva. We confirmed a role for FapC in sialic acid binding by demonstrating that the parental strain was significantly reduced in adhesion upon addition of a recombinantly expressed, sialic acid-specific, carbohydrate binding module, while the fapC mutant was not reduced. However, mutation of a residue previously shown to be essential for sialic acid binding did not decrease bacterial adhesion, leaving the precise mechanism of FapC-mediated adhesion to sialic acid to be defined. We also demonstrate that the presence of any one of the SRRPs is sufficient for efficient biofilm formation. Similar structures were observed on all infective endocarditis isolates examined, suggesting that this distribution is a conserved feature of this S. oralis subspecies.
Collapse
|
11
|
Harper RA, Carpenter GH, Proctor GB, Harvey RD, Gambogi RJ, Geonnotti AR, Hider R, Jones SA. Diminishing biofilm resistance to antimicrobial nanomaterials through electrolyte screening of electrostatic interactions. Colloids Surf B Biointerfaces 2019; 173:392-399. [DOI: 10.1016/j.colsurfb.2018.09.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/30/2018] [Accepted: 09/08/2018] [Indexed: 02/06/2023]
|
12
|
Sakagami H, Watanabe T, Hoshino T, Suda N, Mori K, Yasui T, Yamauchi N, Kashiwagi H, Gomi T, Oizumi T, Nagai J, Uesawa Y, Takao K, Sugita Y. Recent Progress of Basic Studies of Natural Products and Their Dental Application. MEDICINES 2018; 6:medicines6010004. [PMID: 30585249 PMCID: PMC6473826 DOI: 10.3390/medicines6010004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/10/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
The present article reviews the research progress of three major polyphenols (tannins, flavonoids and lignin carbohydrate complexes), chromone (backbone structure of flavonoids) and herbal extracts. Chemical modified chromone derivatives showed highly specific toxicity against human oral squamous cell carcinoma cell lines, with much lower toxicity against human oral keratinocytes, as compared with various anticancer drugs. QSAR analysis suggests the possible correlation between their tumor-specificity and three-dimensional molecular shape. Condensed tannins in the tea extracts inactivated the glucosyltransferase enzymes, involved in the biofilm formation. Lignin-carbohydrate complexes (prepared by alkaline extraction and acid-precipitation) and crude alkaline extract of the leaves of Sasa species (SE, available as an over-the-counter drug) showed much higher anti-HIV activity, than tannins, flavonoids and Japanese traditional medicine (Kampo). Long-term treatment with SE and several Kampo medicines showed an anti-inflammatory and anti-oxidant effects in small size of clinical trials. Although the anti-periodontitis activity of synthetic angiotensin II blockers has been suggested in many papers, natural angiotensin II blockers has not yet been tested for their possible anti-periodontitis activity. There should be still many unknown substances that are useful for treating the oral diseases in the natural kingdom.
Collapse
Affiliation(s)
- Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan.
| | - Taihei Watanabe
- Division of Pediatric Dentistry, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan.
| | - Tomonori Hoshino
- Division of Pediatric Dentistry, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan.
| | - Naoto Suda
- Division of Orthodontics, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan.
| | - Kazumasa Mori
- Division of First Oral and Maxillofacial Surgery, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan.
| | - Toshikazu Yasui
- Division of Oral Health, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan.
| | - Naoki Yamauchi
- Masuko Memorial Hospital, 35-28 Takehashi-cho, Nakamura-ku, Nagoya 453-8566, Japan.
| | - Harutsugu Kashiwagi
- Ecopale Co., Ltd., 885 Minamiisshiki, Nagaizumi-cho, Suntou-gun, Shizuoka 411-0932, Japan.
| | - Tsuneaki Gomi
- Gomi clinic, 1-10-12 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan.
| | - Takaaki Oizumi
- Daiwa Biological Research Institute Co., Ltd., 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan.
| | - Junko Nagai
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Yoshihiro Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Koichi Takao
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295, Japan.
| | - Yoshiaki Sugita
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295, Japan.
| |
Collapse
|
13
|
Xu RR, Yang WD, Niu KX, Wang B, Wang WM. An Update on the Evolution of Glucosyltransferase ( Gtf) Genes in Streptococcus. Front Microbiol 2018; 9:2979. [PMID: 30568640 PMCID: PMC6290343 DOI: 10.3389/fmicb.2018.02979] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/19/2018] [Indexed: 11/13/2022] Open
Abstract
In many caries-promoting Streptococcus species, glucosyltransferases (Gtfs) are recognized as key enzymes contributing to the modification of biofilm structures, disruption of homeostasis of healthy microbiota community and induction of caries development. It is therefore of great interest to investigate how Gtf genes have evolved in Streptococcus. In this study, we conducted a comprehensive survey of Gtf genes among 872 streptococci genomes of 37 species and identified Gtf genes from 364 genomes of 18 species. To clarify the relationships of these Gtf genes, 45 representative sequences were used for phylogenic analysis, which revealed two clear clades. Clade I included 12 Gtf genes from nine caries-promoting species of the Mutans and Downei groups, which produce enzymes known to synthesize sticky, water-insoluble glucans (WIG) that are critical for modifying biofilm structures. Clade II primarily contained Gtf genes responsible for synthesizing water-soluble glucans (WSG) from all 18 species, and this clade further diverged into three subclades (IIA, IIB, and IIC). An analysis of 16 pairs of duplicated Gtf genes revealed high divergence levels at the C-terminal repeat regions, with ratios of the non-synonymous substitution rate (dN) to synonymous substitution rate (dS) ranging from 0.60 to 1.03, indicating an overall relaxed constraint in this region. However, among the clade I Gtf genes, some individual repeat units possessed strong functional constraints by the same criterion. Structural variations in the repeat regions were also observed, with detection of deletions or recent duplications of individual repeat units. Overall, by establishing an updated phylogeny and further elucidating their evolutionary patterns, this work enabled us to gain a greater understanding of the origination and divergence of Gtf genes in Streptococcus.
Collapse
Affiliation(s)
- Rong-Rong Xu
- Nanjing Stomatological Hospital, Nanjing University Medical School, Nanjing, China
| | - Wei-Dong Yang
- Nanjing Stomatological Hospital, Nanjing University Medical School, Nanjing, China
| | - Ke-Xin Niu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing, China
| | - Bin Wang
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wen-Mei Wang
- Nanjing Stomatological Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
14
|
Jakubovics NS. The sixth sensor: A Candida albicans biofilm master regulator that responds to inter-kingdom interactions. Virulence 2017; 8:1465-1467. [PMID: 28700262 DOI: 10.1080/21505594.2017.1353864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Nicholas S Jakubovics
- a Centre for Oral Health Research , School of Dental Sciences, Newcastle University, Framlington Place , Newcastle upon Tyne , UK
| |
Collapse
|
15
|
Görl J, Possiel C, Sotriffer C, Seibel J. Extending the Scope of GTFR Glucosylation Reactions with Tosylated Substrates for Rare Sugars Synthesis. Chembiochem 2017; 18:2012-2015. [PMID: 28796424 DOI: 10.1002/cbic.201700320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Indexed: 11/06/2022]
Abstract
Functionalized rare sugars were synthesized with 2-, 3-, and 6-tosylated glucose derivatives as acceptor substrates by transglucosylation with sucrose and the glucansucrase GTFR from Streptococcus oralis. The 2- and 3-tosylated glucose derivatives yielded the corresponding 1,6-linked disaccharides (isomaltose analogues), whereas the 6-tosylated glucose derivatives resulted in 1,3-linked disaccharides (nigerose analogue) with high regioselectivity in up to 95 % yield. Docking studies provided insight into the binding mode of the acceptors and suggested two different orientations that were responsible for the change in regioselectivity.
Collapse
Affiliation(s)
- Julian Görl
- Department of Organic Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Christian Possiel
- Department of Organic Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Christoph Sotriffer
- Department of Pharmacy and Food Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jürgen Seibel
- Department of Organic Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
16
|
Fujiwara T, Hoshino T, Ooshima T, Hamada S. Differential and Quantitative Analyses of mRNA Expression of Glucosyltransferases from Streptococcus mutans MT8148. J Dent Res 2017. [DOI: 10.1177/0810109] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Streptococcus mutans produces three glucosyltransferases, coded by gtfB, gtfC, and gtfD, whose cooperative action is essential for sucrose-dependent cellular adhesion. This cellular adhesion plays an important role in the formation of dental plaque and the initiation of dental caries. Since they bear genetic similarities and are large in size, differentiation of their gene expression has been difficult, and little is known about the dynamic process of gtf expression. Using a real-time reverse-transcription/polymerase chain-reaction, we determined the expression of each gtf. Under various conditions, the relative levels of transcription were gtfB > gtfD > gtfC. Sucrose enhanced gtfD expression, whereas it reduced that of gtfB and gtfC, suggesting the presence of independent promoters. Quantitative analyses demonstrated coincidence between the ratio of expression of each gtf and the ratio previously identified as optimal for sucrose-dependent adhesion in vitro, suggesting that S. mutans produces GTF at an optimal ratio to adhere to the tooth surface.
Collapse
Affiliation(s)
- T. Fujiwara
- Departments of Pedodontics and
- Oral Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita-Osaka, 565-0871, Japan
| | - T. Hoshino
- Departments of Pedodontics and
- Oral Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita-Osaka, 565-0871, Japan
| | - T. Ooshima
- Departments of Pedodontics and
- Oral Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita-Osaka, 565-0871, Japan
| | - S. Hamada
- Departments of Pedodontics and
- Oral Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita-Osaka, 565-0871, Japan
| |
Collapse
|
17
|
Tamesada M, Kawabata S, Fujiwara T, Hamada S. Synergistic Effects of Streptococcal Glucosyltransferases on Adhesive Biofilm Formation. J Dent Res 2016; 83:874-9. [PMID: 15505239 DOI: 10.1177/154405910408301110] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Glucosyltransferases (GTF)-I and GTF-SI of Streptococcus mutans synthesize water-insoluble and both water-soluble and -insoluble glucans, respectively, and play essential roles in the sucrose-dependent adhesion of the organism to tooth surfaces. To examine the interactions of different GTFs on artificial biofilm formed by S. mutans and other oral streptococci, we generated GTF-I- and GTF-SI-hyperproducing isogenic mutant strains. Transformant B42-21, which hyperexpressed GTF-SI, exhibited firm adhesion in the presence of sucrose, whereas transformant B42-10, which hyperexpressed GTF-I, failed to exhibit firm adhesion. Furthermore, co-culture of transformant B42-21 with water-soluble glucan-synthesizing Streptococcus sanguinis yielded firm adhesion, while the addition of dextran T10 to B42-21 growing culture had no effect on adhesion. These findings suggest that GTF-SI has a strong effect on sucrose-dependent adhesion and is essential for biofilm formation on smooth surfaces, in cooperation with water-soluble glucans synthesized de novo by oral streptococci that inherently lack cell adhesion ability.
Collapse
Affiliation(s)
- M Tamesada
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-Osaka 5650871, Japan
| | | | | | | |
Collapse
|
18
|
Flavanone and isoflavone glucosylation by non-Leloir glycosyltransferases. J Biotechnol 2016; 233:121-8. [DOI: 10.1016/j.jbiotec.2016.06.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/20/2016] [Accepted: 06/29/2016] [Indexed: 11/22/2022]
|
19
|
Torino MI, Font de Valdez G, Mozzi F. Biopolymers from lactic acid bacteria. Novel applications in foods and beverages. Front Microbiol 2015; 6:834. [PMID: 26441845 PMCID: PMC4566036 DOI: 10.3389/fmicb.2015.00834] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/29/2015] [Indexed: 02/03/2023] Open
Abstract
Lactic acid bacteria (LAB) are microorganisms widely used in the fermented food industry worldwide. Certain LAB are able to produce exopolysaccharides (EPS) either attached to the cell wall (capsular EPS) or released to the extracellular environment (EPS). According to their composition, LAB may synthesize heteropolysaccharides or homopolysaccharides. A wide diversity of EPS are produced by LAB concerning their monomer composition, molecular mass, and structure. Although EPS-producing LAB strains have been traditionally applied in the manufacture of dairy products such as fermented milks and yogurts, their use in the elaboration of low-fat cheeses, diverse type of sourdough breads, and certain beverages are some of the novel applications of these polymers. This work aims to collect the most relevant issues of the former reviews concerning the monomer composition, structure, and yields and biosynthetic enzymes of EPS from LAB; to describe the recently characterized EPS and to present the application of both EPS-producing strains and their polymers in the fermented (specifically beverages and cereal-based) food industry.
Collapse
Affiliation(s)
- María I. Torino
- Technology Department, Centro de Referencia para Lactobacilos – Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de TucumánArgentina
| | | | - Fernanda Mozzi
- Technology Department, Centro de Referencia para Lactobacilos – Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de TucumánArgentina
| |
Collapse
|
20
|
Flavonoid glucosylation by non-Leloir glycosyltransferases: formation of multiple derivatives of 3,5,7,3′,4′-pentahydroxyflavane stereoisomers. Appl Microbiol Biotechnol 2015; 99:9565-76. [DOI: 10.1007/s00253-015-6760-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/24/2015] [Accepted: 06/04/2015] [Indexed: 12/26/2022]
|
21
|
Jimenez JC, Federle MJ. Quorum sensing in group A Streptococcus. Front Cell Infect Microbiol 2014; 4:127. [PMID: 25309879 PMCID: PMC4162386 DOI: 10.3389/fcimb.2014.00127] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/26/2014] [Indexed: 01/05/2023] Open
Abstract
Quorum sensing (QS) is a widespread phenomenon in the microbial world that has important implications in the coordination of population-wide responses in several bacterial pathogens. In Group A Streptococcus (GAS), many questions surrounding QS systems remain to be solved pertaining to their function and their contribution to the GAS lifestyle in the host. The QS systems of GAS described to date can be categorized into four groups: regulator gene of glucosyltransferase (Rgg), Sil, lantibiotic systems, and LuxS/AI-2. The Rgg family of proteins, a conserved group of transcription factors that modify their activity in response to signaling peptides, has been shown to regulate genes involved in virulence, biofilm formation and competence. The sil locus, whose expression is regulated by the activity of signaling peptides and a putative two-component system (TCS), has been implicated on regulating genes involved with invasive disease in GAS isolates. Lantibiotic regulatory systems are involved in the production of bacteriocins and their autoregulation, and some of these genes have been shown to target both bacterial organisms as well as processes of survival inside the infected host. Finally AI-2 (dihydroxy pentanedione, DPD), synthesized by the LuxS enzyme in several bacteria including GAS, has been proposed to be a universal bacterial communication molecule. In this review we discuss the mechanisms of these four systems, the putative functions of their targets, and pose critical questions for future studies.
Collapse
Affiliation(s)
- Juan Cristobal Jimenez
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago Chicago, IL, USA
| | - Michael J Federle
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
22
|
Henne K, Li J, Stoneking M, Kessler O, Schilling H, Sonanini A, Conrads G, Horz HP. Global analysis of saliva as a source of bacterial genes for insights into human population structure and migration studies. BMC Evol Biol 2014; 14:190. [PMID: 25183372 PMCID: PMC4360258 DOI: 10.1186/s12862-014-0190-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/13/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The genetic diversity of the human microbiome holds great potential for shedding light on the history of our ancestors. Helicobacter pylori is the most prominent example as its analysis allowed a fine-scale resolution of past migration patterns including some that could not be distinguished using human genetic markers. However studies of H. pylori require stomach biopsies, which severely limits the number of samples that can be analysed. By focussing on the house-keeping gene gdh (coding for the glucose-6-phosphate dehydrogenase), on the virulence gene gtf (coding for the glucosyltransferase) of mitis-streptococci and on the 16S-23S rRNA internal transcribed spacer (ITS) region of the Fusobacterium nucleatum/periodonticum-group we here tested the hypothesis that bacterial genes from human saliva have the potential for distinguishing human populations. RESULTS Analysis of 10 individuals from each of seven geographic regions, encompassing Africa, Asia and Europe, revealed that the genes gdh and ITS exhibited the highest number of polymorphic sites (59% and 79%, respectively) and most OTUs (defined at 99% identity) were unique to a given country. In contrast, the gene gtf had the lowest number of polymorphic sites (21%), and most OTUs were shared among countries. Most of the variation in the gdh and ITS genes was explained by the high clonal diversity within individuals (around 80%) followed by inter-individual variation of around 20%, leaving the geographic region as providing virtually no source of sequence variation. Conversely, for gtf the variation within individuals accounted for 32%, between individuals for 57% and among geographic regions for 11%. This geographic signature persisted upon extension of the analysis to four additional locations from the American continent. Pearson correlation analysis, pairwise Fst-cluster analysis as well as UniFrac analyses consistently supported a tree structure in which the European countries clustered tightly together and branched with American countries and South Africa, to the exclusion of Asian countries and the Congo. CONCLUSION This study shows that saliva harbours protein-coding bacterial genes that are geographically structured, and which could potentially be used for addressing previously unresolved human migration events.
Collapse
Affiliation(s)
- Karsten Henne
- Division of Oral Microbiology and Immunology, Department for Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52057, Aachen, Germany.
| | - Jing Li
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany.
- Current address: Max Planck Independent Research Group on Population Genomics, Chinese Academy of Sciences and Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany.
| | - Olga Kessler
- Division of Oral Microbiology and Immunology, Department for Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52057, Aachen, Germany.
| | - Hildegard Schilling
- Division of Oral Microbiology and Immunology, Department for Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52057, Aachen, Germany.
| | - Anne Sonanini
- Division of Oral Microbiology and Immunology, Department for Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52057, Aachen, Germany.
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department for Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52057, Aachen, Germany.
| | - Hans-Peter Horz
- Division of Virology, Institute of Medical Microbiology, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52057, Aachen, Germany.
| |
Collapse
|
23
|
Seibel J, Jördening HJ, Buchholz K. Extending synthetic routes for oligosaccharides by enzyme, substrate and reaction engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 120:163-93. [PMID: 20182930 DOI: 10.1007/10_2009_54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The integration of all relevant tools for bioreaction engineering has been a recent challenge. This approach should notably favor the production of oligo- and polysaccharides, which is highly complex due to the requirements of regio- and stereoselectivity. Oligosaccharides (OS) and polysaccharides (PS) have found many interests in the fields of food, pharmaceuticals, and cosmetics due to different specific properties. Food, sweeteners, and food ingredients represent important sectors where OS are used in major amounts. Increasing attention has been devoted to the sophisticated roles of OS and glycosylated compounds, at cell or membrane surfaces, and their function, e.g., in infection and cancer proliferation. The challenge for synthesis is obvious, and convenient approaches using cheap and readily available substrates and enzymes will be discussed. We report on new routes for the synthesis of oligosaccharides (OS), with emphasis on enzymatic reactions, since they offer unique properties, proceeding highly regio- and stereoselective in water solution, and providing for high yields in general.
Collapse
Affiliation(s)
- Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany,
| | | | | |
Collapse
|
24
|
Xu H, Sobue T, Thompson A, Xie Z, Poon K, Ricker A, Cervantes J, Diaz PI, Dongari-Bagtzoglou A. Streptococcal co-infection augments Candida pathogenicity by amplifying the mucosal inflammatory response. Cell Microbiol 2013; 16:214-31. [PMID: 24079976 PMCID: PMC3956708 DOI: 10.1111/cmi.12216] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 02/06/2023]
Abstract
Mitis-group streptococci are ubiquitous oral commensals that can promote polybacterial biofilm virulence. Using a novel murine oral mucosal co-infection model we sought to determine for the first time whether these organisms promote the virulence of C. albicans mucosal biofilms in oropharyngeal infection and explored mechanisms of pathogenic synergy. We found that Streptococcus oralis colonization of the oral and gastrointestinal tract was augmented in the presence of C. albicans. S. oralis and C. albicans co-infection significantly augmented the frequency and size of oral thrush lesions. Importantly, S. oralis promoted deep organ dissemination of C. albicans. Whole mouse genome tongue microarray analysis showed that when compared with animals infected with one organism, the doubly infected animals had genes in the major categories of neutrophilic response/chemotaxis/inflammation significantly upregulated, indicative of an exaggerated inflammatory response. This response was dependent on TLR2 signalling since oral lesions, transcription of pro-inflammatory genes and neutrophil infiltration, were attenuated in TLR2(-/-) animals. Furthermore, S. oralis activated neutrophils in a TLR2-dependent manner in vitro. In summary, this study identifies a previously unrecognized pathogenic synergy between oral commensal bacteriaand C. albicans. This is the first report of the ability of mucosal commensal bacteria to modify the virulence of an opportunistic fungal pathogen.
Collapse
Affiliation(s)
- H Xu
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
UNLABELLED Recent studies have established the fact that multiple members of the Rgg family of transcriptional regulators serve as key components of quorum sensing (QS) pathways that utilize peptides as intercellular signaling molecules. We previously described a novel QS system in Streptococcus pyogenes which utilizes two Rgg-family regulators (Rgg2 and Rgg3) that respond to neighboring signaling peptides (SHP2 and SHP3) to control gene expression and biofilm formation. We have shown that Rgg2 is a transcriptional activator of target genes, whereas Rgg3 represses expression of these genes, and that SHPs function to activate the QS system. The mechanisms by which Rgg proteins regulate both QS-dependent and QS-independent processes remain poorly defined; thus, we sought to further elucidate how Rgg2 and Rgg3 mediate gene regulation. Here we provide evidence that S. pyogenes employs a unique mechanism of direct competition between the antagonistic, peptide-responsive proteins Rgg2 and Rgg3 for binding at target promoters. The highly conserved, shared binding sites for Rgg2 and Rgg3 are located proximal to the -35 nucleotide in the target promoters, and the direct competition between the two regulators results in concentration-dependent, exclusive occupation of the target promoters that can be skewed in favor of Rgg2 in vitro by the presence of SHP. These results suggest that exclusionary binding of target promoters by Rgg3 may prevent Rgg2 binding under SHP-limiting conditions, thereby preventing premature induction of the quorum sensing circuit. IMPORTANCE Rgg-family transcriptional regulators are widespread among low-G+C Gram-positive bacteria and in many cases contribute to bacterial physiology and virulence. Only recently was it discovered that several Rgg proteins function in cell-to-cell communication (quorum sensing [QS]) via direct interaction with signaling peptides. The mechanism(s) by which Rgg proteins mediate regulation is poorly understood, and further insight into Rgg function is anticipated to be of great importance for the understanding of both regulatory-network architecture and intercellular communication in Rgg-containing species. The results of this study on the Rgg2/3 QS circuit of S. pyogenes demonstrate that DNA binding of target promoters by the activator Rgg2 is directly inhibited by competitive binding by the repressor Rgg3, thereby preventing transcriptional activation of the target genes and premature induction of the QS circuit. This is a unique regulatory mechanism among Rgg proteins and other peptide-responsive QS regulators.
Collapse
|
26
|
Klein MI, Xiao J, Lu B, Delahunty CM, Yates JR, Koo H. Streptococcus mutans protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics. PLoS One 2012; 7:e45795. [PMID: 23049864 PMCID: PMC3458072 DOI: 10.1371/journal.pone.0045795] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 08/24/2012] [Indexed: 01/15/2023] Open
Abstract
Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (P<0.05). Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the presence of other organisms. Our data provide insights about how S. mutans optimizes its metabolism and adapts/survives within the mixed-species community in response to a dynamically changing environment. This reflects the intricate physiological processes linked to expression of virulence by this bacterium within complex biofilms.
Collapse
Affiliation(s)
- Marlise I. Klein
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail: (MIK); (HK)
| | - Jin Xiao
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, People’s Republic of China
| | - Bingwen Lu
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Claire M. Delahunty
- The Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Hyun Koo
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail: (MIK); (HK)
| |
Collapse
|
27
|
Hoshino T, Fujiwara T, Kawabata S. Evolution of cariogenic character in Streptococcus mutans: horizontal transmission of glycosyl hydrolase family 70 genes. Sci Rep 2012; 2:518. [PMID: 22816041 PMCID: PMC3399136 DOI: 10.1038/srep00518] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/03/2012] [Indexed: 12/04/2022] Open
Abstract
Acquisition of the ability to produce polysaccharides from sucrose, i.e. the gtf gene encoding glucosyltransferase (GTF), is the key evolutionary event enabling dental biofilm formation by streptococci. To clarify the ancestry of streptococcal GTFs, time of its occurrence, and order of specific events, we investigated the distribution of GTFs among bacteria by phylogenetic analysis of the glycosyl hydrolase family 70 enzymes. We found that streptococcal GTFs were derived from other lactic acid bacteria such as Lactobacillus and Leuconostoc, and propose the following evolutionary model: horizontal gene transfer via transposons occurred when streptococci encountered lactic acid bacteria contained in fermented food. Intra-genomic gene duplication occurred by a secondary selection pressure such as consumption of refined sugar. Our findings concerning this evolution in Streptococcus mutans provide an important background for studies of the relationship between the historical spread of dental caries and anthropological factors.
Collapse
Affiliation(s)
- Tomonori Hoshino
- Department of Pediatric Dentistry, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | | | | |
Collapse
|
28
|
Leemhuis H, Pijning T, Dobruchowska JM, van Leeuwen SS, Kralj S, Dijkstra BW, Dijkhuizen L. Glucansucrases: three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. J Biotechnol 2012; 163:250-72. [PMID: 22796091 DOI: 10.1016/j.jbiotec.2012.06.037] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/13/2012] [Accepted: 06/18/2012] [Indexed: 12/26/2022]
Abstract
Glucansucrases are extracellular enzymes that synthesize a wide variety of α-glucan polymers and oligosaccharides, such as dextran. These carbohydrates have found numerous applications in food and health industries, and can be used as pure compounds or even be produced in situ by generally regarded as safe (GRAS) lactic acid bacteria in food applications. Research in the recent years has resulted in big steps forward in the understanding and exploitation of the biocatalytic potential of glucansucrases. This paper provides an overview of glucansucrase enzymes, their recently elucidated crystal structures, their reaction and product specificity, and the structural analysis and applications of α-glucan polymers. Furthermore, we discuss key developments in the understanding of α-glucan polymer formation based on the recently elucidated three-dimensional structures of glucansucrase proteins. Finally we discuss the (potential) applications of α-glucans produced by lactic acid bacteria in food and health related industries.
Collapse
Affiliation(s)
- Hans Leemhuis
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute-GBB, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
29
|
Xiao J, Klein MI, Falsetta ML, Lu B, Delahunty CM, Yates JR, Heydorn A, Koo H. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog 2012; 8:e1002623. [PMID: 22496649 PMCID: PMC3320608 DOI: 10.1371/journal.ppat.1002623] [Citation(s) in RCA: 387] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 02/22/2012] [Indexed: 11/19/2022] Open
Abstract
Virulent biofilms are responsible for a range of infections, including oral diseases. All biofilms harbor a microbial-derived extracellular-matrix. The exopolysaccharides (EPS) formed on tooth-pellicle and bacterial surfaces provide binding sites for microorganisms; eventually the accumulated EPS enmeshes microbial cells. The metabolic activity of the bacteria within this matrix leads to acidification of the milieu. We explored the mechanisms through which the Streptococcus mutans-produced EPS-matrix modulates the three-dimensional (3D) architecture and the population shifts during morphogenesis of biofilms on a saliva-coated-apatitic surface using a mixed-bacterial species system. Concomitantly, we examined whether the matrix influences the development of pH-microenvironments within intact-biofilms using a novel 3D in situ pH-mapping technique. Data reveal that the production of the EPS-matrix helps to create spatial heterogeneities by forming an intricate network of exopolysaccharide-enmeshed bacterial-islets (microcolonies) through localized cell-to-matrix interactions. This complex 3D architecture creates compartmentalized acidic and EPS-rich microenvironments throughout the biofilm, which triggers the dominance of pathogenic S. mutans within a mixed-species system. The establishment of a 3D-matrix and EPS-enmeshed microcolonies were largely mediated by the S. mutans gtfB/gtfC genes, expression of which was enhanced in the presence of Actinomyces naeslundii and Streptococcus oralis. Acidic pockets were found only in the interiors of bacterial-islets that are protected by EPS, which impedes rapid neutralization by buffer (pH 7.0). As a result, regions of low pH (<5.5) were detected at specific locations along the surface of attachment. Resistance to chlorhexidine was enhanced in cells within EPS-microcolony complexes compared to those outside such structures within the biofilm. Our results illustrate the critical interaction between matrix architecture and pH heterogeneity in the 3D environment. The formation of structured acidic-microenvironments in close proximity to the apatite-surface is an essential factor associated with virulence in cariogenic-biofilms. These observations may have relevance beyond the mouth, as matrix is inherent to all biofilms.
Collapse
Affiliation(s)
- Jin Xiao
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Marlise I. Klein
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Megan L. Falsetta
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Bingwen Lu
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Claire M. Delahunty
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Arne Heydorn
- Department of General Medicine, Glostrup Hospital, Glostrup, Denmark
| | - Hyun Koo
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
30
|
Kawaguchi M, Hoshino T, Ooshima T, Fujiwara T. Establishment of Streptococcus mutans in infants induces decrease in the proportion of salivary α-haemolytic bacteria. Int J Paediatr Dent 2012; 22:139-45. [PMID: 21923689 DOI: 10.1111/j.1365-263x.2011.01183.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE For paediatric dentists, an indicator to assess caries risk of infants is very important. Conventionally, the number and/or proportions of Streptococcus mutans have been employed as risk indicator; however, because such figures reflect the existing situation, they are not suitable for assessing caries risk of infants that have not yet been infected with S. mutans. Thus, we searched for an indicator for the establishment of S. mutans. METHODS To evaluate the changes caused by the establishment of S. mutans in the microbiota of the infant oral cavity, we monitored changes in the oral microbiota of two pre-dentate infants over a 3-year period and in a cross-sectional study of 40 nursery school-aged children by cultivation of saliva on nonselective blood agar, Mitis-Salivarius agar, and Mitis-Salivarius agar supplemented with bacitracin combined with identification of selected isolates. RESULTS Two longitudinal observations suggested that the establishment of S. mutans would induce a decrease in α-haemolytic bacteria in the microbial population of the oral cavity. This suggestion was compensated with the results of cross-sectional study, and it was revealed that the establishment of 10(3) CFU/mL of mutans streptococci in saliva might be predicted by a microbiota comprising less than approximately 55% of α-haemolytic. CONCLUSION Decrease in the proportion of α-haemolytic bacteria in saliva of infant was found to be applicable as an indicator to predict the establishment of S. mutans and to assess dental caries risk as a background for planning of dental care and treatment in the infants before infection with S. mutans.
Collapse
Affiliation(s)
- Mamoru Kawaguchi
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | | | | | | |
Collapse
|
31
|
Novel epitopic region of glucosyltransferase B from Streptococcus mutans. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1552-61. [PMID: 21795464 DOI: 10.1128/cvi.05041-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the development of a component vaccine against caries, the catalytic region (CAT) and glucan-binding domain (GBD) of glucosyltransferase B (GtfB) from Streptococcus mutans have been employed as target antigens. These regions were adopted as primary targets because they theoretically include epitopes associated with enzyme function. However, their antigenicities have not been fully evaluated. Although there are many reports about successful vaccination using these components, the principle has not yet been put to practical use. For these reasons, we came to doubt the effectiveness of the epitopes in vaccine production and reevaluated the antigenic region of GtfB by using in silico analyses combined with in vitro and in vivo experiments. The results suggested that the ca. 360-amino-acid variable region (VR) in the N terminus of GtfB is more reactive than CAT and GBD. This region is S. mutans and/or GtfB specific, nonconserved among other streptococcal Gtfs, and of unknown function. Immunization using an adenovirus vector-borne DNA vaccine confirmed that VR is an epitope that shows promise for the development of a caries vaccine.
Collapse
|
32
|
Fleuchot B, Gitton C, Guillot A, Vidic J, Nicolas P, Besset C, Fontaine L, Hols P, Leblond-Bourget N, Monnet V, Gardan R. Rgg proteins associated with internalized small hydrophobic peptides: a new quorum-sensing mechanism in streptococci. Mol Microbiol 2011; 80:1102-19. [PMID: 21435032 DOI: 10.1111/j.1365-2958.2011.07633.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We identified a genetic context encoding a transcriptional regulator of the Rgg family and a small hydrophobic peptide (SHP) in nearly all streptococci and suggested that it may be involved in a new quorum-sensing mechanism, with SHP playing the role of a pheromone. Here, we provide further support for this hypothesis by constructing a phylogenetic tree of the Rgg and Rgg-like proteins from Gram-positive bacteria and by studying the shp/rgg1358 locus of Streptococcus thermophilus LMD-9. We identified the shp1358 gene as a target of Rgg1358, and used it to confirm the existence of the steps of a quorum-sensing mechanism including secretion, maturation and reimportation of the pheromone into the cell. We used surface plasmon resonance to demonstrate interaction between the pheromone and the regulatory protein and performed electrophoretic mobility shift assays to assess binding of the transcriptional regulator to the promoter regions of its target genes. The active form of the pheromone was identified by mass spectrometry. Our findings demonstrate that the shp/rgg1358 locus encodes two components of a novel quorum-sensing mechanism involving a transcriptional regulator of the Rgg family and a SHP pheromone that is detected and reimported into the cell by the Ami oligopeptide transporter.
Collapse
Affiliation(s)
- B Fleuchot
- INRA, UMR1319 MICALIS, F-78352 Jouy en Josas, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
D’Ercole S, Di Giulio M, Grande R, Di Campli E, Di Bartolomeo S, Piccolomini R, Cellini L. Effect of 2-hydroxyethyl methacrylate on Streptococcus spp. biofilms. Lett Appl Microbiol 2011; 52:193-200. [DOI: 10.1111/j.1472-765x.2010.02985.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Koo H, Xiao J, Klein MI, Jeon JG. Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms. J Bacteriol 2010; 192:3024-32. [PMID: 20233920 PMCID: PMC2901689 DOI: 10.1128/jb.01649-09] [Citation(s) in RCA: 367] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/05/2010] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans is a key contributor to the formation of the extracellular polysaccharide (EPS) matrix in dental biofilms. The exopolysaccharides, which are mostly glucans synthesized by streptococcal glucosyltransferases (Gtfs), provide binding sites that promote accumulation of microorganisms on the tooth surface and further establishment of pathogenic biofilms. This study explored (i) the role of S. mutans Gtfs in the development of the EPS matrix and microcolonies in biofilms, (ii) the influence of exopolysaccharides on formation of microcolonies, and (iii) establishment of S. mutans in a multispecies biofilm in vitro using a novel fluorescence labeling technique. Our data show that the ability of S. mutans strains defective in the gtfB gene or the gtfB and gtfC genes to form microcolonies on saliva-coated hydroxyapatite surfaces was markedly disrupted. However, deletion of both gtfB (associated with insoluble glucan synthesis) and gtfC (associated with insoluble and soluble glucan synthesis) is required for the maximum reduction in EPS matrix and biofilm formation. S. mutans grown with sucrose in the presence of Streptococcus oralis and Actinomyces naeslundii steadily formed exopolysaccharides, which allowed the initial clustering of bacterial cells and further development into highly structured microcolonies. Concomitantly, S. mutans became the major species in the mature biofilm. Neither the EPS matrix nor microcolonies were formed in the presence of glucose in the multispecies biofilm. Our data show that GtfB and GtfC are essential for establishment of the EPS matrix, but GtfB appears to be responsible for formation of microcolonies by S. mutans; these Gtf-mediated processes may enhance the competitiveness of S. mutans in the multispecies environment in biofilms on tooth surfaces.
Collapse
Affiliation(s)
- H. Koo
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, Department of Preventive Dentistry, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - J. Xiao
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, Department of Preventive Dentistry, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - M. I. Klein
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, Department of Preventive Dentistry, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - J. G. Jeon
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, Department of Preventive Dentistry, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
35
|
André I, Potocki-Véronèse G, Morel S, Monsan P, Remaud-Siméon M. Sucrose-Utilizing Transglucosidases for Biocatalysis. Top Curr Chem (Cham) 2010; 294:25-48. [DOI: 10.1007/128_2010_52] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
|
37
|
Erhardt FA, Rosenstock P, Hellmuth H, Jördening HJ. Development of a multiphase reaction system for integrated synthesis of isomaltose with a new glucosyltransferase variant. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242420903474866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 2009; 73:407-50, Table of Contents. [PMID: 19721085 PMCID: PMC2738137 DOI: 10.1128/mmbr.00014-09] [Citation(s) in RCA: 445] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Streptococci readily colonize mucosal tissues in the nasopharynx; the respiratory, gastrointestinal, and genitourinary tracts; and the skin. Each ecological niche presents a series of challenges to successful colonization with which streptococci have to contend. Some species exist in equilibrium with their host, neither stimulating nor submitting to immune defenses mounted against them. Most are either opportunistic or true pathogens responsible for diseases such as pharyngitis, tooth decay, necrotizing fasciitis, infective endocarditis, and meningitis. Part of the success of streptococci as colonizers is attributable to the spectrum of proteins expressed on their surfaces. Adhesins enable interactions with salivary, serum, and extracellular matrix components; host cells; and other microbes. This is the essential first step to colonization, the development of complex communities, and possible invasion of host tissues. The majority of streptococcal adhesins are anchored to the cell wall via a C-terminal LPxTz motif. Other proteins may be surface anchored through N-terminal lipid modifications, while the mechanism of cell wall associations for others remains unclear. Collectively, these surface-bound proteins provide Streptococcus species with a "coat of many colors," enabling multiple intimate contacts and interplays between the bacterial cell and the host. In vitro and in vivo studies have demonstrated direct roles for many streptococcal adhesins as colonization or virulence factors, making them attractive targets for therapeutic and preventive strategies against streptococcal infections. There is, therefore, much focus on applying increasingly advanced molecular techniques to determine the precise structures and functions of these proteins, and their regulatory pathways, so that more targeted approaches can be developed.
Collapse
Affiliation(s)
- Angela H Nobbs
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, United Kingdom
| | | | | |
Collapse
|
39
|
Konishi I, Hoshino T, Kondo Y, Saito K, Nishiguchi M, Sato K, Fujiwara T. Phylogenetic analyses and detection of viridans streptococci based on sequences and denaturing gradient gel electrophoresis of the rod shape-determining protein gene. J Oral Microbiol 2009; 1. [PMID: 21523207 PMCID: PMC3077002 DOI: 10.3402/jom.v1i0.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/29/2009] [Accepted: 07/31/2009] [Indexed: 11/20/2022] Open
Abstract
Background Population analysis of viridans streptococci is important because these species are associated with dental caries, bacteremia, and subacute endocarditis, in addition to being important members of the human oral commensal microbiota. Design In this study, we phylogenetically analyzed the rod shape-determining protein gene (rodA), which is associated with cellular morphology, cell division, and sensitivity for antibiotics, and demonstrated that the diversity of the rodA gene is sufficient to identify viridans streptococci at the species level. Moreover, we developed a more convenient denaturing gradient gel electrophoresis (DGGE) method based on the diversity of the rodA gene (rodA-DGGE) for detecting nine dominant streptococcal species in human saliva, namely, Streptococcus sanguinis, Streptococcus oralis, Streptococcus mitis, Streptococcus parasanguinis, Streptococcus gordonii, Streptococcus vestibularis, Streptococcus salivarius, Streptococcus mutans, and Streptococcus sobrinus. Results This rodA-DGGE method proved useful in detecting viridans streptococci without cultivation, isolation, and phenotypic characterization. Conclusion Analysis of the oral microbiota by rodA-DGGE offers a higher resolution than the conventional DGGE using 16S rDNA and may be an alternative in the microbial diagnosis of streptococcal infection.
Collapse
Affiliation(s)
- Ikuri Konishi
- Department of Pediatric Dentistry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Seibel J, Jördening HJ, Buchholz K. Glycosylation with activated sugars using glycosyltransferases and transglycosidases. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420600986811] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Homann A, Seibel J. Chemo-enzymatic synthesis and functional analysis of natural and modified glycostructures. Nat Prod Rep 2009; 26:1555-71. [DOI: 10.1039/b909990p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Heterologous hyper-expression of a glucansucrase-type glycosyltransferase gene. Appl Microbiol Biotechnol 2008; 79:255-61. [PMID: 18379778 DOI: 10.1007/s00253-008-1435-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/26/2008] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
Abstract
Heterologous expression of the large glucansucrase-type glycosyltransferases genes is still a challenge, and typically yields are poor. Therefore, a number of different Escherichia coli systems for the expression of such a gene, encoding the glycosyltransferase R (GtfR) from Streptococcus oralis, were constructed and evaluated. We thereby obtained a strain producing the highest molar yields described so far for this class of enzymes. Cloning of a 5'-terminally truncated version of the gene in the expression vector pET33b(+) yielded, in dissolved form, about 2 micromol (300 mg) of enzyme per liter of culture of an optical density at 600 nm of four. Problems frequently encountered in the heterologous biosynthesis of this class of enzymes, such as formation of a high fraction of insoluble aggregates and/or proteolytic degradation, were not observed in the described system. The over-produced enzyme, devoid of almost its entire variable region, retained its characteristic activities.
Collapse
|
43
|
Hellmuth H, Wittrock S, Kralj S, Dijkhuizen L, Hofer B, Seibel J. Engineering the Glucansucrase GTFR Enzyme Reaction and Glycosidic Bond Specificity: Toward Tailor-Made Polymer and Oligosaccharide Products. Biochemistry 2008; 47:6678-84. [DOI: 10.1021/bi800563r] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hendrik Hellmuth
- Department of Carbohydrate Technology, University of Braunschweig, Braunschweig, Germany, Division of Structural Biology and Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany, and Centre for Carbohydrate Bioprocessing, TNO-University of Groningen, and Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Sabine Wittrock
- Department of Carbohydrate Technology, University of Braunschweig, Braunschweig, Germany, Division of Structural Biology and Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany, and Centre for Carbohydrate Bioprocessing, TNO-University of Groningen, and Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Slavko Kralj
- Department of Carbohydrate Technology, University of Braunschweig, Braunschweig, Germany, Division of Structural Biology and Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany, and Centre for Carbohydrate Bioprocessing, TNO-University of Groningen, and Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Department of Carbohydrate Technology, University of Braunschweig, Braunschweig, Germany, Division of Structural Biology and Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany, and Centre for Carbohydrate Bioprocessing, TNO-University of Groningen, and Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Bernd Hofer
- Department of Carbohydrate Technology, University of Braunschweig, Braunschweig, Germany, Division of Structural Biology and Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany, and Centre for Carbohydrate Bioprocessing, TNO-University of Groningen, and Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Jürgen Seibel
- Department of Carbohydrate Technology, University of Braunschweig, Braunschweig, Germany, Division of Structural Biology and Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany, and Centre for Carbohydrate Bioprocessing, TNO-University of Groningen, and Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
44
|
Re- or displacement of invariant residues in the C-terminal half of the catalytic domain strongly affects catalysis by glucosyltransferase R. FEBS Lett 2008; 582:491-6. [DOI: 10.1016/j.febslet.2007.12.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 12/18/2007] [Accepted: 12/21/2007] [Indexed: 11/22/2022]
|
45
|
Reese S, Guggenheim B. A novel TEM contrasting technique for extracellular polysaccharides in in vitro biofilms. Microsc Res Tech 2007; 70:816-22. [PMID: 17557287 DOI: 10.1002/jemt.20471] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the past, the visualization of the extracellular matrix of biofilms on an ultrastructural level was hampered by shrinkage artifacts. In addition, the reproducible contrasting of extracellular polysaccharides (EPS) has not satisfactorily been solved. Here we describe a method overcoming these difficulties, which produces artifact-free transmission electron microscopic (TEM) images using multispecies biofilms grown in vitro. Sufficient contrast was achieved by replacing Schiff's reagent with the osmiophilic amino acid methionine. In addition, shrinkage was avoided by replacing the classical dehydration agents with ethylene glycol and 1,2-pentanediol. Applying this method provided images of biofilms with an intact matrix in which differentially contrasted bacteria were embedded. All six members of the biofilm consortium (Streptococcus sobrinus, Streptococcus oralis, Veillonella dispar, Fusobacterium nucleatum, Actinomyces naeslundii, and Candida albicans) could be distinguished. Within the matrix, structural differences of EPS, probably due to different proportions of alpha-1,3 and alpha-1,6 linkages, were apparent. Fibrilar polysaccharides were evident around microcolonies of S. sobrinus, and fluffy polysaccharides were detected in the vicinity of S. oralis microcolonies. The ultrastructure of biofilms prepared for TEM using this method allows the imaging of undistorted EPS as well as the differentiated contrasting of the six microbial species of the in vitro biofilm model. This is a major step forward in determining the spatial arrangement of microorganisms in biofilms on an ultrastructural level.
Collapse
Affiliation(s)
- Steven Reese
- Institute for Oral Biology, Center for Dental and Oral Medicine and Cranio-Maxillofacial Surgery, University of Zurich, CH-8032, Zurich, Switzerland.
| | | |
Collapse
|
46
|
Swistowska AM, Gronert S, Wittrock S, Collisi W, Hecht HJ, Hofer B. Identification of structural determinants for substrate binding and turnover by glucosyltransferase R supports the permutation hypothesis. FEBS Lett 2007; 581:4036-42. [PMID: 17678897 DOI: 10.1016/j.febslet.2007.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 07/06/2007] [Accepted: 07/12/2007] [Indexed: 11/19/2022]
Abstract
Segments that may crucially influence the catalytic behaviour of glucosyltransferases of the glucansucrase type were selected for modification. This was done by sequence alignments, followed by structural modelling of the putative catalytic domain, based on a permuted form of the glucosyltransferase R (GtfR) of Streptococcus oralis. Five selected regions, located in the C-terminal half of the potential catalytic domain, were replaced by segments found at equivalent positions in other glucosyltransferases. The exchanges of four of these regions significantly affected catalysis by GtfR. This identified C-terminal determinants for substrate binding and turnover and supports the so-called permutation hypothesis with respect to enzymes of the glucansucrase type. Based on the model, roles are proposed for specific residues. Major effects appear to involve a re-positioning of the C-terminal Tyr965 that very likely serves as a hydrophobic platform for the substrate.
Collapse
Affiliation(s)
- Anna Maria Swistowska
- Division of Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Nakano K, Lapirattanakul J, Nomura R, Nemoto H, Alaluusua S, Grönroos L, Vaara M, Hamada S, Ooshima T, Nakagawa I. Streptococcus mutans clonal variation revealed by multilocus sequence typing. J Clin Microbiol 2007; 45:2616-25. [PMID: 17567784 PMCID: PMC1951271 DOI: 10.1128/jcm.02343-06] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans is the major pathogen of dental caries, a biofilm-dependent infectious disease, and occasionally causes infective endocarditis. S. mutans strains have been classified into four serotypes (c, e, f, and k). However, little is known about the S. mutans population, including the clonal relationships among strains of S. mutans, in relation to the particular clones that cause systemic diseases. To address this issue, we have developed a multilocus sequence typing (MLST) scheme for S. mutans. Eight housekeeping gene fragments were sequenced from each of 102 S. mutans isolates collected from the four serotypes in Japan and Finland. Between 14 and 23 alleles per locus were identified, allowing us theoretically to distinguish more than 1.2 x 10(10) sequence types. We identified 92 sequence types in these 102 isolates, indicating that S. mutans contains a diverse population. Whereas serotype c strains were widely distributed in the dendrogram, serotype e, f, and k strains were differentiated into clonal complexes. Therefore, we conclude that the ancestral strain of S. mutans was serotype c. No geographic specificity was identified. However, the distribution of the collagen-binding protein gene (cnm) and direct evidence of mother-to-child transmission were clearly evident. In conclusion, the superior discriminatory capacity of this MLST scheme for S. mutans may have important practical implications.
Collapse
Affiliation(s)
- Kazuhiko Nakano
- Departments of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Xu P, Alves JM, Kitten T, Brown A, Chen Z, Ozaki LS, Manque P, Ge X, Serrano MG, Puiu D, Hendricks S, Wang Y, Chaplin MD, Akan D, Paik S, Peterson DL, Macrina FL, Buck GA. Genome of the opportunistic pathogen Streptococcus sanguinis. J Bacteriol 2007; 189:3166-75. [PMID: 17277061 PMCID: PMC1855836 DOI: 10.1128/jb.01808-06] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 01/29/2007] [Indexed: 11/20/2022] Open
Abstract
The genome of Streptococcus sanguinis is a circular DNA molecule consisting of 2,388,435 bp and is 177 to 590 kb larger than the other 21 streptococcal genomes that have been sequenced. The G+C content of the S. sanguinis genome is 43.4%, which is considerably higher than the G+C contents of other streptococci. The genome encodes 2,274 predicted proteins, 61 tRNAs, and four rRNA operons. A 70-kb region encoding pathways for vitamin B(12) biosynthesis and degradation of ethanolamine and propanediol was apparently acquired by horizontal gene transfer. The gene complement suggests new hypotheses for the pathogenesis and virulence of S. sanguinis and differs from the gene complements of other pathogenic and nonpathogenic streptococci. In particular, S. sanguinis possesses a remarkable abundance of putative surface proteins, which may permit it to be a primary colonizer of the oral cavity and agent of streptococcal endocarditis and infection in neutropenic patients.
Collapse
Affiliation(s)
- Ping Xu
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA 23284-2030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Having no known environmental reservoir, Streptococcus pyogenes, a bacterium responsible for a wider variety of human diseases than any other bacterial species, must rely on its host for metabolic substrates. Although a streptococcal aldolase, LacD.1, has been adapted to virulence gene regulation, both LacD.1 and a paralogous protein, LacD.2, are predicted to function in the tagatose 6-phosphate pathway for lactose and galactose utilization. In order to gain insight into the mechanism of the LacD.1 regulatory pathway and the role of genome context in the emergence of LacD.1's novel regulatory functions, we compared the function and regulation of the Lac.1 and Lac.2 loci. The Lac.1 operon is not inducible, and regulation by LacD.1 is independent of a functional tagatose 6-phosphate pathway and enhanced by the conserved truncation of upstream Lac.1 genes. In contrast, Lac.2 expression is sensitive to environmental carbohydrates, and LacD.2, not LacD.1, contributes to growth on galactose. Thus, we conclude that the Lac.1 locus has been specialized to participate in regulation, leaving efficient utilization of carbohydrate sources to the Lac.2 locus. The adaptation of LacD for transcription regulation may be an underappreciated strategy among prokaryotes, as homologues of this multifaceted enzyme are present in a broad range of species.
Collapse
Affiliation(s)
- Jennifer A Loughman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110-1093, USA.
| | | |
Collapse
|
50
|
Loughman JA, Caparon MG. Contribution of invariant residues to the function of Rgg family transcription regulators. J Bacteriol 2006; 189:650-5. [PMID: 17098902 PMCID: PMC1797381 DOI: 10.1128/jb.01437-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rgg family of transcription regulators is widely distributed among gram-positive bacteria, yet how these proteins control transcription is poorly understood. Using Streptococcus pyogenes RopB as a model, we demonstrated that residues invariant among Rgg-like regulators are critical for function and obtained evidence for a mechanism involving protein complex formation.
Collapse
Affiliation(s)
- Jennifer A Loughman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110-1093, USA
| | | |
Collapse
|