1
|
Nakayama H, Hanafusa K, Yamaji T, Oshima E, Hotta T, Takamori K, Ogawa H, Iwabuchi K. Phylactic role of anti-lipoarabinomannan IgM directed against mannan core during mycobacterial infection in macrophages. Tuberculosis (Edinb) 2023; 143:102391. [PMID: 37574397 DOI: 10.1016/j.tube.2023.102391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
Mycobacteria enter host phagocytes, such as macrophages by binding to several receptors on phagocytes. Several mycobacterial species, including Mycobacterium tuberculosis have evolved systems to evade host bactericidal pathways. Lipoarabinomannan (LAM) is an essential mycobacterial molecule for both binding to phagocytes and escaping from bactericidal pathways. Integrin CD11b plays critical roles as a phagocytic receptor and contributes to host defense by mediating both nonopsonic and opsonic phagocytosis. However, the mechanisms by which CD11b-mediated phagocytosis associates with LAM and drives the phagocytic process of mycobacteria remain to be fully elucidated. We recently identified TMDU3 as anti-LAM IgM antibody against the mannan core of LAM. The present study investigated the roles of CD11b and TMDU3 in macrophage phagocytosis of mycobacteria and subsequent bactericidal lysosomal fusion to phagosomes. CD11b knockout cells generated by a CRISPR/Cas9 system showed significant attenuation of the ability to phagocytose non-opsonized mycobacteria and LAM-conjugated beads. Moreover, recombinant human CD11b protein was found to bind to LAM. TMDU3 markedly inhibited macrophage phagocytosis of non-opsonized mycobacteria. This antibody slightly increased the phagocytosis of mycobacteria under opsonized conditions, whereas it significantly enhanced CD11b-mediated bactericidal functions. Taken together, these results show a novel phylactic role of anti-LAM IgM during mycobacterial infection in macrophages.
Collapse
Affiliation(s)
- Hitoshi Nakayama
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba, Japan; Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan; Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba, Japan.
| | - Kei Hanafusa
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Eriko Oshima
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Tomomi Hotta
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Kenji Takamori
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Hideoki Ogawa
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Kazuhisa Iwabuchi
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba, Japan; Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan; Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba, Japan
| |
Collapse
|
2
|
Smirnov A, Daily KP, Gray MC, Ragland SA, Werner LM, Brittany Johnson M, Eby JC, Hewlett EL, Taylor RP, Criss AK. Phagocytosis via complement receptor 3 enables microbes to evade killing by neutrophils. J Leukoc Biol 2023; 114:1-20. [PMID: 36882066 PMCID: PMC10949953 DOI: 10.1093/jleuko/qiad028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
CR3 (CD11b/CD18; αmβ2 integrin) is a conserved phagocytic receptor. The active conformation of CR3 binds the iC3b fragment of complement C3 as well as many host and microbial ligands, leading to actin-dependent phagocytosis. There are conflicting reports about how CR3 engagement affects the fate of phagocytosed substrates. Using imaging flow cytometry, we confirmed that binding and internalization of iC3b-opsonized polystyrene beads by primary human neutrophils was CR3-dependent. iC3b-opsonized beads did not stimulate neutrophil reactive oxygen species, and most beads were found in primary granule-negative phagosomes. Similarly, Neisseria gonorrhoeae that does not express phase-variable Opa proteins suppresses neutrophil reactive oxygen species and delays phagolysosome formation. Here, binding and internalization of Opa-deleted (Δopa) N. gonorrhoeae by adherent human neutrophils was inhibited using blocking antibodies against CR3 and by adding neutrophil inhibitory factor, which targets the CD11b I-domain. No detectable C3 was deposited on N. gonorrhoeae in the presence of neutrophils alone. Conversely, overexpressing CD11b in HL-60 promyelocytes enhanced Δopa N. gonorrhoeae phagocytosis, which required the CD11b I-domain. Phagocytosis of N. gonorrhoeae was also inhibited in mouse neutrophils that were CD11b-deficient or treated with anti-CD11b. Phorbol ester treatment upregulated surface CR3 on neutrophils in suspension, enabling CR3-dependent phagocytosis of Δopa N. gonorrhoeae. Neutrophils exposed to Δopa N. gonorrhoeae had limited phosphorylation of Erk1/2, p38, and JNK. Neutrophil phagocytosis of unopsonized Mycobacterium smegmatis, which also resides in immature phagosomes, was CR3-dependent and did not elicit reactive oxygen species. We suggest that CR3-mediated phagocytosis is a silent mode of entry into neutrophils, which is appropriated by diverse pathogens to subvert phagocytic killing.
Collapse
Affiliation(s)
- Asya Smirnov
- Department of Microbiology, Immunology, and Cancer Biology
| | | | - Mary C. Gray
- Department of Microbiology, Immunology, and Cancer Biology
| | | | | | | | - Joshua C. Eby
- Division of Infectious Diseases and International Health, Department of Medicine
| | - Erik L. Hewlett
- Division of Infectious Diseases and International Health, Department of Medicine
| | - Ronald P. Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine
| | | |
Collapse
|
3
|
Roche V, Sandoval V, Wolford C, Senders Z, Kim JA, Ribeiro SP, Huang AY, Sekaly RP, Lyons J, Zhang M. Carbohydrate ligand engagement with CD11b enhances differentiation of tumor-associated myeloid cells for immunotherapy of solid cancers. J Immunother Cancer 2023; 11:e006205. [PMID: 37399354 DOI: 10.1136/jitc-2022-006205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Efforts to modulate the function of tumor-associated myeloid cell are underway to overcome the challenges in immunotherapy and find a cure. One potential therapeutic target is integrin CD11b, which can be used to modulate the myeloid-derived cells and induce tumor-reactive T-cell responses. However, CD11b can bind to multiple different ligands, leading to various myeloid cell functions such as adhesion, migration, phagocytosis, and proliferation. This has created a major challenge in understanding how CD11b converts the differences in the receptor-ligand binding into subsequent signaling responses and using this information for therapeutic development. METHODS This study aimed to investigate the antitumor effect of a carbohydrate ligand, named BG34-200, which modulates the CD11b+ cells. We have applied peptide microarrays, multiparameter FACS (fluorescence-activated cell analysis) analysis, cellular/molecular immunological technology, advanced microscopic imaging, and transgenic mouse models of solid cancers, to study the interaction between BG34-200 carbohydrate ligand and CD11b protein and the resulting immunological changes in the context of solid cancers, including osteosarcoma, advanced melanoma, and pancreatic ductal adenocarcinoma (PDAC). RESULTS Our results show that BG34-200 can bind directly to the activated CD11b on its I (or A) domain, at previously unreported peptide residues, in a multisite and multivalent manner. This engagement significantly impacts the biological function of tumor-associated inflammatory monocytes (TAIMs) in osteosarcoma, advanced melanoma, and PDAC backgrounds. Importantly, we observed that the BG34-200-CD11b engagement triggered endocytosis of the binding complexes in TAIMs, which induced intracellular F-actin cytoskeletal rearrangement, effective phagocytosis, and intrinsic ICAM-1 (intercellular adhesion molecule I) clustering. These structural biological changes resulted in the differentiation in TAIMs into monocyte-derived dendritic cells, which play a crucial role in T-cell activation in the tumor microenvironment. CONCLUSIONS Our research has advanced the current understanding of the molecular basis of CD11b activation in solid cancers, revealing how it converts the differences in BG34 carbohydrate ligands into immune signaling responses. These findings could pave the way for the development of safe and novel BG34-200-based therapies that modulate myeloid-derived cell functions, thereby enhancing immunotherapy for solid cancers.
Collapse
Affiliation(s)
- Veronique Roche
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Victor Sandoval
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Claire Wolford
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Zachary Senders
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Julian Anthony Kim
- Department of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Susan Pereira Ribeiro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Alex Yicheng Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
| | - Rafick-Pierre Sekaly
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Joshua Lyons
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Mei Zhang
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Zhang Q, Zhang S, Chen J, Xie Z. The Interplay between Integrins and Immune Cells as a Regulator in Cancer Immunology. Int J Mol Sci 2023; 24:6170. [PMID: 37047140 PMCID: PMC10093897 DOI: 10.3390/ijms24076170] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Integrins are a group of heterodimers consisting of α and β subunits that mediate a variety of physiological activities of immune cells, including cell migration, adhesion, proliferation, survival, and immunotolerance. Multiple types of integrins act differently on the same immune cells, while the same integrin may exert various effects on different immune cells. In the development of cancer, integrins are involved in the regulation of cancer cell proliferation, invasion, migration, and angiogenesis; conversely, integrins promote immune cell aggregation to mediate the elimination of tumors. The important roles of integrins in cancer progression have provided valuable clues for the diagnosis and targeted treatment of cancer. Furthermore, many integrin inhibitors have been investigated in clinical trials to explore effective regimens and reduce side effects. Due to the complexity of the mechanism of integrin-mediated cancer progression, challenges remain in the research and development of cancer immunotherapies (CITs). This review enumerates the effects of integrins on four types of immune cells and the potential mechanisms involved in the progression of cancer, which will provide ideas for more optimal CIT in the future.
Collapse
Affiliation(s)
- Qingfang Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Shuo Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- College of Basic Medical, Nanchang University, Nanchang 330006, China
| |
Collapse
|
5
|
Mazzolini J, Le Clerc S, Morisse G, Coulonges C, Zagury J, Sieger D. Wasl is crucial to maintain microglial core activities during glioblastoma initiation stages. Glia 2022; 70:1027-1051. [PMID: 35194846 PMCID: PMC9306864 DOI: 10.1002/glia.24154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/28/2022]
Abstract
Microglia actively promotes the growth of high-grade gliomas. Within the glioma microenvironment an amoeboid microglial morphology has been observed, however the underlying causes and the related impact on microglia functions and their tumor promoting activities is unclear. Using the advantages of the larval zebrafish model, we identified the underlying mechanism and show that microglial morphology and functions are already impaired during glioma initiation stages. The presence of pre-neoplastic HRasV12 expressing cells induces an amoeboid morphology of microglia, increases microglial numbers and decreases their motility and phagocytic activity. RNA sequencing analysis revealed lower expression levels of the actin nucleation promoting factor wasla in microglia. Importantly, a microglia specific rescue of wasla expression restores microglial morphology and functions. This results in increased phagocytosis of pre-neoplastic cells and slows down tumor progression. In conclusion, we identified a mechanism that de-activates core microglial functions within the emerging glioma microenvironment. Restoration of this mechanism might provide a way to impair glioma growth.
Collapse
Affiliation(s)
- Julie Mazzolini
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Sigrid Le Clerc
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et MétiersHESAM UniversitéParisFrance
| | - Gregoire Morisse
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Cédric Coulonges
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et MétiersHESAM UniversitéParisFrance
| | - Jean‐François Zagury
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et MétiersHESAM UniversitéParisFrance
| | - Dirk Sieger
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
6
|
Caseiro C, Dias JNR, de Andrade Fontes CMG, Bule P. From Cancer Therapy to Winemaking: The Molecular Structure and Applications of β-Glucans and β-1, 3-Glucanases. Int J Mol Sci 2022; 23:3156. [PMID: 35328577 PMCID: PMC8949617 DOI: 10.3390/ijms23063156] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
β-glucans are a diverse group of polysaccharides composed of β-1,3 or β-(1,3-1,4) linked glucose monomers. They are mainly synthesized by fungi, plants, seaweed and bacteria, where they carry out structural, protective and energy storage roles. Because of their unique physicochemical properties, they have important applications in several industrial, biomedical and biotechnological processes. β-glucans are also major bioactive molecules with marked immunomodulatory and metabolic properties. As such, they have been the focus of many studies attesting to their ability to, among other roles, fight cancer, reduce the risk of cardiovascular diseases and control diabetes. The physicochemical and functional profiles of β-glucans are deeply influenced by their molecular structure. This structure governs β-glucan interaction with multiple β-glucan binding proteins, triggering myriad biological responses. It is then imperative to understand the structural properties of β-glucans to fully reveal their biological roles and potential applications. The deconstruction of β-glucans is a result of β-glucanase activity. In addition to being invaluable tools for the study of β-glucans, these enzymes have applications in numerous biotechnological and industrial processes, both alone and in conjunction with their natural substrates. Here, we review potential applications for β-glucans and β-glucanases, and explore how their functionalities are dictated by their structure.
Collapse
Affiliation(s)
- Catarina Caseiro
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Joana Nunes Ribeiro Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | | | - Pedro Bule
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
7
|
Augenstreich J, Haanappel E, Sayes F, Simeone R, Guillet V, Mazeres S, Chalut C, Mourey L, Brosch R, Guilhot C, Astarie-Dequeker C. Phthiocerol Dimycocerosates From Mycobacterium tuberculosis Increase the Membrane Activity of Bacterial Effectors and Host Receptors. Front Cell Infect Microbiol 2020; 10:420. [PMID: 32923411 PMCID: PMC7456886 DOI: 10.3389/fcimb.2020.00420] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/08/2020] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) synthesizes a variety of atypical lipids that are exposed at the cell surface and help the bacterium infect macrophages and escape elimination by the cell's immune responses. In the present study, we investigate the mechanism of action of one family of hydrophobic lipids, the phthiocerol dimycocerosates (DIM/PDIM), major lipid virulence factors. DIM are transferred from the envelope of Mtb to host membranes during infection. Using the polarity-sensitive fluorophore C-Laurdan, we visualized that DIM decrease the membrane polarity of a supported lipid bilayer put in contact with mycobacteria, even beyond the site of contact. We observed that DIM activate the complement receptor 3, a predominant receptor for phagocytosis of Mtb by macrophages. DIM also increased the activity of membrane-permeabilizing effectors of Mtb, among which the virulence factor EsxA. This is consistent with previous observations that DIM help Mtb disrupt host cell membranes. Taken together, our data show that transferred DIM spread within the target membrane, modify its physical properties and increase the activity of host cell receptors and bacterial effectors, diverting in a non-specific manner host cell functions. We therefore bring new insight into the molecular mechanisms by which DIM increase Mtb's capability to escape the cell's immune responses.
Collapse
Affiliation(s)
- Jacques Augenstreich
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| | - Evert Haanappel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| | - Fadel Sayes
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Roxane Simeone
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Valérie Guillet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| | - Serge Mazeres
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| | - Roland Brosch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| | - Catherine Astarie-Dequeker
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| |
Collapse
|
8
|
Torres-Gomez A, Cabañas C, Lafuente EM. Phagocytic Integrins: Activation and Signaling. Front Immunol 2020; 11:738. [PMID: 32425937 PMCID: PMC7203660 DOI: 10.3389/fimmu.2020.00738] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/31/2020] [Indexed: 01/06/2023] Open
Abstract
Phagocytic integrins are endowed with the ability to engulf and dispose of particles of different natures. Evolutionarily conserved from worms to humans, they are involved in pathogen elimination and apoptotic and tumoral cell clearance. Research in the field of integrin-mediated phagocytosis has shed light on the molecular events controlling integrin activation and their effector functions. However, there are still some aspects of the regulation of the phagocytic process that need to be clarified. Here, we have revised the molecular events controlling phagocytic integrin activation and the downstream signaling driving particle engulfment, and we have focused particularly on αMβ2/CR3, αXβ2/CR4, and a brief mention of αVβ5/αVβ3integrins.
Collapse
Affiliation(s)
- Alvaro Torres-Gomez
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Carlos Cabañas
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain.,Severo Ochoa Center for Molecular Biology (CSIC-UAM), Madrid, Spain
| | - Esther M Lafuente
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
9
|
The conical shape of DIM lipids promotes Mycobacterium tuberculosis infection of macrophages. Proc Natl Acad Sci U S A 2019; 116:25649-25658. [PMID: 31757855 DOI: 10.1073/pnas.1910368116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phthiocerol dimycocerosate (DIM) is a major virulence factor of the pathogen Mycobacterium tuberculosis (Mtb). While this lipid promotes the entry of Mtb into macrophages, which occurs via phagocytosis, its molecular mechanism of action is unknown. Here, we combined biophysical, cell biology, and modeling approaches to reveal the molecular mechanism of DIM action on macrophage membranes leading to the first step of Mtb infection. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry showed that DIM molecules are transferred from the Mtb envelope to macrophage membranes during infection. Multiscale molecular modeling and 31P-NMR experiments revealed that DIM adopts a conical shape in membranes and aggregates in the stalks formed between 2 opposing lipid bilayers. Infection of macrophages pretreated with lipids of various shapes uncovered a general role for conical lipids in promoting phagocytosis. Taken together, these results reveal how the molecular shape of a mycobacterial lipid can modulate the biological response of macrophages.
Collapse
|
10
|
Souriant S, Balboa L, Dupont M, Pingris K, Kviatcovsky D, Cougoule C, Lastrucci C, Bah A, Gasser R, Poincloux R, Raynaud-Messina B, Al Saati T, Inwentarz S, Poggi S, Moraña EJ, González-Montaner P, Corti M, Lagane B, Vergne I, Allers C, Kaushal D, Kuroda MJ, Sasiain MDC, Neyrolles O, Maridonneau-Parini I, Lugo-Villarino G, Vérollet C. Tuberculosis Exacerbates HIV-1 Infection through IL-10/STAT3-Dependent Tunneling Nanotube Formation in Macrophages. Cell Rep 2019; 26:3586-3599.e7. [PMID: 30917314 PMCID: PMC6733268 DOI: 10.1016/j.celrep.2019.02.091] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/08/2018] [Accepted: 02/21/2019] [Indexed: 12/13/2022] Open
Abstract
The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present in TB-associated microenvironment, produce high levels of HIV-1. In vivo, M(IL-10) macrophages are expanded in lungs of co-infected non-human primates, which correlates with disease severity. Furthermore, HIV-1/Mtb co-infected patients display an accumulation of M(IL-10) macrophage markers (soluble CD163 and MerTK). These M(IL-10) macrophages form direct cell-to-cell bridges, which we identified as tunneling nanotubes (TNTs) involved in viral transfer. TNT formation requires the IL-10/STAT3 signaling pathway, and targeted inhibition of TNTs substantially reduces the enhancement of HIV-1 cell-to-cell transfer and overproduction in M(IL-10) macrophages. Our study reveals that TNTs facilitate viral transfer and amplification, thereby promoting TNT formation as a mechanism to be explored in TB/AIDS potential therapeutics.
Collapse
Affiliation(s)
- Shanti Souriant
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina
| | - Luciana Balboa
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina; Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | - Maeva Dupont
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina
| | - Karine Pingris
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Denise Kviatcovsky
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina; Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | - Céline Cougoule
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina
| | - Claire Lastrucci
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; Centre for Genomic Regulation, Barcelona, Spain
| | - Aicha Bah
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Romain Gasser
- Centre de Physiopathologie de Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Brigitte Raynaud-Messina
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Talal Al Saati
- INSERM/UPS/ENVT-US006/CREFRE, Service d'Histopathologie, CHU Purpan, 31024 Toulouse, France
| | - Sandra Inwentarz
- Instituto de Tisioneumonologia "Raúl F. Vaccarezza," Universitad de Buenos Aires, Argentina
| | - Susana Poggi
- Instituto de Tisioneumonologia "Raúl F. Vaccarezza," Universitad de Buenos Aires, Argentina
| | - Eduardo Jose Moraña
- Instituto de Tisioneumonologia "Raúl F. Vaccarezza," Universitad de Buenos Aires, Argentina
| | | | - Marcelo Corti
- Division de SIDA, Hospital de Infecciosas Dr. F.J. Muñiz, Buenos Aires, Argentina
| | - Bernard Lagane
- Centre de Physiopathologie de Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Isabelle Vergne
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carolina Allers
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Marcelo J Kuroda
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Maria Del Carmen Sasiain
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina; Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | - Olivier Neyrolles
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina
| | - Geanncarlo Lugo-Villarino
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina.
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina.
| |
Collapse
|
11
|
Ehrlichia chaffeensis and Its Invasin EtpE Block Reactive Oxygen Species Generation by Macrophages in a DNase X-Dependent Manner. mBio 2017; 8:mBio.01551-17. [PMID: 29162709 PMCID: PMC5698551 DOI: 10.1128/mbio.01551-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The obligatory intracellular pathogen Ehrlichia chaffeensis lacks most genes that confer resistance to oxidative stress but can block reactive oxygen species (ROS) generation by host monocytes-macrophages. Bacterial and host molecules responsible for this inhibition have not been identified. To infect host cells, Ehrlichia uses the C terminus of its surface invasin, entry-triggering protein of Ehrlichia (EtpE; EtpE-C), which directly binds the mammalian cell surface receptor glycosylphosphatidylinositol-anchored protein DNase X. We investigated whether EtpE-C binding to DNase X blocks ROS production by mouse bone marrow-derived macrophages (BMDMs). On the basis of a luminol-dependent chemiluminescence assay, E. chaffeensis inhibited phorbol myristate acetate (PMA)-induced ROS generation by BMDMs from wild-type, but not DNase X−/−, mice. EtpE-C is critical for inhibition, as recombinant EtpE-C (rEtpE-C)-coated latex beads, but not recombinant N-terminal EtpE-coated or uncoated beads, inhibited PMA-induced ROS generation by BMDMs from wild-type mice. DNase X is required for this inhibition, as none of these beads inhibited PMA-induced ROS generation by BMDMs from DNase X−/− mice. Previous studies showed that E. chaffeensis does not block ROS generation in neutrophils, a cell type that is a potent ROS generator but is not infected by E. chaffeensis. Human and mouse peripheral blood neutrophils did not express DNase X. Our findings point to a unique survival mechanism of ROS-sensitive obligate intramonocytic bacteria that involves invasin EtpE binding to DNase X on the host cell surface. This is the first report of bacterial invasin having such a subversive activity on ROS generation. Ehrlichia chaffeensis preferentially infects monocytes-macrophages and causes a life-threatening emerging tick-transmitted infectious disease called human monocytic ehrlichiosis. Ehrlichial infection, and hence the disease, depends on the ability of this bacterium to avoid or overcome powerful microbicidal mechanisms of host monocytes-macrophages, one of which is the generation of ROS. Our findings reveal that an ehrlichial surface invasin, EtpE, not only triggers bacterial entry but also blocks ROS generation by host macrophages through its host cell receptor, DNase X. As ROS sensitivity is an Achilles’ heel of this group of pathogens, understanding the mechanism by which E. chaffeensis rapidly blocks ROS generation suggests a new approach for developing effective anti-infective measures. The discovery of a ROS-blocking pathway is also important, as modulation of ROS generation is important in a variety of ailments and biological processes.
Collapse
|
12
|
Zhu Y, Fan S, Wang N, Chen X, Yang Y, Lu Y, Chen Q, Zheng J, Liu X. NADPH oxidase 2 inhibitor diphenyleneiodonium enhances ROS-independent bacterial phagocytosis in murine macrophages via activation of the calcium-mediated p38 MAPK signaling pathway. Am J Transl Res 2017; 9:3422-3432. [PMID: 28804558 PMCID: PMC5527256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
Activation of NADPH oxidase 2 (NOX2) triggers reactive oxygen species (ROS) generation, both of which are essential for robust microbial clearance by phagocytes. However, it is unknown whether inhibition of NOX2 activation or ROS generation affects cellular phagocytosis. Here, we found that the classic NOX2 inhibitor diphenyleneiodonium (DPI) induced uptake of E. coli by murine peritoneal macrophages through enhancing phagocytosis, and this effect was temperature-sensitive and attenuated by cytochalasin D as well as chemical inhibition of Syk and PLCγ, two downstream kinases involved in actin polymerization during phagocytosis. DPI also decreased the production of TNF-α and IL-6 resulting from E. coli stimulation. The DPI-induced enhancement of phagocytosis was independent of NOX2 inhibition or ROS generation but depended on increased intracellular calcium and activation of the p38 MAPK signaling pathway. Furthermore, DPI enhanced bacterial elimination and ameliorated inflammation in E. coli-infected mice, leading to improved survival. Our results demonstrate that DPI facilitates ROS-independent bacterial phagocytosis by macrophages through activation of calcium and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Yuanfeng Zhu
- Medical Research Center, Southwest Hospital, Third Military Medical UniversityChongqing, China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, Third Military Medical UniversityChongqing, China
| | - Ning Wang
- Medical Research Center, Southwest Hospital, Third Military Medical UniversityChongqing, China
| | - Xiaoli Chen
- Medical Research Center, Southwest Hospital, Third Military Medical UniversityChongqing, China
| | - Yongjun Yang
- Medical Research Center, Southwest Hospital, Third Military Medical UniversityChongqing, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Third Military Medical UniversityChongqing, China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, Third Military Medical UniversityChongqing, China
| | - Jiang Zheng
- Medical Research Center, Southwest Hospital, Third Military Medical UniversityChongqing, China
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Third Military Medical UniversityChongqing, China
| |
Collapse
|
13
|
Fujimoto K, Motowaki T, Tamura N, Aratani Y. Myeloperoxidase deficiency enhances zymosan phagocytosis associated with up-regulation of surface expression of CD11b in mouse neutrophils. Free Radic Res 2016; 50:1340-1349. [DOI: 10.1080/10715762.2016.1244821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kenta Fujimoto
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Takehiro Motowaki
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Naoya Tamura
- International College of Arts and Sciences, Yokohama City University, Yokohama, Japan
| | - Yasuaki Aratani
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
- International College of Arts and Sciences, Yokohama City University, Yokohama, Japan
| |
Collapse
|
14
|
Li K, Xing R, Liu S, Li P. Advances in preparation, analysis and biological activities of single chitooligosaccharides. Carbohydr Polym 2016; 139:178-90. [DOI: 10.1016/j.carbpol.2015.12.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023]
|
15
|
Walachowski S, Tabouret G, Foucras G. Triggering Dectin-1-Pathway Alone Is Not Sufficient to Induce Cytokine Production by Murine Macrophages. PLoS One 2016; 11:e0148464. [PMID: 26840954 PMCID: PMC4739705 DOI: 10.1371/journal.pone.0148464] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 01/17/2016] [Indexed: 02/07/2023] Open
Abstract
β-glucans (BG) are abundant polysaccharides of the Saccharomyces cerevisiae cell wall (Sc CW), an industry byproduct. They have immuno-stimulatory properties upon engagement of dectin-1 (Clec7a), their main receptor on particular immune cells, and they actually become of great interest because of their preventive or therapeutic potentials. Zymosan, a crude extract of Sc CW was studied as a prototypic BG, despite its miscellaneous PAMPs content. Here, we examined the response of murine wild type or Clec7a-/- bone marrow-derived macrophages (BMDM) to products with increasing BG content (15, 65 or 75%) and compared their effects with those of other dectin-1 ligands. The enrichment process removed TLR ligands while preserving dectin-1 activity. The most enriched extracts have very low NFκB activity and triggered low amounts of cytokine production in contrast with crude products like zymosan and BG15. Furthermore, MyD88-/- BMDM did not produce TNFα in response to crude Sc CW extracts, whereas their response to BG-enriched extracts was unaffected, suggesting that BG alone are not able to initiate cytokine secretion. Although Sc CW-derived BG stimulated the late and strong expression of Csf2 in a dectin-1-dependent manner, they remain poor inducers of chemokine and cytokine production in murine macrophages.
Collapse
Affiliation(s)
- Sarah Walachowski
- Université de Toulouse, INP-ENVT, UMR 1225, IHAP, Toulouse, France
- INRA, UMR1225, IHAP, Toulouse, France
| | - Guillaume Tabouret
- Université de Toulouse, INP-ENVT, UMR 1225, IHAP, Toulouse, France
- INRA, UMR1225, IHAP, Toulouse, France
| | - Gilles Foucras
- Université de Toulouse, INP-ENVT, UMR 1225, IHAP, Toulouse, France
- INRA, UMR1225, IHAP, Toulouse, France
- * E-mail:
| |
Collapse
|
16
|
Troegeler A, Lastrucci C, Duval C, Tanne A, Cougoule C, Maridonneau-Parini I, Neyrolles O, Lugo-Villarino G. An efficient siRNA-mediated gene silencing in primary human monocytes, dendritic cells and macrophages. Immunol Cell Biol 2014; 92:699-708. [PMID: 24890643 DOI: 10.1038/icb.2014.39] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 05/01/2014] [Accepted: 05/03/2014] [Indexed: 01/08/2023]
Abstract
Mononuclear phagocytes (MP) comprise monocytes, macrophages (MΦ) and dendritic cells (DC), including their lineage-committed progenitors, which together have an eminent role in health and disease. Lipid-based siRNA-mediated gene inactivation is an established approach to investigate gene function in MP cells. However, although there are few protocols dedicated for siRNA-mediated gene inactivation in primary human DC and MΦ, there are none available for primary human monocytes. Moreover, there is no available method to perform comparative studies of a siRNA-mediated gene silencing in primary monocytes and other MP cells. Here, we describe a protocol optimized for the lipid-based delivery of siRNA to perform gene silencing in primary human blood monocytes, which is applicable to DCs, and differs from the classical route of siRNA delivery into MΦs. Along with this protocol, we provide a comparative analysis of how monocytes, DC and MΦ are efficiently transfected with the target siRNA without affecting cell viability, resulting in strong gene knockdown efficiency, including the simultaneous inactivation of two genes. Moreover, siRNA delivery does not affect classical functions in MP such as differentiation, phagocytosis and migration, demonstrating that this protocol does not induce non-specific major alterations in these cells. As a proof-of-principle, a functional analysis of hematopoietic cell kinase (Hck) shows for the first time that this kinase regulates the protease-dependent migration mode in human monocytes. Collectively, this protocol enables efficient gene inactivation in primary MP, suggesting a wide spectrum of applications such as siRNA-based high-throughput screening, which could ultimately improve our knowledge about MP biology.
Collapse
Affiliation(s)
- Anthony Troegeler
- 1] CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France [2] Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Claire Lastrucci
- 1] CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France [2] Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Carine Duval
- 1] CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France [2] Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Antoine Tanne
- Division of Hematology & Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mt Sinai, New York, NY, USA
| | - Céline Cougoule
- 1] CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France [2] Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Isabelle Maridonneau-Parini
- 1] CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France [2] Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Olivier Neyrolles
- 1] CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France [2] Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Geanncarlo Lugo-Villarino
- 1] CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France [2] Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
17
|
Beltrán-Beck B, de la Fuente J, Garrido JM, Aranaz A, Sevilla I, Villar M, Boadella M, Galindo RC, Pérez de la Lastra JM, Moreno-Cid JA, Fernández de Mera IG, Alberdi P, Santos G, Ballesteros C, Lyashchenko KP, Minguijón E, Romero B, de Juan L, Domínguez L, Juste R, Gortazar C. Oral vaccination with heat inactivated Mycobacterium bovis activates the complement system to protect against tuberculosis. PLoS One 2014; 9:e98048. [PMID: 24842853 PMCID: PMC4026474 DOI: 10.1371/journal.pone.0098048] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/27/2014] [Indexed: 01/11/2023] Open
Abstract
Tuberculosis (TB) remains a pandemic affecting billions of people worldwide, thus stressing the need for new vaccines. Defining the correlates of vaccine protection is essential to achieve this goal. In this study, we used the wild boar model for mycobacterial infection and TB to characterize the protective mechanisms elicited by a new heat inactivated Mycobacterium bovis vaccine (IV). Oral vaccination with the IV resulted in significantly lower culture and lesion scores, particularly in the thorax, suggesting that the IV might provide a novel vaccine for TB control with special impact on the prevention of pulmonary disease, which is one of the limitations of current vaccines. Oral vaccination with the IV induced an adaptive antibody response and activation of the innate immune response including the complement component C3 and inflammasome. Mycobacterial DNA/RNA was not involved in inflammasome activation but increased C3 production by a still unknown mechanism. The results also suggested a protective mechanism mediated by the activation of IFN-γ producing CD8+ T cells by MHC I antigen presenting dendritic cells (DCs) in response to vaccination with the IV, without a clear role for Th1 CD4+ T cells. These results support a role for DCs in triggering the immune response to the IV through a mechanism similar to the phagocyte response to PAMPs with a central role for C3 in protection against mycobacterial infection. Higher C3 levels may allow increased opsonophagocytosis and effective bacterial clearance, while interfering with CR3-mediated opsonic and nonopsonic phagocytosis of mycobacteria, a process that could be enhanced by specific antibodies against mycobacterial proteins induced by vaccination with the IV. These results suggest that the IV acts through novel mechanisms to protect against TB in wild boar.
Collapse
Affiliation(s)
| | - José de la Fuente
- SaBio IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Joseba M. Garrido
- NEIKER-Tecnalia, Animal Health Department, C/Berreaga 1, Derio, Bizkaia, Spain
| | - Alicia Aranaz
- Dept. Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Iker Sevilla
- NEIKER-Tecnalia, Animal Health Department, C/Berreaga 1, Derio, Bizkaia, Spain
| | | | | | - Ruth C. Galindo
- SaBio IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | | | | | | | | | | | | | | | - Esmeralda Minguijón
- NEIKER-Tecnalia, Animal Health Department, C/Berreaga 1, Derio, Bizkaia, Spain
| | - Beatriz Romero
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía de Juan
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucas Domínguez
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Ramón Juste
- NEIKER-Tecnalia, Animal Health Department, C/Berreaga 1, Derio, Bizkaia, Spain
| | | |
Collapse
|
18
|
Jayachandran R, BoseDasgupta S, Pieters J. Surviving the macrophage: tools and tricks employed by Mycobacterium tuberculosis. Curr Top Microbiol Immunol 2014; 374:189-209. [PMID: 23154833 DOI: 10.1007/82_2012_273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Mycobacterium tuberculosis has evolved to withstand one of the most inhospitable cells within the human body, namely the macrophage, a cell that is normally geared toward the destruction of any invading microbe. How M. tuberculosis achieves this is still incompletely understood; however, a number of mechanisms are now known that provide advantages to M. tuberculosis for its survival and proliferation inside the macrophage. While some of these mechanisms are mediated by factors released by M. tuberculosis, others rely on host components that are being hijacked to benefit survival of M. tuberculosis within the macrophage as well to avoid the generation of an effective immune response. Here, we describe several of these mechanisms, also pointing out the potential usage of this knowledge toward the development of novel strategies to treat tuberculosis. Furthermore, we attempt to put the 'macrophage niche' into context with other intracellular pathogens and discuss some of the generalities as well as specializations that M. tuberculosis employs to survive.
Collapse
Affiliation(s)
- Rajesh Jayachandran
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | | | | |
Collapse
|
19
|
Fuentes AL, Millis L, Vapenik J, Sigola L. Lipopolysaccharide-mediated enhancement of zymosan phagocytosis by RAW 264.7 macrophages is independent of opsonins, laminarin, mannan, and complement receptor 3. J Surg Res 2014; 189:304-12. [PMID: 24726062 DOI: 10.1016/j.jss.2014.03.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 11/27/2013] [Accepted: 03/11/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Fungal and bacterial coinfections are common in surgical settings; however, little is known about the effects of polymicrobial interactions on the cellular mechanisms involved in innate immune recognition and phagocytosis. MATERIALS AND METHODS Zymosan particles, cell wall derivatives of the yeast Saccharomyces cerevisiae, are used to model fungal interactions with host immune cells since they display carbohydrates, including beta-glucan, that are characteristic of fungal pathogens. Using in vitro cell culture, RAW 264.7 macrophages were challenged with zymosan, and phagocytosis determined via light microscopy. The effects of different concentrations of lipopolysaccharide (LPS) on zymosan phagocytosis were assessed. In addition, the transfer of supernatant from LPS-treated cells to naïve cells, the effects of soluble carbohydrates laminarin, mannan, or galactomannan, and the impact of complement receptor 3 (CR3) inhibition on phagocytosis were also determined. RESULTS LPS enhanced phagocytosis of zymosan in a dose-dependent manner. Transfer of supernatants from LPS-primed cells to naïve cells had no effect on phagocytosis. Laminarin inhibited zymosan phagocytosis in naïve cells but not in LPS-primed cells. Neither mannan, galactomannan, nor CR3 inhibition had a significant effect on ingestion of unopsonized zymosan in naïve or LPS-treated cells. CONCLUSIONS Zymosan recognition by naïve cells is inhibited by laminarin, but not mannan, galactomannan, or CR3 inhibition. LPS enhancement of phagocytosis is laminarin insensitive and not mediated by supernatant factors or zymosan engagement by the mannose or CR3 receptors. Our data suggest alternative mechanisms of zymosan recognition in the presence and absence of LPS.
Collapse
Affiliation(s)
- Ana-Lucía Fuentes
- Department of Natural Sciences, LaGuardia Community College, City University of New York, Long Island City, New York
| | - Leonard Millis
- Biology Department, Faculty of Science and Technology, New Westminster British Columbia, Canada
| | - Jacqueline Vapenik
- Nursing Department, Faculty of Health Sciences, Douglas College, New Westminster British Columbia, Canada
| | - Lynette Sigola
- Biology Department, Faculty of Science and Technology, New Westminster British Columbia, Canada.
| |
Collapse
|
20
|
Uptake of advanced glycation end products by proximal tubule epithelial cells via macropinocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2922-2932. [DOI: 10.1016/j.bbamcr.2013.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 05/15/2013] [Accepted: 05/28/2013] [Indexed: 11/15/2022]
|
21
|
Stanojević S, Kuštrimović N, Mitić K, Vujić V, Aleksić I, Dimitrijević M. Peritoneal mast cell degranulation differently affected thioglycollate-induced macrophage phenotype and activity in Dark Agouti and Albino Oxford rats. Life Sci 2013; 93:564-72. [PMID: 24002019 DOI: 10.1016/j.lfs.2013.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/20/2013] [Indexed: 11/15/2022]
Abstract
AIMS Macrophages are heterogeneous population of inflammatory cells and, in response to the microenvironment, become differentially activated. The objective of the study was to explore macrophage effector functions during different inflammatory conditions in two rat strains. MAIN METHODS We have investigated the effects of in vivo treatment with mast cell-degranulating compound 48/80 and/or thioglycollate on peritoneal macrophage phagocytosis and capacity to secrete hydrogen peroxide (H2O2), tumor necrosis factor-α (TNF-α) and nitric oxide (NO) in Dark Agouti (DA) and Albino Oxford (AO) rat strains. Besides, fresh peritoneal cells were examined for the expression of ED1, ED2 and CD86 molecules. KEY FINDINGS In thioglycollate-elicited macrophages, increased proportion of ED1+ cells was accompanied with elevated phagocytosis of zymosan (DA strain), whereas increased expression level of CD86 molecule on ED2+ macrophages matched elevated secretory capacity for H2O2, TNF-α and NO (AO rats). Although mast cell degranulation induced by compound 48/80 increased the percentages of ED2+ macrophages in both rat strains, the proportion of ED2+ cells expressing CD86 molecule was decreased and increased in DA and AO rats, respectively. Furthermore, in DA strain compound 48/80 diminished macrophage secretion of NO, but stimulated all macrophage functions tested in AO strain. If applied concomitantly, the compound 48/80 additively increased macrophage activity induced by thioglycollate in AO rats. SIGNIFICANCE Macrophages from DA and AO rat strains show different susceptibility to mediators released from mast cells, suggesting that strain-dependant predisposition(s) toward particular activation pattern is decisive for the macrophage efficacy in response to inflammatory agents.
Collapse
Affiliation(s)
- Stanislava Stanojević
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
22
|
Hawley KL, Martín-Ruiz I, Iglesias-Pedraz JM, Berwin B, Anguita J. CD14 targets complement receptor 3 to lipid rafts during phagocytosis of Borrelia burgdorferi. Int J Biol Sci 2013; 9:803-10. [PMID: 23983613 PMCID: PMC3753444 DOI: 10.7150/ijbs.7136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/03/2013] [Indexed: 12/03/2022] Open
Abstract
Phagocytosis of Borrelia burgdorferi, the causative agent of Lyme disease, is mediated partly by the interaction of the spirochete with Complement Receptor (CR) 3. CR3 requires the GPI-anchored protein, CD14, in order to efficiently internalize CR3-B. burgdorferi complexes. GPI-anchored proteins reside in cholesterol-rich membrane microdomains, and through its interaction with partner proteins, help initiate signaling cascades. Here, we investigated the role of CD14 on the internalization of B. burgdorferi mediated by CR3. We show that CR3 partly colocalizes with CD14 in lipid rafts. The use of the cholesterol-sequestering compound methyl-β-cyclodextran completely prevents the internalization of the spirochete in CHO cells that co-express CD14 and CR3, while no effect was observed in CD11b-deficient macrophages. These results show that lipid rafts are required for CR3-dependent, but not independent, phagocytosis of B. burgdorferi. Our results also suggest that CD14 interacts with the C-lectin domain of CR3, favoring the formation of multi-complexes that allow their internalization, and the use of β-glucan, a known ligand for the C-lectin domain of CR3, can compensate for the lack of CD14 in CHO cells that express CR3. These results provide evidence to understand the mechanisms that govern the interaction between CR3 and CD14 during the phagocytosis of B. burgdorferi.
Collapse
Affiliation(s)
- Kelly L Hawley
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | | | | | | | | |
Collapse
|
23
|
Jayachandran R, Scherr N, Pieters J. Elimination of intracellularly residing Mycobacterium tuberculosis through targeting of host and bacterial signaling mechanisms. Expert Rev Anti Infect Ther 2013; 10:1007-22. [PMID: 23106276 DOI: 10.1586/eri.12.95] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With more than 2 billion latently infected people, TB continues to represent a serious threat to human health. According to the WHO, 1.1 million people died from TB in 2010, which is equal to approximately 3000 deaths per day. The causative agent of the disease, Mycobacterium tuberculosis, is a highly successful pathogen having evolved remarkable strategies to persist within the host. Although normally, upon phagocytosis by macrophages, bacteria are readily eliminated by lysosomes, pathogenic mycobacteria actively prevent destruction within macrophages. The strategies that pathogenic mycobacteria apply range from releasing virulence factors to manipulating host molecules resulting in the modulation of host signal transduction pathways in order to sustain their viability within the infected host. Here, we analyze the current status of how a better understanding of both the bacterial and host factors involved in virulence can be used to develop drugs that may be helpful to curb the TB epidemic.
Collapse
Affiliation(s)
- Rajesh Jayachandran
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | |
Collapse
|
24
|
1,25-Dihydroxyvitamin D3 promotes a sustained LPS-induced NF-κB-dependent expression of CD55 in human monocytic THP-1 cells. PLoS One 2012; 7:e49318. [PMID: 23152895 PMCID: PMC3495912 DOI: 10.1371/journal.pone.0049318] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/10/2012] [Indexed: 01/05/2023] Open
Abstract
The vitamin D3 system imposes immunosuppressive effects on monocytic cells, in part, by inhibiting NF-κB-dependent expression of proinflammatory mediators. CD55, a cell surface complement regulatory protein that promotes protective and anti-inflammatory properties, is reportedly an NF-κB target gene transiently induced in monocytic cells by the bacterial endotoxin LPS. CD55 is elevated on white cells in women experiencing preterm labor (a pathophysiology commonly associated with bacterial infection) and failure to maintain CD55 was associated with subsequent preterm delivery. We examined the influence of vitamin D3 signaling on LPS-induced expression of CD55 in human monocytic THP-1 cells using quantitative PCR, immunoblot, immunohistochemistry, and NF-κB activation pathway inhibitors. Non-NF-κB targets CD14 and CD11b, which modulate bacterial surveillance and eradication, respectively, were also examined. LPS produced a rapid transient 1.6-fold increase in CD55 mRNA. 1,25-D3 alone did not affect CD55 mRNA expression within the first 48 h. However, in 1,25-D3 pretreated cells, LPS produced a >4-fold immediate and sustained increase in CD55 mRNA and protein expression, which was blocked by NF-κB inhibitors. Our results unexpectedly suggest that vitamin D3 signaling may promote an anti-inflammatory response through an NF-κB-dependent increase in CD55 expression. As expected, LPS or 1,25-D3 alone led to sustained increases in CD14 and CD11b expression. In 1,25-D3 pretreated cells, LPS differentially regulated protein expression - CD14 (21-fold increase) and CD11b (a transient 2-fold decrease) - principally at the posttranscriptional level. The coordinated temporal expression of CD55, CD14 and CD11b would contribute to an anti-inflammatory response by providing protection against complement-mediated cell lysis during pathogen recognition and eradication. Overall, the vitamin D3 system may play a role coordinating an anti-inflammatory response pattern of the host complement immune system. This may be particularly important when considering the high rates of preterm births in blacks, a population that exhibits reduced circulating vitamin D3 levels.
Collapse
|
25
|
Rocha SM, Cristovão AC, Campos FL, Fonseca CP, Baltazar G. Astrocyte-derived GDNF is a potent inhibitor of microglial activation. Neurobiol Dis 2012; 47:407-15. [DOI: 10.1016/j.nbd.2012.04.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 03/29/2012] [Accepted: 04/26/2012] [Indexed: 12/14/2022] Open
|
26
|
Mueller SC, März R, Schmolz M, Drewelow B. Intraindividual long term stability and response corridors of cytokines in healthy volunteers detected by a standardized whole-blood culture system for bed-side application. BMC Med Res Methodol 2012; 12:112. [PMID: 22853196 PMCID: PMC3494532 DOI: 10.1186/1471-2288-12-112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 06/27/2012] [Indexed: 11/10/2022] Open
Abstract
Background The variation of immune cell activities over time is an immanent property of the human immune system, as can be measured by the stimulated secretion of cytokines in cell cultures. However, inter-individual variability is considerably higher. Especially the latter is the major reason why it has not been possible to establish international standard values for cytokines as was possible for other parameters, such as leukocyte sub-population numbers. In this trial, a highly standardized whole-blood culture model (TrueCulture®), developed to characterise drug effects on cells of the human immune system in clinical trials, was used to analyse cytokine patterns in the blood samples of 12 healthy subjects over a period of one month. Methods After an overnight fast, 12 healthy subjects donated blood three times a week on three consecutive days over a period of 4 weeks. TruCulture® blood collection and whole-blood culture systems were used to measure whole-blood leukocyte stimulation. The levels of IL-2, IL-5, IL-13, IL-6, IL-8, IL-10, IFNγ, and MCP-1 in the culture supernatants were quantified by sandwich ELISA. Results The pattern of cytokine concentrations in the supernatants of the stimulated whole-blood cultures was highly individual, but considerably stable over the whole observation period of 4 weeks. Conclusions By using TruCulture® it seems feasible to determine subject-specific cytokine reference patterns, for example under healthy conditions, or before starting an experimental treatment, e.g. during a clinical trial, against which changes in the behaviour of the immune system can be detected more accurately in future.
Collapse
Affiliation(s)
- Silke C Mueller
- Institute for Clinical Pharmacology, Medical Faculty, University of Rostock, Schillingallee 70, 18057, Rostock, Germany.
| | | | | | | |
Collapse
|
27
|
CD14 cooperates with complement receptor 3 to mediate MyD88-independent phagocytosis of Borrelia burgdorferi. Proc Natl Acad Sci U S A 2012; 109:1228-32. [PMID: 22232682 DOI: 10.1073/pnas.1112078109] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Phagocytosis of Borrelia burgdorferi, the causative agent of Lyme disease, is a poorly understood process, despite its importance during the host immune response to infection. B. burgdorferi has been shown to bind to different receptors on the surface of phagocytic cells, including the β(2) integrin, complement receptor 3 (CR3). However, whether these receptors mediate the phagocytosis of the spirochete remains unknown. We now demonstrate that CR3 mediates the phagocytosis of the spirochete by murine macrophages and human monocytes. Interaction of B. burgdorferi with the integrin is not sufficient, however, to internalize the spirochete; phagocytosis requires the interaction of CR3 with the GPI-anchored protein, CD14, independently of TLR/MyD88-induced or inside-out signals. Interestingly, the absence of CR3 leads to marked increases in the production of TNF in vitro and in vivo, despite reduced spirochetal uptake. Furthermore, the absence of CR3 during infection with B. burgdorferi results in the inefficient control of bacterial burdens in the heart and increased Lyme carditis. Overall, our data identify CR3 as a MyD88-independent phagocytic receptor for B. burgdorferi that also participates in the modulation of the proinflammatory output of macrophages. These data also establish a unique mechanism of CR3-mediated phagocytosis that requires the direct cooperation of GPI-anchored proteins.
Collapse
|
28
|
Examination of trafficking of phagocytosed colloid particles in neutrophils using synchrotron-based X-ray fluorescence microscopy (XFM). J Biol Phys 2011; 37:493-506. [PMID: 22942490 DOI: 10.1007/s10867-011-9233-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 07/18/2011] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED Synchrotron-based X-ray fluorescence microscopy (XFM) can localise chemical elements at a subcellular level. 99mTechnetium stannous (TcSn) colloid is taken up by phagocytes via a Complement Receptor 3 mediated phagocytic process. In the current study, XFM was used to examine the intracellular trafficking of TcSn colloid in neutrophils. XFM was performed on TcSn colloid, and neutrophils labelled with TcSn colloid, in whole blood. We developed a set of pixel by pixel analysis and mapping techniques incorporating cluster analysis that allowed us to differentiate neutrophils and artefactual contaminants, and we examined the changes in element distribution that accompany neutrophil phagocytosis of TcSn colloid. Sn became associated with half the neutrophils. Within cells, Sn colocalised with iron (Fe) and sulphur (S), and was negatively associated with calcium (Ca). Despite the high sensitivity of XFM, Tc was not detected. XFM can help clarify the intracellular processes that accompany neutrophil phagocytosis. The subcellular colocalisation of Sn with Fe is consistent with fusion of the colloid-containing phagosome with neutrophil granules. The association of Sn with S suggests that proteins rich in S-containing amino acids are present in the phagosome. The negative colocalisation with Ca indicates that ongoing maturation of the TcSn colloid phagosome is no longer calcium dependent one hour after phagocytosis. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s10867-011-9233-9) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Elsori DH, Yakubenko VP, Roome T, Thiagarajan PS, Bhattacharjee A, Yadav SP, Cathcart MK. Protein kinase Cδ is a critical component of Dectin-1 signaling in primary human monocytes. J Leukoc Biol 2011; 90:599-611. [PMID: 21653233 DOI: 10.1189/jlb.0610376] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Zymosan, a mimic of fungal pathogens, and its opsonized form (ZOP) are potent stimulators of monocyte NADPH oxidase, resulting in the production of O(2)(.-), which is critical for host defense against fungal and bacterial pathogens and efficient immune responses; however, uncontrolled O(2)(.-) production may contribute to chronic inflammation and tissue injury. Our laboratory has focused on characterizing the signal transduction pathways that regulate NADPH oxidase activity in primary human monocytes. In this study, we examined the involvement of various pattern recognition receptors and found that Dectin-1 is the primary receptor for zymosan stimulation of O(2)(.-) via NADPH oxidase in human monocytes, whereas Dectin-1 and CR3 mediate the activation by ZOP. Further studies identified Syk and Src as important signaling components downstream of Dectin-1 and additionally identified PKCδ as a novel downstream signaling component for zymosan-induced O(2)(.-) as well as phagocytosis. Our results show that Syk and Src association with Dectin-1 is dependent on PKCδ activity and expression and demonstrate direct binding between Dectin-1 and PKCδ. Finally, our data show that PKCδ and Syk but not Src are required for Dectin-1-mediated phagocytosis. Taken together, our data identify Dectin-1 as the major PRR for zymosan in primary human monocytes and identify PKCδ as a novel downstream signaling kinase for Dectin-1-mediated regulation of monocyte NADPH oxidase and zymosan phagocytosis.
Collapse
|
30
|
Hajishengallis G, Lambris JD. Microbial manipulation of receptor crosstalk in innate immunity. Nat Rev Immunol 2011; 11:187-200. [PMID: 21350579 DOI: 10.1038/nri2918] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the arms race of host-microbe co-evolution, successful microbial pathogens have evolved ingenious ways to evade host immune responses. In this Review, we focus on 'crosstalk manipulation' - the microbial strategies that instigate, subvert or disrupt the molecular signalling crosstalk between receptors of the innate immune system. This proactive interference undermines host defences and contributes to microbial adaptive fitness and persistent infections. Understanding how pathogens exploit host receptor crosstalk mechanisms and infiltrate the host signalling network is essential for developing interventions to redirect the host response and achieve protective immunity.
Collapse
Affiliation(s)
- George Hajishengallis
- University of Louisville, Department of Microbiology and Immunology, Louisville, Kentucky 40292, USA.
| | | |
Collapse
|
31
|
El Azreq MA, Garceau V, Bourgoin SG. Cytohesin-1 regulates fMLF-mediated activation and functions of the β2 integrin Mac-1 in human neutrophils. J Leukoc Biol 2011; 89:823-36. [PMID: 21233413 DOI: 10.1189/jlb.0410222] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The nucleotide exchange factor cytohesin-1 was previously reported to interact with the cytoplasmic domains of the integrin β-chain common to all β(2) integrins such as LFA-1 and Mac-1. We show here that cytohesin-1, which contributes to fMLF-induced functional responses in PMNs through activation of Arf6, restrains the activation of the β(2) integrin Mac-1 (αMβ(2)) in PMNs or dcAMP-differentiated PLB-985 cells. We found that the cytohesin-1 inhibitor SecinH3 or siRNA increased cell adhesion to immobilized fibrinogen and fMLF-mediated conformational changes of Mac-1, monitored using mAb CBRM1/5, specific for the activation epitope of the αM subunit. In contrast, PLB-985 cells overexpressing cytohesin-1 showed little adhesion to fibrinogen. The use of SecinH3 and siRNA also revealed that interference with cytohesin-1 signaling also enhanced phagocytosis of zymosan particles and chemotaxis toward fMLF in transwell migration assays. These increments of phagocytosis and chemotaxis in cells treated with SecinH3 and cytohesin-1 siRNA were reversed by a blocking mAb to the integrin-αM subunit. We provide evidence for increased polymerized cortical actin in cells treated with SecinH3 and that altered signaling through cytohesin-1 increased cell surface expression of FPRL-1 and impairs the late calcium mobilization response elicited by fMLF. The data provide evidence that stimulation with fMLF initiates a signaling cascade that restrains Mac-1 activation in PMNs. Such crosstalk between FPRL-1 and Mac-1 involves cytohesin-1. We suggest that cytohesin-1 may coordinate activation of the β(2) integrins to regulate PMN adhesion, phagocytosis, and chemotaxis.
Collapse
Affiliation(s)
- Mohammed-Amine El Azreq
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ-CHUL, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | |
Collapse
|
32
|
Tabouret G, Astarie-Dequeker C, Demangel C, Malaga W, Constant P, Ray A, Honoré N, Bello NF, Perez E, Daffé M, Guilhot C. Mycobacterium leprae phenolglycolipid-1 expressed by engineered M. bovis BCG modulates early interaction with human phagocytes. PLoS Pathog 2010; 6:e1001159. [PMID: 20975946 PMCID: PMC2958813 DOI: 10.1371/journal.ppat.1001159] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 09/23/2010] [Indexed: 11/19/2022] Open
Abstract
The species-specific phenolic glycolipid 1 (PGL-1) is suspected to play a critical role in the pathogenesis of leprosy, a chronic disease of the skin and peripheral nerves caused by Mycobacterium leprae. Based on studies using the purified compound, PGL-1 was proposed to mediate the tropism of M. leprae for the nervous system and to modulate host immune responses. However, deciphering the biological function of this glycolipid has been hampered by the inability to grow M. leprae in vitro and to genetically engineer this bacterium. Here, we identified the M. leprae genes required for the biosynthesis of the species-specific saccharidic domain of PGL-1 and reprogrammed seven enzymatic steps in M. bovis BCG to make it synthesize and display PGL-1 in the context of an M. leprae-like cell envelope. This recombinant strain provides us with a unique tool to address the key questions of the contribution of PGL-1 in the infection process and to study the underlying molecular mechanisms. We found that PGL-1 production endowed recombinant BCG with an increased capacity to exploit complement receptor 3 (CR3) for efficient invasion of human macrophages and evasion of inflammatory responses. PGL-1 production also promoted bacterial uptake by human dendritic cells and dampened their infection-induced maturation. Our results therefore suggest that M. leprae produces PGL-1 for immune-silent invasion of host phagocytic cells.
Collapse
Affiliation(s)
- Guillaume Tabouret
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Catherine Astarie-Dequeker
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Caroline Demangel
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, Paris, France
| | - Wladimir Malaga
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Patricia Constant
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Aurélie Ray
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Nadine Honoré
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, Paris, France
| | - Nana Fatimath Bello
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Esther Perez
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Mamadou Daffé
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Christophe Guilhot
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| |
Collapse
|
33
|
Zhang J, Xia W, Liu P, Cheng Q, Tahirou T, Gu W, Li B. Chitosan modification and pharmaceutical/biomedical applications. Mar Drugs 2010; 8:1962-87. [PMID: 20714418 PMCID: PMC2920537 DOI: 10.3390/md8071962] [Citation(s) in RCA: 297] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 05/29/2010] [Accepted: 06/09/2010] [Indexed: 11/23/2022] Open
Abstract
Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Our recent efforts focused on the chemical and biological modification of chitosan in order to increase its solubility in aqueous solutions and absorbability in the in vivo system, thus for a better use of chitosan. This review summarizes chitosan modification and its pharmaceutical/biomedical applications based on our achievements as well as the domestic and overseas developments: (1) enzymatic preparation of low molecular weight chitosans/chitooligosaccharides with their hypocholesterolemic and immuno-modulating effects; (2) the effects of chitin, chitosan and their derivatives on blood hemostasis; and (3) synthesis of a non-toxic ion ligand--D-Glucosaminic acid from oxidation of D-Glucosamine for cancer and diabetes therapy.
Collapse
Affiliation(s)
- Jiali Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Medicine and Pharmaceutics, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ping Liu
- Jiangsu Animal Husbandry and Veterinary College, Taizhou 225300, Jiangsu, China
| | - Qinyuan Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Talba Tahirou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wenxiu Gu
- School of Chemical Engineering, Jiangnan University, Wuxi 214122, China
| | - Bo Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
34
|
Cristóvão AC, Saavedra A, Fonseca CP, Campos F, Duarte EP, Baltazar G. Microglia of rat ventral midbrain recovers its resting state over time in vitro: let microglia rest before work. J Neurosci Res 2010; 88:552-62. [PMID: 19739250 DOI: 10.1002/jnr.22219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cortical or total brain cultures of microglia are commonly used as a model to study the inflammatory processes in Parkinson's disease. Here we characterize microglia cultures from rat ventral midbrain and evaluate their response to zymosan A. We used specific markers of microglia and evaluated the morphology, the phagocytic activity and reactive oxygen species (ROS) levels of the cells. During the first 10 days in vitro (DIV), cultures presented predominantly cells with a round morphology, expressing CD68 and with high phagocytic activity and ROS production. After 13 DIV, this tendency was reversed, with cultures showing higher number of ramified cells and fewer CD68(+) cells along with lower phagocytic and ROS production capability, suggesting that microglia must be kept in vitro for at least 13 days to recover its resting state. The exposure of cultures with less than 10 DIV to zymosan A significantly decreased cell viability. Exposure of cultures with 13 DIV to zymosan A (0.05, 0.5, or 5 microg/ml) increased the total cell number, the percentage of CD68(+) cells, and the phagocytic activity. Concentrations of zymosan A higher than 5 microg/ml were also effective in activating microglia but significantly decreased the number of viable cells. In summary, microglial cells remain in the activated state for several days after the isolation process and, thus, stimulation of microglia recently isolated can compromise interpretation of the results. However, upon 13 DIV, cells achieve properties of nonactivated microglia and present a characteristic response to a proinflammatory agent.
Collapse
Affiliation(s)
- Ana Clara Cristóvão
- Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | | | | | | | | | | |
Collapse
|
35
|
Wei X, Wang Y, Xiao J, Xia W. Separation of chitooligosaccharides and the potent effects on gene expression of cell surface receptor CR3. Int J Biol Macromol 2009; 45:432-436. [PMID: 19635497 DOI: 10.1016/j.ijbiomac.2009.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 06/30/2009] [Accepted: 07/20/2009] [Indexed: 02/05/2023]
Abstract
Chitooligosaccharides were prepared through hydrolysis of colloidal chitosan by enzyme source from Aspergillusfumigatus BSF114. Chitosan pentamer (COS5) and chitosan hexamer (COS6) were isolated and purified from COS by the ultra-filtration, nano-filtration, ethanol precipitation and the CM-Sephadex C-25 column. COS5 consisted of (GlcN)4 (59.84%) and (GLcN)5 (40.16%). COS6, however, mainly consisted of (GLcN)6 (93.11%) and (GLcN)(5) (6.89%). Effects of COS5 and COS6 in vivo and in vitro on gene expression of cell surface CR3 receptor were investigated by relatively quantitative RT-PCR and ELISA. The results showed that the expression of CR3 mRNA could be promoted by both COS5 and COS6. The promotion effect caused by COS6 was greater than that of COS5.
Collapse
Affiliation(s)
- Xinlin Wei
- College of Life and Environment Science, Shanghai Normal University, Shanghai, China
| | | | | | | |
Collapse
|
36
|
Significance of glycosphingolipid fatty acid chain length on membrane microdomain-mediated signal transduction. FEBS Lett 2009; 584:1642-52. [DOI: 10.1016/j.febslet.2009.10.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 11/18/2022]
|
37
|
van Bruggen R, Drewniak A, Jansen M, van Houdt M, Roos D, Chapel H, Verhoeven AJ, Kuijpers TW. Complement receptor 3, not Dectin-1, is the major receptor on human neutrophils for beta-glucan-bearing particles. Mol Immunol 2009; 47:575-81. [PMID: 19811837 DOI: 10.1016/j.molimm.2009.09.018] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/04/2009] [Accepted: 09/06/2009] [Indexed: 01/13/2023]
Abstract
We investigated the role of the beta-glucan receptor, Dectin-1, in the response of human neutrophils to unopsonized Saccharomyces cerevisiae and its major beta-glucan-containing capsular constituent, zymosan. Although reported to be indispensable for yeast phagocytosis in murine phagocytes, human Dectin-1 was not involved in the phagocytosis of S. cerevisiae or zymosan by human neutrophils. Phagocytosis of yeast particles proved to be completely dependent on CD11b/CD18, also known as complement receptor 3 (CR3). The findings were supported by data with neutrophils from a patient suffering from Leukocyte-Adhesion Deficiency type-1 (LAD-1) syndrome lacking CD11b/CD18. In addition, neither the priming by zymosan of the fMLP-induced NADPH-oxidase activity in human neutrophils nor the secretion of IL-8 by human neutrophils in response to zymosan preparations was affected by blocking anti-Dectin-1 antibodies or laminarin as a monovalent inhibitor. As shown by neutrophils from an IRAK-4-deficient patient, the zymosan-induced IL-8 release was also independent of TLR2. In summary, our data show that Dectin-1, although indispensable for recognition of beta-glucan-bearing particles in mice, is not the major receptor for yeast particles in human neutrophils.
Collapse
Affiliation(s)
- Robin van Bruggen
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Beta-glucans are recognized by the innate immune system. This recognition plays important roles in host defense and presents specific opportunities for clinical modulation of the host immune response. Neutrophils, macrophages, and dendritic cells among others express several receptors capable of recognizing beta-glucan in its various forms. This review explores what is currently known about beta-glucan recognition and how this recognition stimulates immune responses. Special emphasis is placed on Dectin-1, as we know the most about how this key beta-glucan receptor translates recognition into intracellular signaling, stimulates cellular responses, and participates in orchestrating the adaptive immune response.
Collapse
Affiliation(s)
- Helen S Goodridge
- Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
39
|
Apoptosis and oxidative burst in neutrophils infected with Mycobacterium spp. Immunol Lett 2009; 126:16-21. [PMID: 19616580 DOI: 10.1016/j.imlet.2009.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 06/26/2009] [Accepted: 07/10/2009] [Indexed: 11/23/2022]
Abstract
Two of the better characterized antimicrobial mechanisms displayed by human neutrophils are the reactive oxygen species (ROS) production and the induction of apoptosis. Their importance in mycobacterial infections is, however, controversial and we aimed to analyze them simultaneously in neutrophils infected with either Mycobacterium tuberculosis or the non-pathogenic M. gordonae. Neither species is eliminated by neutrophils but the pattern exhibited for both activities is completely different. M. tuberculosis induces ROS production and apoptosis but M. gordonae does not. Additional evidence was provided by an attenuated strain of M. gordonae that, although it has become susceptible to the antimicrobial activity of neutrophils, it still does not promote ROS production or apoptosis. Therefore no relationship could be established between any of these activities and the ability of neutrophils to kill mycobacteria. We have also observed that neutrophil concentration, a variable that is important in the antimicrobial activity against other pathogens, has no influence in the mycobacterial intracellular growth.
Collapse
|
40
|
Tsolaki AG. Innate immune recognition in tuberculosis infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 653:185-97. [PMID: 19799120 DOI: 10.1007/978-1-4419-0901-5_13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this review, an overview of the host's innate immune response against Mycobacterium tuberculosis will be provided. In particular, M. tuberculosis interaction with Toll-like receptors (TLRs), lung surfactant proteins and the antimicrobial mechanisms in the macrophage will be discussed along with their importance in shaping adaptive immunity to tuberculosis infection.
Collapse
Affiliation(s)
- Anthony G Tsolaki
- Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge, London, UK.
| |
Collapse
|
41
|
Heinsbroek SEM, Taylor PR, Martinez FO, Martinez-Pomares L, Brown GD, Gordon S. Stage-specific sampling by pattern recognition receptors during Candida albicans phagocytosis. PLoS Pathog 2008; 4:e1000218. [PMID: 19043561 PMCID: PMC2583056 DOI: 10.1371/journal.ppat.1000218] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 10/28/2008] [Indexed: 11/18/2022] Open
Abstract
Candida albicans is a medically important pathogen, and recognition by innate immune cells is critical for its clearance. Although a number of pattern recognition receptors have been shown to be involved in recognition and phagocytosis of this fungus, the relative role of these receptors has not been formally examined. In this paper, we have investigated the contribution of the mannose receptor, Dectin-1, and complement receptor 3; and we have demonstrated that Dectin-1 is the main non-opsonic receptor involved in fungal uptake. However, both Dectin-1 and complement receptor 3 were found to accumulate at the site of uptake, while mannose receptor accumulated on C. albicans phagosomes at later stages. These results suggest a potential role for MR in phagosome sampling; and, accordingly, MR deficiency led to a reduction in TNF-α and MCP-1 production in response to C. albicans uptake. Our data suggest that pattern recognition receptors sample the fungal phagosome in a sequential fashion. Infection by Candida albicans has increased as a result of immunosuppression associated with AIDS and organ transplantation. We assessed the role of three pattern recognition receptors, namely Dectin-1 (a beta glucan receptor), the type 3 complement receptor (CR3), and the mannose receptor, in mediating uptake of this fungus. These receptors are known to recognize structures on the C. albicans cell wall, but their exact contribution to binding and uptake is still unclear. We show that only Dectin-1 plays a major role in binding and uptake of C. albicans. Furthermore, we are the first to find that these receptors sample the internalized particle in a sequential manner; intracellular mannose receptor is recruited later and is involved in secretion of immune modulators. These findings provide a better understanding of the innate immune mechanisms involved in protection against this medically important fungal pathogen.
Collapse
Affiliation(s)
| | - Philip R. Taylor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Fernando O. Martinez
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Gordon D. Brown
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Siamon Gordon
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Abe Y, Kuroda Y, Kuboki N, Matsushita M, Yokoyama N, Kojima N. Contribution of Complement Component C3 and Complement Receptor Type 3 to Carbohydrate-dependent Uptake of Oligomannose-coated Liposomes by Peritoneal Macrophages. J Biochem 2008; 144:563-70. [DOI: 10.1093/jb/mvn101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Hope JC, Villarreal-Ramos B. Bovine TB and the development of new vaccines. Comp Immunol Microbiol Infect Dis 2008; 31:77-100. [PMID: 17764740 DOI: 10.1016/j.cimid.2007.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2007] [Indexed: 11/20/2022]
Abstract
Bovine tuberculosis (bTB) is caused by Mycobacterium bovis. The incidence of bTB is increasing in cattle herds of developed countries that have a wild life reservoir of M. bovis, such as the UK, New Zealand and the USA. The increase in the incidence of bTB is thought to be due, at least in part, to a wildlife reservoir of M. bovis. M. bovis is also capable of infecting humans and on a worldwide basis, M. bovis is thought to account for up to 10% of cases of human TB [Cosivi O, Grange JM, Daborn CJ et al. Zoonotic tuberculosis due to Mycobacterium bovis in developing countries. Emerg Infect Dis 1998;4(1):59-70]. Thus, the increased incidence of bTB, besides being a major economic problem, poses an increased risk to human health. In the UK, the incidence of bTB continues to rise despite the use of the tuberculin test and slaughter control policy, highlighting the need for improved control strategies. Vaccination of cattle, in combination with more specific and sensitive diagnostic tests, is suggested as the most effective strategy for bovine TB control. The only vaccine currently available for human and bovine TB is the live attenuated Bacille Calmette Guerin (BCG). BCG is thought to confer protection through the induction of Th1 responses against mycobacteria. However, protection against TB conferred by BCG is variable and to this date the reasons for the successes and failures of BCG are not clear. Therefore, there is a need to develop vaccines that confer greater and more consistent protection against bTB than that afforded by BCG. Given that BCG is currently the only licensed vaccine against human TB, it is likely that any new vaccine or vaccination strategy will be based around BCG. In this review we discuss immune responses elicited by mycobacteria in cattle and the novel approaches emerging for the control of bovine TB based on our increasing knowledge of protective immune responses.
Collapse
Affiliation(s)
- Jayne C Hope
- Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, UK.
| | | |
Collapse
|
44
|
Nakayama H. Role of lactosylceramide-enriched membrane microdomains in CD11b/CD18-mediated neutrophil phagocytosis. TRENDS GLYCOSCI GLYC 2008. [DOI: 10.4052/tigg.20.259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Nakayama H, Yoshizaki F, Prinetti A, Sonnino S, Mauri L, Takamori K, Ogawa H, Iwabuchi K. Lyn-coupled LacCer-enriched lipid rafts are required for CD11b/CD18-mediated neutrophil phagocytosis of nonopsonized microorganisms. J Leukoc Biol 2007; 83:728-41. [DOI: 10.1189/jlb.0707478] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
46
|
Pei Z, Pang H, Qian L, Yang S, Wang T, Zhang W, Wu X, Dallas S, Wilson B, Reece JM, Miller DS, Hong JS, Block ML. MAC1 mediates LPS-induced production of superoxide by microglia: the role of pattern recognition receptors in dopaminergic neurotoxicity. Glia 2007; 55:1362-73. [PMID: 17654704 DOI: 10.1002/glia.20545] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Microglia-derived superoxide is critical for the inflammation-induced selective loss of dopaminergic (DA) neurons, but the underlying mechanisms of microglial activation remain poorly defined. Using neuron-glia and microglia-enriched cultures from mice deficient in the MAC1 receptor (MAC1-/-), we demonstrate that lipopolysaccharide (LPS) treatment results in lower TNFalpha response, attenuated loss of DA neurons, and absence of extracellular superoxide production in MAC1-/- cultures. Microglia accumulated fluorescently labeled LPS in punctate compartments associated with the plasma membrane, intracellular vesicles, and the Golgi apparatus. Cytochalasin D (CD), an inhibitor of phagocytosis, blocked LPS internalization. However, microglia derived from Toll-like receptor 4 deficient mice and MAC1-/- mice failed to show a significant decrease in intracellular accumulation of labeled LPS, when compared with controls. Pretreatment with the scavenger receptor inhibitor, fucoidan, inhibited 79% of LPS accumulation in microglia without affecting superoxide, indicating that LPS internalization and superoxide production are mediated by separate phagocytosis receptors. Together, these data demonstrate that MAC1 is essential for LPS-induced superoxide from microglia, implicating MAC1 as a critical trigger of microglial-derived oxidative stress during inflammation-mediated neurodegeneration.
Collapse
Affiliation(s)
- Zhong Pei
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lee JS, Nauseef WM, Moeenrezakhanlou A, Sly LM, Noubir S, Leidal KG, Schlomann JM, Krystal G, Reiner NE. Monocyte p110alpha phosphatidylinositol 3-kinase regulates phagocytosis, the phagocyte oxidase, and cytokine production. J Leukoc Biol 2007; 81:1548-61. [PMID: 17369495 DOI: 10.1189/jlb.0906564] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mononuclear phagocytes are critical modulators and effectors of innate and adaptive immune responses, and PI-3Ks have been shown to be multifunctional monocyte regulators. The PI-3K family includes eight catalytic isoforms, and only limited information is available about how these contribute to fine specificity in monocyte cell regulation. We examined the regulation of phagocytosis, the phagocyte oxidative burst, and LPS-induced cytokine production by human monocytic cells deficient in p110alpha PI-3K. We observed that p110alpha PI-3K was required for phagocytosis of IgG-opsonized and nonopsonized zymosan in differentiated THP-1 cells, and the latter was inhibitable by mannose. In contrast, p110alpha PI-3K was not required for ingestion serum-opsonized zymosan. Taken together, these results suggest that FcgammaR- and mannose receptor-mediated phagocytosis are p110alpha-dependent, whereas CR3-mediated phagocytosis involves a distinct isoform. It is notable that the phagocyte oxidative burst induced in response to PMA or opsonized zymosan was also found to be dependent on p110alpha in THP-1 cells. Furthermore, p110alpha was observed to exert selective and bidirectional effects on the secretion of pivotal cytokines. Incubation of p110alpha-deficient THP-1 cells with LPS showed that p110alpha was required for IL-12p40 and IL-6 production, whereas it negatively regulated the production of TNF-alpha and IL-10. Cells deficient in p110alpha also exhibited enhanced p38 MAPK, JNK, and NF-kappaB phosphorylation. Thus, p110alpha PI-3K appears to uniquely regulate important monocyte functions, where other PI-3K isoforms are uninvolved or unable to fully compensate.
Collapse
Affiliation(s)
- Jimmy S Lee
- Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia, Rm. 452D, 2733 Heather St., Vancouver, BC, Canada, V5Z 3J5
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Stanojević S, Mitić K, Vujić V, Kovacević-Jovanović V, Dimitrijević M. Exposure to acute physical and psychological stress alters the response of rat macrophages to corticosterone, neuropeptide Y and beta-endorphin. Stress 2007; 10:65-73. [PMID: 17454968 DOI: 10.1080/10253890601181289] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The objective of the present study was to investigate the effect of acute exposure to electric tail shock stress (ES) and a stress witnessing procedure (SW), as models for physical and psychological stress paradigms, respectively on adherence, phagocytosis and hydrogen peroxide (H(2)O(2)) release from rat peritoneal macrophages. In addition, we studied the in vitro effects of corticosterone (CORT), neuropeptide Y (NPY) and beta-endorphin (BE) on adherence, phagocytosis and H(2)O(2) release from macrophages isolated from control rats and from rats that had been exposed to ES or SW procedures 24 h earlier. ES and SW comparably diminished phagocytosis and H(2)O(2) release, but did not influence macrophage adherence. In vitro treatment with CORT and NPY notably suppressed phagocytosis and potentiated H(2)O(2) release from macrophages. BE suppressed both phagocytosis and H(2)O(2) release from macrophages. Previous exposure to ES and SW altered the responsiveness of the isolated macrophages to their in vitro treatment with mediators of stress, making the cells less sensitive to the influence of CORT and NPY and to a lesser extent to BE. It could be concluded that changes in the local macrophage milieu induced by ES and SW 24 h earlier modify macrophage responses to subsequent in vitro exposure to the stress mimics, CORT, NPY and BE.
Collapse
MESH Headings
- Acute Disease
- Animals
- Cell Adhesion/drug effects
- Cells, Cultured
- Corticosterone/pharmacology
- Electroshock
- Hydrogen Peroxide/metabolism
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Male
- Neuropeptide Y/pharmacology
- Phagocytosis/drug effects
- Rats
- Rats, Inbred Strains
- Stress, Physiological/etiology
- Stress, Physiological/pathology
- Stress, Physiological/physiopathology
- Stress, Psychological/etiology
- Stress, Psychological/pathology
- Stress, Psychological/physiopathology
- Tail
- beta-Endorphin/pharmacology
Collapse
Affiliation(s)
- Stanislava Stanojević
- Institute of Immunology and Virology Torlak, Immunology Research Centre Branislav Jankovic, Vojvode Stepe 458, Belgrade, Serbia.
| | | | | | | | | |
Collapse
|
49
|
Lavigne LM, Albina JE, Reichner JS. Beta-glucan is a fungal determinant for adhesion-dependent human neutrophil functions. THE JOURNAL OF IMMUNOLOGY 2007; 177:8667-75. [PMID: 17142767 DOI: 10.4049/jimmunol.177.12.8667] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Candida albicans is a common cause of nosocomial infections whose virulence depends on the reversible switch from blastoconidia to hyphal forms. Neutrophils (or polymorphonuclear leukocytes (PMNs)) readily clear blastoconidia by phagocytosis, but filaments are too long to be ingested. Mechanisms regulating immune recognition and response to filamentous fungal pathogens are not well understood, although known risk factors for developing life-threatening infections are neutropenia or defects in the NADPH oxidase system. We show human PMNs generate a respiratory burst response to unopsonized hyphae. Ab specific for beta-glucan, a major component of yeast cell walls, blocks this response, establishing beta-glucan as a key molecular pattern recognized by PMNs in response to C. albicans. This study also elucidates recognition and signaling mechanisms used by PMNs in response to beta-glucan under conditions where phagocytosis cannot occur. Human PMNs adhered to immobilized beta-glucan and released an efficient plasma membrane respiratory burst. Ab blockade of the integrin complement receptor 3 (CD11b/CD18) significantly inhibited both of these functions. Furthermore, we show a role for p38 MAPK and actin but not protein kinase C zeta in generating the respiratory burst to beta-glucan. Taken together, results show that beta-glucan in C. albicans hyphae is accessible to PMNs and sufficient to support an innate immune response.
Collapse
Affiliation(s)
- Liz M Lavigne
- Department of Surgery, Division of Surgical Research, Rhode Island Hospital and Brown University School of Medicine, 593 Eddy Street, Providence, RI 02903, USA
| | | | | |
Collapse
|
50
|
Abstract
Leishmania are digenetic protozoan parasites that are inoculated into the skin by vector sand flies, are taken up by macrophages, and produce a spectrum of chronic diseases in their natural reservoir and susceptible human hosts. During the early establishment of infection in the skin and lymphoid organs, Leishmania produce multiple effects on macrophage and dendritic cell functions that inhibit their innate anti-microbial defenses and impair their capacity to initiate T-helper 1 cell immunity. In addition, the skin is a site preconditioned for early parasite survival by virtue of a high frequency of steady-state, natural CD25+Foxp3+ regulatory T cells (Tregs) that function to suppress the generation of unneeded immune responses to infectious and non-infectious antigens to which the skin is regularly exposed. In murine models of infection, antigen-induced CD25+/-Foxp3-interleukin (IL)-10+ Treg cells act during the effector phase of the immune response to control immunopathology and may also delay or prevent healing. Finally, following resolution of infection in healed mice, CD25+Foxp3+ Tregs function in an IL-10-dependent manner to prevent sterile cure and establish a long-term state of functional immune privilege in the skin.
Collapse
Affiliation(s)
- Nathan Peters
- Laboratory of Parasitic Diseases, NIAID, Bethesda, MD 20892-0425, USA
| | | |
Collapse
|