1
|
Lehman SS, Verhoeve VI, Driscoll TP, Beckmann JF, Gillespie JJ. Metagenome diversity illuminates the origins of pathogen effectors. mBio 2024; 15:e0075923. [PMID: 38564675 PMCID: PMC11077975 DOI: 10.1128/mbio.00759-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024] Open
Abstract
Recent metagenome-assembled genome (MAG) analyses have profoundly impacted Rickettsiology systematics. The discovery of basal lineages (novel families Mitibacteraceae and Athabascaceae) with predicted extracellular lifestyles exposed an evolutionary timepoint for the transition to host dependency, which seemingly occurred independent of mitochondrial evolution. Notably, these basal rickettsiae carry the Rickettsiales vir homolog (rvh) type IV secretion system and purportedly use rvh to kill congener microbes rather than parasitize host cells as described for later-evolving rickettsial pathogens. MAG analysis also substantially increased diversity for the genus Rickettsia and delineated a sister lineage (the novel genus Tisiphia) that stands to inform on the emergence of human pathogens from protist and invertebrate endosymbionts. Herein, we probed Rickettsiales MAG and genomic diversity for the distribution of Rickettsia rvh effectors to ascertain their origins. A sparse distribution of most Rickettsia rvh effectors outside of Rickettsiaceae lineages illuminates unique rvh evolution from basal extracellular species and other rickettsial families. Remarkably, nearly every effector was found in multiple divergent forms with variable architectures, indicating profound roles for gene duplication and recombination in shaping effector repertoires in Rickettsia pathogens. Lateral gene transfer plays a prominent role in shaping the rvh effector landscape, as evinced by the discovery of many effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchange between Rickettsia and Legionella species. Our study exemplifies how MAGs can yield insight into pathogen effector origins, particularly how effector architectures might become tailored to the discrete host cell functions of different eukaryotic hosts.IMPORTANCEWhile rickettsioses are deadly vector-borne human diseases, factors distinguishing Rickettsia pathogens from the innumerable bevy of environmental rickettsial endosymbionts remain lacking. Recent metagenome-assembled genome (MAG) studies revealed evolutionary timepoints for rickettsial transitions to host dependency. The rvh type IV secretion system was likely repurposed from congener killing in basal extracellular species to parasitizing host cells in later-evolving pathogens. Our analysis of MAG diversity for over two dozen rvh effectors unearthed their presence in some non-pathogens. However, most effectors were found in multiple divergent forms with variable architectures, indicating gene duplication and recombination-fashioned effector repertoires of Rickettsia pathogens. Lateral gene transfer substantially shaped pathogen effector arsenals, evinced by the discovery of effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchanges between Rickettsia and Legionella species. Our study exemplifies how MAGs yield insight into pathogen effector origins and evolutionary processes tailoring effectors to eukaryotic host cell biology.
Collapse
Affiliation(s)
- Stephanie S. Lehman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Victoria I. Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Timothy P. Driscoll
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - John F. Beckmann
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, USA
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Abstract
Our understanding of free-living bacterial models like Escherichia coli far outpaces that of obligate intracellular bacteria, which cannot be cultured axenically. All obligate intracellular bacteria are host-associated, and many cause serious human diseases. Their constant exposure to the distinct biochemical niche of the host has driven the evolution of numerous specialized bacteriological and genetic adaptations, as well as innovative molecular mechanisms of infection. Here, we review the history and use of pathogenic Rickettsia species, which cause an array of vector-borne vascular illnesses, as model systems to probe microbial biology. Although many challenges remain in our studies of these organisms, the rich pathogenic and biological diversity of Rickettsia spp. constitutes a unique backdrop to investigate how microbes survive and thrive in host and vector cells. We take a bacterial-focused perspective and highlight emerging insights that relate to new host-pathogen interactions, bacterial physiology, and evolution. The transformation of Rickettsia spp. from pathogens to models demonstrates how recalcitrant microbes may be leveraged in the lab to tap unmined bacterial diversity for new discoveries. Rickettsia spp. hold great promise as model systems not only to understand other obligate intracellular pathogens but also to discover new biology across and beyond bacteria.
Collapse
Affiliation(s)
- Brandon Sit
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rebecca L. Lamason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Fromm L, Mehl J, Keller C. Orientia tsutsugamushi: A life between escapes. Microbiologyopen 2023; 12:e1380. [PMID: 37877457 PMCID: PMC10493369 DOI: 10.1002/mbo3.1380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 10/26/2023] Open
Abstract
The life cycle of the mite-borne, obligate intracellular pathogen Orientia tsutsugamushi (Ot), the causative agent of human scrub typhus, differs in many aspects from that of other members of the Rickettsiales order. Particularly, the nonlytic cellular exit of individual Ot bacteria at the plasma membrane closely resembles the budding of enveloped viruses but has only been rudimentarily studied at the molecular level. This brief article is focused on the current state of knowledge of escape events in the life cycle of Ot and highlights differences in strategies of other rickettsiae.
Collapse
Affiliation(s)
- Lea Fromm
- Institute of VirologyPhilipps University MarburgMarburgGermany
| | - Jonas Mehl
- Institute of VirologyPhilipps University MarburgMarburgGermany
| | | |
Collapse
|
4
|
Carman PJ, Rebowski G, Dominguez R, Alqassim SS. Single particle cryo-EM analysis of Rickettsia conorii Sca2 reveals a formin-like core. J Struct Biol 2023; 215:107960. [PMID: 37028467 PMCID: PMC10200769 DOI: 10.1016/j.jsb.2023.107960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023]
Abstract
Spotted fever group Rickettsia undergo actin-based motility inside infected eukaryotic cells using Sca2 (surface cell antigen 2): an ∼ 1800 amino-acid monomeric autotransporter protein that is surface-attached to the bacterium and responsible for the assembly of long unbranched actin tails. Sca2 is the only known functional mimic of eukaryotic formins, yet it shares no sequence similarities to the latter. Using structural and biochemical approaches we have previously shown that Sca2 uses a novel actin assembly mechanism. The first ∼ 400 amino acids fold into helix-loop-helix repeats that form a crescent shape reminiscent of a formin FH2 monomer. Additionally, the N- and C- terminal halves of Sca2 display intramolecular interaction in an end-to-end manner and cooperate for actin assembly, mimicking a formin FH2 dimer. Towards a better structural understanding of this mechanism, we performed single-particle cryo-electron microscopy analysis of Sca2. While high-resolution structural details remain elusive, our model confirms the presence of a formin-like core: Sca2 indeed forms a doughnut shape, similar in diameter to a formin FH2 dimer and can accommodate two actin subunits. Extra electron density, thought to be contributed by the C-terminal repeat domain (CRD), covering one side is also observed. This structural analysis allows us to propose an updated model where nucleation proceeds by encircling two actin subunits, and elongation proceeds either by a formin-like mechanism that necessitates conformational changes in the observed Sca2 model, or via an insertional mechanism akin to that observed in the ParMRC system.
Collapse
Affiliation(s)
- Peter J Carman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Grzegorz Rebowski
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Saif S Alqassim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| |
Collapse
|
5
|
Kask L, Påhlson C, Staxäng K, Nilsson K. Signatures in in vitro infection of NSC-34 mouse neurons and their cell nucleus with Rickettsia helvetica. BMC Microbiol 2023; 23:113. [PMID: 37085774 PMCID: PMC10120103 DOI: 10.1186/s12866-023-02859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/11/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Rickettsia helvetica, a spotted fever rickettsia, is transmitted to humans via ticks in Europe, North Africa, and Asia. The central nervous system is a crucial target for rickettsial diseases, which has been reported for 12 of the 31 species, of which R. helvetica is one. This study aimed, in an experimental model, to identify characteristics of R. helvetica infection in a mouse neuronal cell line, NSC-34. RESULTS NSC-34, a fusion cell line of mouse motor spinal cord neurons and neuroblastoma cells, was used as a model. Propagation of R. helvetica in neurons was confirmed. Short actin tails were shown at the polar end of the bacteria, which makes it likely that they can move intracellularly, and even spread between cells. Another protein, Sca4, which with the cell adhesion protein vinculin enables the passage of the cell membrane, was expressed during infection. No significant increase in TNFα levels was seen in the infected neurons, which is of interest because TNFα protects the host cell from infection-induced apoptotic death which is crucial for host cell survival. The bacteria were also shown to invade and grow in the cell nucleus of the neuron. CONCLUSIONS The findings suggest that a R. helvetica infection may be harmful to NSC-34 neurons under these in vitro conditions, but the full effects of the infection on the cell need to be studied further, also on human neurons, to also understand the possible significance of this infection in relation to pathogenetic mechanisms.
Collapse
Affiliation(s)
- Lena Kask
- Department of Medical Sciences, Section of Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Carl Påhlson
- Department of Medical Sciences, Section of Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Karin Staxäng
- Department of Immunology, Genetics and Pathology-Biovis Platform, Uppsala University, Uppsala, Sweden
| | - Kenneth Nilsson
- Department of Medical Sciences, Section of Clinical Microbiology, Uppsala University, Uppsala, Sweden.
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Verhoeve VI, Lehman SS, Driscoll TP, Beckmann JF, Gillespie JJ. Metagenome diversity illuminates origins of pathogen effectors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530123. [PMID: 36909625 PMCID: PMC10002696 DOI: 10.1101/2023.02.26.530123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Recent metagenome assembled genome (MAG) analyses have profoundly impacted Rickettsiology systematics. Discovery of basal lineages (Mitibacteraceae and Athabascaceae) with predicted extracellular lifestyles reveals an evolutionary timepoint for the transition to host dependency, which occurred independent of mitochondrial evolution. Notably, these basal rickettsiae carry the Rickettsiales vir homolog (rvh) type IV secretion system (T4SS) and purportedly use rvh to kill congener microbes rather than parasitize host cells as described for derived rickettsial pathogens. MAG analysis also substantially increased diversity for genus Rickettsia and delineated a basal lineage (Tisiphia) that stands to inform on the rise of human pathogens from protist and invertebrate endosymbionts. Herein, we probed Rickettsiales MAG and genomic diversity for the distribution of Rickettsia rvh effectors to ascertain their origins. A sparse distribution of most Rickettsia rvh effectors outside of Rickettsiaceae lineages indicates unique rvh evolution from basal extracellular species and other rickettsial families. Remarkably, nearly every effector was found in multiple divergent forms with variable architectures, illuminating profound roles for gene duplication and recombination in shaping effector repertoires in Rickettsia pathogens. Lateral gene transfer plays a prominent role shaping the rvh effector landscape, as evinced by the discover of many effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchange between Rickettsia and Legionella species. Our study exemplifies how MAGs can provide incredible insight on the origins of pathogen effectors and how their architectural modifications become tailored to eukaryotic host cell biology.
Collapse
Affiliation(s)
- Victoria I Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stephanie S Lehman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Timothy P Driscoll
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - John F Beckmann
- Microbiology and Immunology, University of South Alabama, Mobile, AL, USA
| | - Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Agwunobi DO, Wang N, Huang L, Zhang Y, Chang G, Wang K, Li M, Wang H, Liu J. Phosphoproteomic Analysis of Haemaphysalis longicornis Saliva Reveals the Influential Contributions of Phosphoproteins to Blood-Feeding Success. Front Cell Infect Microbiol 2022; 11:769026. [PMID: 35118006 PMCID: PMC8804221 DOI: 10.3389/fcimb.2021.769026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Tick saliva, an essential chemical secretion of the tick salivary gland, is indispensable for tick survival owing to the physiological influence it exerts on the host defence mechanisms via the instrumentality of its cocktail of pharmacologically active molecules (proteins and peptides). Much research about tick salivary proteome has been performed, but how most of the individual salivary proteins are utilized by ticks to facilitate blood acquisition and pathogen transmission is not yet fully understood. In addition, the phosphorylation of some proteins plays a decisive role in their function. However, due to the low phosphorylation level of protein, especially for a small amount of protein, it is more difficult to study phosphorylation. Maybe, for this reason, the scarcity of works on the phosphorylated tick salivary proteomes still abound. Here, we performed a phosphoproteomic analysis of Haemaphysalis longicornis tick saliva via TiO2 enrichment and the most advanced Thermo Fisher Orbitrap Exploris 480 mass spectrometer for identification. A total of 262 phosphorylated tick saliva proteins were identified and were subjected to functional annotation/enrichment analysis. Cellular and metabolic process terms accounted for the largest proportion of the saliva proteins, with the participation of these proteins in vital intracellular and extracellular transport-oriented processes such as vesicle-mediated transport, exocytic process, cell adhesion, and movement of cell/subcellular component. “Endocytosis”, “Protein processing in endoplasmic reticulum”, and “Purine metabolism” were the most significantly enriched pathways. The knockdown (RNAi) of Tudor domain-containing protein (TCP), actin-depolymerizing factors (ADF), programmed cell death protein (PD), and serine/threonine-protein kinase (SPK) resulted in the dissociation of collagen fibers and the pilosebaceous unit, increased inflammatory infiltrates/granulocytes (possibly heterophiles), and the depletion of the epithelium. Ticks injected with SPK dsRNA engorged normally but with a change in skin colour (possibly an autoimmune reaction) and the failure to produce eggs pointing to a possible role of SPK in reproduction and host immune modulation. Ticks injected with ADF dsRNA failed to acquire blood, underscoring the role of ADF in facilitating tick feeding. The results of this study showed the presence of phosphorylation in tick saliva and highlight the roles of salivary phosphoproteins in facilitating tick feeding.
Collapse
Affiliation(s)
- Desmond O. Agwunobi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ningmei Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Lei Huang
- Hebei Xiaowutai Mountain National Nature Reserve Management Center, Zhangjiakou, China
| | - Yefei Zhang
- Hebei Xiaowutai Mountain National Nature Reserve Management Center, Zhangjiakou, China
| | - Guomin Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Kuang Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Mengxue Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- *Correspondence: Jingze Liu, ; Hui Wang,
| | - Jingze Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- *Correspondence: Jingze Liu, ; Hui Wang,
| |
Collapse
|
8
|
mDia1 Assembles a Linear F-Actin Coat at Membrane Invaginations To Drive Listeria monocytogenes Cell-to-Cell Spreading. mBio 2021; 12:e0293921. [PMID: 34781738 PMCID: PMC8593688 DOI: 10.1128/mbio.02939-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Direct cell-to-cell spreading of Listeria monocytogenes requires the bacteria to induce actin-based finger-like membrane protrusions in donor host cells that are endocytosed through caveolin-rich membrane invaginations by adjacent receiving cells. An actin shell surrounds these endocytic sites; however, its structure, composition, and functional significance remain elusive. Here, we show that the formin mDia1, but surprisingly not the Arp2/3 complex, is enriched at the membrane invaginations generated by L. monocytogenes during HeLa and Jeg-3 cell infections. Electron microscopy reveals a band of linear actin filaments that run along the longitudinal axis of the invagination membrane. Mechanistically, mDia1 expression is vital for the assembly of this F-actin shell. mDia1 is also required for the recruitment of Filamin A, a caveola-associated F-actin cross-linking protein, and caveolin-1 to the invaginations. Importantly, mixed-cell infection assays show that optimal caveolin-based L. monocytogenes cell-to-cell spreading correlates with the formation of the linear actin filament-containing shell by mDia1. IMPORTANCE Listeria monocytogenes spreads from one cell to another to colonize tissues. This cell-to-cell movement requires the propulsive force of an actin-rich comet tail behind the advancing bacterium, which ultimately distends the host plasma membrane into a slender bacterium-containing membrane protrusion. These membrane protrusions induce a corresponding invagination in the membrane of the adjacent host cell. The host cell that receives the protrusion utilizes caveolin-based endocytosis to internalize the structures, and filamentous actin lines these membrane invaginations. Here, we set out to determine the structure and function of this filamentous actin "shell." We demonstrate that the formin mDia1, but not the Arp2/3 complex, localizes to the invaginations. Morphologically, we show that this actin is organized into linear arrays and not branched dendritic networks. Mechanistically, we show that the actin shell is assembled by mDia1 and that mDia1 is required for efficient cell-to-cell transfer of L. monocytogenes.
Collapse
|
9
|
Spernovasilis N, Markaki I, Papadakis M, Mazonakis N, Ierodiakonou D. Mediterranean Spotted Fever: Current Knowledge and Recent Advances. Trop Med Infect Dis 2021; 6:172. [PMID: 34698275 PMCID: PMC8544691 DOI: 10.3390/tropicalmed6040172] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
Mediterranean spotted fever (MSF) is an emerging tick-borne rickettsiosis of the spotted fever group (SFG), endemic in the Mediterranean basin. By virtue of technological innovations in molecular genetics, it has been determined that the causative agent of MSF is Rickettsia conorii subspecies conorii. The arthropod vector of this bacterium is the brown dog tick Rhipicephalus sanguineus. The true nature of the reservoir of R. conorii conorii has not been completely deciphered yet, although many authors theorize that the canine population, other mammals, and the ticks themselves could potentially contribute as reservoirs. Typical symptoms of MSF include fever, maculopapular rash, and a characteristic eschar ("tache noire"). Atypical clinical features and severe multi-organ complications may also be present. All of these manifestations arise from the disseminated infection of the endothelium by R. conorii conorii. Several methods exist for the diagnosis of MSF. Serological tests are widely used and molecular techniques have become increasingly available. Doxycycline remains the treatment of choice, while preventive measures are focused on modification of human behavior and vector control strategies. The purpose of this review is to summarize the current knowledge on the epidemiology, pathogenesis, clinical features, diagnosis, and treatment of MSF.
Collapse
Affiliation(s)
- Nikolaos Spernovasilis
- School of Medicine, University of Crete, 71003 Heraklion, Greece; (N.S.); (M.P.); (N.M.)
| | - Ioulia Markaki
- “Trifyllio” General Hospital of Kythira, 80200 Kythira, Greece;
| | - Michail Papadakis
- School of Medicine, University of Crete, 71003 Heraklion, Greece; (N.S.); (M.P.); (N.M.)
| | - Nikolaos Mazonakis
- School of Medicine, University of Crete, 71003 Heraklion, Greece; (N.S.); (M.P.); (N.M.)
| | - Despo Ierodiakonou
- Department of Social Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Department of Primary Care and Population Health, University of Nicosia Medical School, Nicosia 2417, Cyprus
| |
Collapse
|
10
|
Mitochondria are mixed during cell division. Nature 2021. [DOI: 10.1038/d41586-021-00511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Mitochondrion-Dependent Apoptosis Is Essential for Rickettsia parkeri Infection and Replication in Vector Cells. mSystems 2021; 6:6/2/e01209-20. [PMID: 33727398 PMCID: PMC8546998 DOI: 10.1128/msystems.01209-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Apoptosis is an innate immune response induced by infection in eukaryotes that contributes significantly to protection from pathogens. However, little is known about the role of apoptosis in the interactions of arthropod vectors with the rickettsiae that they transmit. Rickettsia spp. are vector-borne obligately intracellular bacteria and display different degrees of virulence in their eukaryotic hosts. In this study, we found that infection with Rickettsia parkeri (Rp) activated the apoptosis pathway in an Amblyomma americanum tick cell line (AAE2), as evidenced by the loss of phospholipid membrane asymmetry and DNA fragmentations. Additionally, infection with Rp also led to apoptosis activation in cell lines of different tick species. Interestingly, suppressing apoptosis decreased Rp infection and replication, while the activation of apoptosis increased Rp accumulation at the early stage of infection. Moreover, mitochondrion-dependent apoptosis was essential for Rp infection and replication in vector cells, and apoptosis induction required intracellular rickettsia replication. We further showed that Rp utilizes two different survival strategies to modulate apoptosis in the arthropod vectors and mammalian host cells. There was no direct correlation between apoptosis activation in vector cells and rickettsial pathogenicity. These novel findings indicate a possible mechanism whereby apoptosis facilitates infection and replication of a Rickettsia sp. in an arthropod vector. These results contribute to our understanding of how the vector's responses to pathogen infection affect pathogen replication and therefore transmission. IMPORTANCE Rickettsioses, infections caused by the genus Rickettsia, are among the oldest known infectious diseases. Ticks are essential arthropod vectors for rickettsiae, and knowledge about the interactions between ticks, their hosts, and pathogens is fundamental for identifying drivers of tick-borne rickettsioses. Despite the rapid development in apoptosis research with rickettsiae, little is known regarding the role of apoptosis in the interactions between Rickettsia spp., vertebrate hosts, and arthropod vectors. Here, we demonstrated that mitochondrion-dependent apoptosis is essential for rickettsial infection and replication in vector cells and that apoptosis induction requires intracellular rickettsial replication. However, rickettsial pathogenicity is not linked with apoptosis activation in tick cells. Our findings improve understanding of the apoptosis mechanism in arthropods exploited by rickettsiae and also the potential to discover specific targets for new vaccines and drugs to prevent or treat rickettsial infections.
Collapse
|
12
|
Dhanda AS, Yang D, Guttman JA. Localization of alpha-actinin-4 during infections by actin remodeling bacteria. Anat Rec (Hoboken) 2020; 304:1400-1419. [PMID: 33099893 DOI: 10.1002/ar.24548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Accepted: 09/12/2020] [Indexed: 11/12/2022]
Abstract
Bacterial pathogens cause disease by subverting the structure and function of their target host cells. Several foodborne agents such as Listeria monocytogenes (L. monocytogenes), Shigella flexneri (S. flexneri), Salmonella enterica serovar Typhimurium (S. Typhimurium) and enteropathogenic Escherichia coli (EPEC) manipulate the host actin cytoskeleton to cause diarrheal (and systemic) infections. During infections, these invasive and adherent pathogens hijack the actin filaments of their host cells and rearrange them into discrete actin-rich structures that promote bacterial adhesion (via pedestals), invasion (via membrane ruffles and endocytic cups), intracellular motility (via comet/rocket tails) and/or intercellular dissemination (via membrane protrusions and invaginations). We have previously shown that actin-rich structures generated by L. monocytogenes contain the host actin cross-linker α-actinin-4. Here we set out to examine α-actinin-4 during other key steps of the L. monocytogenes infectious cycle as well as characterize the subcellular distribution of α-actinin-4 during infections with other model actin-hijacking bacterial pathogens (S. flexneri, S. Typhimurium and EPEC). Although α-actinin-4 is absent at sites of initial L. monocytogenes invasion, we show that it is a new component of the membrane invaginations formed during secondary infections of neighboring host cells. Importantly, we reveal that α-actinin-4 also localizes to the major actin-rich structures generated during cell culture infections with S. flexneri (comet/rocket tails and membrane protrusions), S. Typhimurium (membrane ruffles) and EPEC (pedestals). Taken together, these findings suggest that α-actinin-4 is a host factor that is exploited by an assortment of actin-hijacking bacterial pathogens.
Collapse
Affiliation(s)
- Aaron S Dhanda
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Diana Yang
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Julian A Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
13
|
Danchenko M, Csaderova L, Fournier PE, Sekeyova Z. Optimized fixation of actin filaments for improved indirect immunofluorescence staining of rickettsiae. BMC Res Notes 2019; 12:657. [PMID: 31619275 PMCID: PMC6794859 DOI: 10.1186/s13104-019-4699-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/03/2019] [Indexed: 11/10/2022] Open
Abstract
Objective The objective was to investigate fixative solutions: 3.7% formaldehyde, 4% paraformaldehyde, 4% paraformaldehyde in the cytoskeletal buffer and 4% paraformaldehyde in PHEM buffer (containing PIPES, HEPES, EGTA and MgCl2), applicable for immunofluorescence assay. Results Herein we optimized this serological technique, testing four fixative solutions, for the sensitive detection of rickettsial antigens, and preservation of intracellular structures of the host cells, particularly filamentous actin. Rickettsial antigens were presented equally well both with formaldehyde and all paraformaldehyde-based fixations, but only protocol with 4% paraformaldehyde in PHEM buffer allowed accurate imaging of actin filaments, and simultaneously allows monitoring of rickettsiae using actin-based motility during infection inside the host cells.
Collapse
Affiliation(s)
- Monika Danchenko
- Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Lucia Csaderova
- Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | | | - Zuzana Sekeyova
- Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
14
|
Weiner A, Enninga J. The Pathogen–Host Interface in Three Dimensions: Correlative FIB/SEM Applications. Trends Microbiol 2019; 27:426-439. [DOI: 10.1016/j.tim.2018.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
|
15
|
Maurya PK, Singh S, Mani A. Comparative genomic analysis of Rickettsia rickettsii for identification of drug and vaccine targets: tolC as a proposed candidate for case study. Acta Trop 2018; 182:100-110. [PMID: 29474831 DOI: 10.1016/j.actatropica.2018.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/17/2018] [Accepted: 02/17/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Antibiotic resistance is increasing rapidly in pathogenic organisms, creating more complications for treatment of diseases. Rocky Mountain spotted fever (RMSF) is a neglected tropical disease in humans caused by Rickettsia rickettsii for which no effective therapeutic is available. Subtractive genomics methods facilitate the characterization of non-homologous essential proteins that could be targeted for the discovery of potential therapeutic compounds against R. rickettsii to combat RMSF. Present study followed an in-silico based methodology, involving scanning and filtering the complete proteome of Rickettsia rickettsii by using several prioritization parameters in the search of potential candidates for drug development. Further the putative targets were subjected to series of molecular dockings with ligands obtained from PDB ligand database to identify suitable potential inhibitors. The comparative genomic analysis revealed 606 non-homologous proteins and 233 essential non-homologous proteins of R. rickettsii. The metabolic pathway analysis predicted 120 proteins as putative drug targets, out of which 56 proteins were found to be associated with metabolic pathways unique to the bacteria and further subcellular localization analysis revealed that 9 proteins as potential drug targets which are secretion proteins, involved in peptidoglycan biosynthesis, folate biosynthesis and bacterial secretion system. As secretion proteins are more feasible as vaccine candidates, we have selected a most potential target i.e. tolC, an outer membrane efflux protein that belongs to type I secretion system and has major role in pathogen survival as well as MDR persistence. So for case study, we have modelled the three dimensional structure of tolC (tunnel protein). The model was further subjected to virtual screening and in-silico docking. The study identified three potential inhibitors having PDB Id 19V, 6Q8 and 39H. Further we have suggested that the above study would be most important while considering the selection of candidate targets and drug or vaccine designing against R. rickettsii.
Collapse
|
16
|
Montanari E, Oates A, Di Meo C, Meade J, Cerrone R, Francioso A, Devine D, Coviello T, Mancini P, Mosca L, Matricardi P. Hyaluronan-Based Nanohydrogels for Targeting Intracellular S. Aureus in Human Keratinocytes. Adv Healthc Mater 2018; 7:e1701483. [PMID: 29696813 DOI: 10.1002/adhm.201701483] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/13/2018] [Indexed: 11/05/2022]
Abstract
Staphylococcus aureus is one of the most significant human pathogens that is frequently isolated in a wide range of superficial and systemic infections. The ability of S. aureus to invade and survive within host cells such as keratinocytes and host immune cells has been increasingly recognized as a potential factor in persistent infections and treatment failures. The incorporation of antibiotics into hyaluronan-cholesterol nanohydrogels represents a novel paradigm in the delivery of therapeutic agents against intracellular bacteria. The work presented herein shows that NHs quickly enter human keratinocytes and accumulate into lysosomes. When used for targeting intracellular S. aureus the antimicrobial activity of loaded levofloxacin is enhanced, possibly changing the antibiotic intracellular fate from cytosol to lysosome. Indeed, gentamicin, an antibiotic that predominantly accumulates in lysosomes, shows significant and equal antibacterial activity when entrapped into NHs. These results strongly suggest that lysosomal formulations may display preferential activity toward intracellular S. aureus, opening new avenues for the use of HA-based NHs for treatment of such skin infections.
Collapse
Affiliation(s)
- Elita Montanari
- Department of Drug Chemistry and Technologies; Sapienza University of Rome; P.le Aldo Moro 5 Rome 00185 Italy
| | - Angela Oates
- School of Healthcare; Faculty of Medicine and Health; University of Leeds; Leeds LS2 9JT UK
| | - Chiara Di Meo
- Department of Drug Chemistry and Technologies; Sapienza University of Rome; P.le Aldo Moro 5 Rome 00185 Italy
| | - Josephine Meade
- Division of Oral Biology; Faculty of Medicine and Health; School of Dentistry; University of Leeds; Leeds LS7 9TF UK
| | - Rugiada Cerrone
- Department of Drug Chemistry and Technologies; Sapienza University of Rome; P.le Aldo Moro 5 Rome 00185 Italy
| | - Antonio Francioso
- Department of Biochemical Sciences “A. Rossi Fanelli”; Sapienza University of Rome; P.le Aldo Moro 5 Rome 00185 Italy
| | - Deirdre Devine
- Division of Oral Biology; School of Dentistry; Faculty of Medicine and Health; University of Leeds; Leeds LS2 9LU UK
| | - Tommasina Coviello
- Department of Drug Chemistry and Technologies; Sapienza University of Rome; P.le Aldo Moro 5 Rome 00185 Italy
| | - Patrizia Mancini
- Department of Experimental Medicine; Sapienza University of Rome; V.le Regina Elena 291 Rome 00161 Italy
| | - Luciana Mosca
- Department of Biochemical Sciences “A. Rossi Fanelli”; Sapienza University of Rome; P.le Aldo Moro 5 Rome 00185 Italy
| | - Pietro Matricardi
- Department of Drug Chemistry and Technologies; Sapienza University of Rome; P.le Aldo Moro 5 Rome 00185 Italy
| |
Collapse
|
17
|
Role of Sca2 and RickA in the Dissemination of Rickettsia parkeri in Amblyomma maculatum. Infect Immun 2018; 86:IAI.00123-18. [PMID: 29581194 PMCID: PMC5964526 DOI: 10.1128/iai.00123-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/21/2018] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative obligate intracellular bacterium Rickettsia parkeri is an emerging tick-borne human pathogen. Recently, R. parkeri Sca2 and RickA have been implicated in adherence and actin-based motility in vertebrate host cell infection models; however, the rickettsia-derived factors essential to tick infection are unknown. Using R. parkeri mutants lacking functional Sca2 or RickA to compare actin polymerization, replication, and cell-to-cell spread in vitro, similar phenotypes in tick and mammalian cells were observed. Specifically, actin polymerization in cultured tick cells is controlled by the two separate proteins in a time-dependent manner. To assess the role of Sca2 and RickA in dissemination in the tick host, Rickettsia-free Amblyomma maculatum, the natural vector of R. parkeri, was exposed to wild-type, R. parkeri rickA::tn, or R. parkeri sca2::tn bacteria, and individual tick tissues, including salivary glands, midguts, ovaries, and hemolymph, were analyzed at 12 h and after continued bloodmeal acquisition for 3 or 7 days postexposure. Initially, ticks exposed to wild-type R. parkeri had the highest rickettsial load across all organs; however, rickettsial loads decreased and wild-type rickettsiae were cleared from the ovaries at 7 days postexposure. In contrast, ticks exposed to R. parkeririckA::tn or R. parkerisca2::tn had comparatively lower rickettsial loads, but bacteria persisted in all organs for 7 days. These data suggest that while RickA and Sca2 function in actin polymerization in tick cells, the absence of these proteins did not change dissemination patterns within the tick vector.
Collapse
|
18
|
Montanari E, Di Meo C, Oates A, Coviello T, Matricardi P. Pursuing Intracellular Pathogens with Hyaluronan. From a 'Pro-Infection' Polymer to a Biomaterial for 'Trojan Horse' Systems. Molecules 2018; 23:E939. [PMID: 29670009 PMCID: PMC6017551 DOI: 10.3390/molecules23040939] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
Hyaluronan (HA) is among the most important bioactive polymers in mammals, playing a key role in a number of biological functions. In the last decades, it has been increasingly studied as a biomaterial for drug delivery systems, thanks to its physico-chemical features and ability to target and enter certain cells. The most important receptor of HA is ‘Cluster of Differentiation 44’ (CD44), a cell surface glycoprotein over-expressed by a number of cancers and heavily involved in HA endocytosis. Moreover, CD44 is highly expressed by keratinocytes, activated macrophages and fibroblasts, all of which can act as ‘reservoirs’ for intracellular pathogens. Interestingly, both CD44 and HA appear to play a key role for the invasion and persistence of such microorganisms within the cells. As such, HA is increasingly recognised as a potential target for nano-carriers development, to pursuit and target intracellular pathogens, acting as a ‘Trojan Horse’. This review describes the biological relationship between HA, CD44 and the entry and survival of a number of pathogens within the cells and the subsequent development of HA-based nano-carriers for enhancing the intracellular activity of antimicrobials.
Collapse
Affiliation(s)
- Elita Montanari
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Chiara Di Meo
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Angela Oates
- School of Healthcare, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK.
| | - Tommasina Coviello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Pietro Matricardi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
19
|
Jitprasutwit N, Zainal-Abidin N, Vander Broek C, Kurian D, Korbsrisate S, Stevens MP, Stevens JM. Identification of Candidate Host Cell Factors Required for Actin-Based Motility of Burkholderia pseudomallei. J Proteome Res 2016; 15:4675-4685. [PMID: 27934296 DOI: 10.1021/acs.jproteome.6b00760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Intracellular actin-based motility of the melioidosis pathogen Burkholderia pseudomallei requires the bacterial factor BimA. Located at one pole of the bacterium, BimA recruits and polymerizes cellular actin to promote bacterial motility within and between cells. Here, we describe an affinity approach coupled with mass spectrometry to identify cellular proteins recruited to BimA-expressing bacteria under conditions that promote actin polymerization. We identified a group of cellular proteins that are recruited to the B. pseudomallei surface in a BimA-dependent manner, a subset of which were independently validated with specific antisera including the ubiquitous scaffold protein Ras GTPase-activating-like protein (IQGAP1). IQGAP1 integrates several key cellular signaling pathways including those involved in actin dynamics and has been shown to be involved in the adhesion of attaching and effacing Escherichia coli to infected cells and invasion of host cells by Salmonella enterica serovar Typhimurium. Although a direct interaction between BimA and IQGAP1 could not be detected using either conventional pulldown or yeast two hybrid techniques, confocal microscopy revealed that IQGAP1 is recruited to B. pseudomallei actin tails in infected cells, and siRNA-mediated knockdown highlighted a role for this protein in controlling the length and actin density of B. pseudomallei actin tails.
Collapse
Affiliation(s)
- Niramol Jitprasutwit
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Easter Bush, Midlothian, EH25 9RG, United Kingdom.,Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University Bangkok, 73170 Thailand
| | - Nurhamimah Zainal-Abidin
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Charles Vander Broek
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University Bangkok, 73170 Thailand
| | - Mark P Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Joanne M Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Easter Bush, Midlothian, EH25 9RG, United Kingdom
| |
Collapse
|
20
|
Colonne PM, Winchell CG, Voth DE. Hijacking Host Cell Highways: Manipulation of the Host Actin Cytoskeleton by Obligate Intracellular Bacterial Pathogens. Front Cell Infect Microbiol 2016; 6:107. [PMID: 27713866 PMCID: PMC5031698 DOI: 10.3389/fcimb.2016.00107] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/05/2016] [Indexed: 12/31/2022] Open
Abstract
Intracellular bacterial pathogens replicate within eukaryotic cells and display unique adaptations that support key infection events including invasion, replication, immune evasion, and dissemination. From invasion to dissemination, all stages of the intracellular bacterial life cycle share the same three-dimensional cytosolic space containing the host cytoskeleton. For successful infection and replication, many pathogens hijack the cytoskeleton using effector proteins introduced into the host cytosol by specialized secretion systems. A subset of effectors contains eukaryotic-like motifs that mimic host proteins to exploit signaling and modify specific cytoskeletal components such as actin and microtubules. Cytoskeletal rearrangement promotes numerous events that are beneficial to the pathogen, including internalization of bacteria, structural support for bacteria-containing vacuoles, altered vesicular trafficking, actin-dependent bacterial movement, and pathogen dissemination. This review highlights a diverse group of obligate intracellular bacterial pathogens that manipulate the host cytoskeleton to thrive within eukaryotic cells and discusses underlying molecular mechanisms that promote these dynamic host-pathogen interactions.
Collapse
Affiliation(s)
- Punsiri M Colonne
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - Caylin G Winchell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - Daniel E Voth
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| |
Collapse
|
21
|
Choe JE, Welch MD. Actin-based motility of bacterial pathogens: mechanistic diversity and its impact on virulence. Pathog Dis 2016; 74:ftw099. [PMID: 27655913 DOI: 10.1093/femspd/ftw099] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A diverse spectrum of intracellular bacterial pathogens that inhabit the cytosol have evolved the ability to polymerize actin on their surface to power intracellular actin-based motility (ABM). These include species of Listeria, Burkholderia and Rickettsia, as well as Shigella and Mycobacteria Here, we provide an overview of the roles of bacterial ABM in survival and virulence. Moreover, we survey the molecular mechanisms of actin polymerization in host cells and describe how bacterial pathogens mimic or harness the full diversity of these mechanisms for ABM. Finally, we present ABM through a new lens by comparing motility mechanisms between related species of Listeria, Burkholderia, and Rickettsia Through these comparisons, we hope to illuminate how exploitation of different actin polymerization mechanisms influences ABM as well as pathogenicity and virulence in humans and other animals.
Collapse
Affiliation(s)
- Julie E Choe
- Department of Molecular & Cell Biology, University of California, Berkeley CA 94720 USA
| | - Matthew D Welch
- Department of Molecular & Cell Biology, University of California, Berkeley CA 94720 USA
| |
Collapse
|
22
|
Van Nhieu GT, Romero S. Common Themes in Cytoskeletal Remodeling by Intracellular Bacterial Effectors. Handb Exp Pharmacol 2016; 235:207-235. [PMID: 27807696 DOI: 10.1007/164_2016_42] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bacterial pathogens interact with various types of tissues to promote infection. Because it controls the formation of membrane extensions, adhesive processes, or the junction integrity, the actin cytoskeleton is a key target of pathogens during infection. We will highlight common and specific functions of the actin cytoskeleton during bacterial infections, by first reviewing the mechanisms of intracellular motility of invasive Shigella, Listeria, and Rickettsia. Through the models of EPEC/EHEC, Shigella, Salmonella, and Chlamydia spp., we will illustrate various strategies of diversion of actin cytoskeletal processes used by these bacteria to colonize or breach epithelial/endothelial barriers.
Collapse
Affiliation(s)
- Guy Tran Van Nhieu
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, 75005, Paris, France. .,Institut National de la Santé et de la Recherche Médicale U1050, 75005, Paris, France. .,Centre National de la Recherche Scientifique UMR7241, 75005, Paris, France. .,MEMOLIFE Laboratory of Excellence and Paris Science Lettre, 75005, Paris, France.
| | - Stéphane Romero
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, 75005, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1050, 75005, Paris, France.,Centre National de la Recherche Scientifique UMR7241, 75005, Paris, France.,MEMOLIFE Laboratory of Excellence and Paris Science Lettre, 75005, Paris, France
| |
Collapse
|
23
|
Jasnin M, Crevenna AH. Quantitative Analysis of Filament Branch Orientation in Listeria Actin Comet Tails. Biophys J 2015; 110:817-26. [PMID: 26497103 DOI: 10.1016/j.bpj.2015.07.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/13/2015] [Accepted: 07/28/2015] [Indexed: 11/17/2022] Open
Abstract
Several bacterial and viral pathogens hijack the host actin cytoskeleton machinery to facilitate spread and infection. In particular, Listeria uses Arp2/3-mediated actin filament nucleation at the bacterial surface to generate a branched network that will help propel the bacteria. However, the mechanism of force generation remains elusive due to the lack of high-resolution three-dimensional structural data on the spatial organization of the actin mother and daughter (i.e., branch) filaments within this network. Here, we have explored the three-dimensional structure of Listeria actin tails in Xenopus laevis egg extracts using cryo-electron tomography. We found that the architecture of Listeria actin tails is shared between those formed in cells and in cell extracts. Both contained nanoscopic bundles along the plane of the substrate, where the bacterium lies, and upright filaments (also called Z filaments), both oriented tangentially to the bacterial cell wall. Here, we were able to identify actin filament intersections, which likely correspond to branches, within the tails. A quantitative analysis of putative Arp2/3-mediated branches in the actin network showed that mother filaments lie on the plane of the substrate, whereas daughter filaments have random deviations out of this plane. Moreover, the analysis revealed that branches are randomly oriented with respect to the bacterial surface. Therefore, the actin filament network does not push directly toward the surface but rather accumulates, building up stress around the Listeria surface. Our results favor a mechanism of force generation for Listeria movement where the stress is released into propulsive motion.
Collapse
Affiliation(s)
- Marion Jasnin
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Alvaro H Crevenna
- Physical Chemistry, Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
24
|
Lee SY, Gertler FB, Goldberg MB. Vasodilator-stimulated phosphoprotein restricts cell-to-cell spread of Shigella flexneri at the cell periphery. MICROBIOLOGY-SGM 2015; 161:2149-60. [PMID: 26358985 DOI: 10.1099/mic.0.000173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Shigella spp. are intracellular bacterial pathogens that cause diarrhoeal disease in humans. Shigella utilize the host actin cytoskeleton to enter cells, move through the cytoplasm of cells and pass into adjacent cells. Ena/VASP family proteins are highly conserved proteins that participate in actin-dependent dynamic cellular processes. We tested whether Ena/VASP family members VASP (vasodilator-stimulated phosphoprotein), Mena (mammalian-enabled) or EVL (Ena-VASP-like) contribute to Shigella flexneri spread through cell monolayers. VASP and EVL restricted cell-to-cell spread without significantly altering actin-based motility, whereas Mena had no effect on these processes. Phosphorylation of VASP on Ser153, Ser235 and Thr274 regulated its subcellular distribution and function. VASP derivatives that lack the Ena/VASP homology 1 (EVH1) domain or contain a phosphoablative mutation of Ser153 were defective in restricting S. flexneri spread, indicating that the EVH1 domain and phosphorylation on Ser153 are required for this process. The EVH1 domain and Ser153 of VASP were required for VASP localization to focal adhesions, and localization of VASP to focal adhesions and/or the leading edge was required for restriction of spread. The contribution of the EVH1 domain was from both the donor and the recipient cell, whereas the contribution of Ser153 phosphorylation was only from the donor cell. Thus, unlike host proteins characterized in Shigella pathogenesis that promote bacterial spread, VASP and EVL function to limit it. The ability of VASP and EVL to limit spread highlights the critical role of focal adhesion complexes and/or the leading edge in bacterial passage between cells.
Collapse
Affiliation(s)
- Soo Young Lee
- 1Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Frank B Gertler
- 2Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marcia B Goldberg
- 1Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA 3Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, MA 02139, USA
| |
Collapse
|
25
|
Rennoll-Bankert KE, Rahman MS, Gillespie JJ, Guillotte ML, Kaur SJ, Lehman SS, Beier-Sexton M, Azad AF. Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion. PLoS Pathog 2015; 11:e1005115. [PMID: 26291822 PMCID: PMC4546372 DOI: 10.1371/journal.ppat.1005115] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/28/2015] [Indexed: 01/09/2023] Open
Abstract
Bacterial Sec7-domain-containing proteins (RalF) are known only from species of Legionella and Rickettsia, which have facultative and obligate intracellular lifestyles, respectively. L. pneumophila RalF, a type IV secretion system (T4SS) effector, is a guanine nucleotide exchange factor (GEF) of ADP-ribosylation factors (Arfs), activating and recruiting host Arf1 to the Legionella-containing vacuole. In contrast, previous in vitro studies showed R. prowazekii (Typhus Group) RalF is a functional Arf-GEF that localizes to the host plasma membrane and interacts with the actin cytoskeleton via a unique C-terminal domain. As RalF is differentially encoded across Rickettsia species (e.g., pseudogenized in all Spotted Fever Group species), it may function in lineage-specific biology and pathogenicity. Herein, we demonstrate RalF of R. typhi (Typhus Group) interacts with the Rickettsia T4SS coupling protein (RvhD4) via its proximal C-terminal sequence. RalF is expressed early during infection, with its inactivation via antibody blocking significantly reducing R. typhi host cell invasion. For R. typhi and R. felis (Transitional Group), RalF ectopic expression revealed subcellular localization with the host plasma membrane and actin cytoskeleton. Remarkably, R. bellii (Ancestral Group) RalF showed perinuclear localization reminiscent of ectopically expressed Legionella RalF, for which it shares several structural features. For R. typhi, RalF co-localization with Arf6 and PI(4,5)P2 at entry foci on the host plasma membrane was determined to be critical for invasion. Thus, we propose recruitment of PI(4,5)P2 at entry foci, mediated by RalF activation of Arf6, initiates actin remodeling and ultimately facilitates bacterial invasion. Collectively, our characterization of RalF as an invasin suggests that, despite carrying a similar Arf-GEF unknown from other bacteria, different intracellular lifestyles across Rickettsia and Legionella species have driven divergent roles for RalF during infection. Furthermore, our identification of lineage-specific Arf-GEF utilization across some rickettsial species illustrates different pathogenicity factors that define diverse agents of rickettsial diseases. Phylogenomics analysis indicates divergent mechanisms for host cell invasion across diverse species of obligate intracellular Rickettsia. For instance, only some Rickettsia species carry RalF, the rare bacterial Arf-GEF effector utilized by Legionella pneumophila to facilitate fusion of ER-derived membranes with its host-derived vacuole. For R. prowazekii (Typhus Group, TG), prior in vitro studies suggested the Arf-GEF activity of RalF, which is absent from Spotted Fever Group species, might be spatially regulated at the host plasma membrane. Herein, we demonstrate RalF of R. typhi (TG) and R. felis (Transitional Group) localizes to the host plasma membrane, yet R. bellii (Ancestral Group) RalF shows perinuclear localization reminiscent of RalF-mediated recruitment of Arf1 by L. pneumophila to its vacuole. For R. typhi, RalF expression occurs early during infection, with RalF inactivation significantly reducing host cell invasion. Furthermore, RalF co-localization with Arf6 and the phosphoinositide PI(4,5)P2 at the host plasma membrane was determined to be critical for R. typhi invasion. Thus, our work illustrates that different intracellular lifestyles across species of Rickettsia and Legionella have driven divergent roles for RalF during host cell infection. Collectively, we identify lineage-specific Arf-GEF utilization across diverse rickettsial species, previously unappreciated mechanisms for host cell invasion and infection.
Collapse
Affiliation(s)
- Kristen E. Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - M. Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mark L. Guillotte
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Simran J. Kaur
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Stephanie S. Lehman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Abdu F. Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
26
|
Zheng K, Kitazato K, Wang Y, He Z. Pathogenic microbes manipulate cofilin activity to subvert actin cytoskeleton. Crit Rev Microbiol 2015; 42:677-95. [PMID: 25853495 DOI: 10.3109/1040841x.2015.1010139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Actin-depolymerizing factor (ADF)/cofilin proteins are key players in controlling the temporal and spatial extent of actin dynamics, which is crucial for mediating host-pathogen interactions. Pathogenic microbes have evolved molecular mechanisms to manipulate cofilin activity to subvert the actin cytoskeletal system in host cells, promoting their internalization into the target cells, modifying the replication niche and facilitating their intracellular and intercellular dissemination. The study of how these pathogens exploit cofilin pathways is crucial for understanding infectious disease and providing potential targets for drug therapies.
Collapse
Affiliation(s)
- Kai Zheng
- a Department of Pharmacy, School of Medicine , Shenzhen University , Shenzhen , Guangdong , People's Republic of China .,c Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou , China
| | - Kaio Kitazato
- b Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology , Nagasaki University , Nagasaki , Japan , and
| | - Yifei Wang
- c Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou , China
| | - Zhendan He
- a Department of Pharmacy, School of Medicine , Shenzhen University , Shenzhen , Guangdong , People's Republic of China
| |
Collapse
|
27
|
Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, Beier-Sexton M, Azad AF. Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev 2014; 39:47-80. [PMID: 25168200 DOI: 10.1111/1574-6976.12084] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial 'life on the inside'.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Simran J Kaur
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Khandra T Sears
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Truong D, Copeland JW, Brumell JH. Bacterial subversion of host cytoskeletal machinery: hijacking formins and the Arp2/3 complex. Bioessays 2014; 36:687-96. [PMID: 24849003 DOI: 10.1002/bies.201400038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The host actin nucleation machinery is subverted by many bacterial pathogens to facilitate their entry, motility, replication, and survival. The majority of research conducted in the past primarily focused on exploitation of a host actin nucleator, the Arp2/3 complex, by bacterial pathogens. Recently, new studies have begun to explore the role of formins, another family of host actin nucleators, in bacterial pathogenesis. This review provides an overview of recent advances in the study of the exploitation of the Arp2/3 complex and formins by bacterial pathogens. Secreted bacterial effector proteins seem to manipulate the regulation of these actin nucleators or functionally mimic them to drive bacterial entry, motility and survival within host cells. An enhanced understanding of how formins are exploited will provide us with greater insight into how a fundamental eurkaryotic cellular process is utilized by bacteria and will also advance our knowledge of host-pathogen interactions.
Collapse
Affiliation(s)
- Dorothy Truong
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
29
|
Petchampai N, Sunyakumthorn P, Guillotte ML, Verhoeve VI, Banajee KH, Kearney MT, Macaluso KR. Novel identification of Dermacentor variabilis Arp2/3 complex and its role in rickettsial infection of the arthropod vector. PLoS One 2014; 9:e93768. [PMID: 24733187 PMCID: PMC3986078 DOI: 10.1371/journal.pone.0093768] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/07/2014] [Indexed: 01/03/2023] Open
Abstract
Tick-borne spotted fever group (SFG) Rickettsia species must be able to infect both vertebrate and arthropod host cells. The host actin-related protein 2/3 (Arp2/3) complex is important in the invasion process and actin-based motility for several intracellular bacteria, including SFG Rickettsia in Drosophila and mammalian cells. To investigate the role of the tick Arp2/3 complex in tick-Rickettsia interactions, open reading frames of all subunits of the protein including Arp2, Arp3, ARPC1, ARPC2, ARPC3, ARPC4, and ARPC5 were identified from Dermacentor variabilis. Amino acid sequence analysis showed variation (ranging from 25–88%) in percent identity compared to the corresponding subunits of the complex from Drosophila melanogaster, Mus musculus, Homo sapiens, and Saccharomyces cerevisiae. Potential ATP binding sites were identified in D. variabilis (Dv) Arp2 and Arp3 subunits as well as five putative WD (Trp-Asp) motifs which were observed in DvARPC1. Transcriptional profiles of all subunits of the DvArp2/3 complex revealed greater mRNA expression in both Rickettsia-infected and -uninfected ovary compared to midgut and salivary glands. In response to R. montanensis infection of the tick ovary, the mRNA level of only DvARPC4 was significantly upregulated compared to uninfected tissues. Arp2/3 complex inhibition bioassays resulted in a decrease in the ability of R. montanensis to invade tick tissues with a significant difference in the tick ovary, indicating a role for the Arp2/3 complex in rickettsial invasion of tick cells. Characterization of tick-derived molecules associated with rickettsial infection is imperative in order to better comprehend the ecology of tick-borne rickettsial diseases.
Collapse
Affiliation(s)
- Natthida Petchampai
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| | - Piyanate Sunyakumthorn
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Mark L. Guillotte
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Victoria I. Verhoeve
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Kaikhushroo H. Banajee
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Michael T. Kearney
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Kevin R. Macaluso
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
30
|
Fischer K, Beatty WL, Weil GJ, Fischer PU. High pressure freezing/freeze substitution fixation improves the ultrastructural assessment of Wolbachia endosymbiont-filarial nematode host interaction. PLoS One 2014; 9:e86383. [PMID: 24466066 PMCID: PMC3895037 DOI: 10.1371/journal.pone.0086383] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/12/2013] [Indexed: 12/21/2022] Open
Abstract
Background Wolbachia α-proteobacteria are essential for growth, reproduction and survival for many filarial nematode parasites of medical and veterinary importance. Endobacteria were discovered in filarial parasites by transmission electron microscopy in the 1970’s using chemically fixed specimens. Despite improvements of fixation and electron microscopy techniques during the last decades, methods to study the Wolbachia/filaria interaction on the ultrastructural level remained unchanged and the mechanisms for exchange of materials and for motility of endobacteria are not known. Methodology/Principal Finding We used high pressure freezing/freeze substitution to improve fixation of Brugia malayi and its endosymbiont, and this led to improved visualization of different morphological forms of Wolbachia. The three concentric, bilayer membranes that surround the endobacterial cytoplasm were well preserved. Vesicles with identical membrane structures were identified close to the endobacteria, and multiple bacteria were sometimes enclosed within a single outer membrane. Immunogold electron microscopy using a monoclonal antibody directed against Wolbachia surface protein-1 labeled the membranes that enclose Wolbachia and Wolbachia-associated vesicles. High densities of Wolbachia were observed in the lateral chords of L4 larvae, immature, and mature adult worms. Extracellular Wolbachia were sometimes present in the pseudocoelomic cavity near the developing female reproductive organs. Wolbachia-associated actin tails were not observed. Wolbachia motility may be explained by their residence within vacuoles, as they may co-opt the host cell’s secretory pathway to move within and between cells. Conclusions/Significance High pressure freezing/freeze substitution significantly improved the preservation of filarial tissues for electron microscopy to reveal membranes and sub cellular structures that could be crucial for exchange of materials between Wolbachia and its host.
Collapse
Affiliation(s)
- Kerstin Fischer
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wandy L. Beatty
- Imaging Facility, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gary J. Weil
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Peter U. Fischer
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
31
|
Three-dimensional architecture of actin filaments in Listeria monocytogenes comet tails. Proc Natl Acad Sci U S A 2013; 110:20521-6. [PMID: 24306931 DOI: 10.1073/pnas.1320155110] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The intracellular bacterial pathogen Listeria monocytogenes is capable of remodelling the actin cytoskeleton of its host cells such that "comet tails" are assembled powering its movement within cells and enabling cell-to-cell spread. We used cryo-electron tomography to visualize the 3D structure of the comet tails in situ at the level of individual filaments. We have performed a quantitative analysis of their supramolecular architecture revealing the existence of bundles of nearly parallel hexagonally packed filaments with spacings of 12-13 nm. Similar configurations were observed in stress fibers and filopodia, suggesting that nanoscopic bundles are a generic feature of actin filament assemblies involved in motility; presumably, they provide the necessary stiffness. We propose a mechanism for the initiation of comet tail assembly and two scenarios that occur either independently or in concert for the ensuing actin-based motility, both emphasizing the role of filament bundling.
Collapse
|
32
|
Motility characteristics are altered for Rickettsia bellii transformed to overexpress a heterologous rickA gene. Appl Environ Microbiol 2013; 80:1170-6. [PMID: 24296498 DOI: 10.1128/aem.03352-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The rickettsial protein RickA activates host cell factors associated with the eukaryotic actin cytoskeleton and is likely involved with rickettsial host cell binding and infection and the actin-based motility of spotted fever group rickettsiae. The rickA gene sequence and protein vary substantially between Rickettsia species, as do observed motility-associated phenotypes. To help elucidate the function of RickA and determine the effects of species-specific RickA variations, we compared extracellular binding, intracellular motility, and intercellular spread phenotypes of three Rickettsia bellii variants. These included two shuttle vector-transformed R. bellii strains and the wild-type isolate from which they were derived, R. bellii RML 369C. Both plasmid shuttle vectors carried spectinomycin resistance and a GFPuv reporter; one contained Rickettsia monacensis-derived rickA, and the other lacked the rickA gene. Rickettsia bellii transformed to express R. monacensis rickA highly overexpressed this transcript in comparison to its native rickA. These rickettsiae also moved at higher velocities and followed a more curved path than the negative-control transformants. A lower proportion of R. monacensis rickA-expressing bacteria ever became motile, however, and they formed smaller plaques.
Collapse
|
33
|
Frickmann H, Schröpfer E, Dobler G. Actin assessment in addition to specific immuno-fluorescence staining to demonstrate rickettsial growth in cell culture. Eur J Microbiol Immunol (Bp) 2013; 3:198-203. [PMID: 24265939 DOI: 10.1556/eujmi.3.2013.3.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 06/08/2013] [Indexed: 11/19/2022] Open
Abstract
Rickettsiae are able to spread within infected cell mono-layers by modifying intra-cellular actin formations. The study analyzes whether a visualization of actin modifications in addition to specific immuno-fluorescence staining of rickettsiae might facilitate the proof of rickettsial growth in cell culture. Cell mono-layers of Vero E6 und BGM cells were infected with Rickettsia honei. Intra-cellular actin was fluorescence stained with TRITC-(tetra-methyl-5,6-isothiocyanate)-labeled phalloidin in addition to specific immuno-fluorescence staining of rickettsiae with FITC-(fluorescein-isothiocyanate)-labeled antibodies. DNA of bacteria and cells was counter-stained with DAPI (4´,6-diamino-2-phenyl-indole). Cell cultures infected with Vaccinia virus were used as positive controls, cell cultures infected with Coxiella burnetii as negative controls. High concentrations of R. honei are necessary to demonstrate characteristic modifications of the intra-cellular actin. This effect is more pronounced in Vero E6 cells than in BGM cells. Actin staining with phalloidin is not suited for an early proof of rickettsial growth in cell culture but may confirm unclear findings in specific immuno-fluorescence staining in case of sufficient bacterial density.
Collapse
|
34
|
Rickettsia Sca2 has evolved formin-like activity through a different molecular mechanism. Proc Natl Acad Sci U S A 2013; 110:E2677-86. [PMID: 23818602 DOI: 10.1073/pnas.1307235110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sca2 (surface cell antigen 2) is the only bacterial protein known to promote both actin filament nucleation and profilin-dependent elongation, mimicking eukaryotic formins to assemble actin comet tails for Rickettsia motility. We show that Sca2's functional mimicry of formins is achieved through a unique mechanism. Unlike formins, Sca2 is monomeric, but has N- and C-terminal repeat domains (NRD and CRD) that interact with each other for processive barbed-end elongation. The crystal structure of NRD reveals a previously undescribed fold, consisting of helix-loop-helix repeats arranged into an overall crescent shape. CRD is predicted to share this fold and might form together with NRD, a doughnut-shaped formin-like structure. In between NRD and CRD, proline-rich sequences mediate the incorporation of profilin-actin for elongation, and WASP-homology 2 (WH2) domains recruit actin monomers for nucleation. Sca2's α-helical fold is unusual among Gram-negative autotransporters, which overwhelmingly fold as β-solenoids. Rickettsia has therefore "rediscovered" formin-like actin nucleation and elongation.
Collapse
|
35
|
Wood DO, Hines A, Tucker AM, Woodard A, Driskell LO, Burkhardt NY, Kurtti TJ, Baldridge GD, Munderloh UG. Establishment of a replicating plasmid in Rickettsia prowazekii. PLoS One 2012; 7:e34715. [PMID: 22529927 PMCID: PMC3328469 DOI: 10.1371/journal.pone.0034715] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/08/2012] [Indexed: 11/18/2022] Open
Abstract
Rickettsia prowazekii, the causative agent of epidemic typhus, grows only within the cytosol of eukaryotic host cells. This obligate intracellular lifestyle has restricted the genetic analysis of this pathogen and critical tools, such as replicating plasmid vectors, have not been developed for this species. Although replicating plasmids have not been reported in R. prowazekii, the existence of well-characterized plasmids in several less pathogenic rickettsial species provides an opportunity to expand the genetic systems available for the study of this human pathogen. Competent R. prowazekii were transformed with pRAM18dRGA, a 10.3 kb vector derived from pRAM18 of R. amblyommii. A plasmid-containing population of R. prowazekii was obtained following growth under antibiotic selection, and the rickettsial plasmid was maintained extrachromosomally throughout multiple passages. The transformant population exhibited a generation time comparable to that of the wild type strain with a copy number of approximately 1 plasmid per rickettsia. These results demonstrate for the first time that a plasmid can be maintained in R. prowazekii, providing an important genetic tool for the study of this obligate intracellular pathogen.
Collapse
Affiliation(s)
- David O Wood
- Department of Microbiology and Immunology, Laboratory of Molecular Biology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The nucleus, at the heart of the eukaryotic cell, hosts and protects the genetic material, governs gene expression and regulates the whole cell physiology, including cell division. A growing number of studies indicate that various animal and plant pathogenic bacteria can deliver factors to this central organelle to subvert host defences by directly interfering with transcription, chromatin-remodelling, RNA splicing or DNA replication and repair. Such bacterial molecules entering the nucleus, which we propose to term 'nucleomodulins', use diverse strategies to hijack nuclear processes by targeting host DNA or an array of nuclear proteins. In some cases, bacteria can even enter the nucleus. These bacterial 'nuclear attacks' might have permanent genetic or long-term epigenetic effects on the host. Studying nucleomodulins and endonuclear bacteria can thus generate new insights into long-term impacts of infectious diseases and create novel tools for biotechnological applications and for deciphering the regulation of nuclear dynamics.
Collapse
Affiliation(s)
- Hélène Bierne
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, F-75015, France.
| | | |
Collapse
|
37
|
Cyclic dimeric GMP signaling regulates intracellular aggregation, sessility, and growth of Ehrlichia chaffeensis. Infect Immun 2011; 79:3905-12. [PMID: 21788390 DOI: 10.1128/iai.05320-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cyclic dimeric GMP (c-di-GMP), a bacterial second messenger, is known to regulate bacterial biofilm and sessility. Replication of an obligatory intracellular pathogen, Ehrlichia chaffeensis, is characterized by formation of bacterial aggregates called morulae inside membrane-bound inclusions. When E. chaffeensis matures into an infectious form, morulae become loose to allow bacteria to exit from host cells to infect adjacent cells. E. chaffeensis expresses a sensor kinase, PleC, and a cognate response regulator, PleD, which can produce c-di-GMP. A hydrophobic c-di-GMP antagonist, 2'-O-di(tert-butyldimethysilyl)-c-di-GMP (CDGA) inhibits E. chaffeensis internalization into host cells by facilitating degradation of some bacterial surface proteins via endogenous serine proteases. In the present study, we found that PleC and PleD were upregulated synchronously during exponential growth of bacteria, concomitant with increased morula size. While CDGA did not affect host cells, when infected cells were treated with CDGA, bacterial proliferation was inhibited, morulae became less compact, and the intracellular movement of bacteria was enhanced. Concurrently, CDGA treatment facilitated the extracellular release of bacteria with lower infectivity than those spontaneously released from sham-treated cells. Addition of CDGA to isolated inclusions induced dispersion of the morulae, degradation of an inclusion matrix protein TRP120, and bacterial intrainclusion movement, all of which were blocked by a serine protease inhibitor. These results suggest that c-di-GMP signaling regulates aggregation and sessility of E. chaffeensis within the inclusion through stabilization of matrix proteins by preventing the serine protease activity, which is associated with bacterial intracellular proliferation and maturation.
Collapse
|
38
|
Fischer K, Beatty WL, Jiang D, Weil GJ, Fischer PU. Tissue and stage-specific distribution of Wolbachia in Brugia malayi. PLoS Negl Trop Dis 2011; 5:e1174. [PMID: 21629728 PMCID: PMC3101188 DOI: 10.1371/journal.pntd.0001174] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/01/2011] [Indexed: 01/21/2023] Open
Abstract
Background Most filarial parasite species contain Wolbachia, obligatory bacterial endosymbionts that are crucial for filarial development and reproduction. They are targets for alternative chemotherapy, but their role in the biology of filarial nematodes is not well understood. Light microscopy provides important information on morphology, localization and potential function of these bacteria. Surprisingly, immunohistology and in situ hybridization techniques have not been widely used to monitor Wolbachia distribution during the filarial life cycle. Methods/Principal Findings A monoclonal antibody directed against Wolbachia surface protein and in situ hybridization targeting Wolbachia 16S rRNA were used to monitor Wolbachia during the life cycle of B. malayi. In microfilariae and vector stage larvae only a few cells contain Wolbachia. In contrast, large numbers of Wolbachia were detected in the lateral chords of L4 larvae, but no endobacteria were detected in the genital primordium. In young adult worms (5 weeks p.i.), a massive expansion of Wolbachia was observed in the lateral chords adjacent to ovaries or testis, but no endobacteria were detected in the growth zone of the ovaries, uterus, the growth zone of the testis or the vas deferens. Confocal laser scanning and transmission electron microscopy showed that numerous Wolbachia are aligned towards the developing ovaries and single endobacteria were detected in the germline. In inseminated females (8 weeks p.i.) Wolbachia were observed in the ovaries, embryos and in decreasing numbers in the lateral chords. In young males Wolbachia were found in distinct zones of the testis and in large numbers in the lateral chords in the vicinity of testicular tissue but never in mature spermatids or spermatozoa. Conclusions Immunohistology and in situ hybridization show distinct tissue and stage specific distribution patterns for Wolbachia in B. malayi. Extensive multiplication of Wolbachia occurs in the lateral chords of L4 and young adults adjacent to germline cells. Most filarial nematodes contain Wolbachia endobacteria that are essential for development and reproduction. An antibody against a Wolbachia surface protein was used to monitor the distribution of endobacteria during the B. malayi life cycle. In situ hybridization with probes binding to Wolbachia 16S rRNA were used to confirm results. Only a few cells contain Wolbachia in microfilariae and vector stage larvae; this suggests that the bacteria need to be maintained, but may have limited importance for these stages. Large numbers of Wolbachia were detected in the lateral chords of L4 larvae and of young adult worms, but not in the developing reproductive tissue. Confocal laser scanning and transmission electron microscopy showed that Wolbachia are aligned towards the developing germline. It can be hypothesized that Wolbachia invade developing ovaries from the lateral chords. In inseminated females, Wolbachia were detected in the ovaries and embryos. In young males, Wolbachia were found in parts of the testis and in the lateral chords in the vicinity of testicular tissue but never in mature spermatids or spermatozoa. The process of overcoming tissue boundaries to ensure transovarial transmission of Wolbachia could be an Achilles heel in the life cycle of B. malayi.
Collapse
Affiliation(s)
- Kerstin Fischer
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daojun Jiang
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gary J. Weil
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Peter U. Fischer
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
39
|
Abstract
A new biochemical analysis has revealed that the Rickettsia bacterial protein Sca2--recently shown to be essential for virulence and actin-dependent motility--assembles actin filaments using a mechanism that functionally resembles the processive elongation tactics used by formins.
Collapse
Affiliation(s)
- Art Alberts
- Laboratory of Cell Structure & Signal Integration, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | | |
Collapse
|
40
|
Haglund CM, Choe JE, Skau CT, Kovar DR, Welch MD. Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility. Nat Cell Biol 2010; 12:1057-63. [PMID: 20972427 DOI: 10.1038/ncb2109] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 09/14/2010] [Indexed: 12/15/2022]
Abstract
Diverse intracellular pathogens subvert the host actin-polymerization machinery to drive movement within and between cells during infection. Rickettsia in the spotted fever group (SFG) are Gram-negative, obligate intracellular bacterial pathogens that undergo actin-based motility and assemble distinctive 'comet tails' that consist of long, unbranched actin filaments. Despite this distinct organization, it was proposed that actin in Rickettsia comet tails is nucleated by the host Arp2/3 complex and the bacterial protein RickA, which assemble branched actin networks. However, a second bacterial gene, sca2, was recently implicated in actin-tail formation by R. rickettsii. Here, we demonstrate that Sca2 is a bacterial actin-assembly factor that functionally mimics eukaryotic formin proteins. Sca2 nucleates unbranched actin filaments, processively associates with growing barbed ends, requires profilin for efficient elongation, and inhibits the activity of capping protein, all properties shared with formins. Sca2 localizes to the Rickettsia surface and is sufficient to promote the assembly of actin filaments in cytoplasmic extract. These results suggest that Sca2 mimics formins to determine the unique organization of actin filaments in Rickettsia tails and drive bacterial motility, independently of host nucleators.
Collapse
Affiliation(s)
- Cat M Haglund
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
41
|
Defining a core set of actin cytoskeletal proteins critical for actin-based motility of Rickettsia. Cell Host Microbe 2010; 7:388-98. [PMID: 20478540 DOI: 10.1016/j.chom.2010.04.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/09/2010] [Accepted: 03/25/2010] [Indexed: 01/15/2023]
Abstract
Many Rickettsia species are intracellular bacterial pathogens that use actin-based motility for spread during infection. However, while other bacteria assemble actin tails consisting of branched networks, Rickettsia assemble long parallel actin bundles, suggesting the use of a distinct mechanism for exploiting actin. To identify the underlying mechanisms and host factors involved in Rickettsia parkeri actin-based motility, we performed an RNAi screen targeting 115 actin cytoskeletal genes in Drosophila cells. The screen delineated a set of four core proteins-profilin, fimbrin/T-plastin, capping protein, and cofilin--as crucial for determining actin tail length, organizing filament architecture, and enabling motility. In mammalian cells, these proteins were localized throughout R. parkeri tails, consistent with a role in motility. Profilin and fimbrin/T-plastin were critical for the motility of R. parkeri but not Listeria monocytogenes. Our results highlight key distinctions between the evolutionary strategies and molecular mechanisms employed by bacterial pathogens to assemble and organize actin.
Collapse
|
42
|
Disruption of the Rickettsia rickettsii Sca2 autotransporter inhibits actin-based motility. Infect Immun 2010; 78:2240-7. [PMID: 20194597 DOI: 10.1128/iai.00100-10] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Rickettsii rickettsii, the etiologic agent of Rocky Mountain spotted fever, replicates within the cytosol of infected cells and uses actin-based motility to spread inter- and intracellularly. Although the ultrastructure of the actin tail and host proteins associated with it are distinct from those of Listeria or Shigella, comparatively little is known regarding the rickettsial proteins involved in its organization. Here, we have used random transposon mutagenesis of R. rickettsii to generate a small-plaque mutant that is defective in actin-based motility and does not spread directly from cell to cell as is characteristic of spotted fever group rickettsiae. The transposon insertion site of this mutant strain was within Sca2, a member of a family of large autotransporter proteins. Sca2 exhibits several features suggestive of its apparent role in actin-based motility. It displays an N-terminal secretory signal peptide, a C-terminal predicted autotransporter domain, up to four predicted Wasp homology 2 (WH2) domains, and two proline-rich domains, one with similarity to eukaryotic formins. In a guinea pig model of infection, the Sca2 mutant did not elicit fever, suggesting that Sca2 and actin-based motility are virulence factors of spotted fever group rickettsiae.
Collapse
|
43
|
Resch GP, Urban E, Jacob S. The actin cytoskeleton in whole mount preparations and sections. Methods Cell Biol 2010; 96:529-64. [PMID: 20869537 DOI: 10.1016/s0091-679x(10)96022-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In non-muscle cells, the actin cytoskeleton plays a key role by providing a scaffold contributing to the definition of cell shape, force for driving cell motility, cytokinesis, endocytosis, and propulsion of pathogens, as well as tracks for intracellular transport. A thorough understanding of these processes requires insight into the spatial and temporal organisation of actin filaments into diverse higher-order structures, such as networks, parallel bundles, and contractile arrays. Transmission and scanning electron microscopy can be used to visualise the actin cytoskeleton, but due to the delicate nature of actin filaments, they are easily affected by standard preparation protocols, yielding variable degrees of ultrastructural preservation. In this chapter, we describe different conventional and cryo-approaches to visualise the actin cytoskeleton using transmission electron microscopy and discuss their specific advantages and drawbacks. In the first part, we present three different whole mount techniques, which allow visualisation of actin in the peripheral, thinly spread parts of cells grown in monolayers. In the second part, we describe specific issues concerning the visualisation of actin in thin sections. Techniques for three-dimensional visualisation of actin, protein localisation, and correlative light and electron microscopy are also included.
Collapse
Affiliation(s)
- Guenter P Resch
- IMP-IMBA-GMI Electron Microscopy Facility, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | | | | |
Collapse
|
44
|
Abstract
The vascular endothelium is the main target of a limited number of infectious agents, Rickettsia, Ehrlichia ruminantium, and Orientia tsutsugamushi are among them. These arthropod-transmitted obligately-intracellular bacteria cause serious systemic diseases that are not infrequently lethal. In this review, we discuss the bacterial biology, vector biology, and clinical aspects of these conditions with particular emphasis on the interactions of these bacteria with the vascular endothelium and how it responds to intracellular infection. The study of these bacteria in relevant in vivo models is likely to offer new insights into the physiology of the endothelium that have not been revealed by other models.
Collapse
Affiliation(s)
- Gustavo Valbuena
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-0609, USA.
| | | |
Collapse
|
45
|
Boldis V, Strus J, Kocianová E, Tusek-Znidaric M, Stefanidesová K, Spitalská E. Ultrastructural study of the life cycle of Rickettsia slovaca, wild and standard type, cultivated in L929 and Vero cell lines. Folia Microbiol (Praha) 2009; 54:130-6. [PMID: 19418250 DOI: 10.1007/s12223-009-0019-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 01/21/2009] [Indexed: 11/26/2022]
Abstract
Ultrastructural changes induced by Rickettsia slovaca standard type (ST) and wild type (WT) were examined during their life cycle in L929 and Vero cells. R. slovaca invaded the cytoplasm of the host cell by phagocytosis on the 1st d p.i. Rickettsiae adhering to the cytoplasmic membrane were engulfed by cellular extensions and occurred in phagocytic vacuoles. Binary fission of rickettsia was observed. The nuclear chromatin of eukaryotic cells was rearranged and condensed during 3rd and 6th d p.i. Finally, loss of the plasma membrane integrity, destruction of cytoplasm and nucleus resulted in cell lysis. Degeneration of the host cell caused by WT and ST was observed after 4 and 5 d p.i. in L929 cells and after 3 and 6 d p.i. in Vero cells, respectively. WT type was able to penetrate into the nucleus of the host cell and was responsible for dilatation of the perinuclear space and endoplasmic reticulum, causing more pronounced and different cytopathological changes than the ST.
Collapse
Affiliation(s)
- V Boldis
- Institute of Virology, Slovak Academy of Sciences, 845 05, Bratislava, Slovakia
| | | | | | | | | | | |
Collapse
|
46
|
Ray K, Marteyn B, Sansonetti PJ, Tang CM. Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat Rev Microbiol 2009; 7:333-40. [PMID: 19369949 DOI: 10.1038/nrmicro2112] [Citation(s) in RCA: 316] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacterial pathogens exploit a huge range of niches within their hosts. Many pathogens can invade non-phagocytic cells and survive within a membrane-bound compartment. However, only a small number of bacteria, including Listeria monocytogenes, Shigella flexneri, Burkholderia pseudomallei, Francisella tularensis and Rickettsia spp., can gain access to and proliferate within the host cell cytosol. Here, we discuss the mechanisms by which these cytosolic pathogens escape into the cytosol, obtain nutrients to replicate and subvert host immune responses.
Collapse
Affiliation(s)
- Katrina Ray
- Department of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, London, UK
| | | | | | | |
Collapse
|
47
|
Balraj P, Nappez C, Raoult D, Renesto P. Western-blot detection of RickA within spotted fever group rickettsiae using a specific monoclonal antibody. FEMS Microbiol Lett 2008; 286:257-62. [DOI: 10.1111/j.1574-6968.2008.01283.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
48
|
Emerging and re-emerging rickettsioses: endothelial cell infection and early disease events. Nat Rev Microbiol 2008; 6:375-86. [PMID: 18414502 DOI: 10.1038/nrmicro1866] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Valbuena G, Walker DH. The endothelium as a target for infections. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 1:171-98. [PMID: 18039112 DOI: 10.1146/annurev.pathol.1.110304.100031] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endothelial cells lining vascular and lymphatic vessels are targets of several infectious agents, including viruses and bacteria, that lead to dramatic changes in their functions. Understanding the pathophysiological mechanisms that cause the clinical manifestations of those infections has been advanced through the use of animal models and in vitro systems; however, there are also abundant studies that explore the consequences of endothelial infection in vitro without supporting evidence that endothelial cells are actual in vivo targets of infection in human diseases. This article defines criteria for considering an infection as truly endothelium-targeted and reviews the literature that offers insights into the pathogenesis of human endothelial-target infections.
Collapse
|
50
|
Shinomiya H. [Dual role of the actin cytoskeleton in host defenses and in the establishment of bacterial infections]. Nihon Saikingaku Zasshi 2007; 62:279-93. [PMID: 17575795 DOI: 10.3412/jsb.62.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hiroto Shinomiya
- Department of Immunology and Host Defenses, Ehime University Graduate School of Medicine
| |
Collapse
|