1
|
Gómez-Chávez JDJ, Pico-Rodríguez JT, Juárez-Ramírez M, Martínez-Jarquín H, Martínez-Chavarría LC. SirA, CsrBC and HilD form in vivo a regulatory cascade that controls the SP1-1 and SPI-2 gene expression when Salmonella Typhimurium is in the intestinal lumen and are required for cecal colonization and liver dissemination in the avian model. Arch Microbiol 2025; 207:108. [PMID: 40169403 PMCID: PMC11961532 DOI: 10.1007/s00203-025-04305-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 04/03/2025]
Abstract
When Salmonella Typhimurium grows in LB in vitro, BarA/SirA system induces the expression of CsrB/C, that sequester the regulator CsrA, thus derepressing HilD regulator. HilD activated induces HilA and SsrB expression, central regulators of SPI-1 and SPI-2, respectively. We analyze the in vivo contribution of these genes in 1-day- and 1-week-old chickens infected with a Wild Type strain of S. Typhimurium and the ΔsirA, ΔcsrB/C and ΔhilD mutants. CFUs determination in liver and cecum showed that the mutants colonized both organs in lower amounts compared with WT strain in both chicken models and they were affected in the ability to produce histological injuries in these organs. We analyzed whether these genes operate in cascade in vivo and prior to intestinal invasion, by analyzing hilA, ssrAB, hilD, csrB and sirA expression in the cecal contents of chickens inoculated with Wild Type and mutants 120 min after inoculation. Expression of hilA and ssrB, but not csrB and sirA, was decreased in ΔhilD strain. Expression of hilD, hilA and ssrB, but not sirA, was decreased in samples of ΔcsrB/C. In SirA absence, expression of all genes was decreased. Our findings demonstrate that SirA, CsrB/C and HilD conform a regulatory cascade in vivo, when Salmonella is in intestinal lumen and this cascade controls the expression of HilA and SsrB prior to intestinal invasion. We also demonstrate that these genes are necessary for the production of lesions during S. Typhimurium infection in chickens.
Collapse
Affiliation(s)
- José de Jesús Gómez-Chávez
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, 04510, México
| | - Jwerlly Tatiana Pico-Rodríguez
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, 04510, México
| | - Mireya Juárez-Ramírez
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, 04510, México
| | - Hugo Martínez-Jarquín
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, 04510, México
| | - Luary C Martínez-Chavarría
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, 04510, México.
| |
Collapse
|
2
|
Liu X, Wang C, Gai W, Sun Z, Fang L, Hua Z. Critical role of msgA in invasive capacity and intracellular survivability of Salmonella. Appl Environ Microbiol 2024; 90:e0020124. [PMID: 39136487 PMCID: PMC11409701 DOI: 10.1128/aem.00201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/04/2024] [Indexed: 09/19/2024] Open
Abstract
Salmonella enterica serovar Typhimurium, which is a common foodborne pathogen, causes both intestinal and systemic infections in hosts. Salmonella has a complex pathogenic mechanism that involves invasive capacity and intracellular survivability, which hampers research on virulence of Salmonella. The virulence of Salmonella is primarily studied through Salmonella pathogenicity islands (SPIs). However, there are also genes outside these SPIs that significantly impact virulence. Macrophage survival gene msgA is positioned at a region independent of the SPIs and conserved in Salmonella. However, there has been limited research on msgA to date. This study aims to investigate the virulent function of msgA to deepen our understanding of Salmonella virulence. Proteomic and RT-qPCR analyses reveal that MsgA influences multiple metabolic pathways and the expression of SPIs. The depletion of msgA led to the significantly reduced invasive capacity and intracellular survivability, and thus the decreased virulence of Salmonella. In conclusion, our study suggests that MsgA is an important regulator that mainly regulates virulence. Further research into the function of MsgA will enhance the understanding of Salmonella pathogenesis and promote the application of Salmonella for medical treatment. IMPORTANCE Salmonella enterica serovar Typhimurium is a common foodborne pathogen, it has a complex pathogenic mechanism that involves invasive capacity and intracellular survivability. The virulence of Salmonella is primarily studied through its pathogenicity islands. In contrast, virulence genes located outside the Salmonella pathogenicity islands (SPIs) have received less attention. Macrophage survival gene (MsgA) is positioned at a region independent of the SPIs and conserved in Salmonella. Our research indicates that MsgA is a novel global regulator influencing the metabolic pathways and SPIs. Further research into the function of MsgA will enhance the understanding of Salmonella pathogenesis and promote the application of Salmonella for medical treatment.
Collapse
Affiliation(s)
- Xinqi Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chengzhi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Wenhua Gai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhaotong Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lei Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Zichun Hua
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc, Changzhou, China
| |
Collapse
|
3
|
Borkar SB, Negi M, Acharya TR, Lamichhane P, Kaushik N, Choi EH, Kaushik NK. Mitigation of T3SS-mediated virulence in waterborne pathogenic bacteria by multi-electrode cylindrical-DBD plasma-generated nitric oxide water. CHEMOSPHERE 2024; 350:140997. [PMID: 38128737 DOI: 10.1016/j.chemosphere.2023.140997] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
S. enterica, S. flexneri, and V. parahaemolyticus bacteria are globally recognized to cause severe diarrheal diseases, consisting of Type III Secretion System (T3SS) effectors that help in bacterial infection and virulence in host cells. This study investigates the properties of multi-electrode cylindrical DBD plasma-generated nitric oxide water (MCDBD-PG-NOW) treatment on the survival and virulence of S. enterica, S. flexneri, and V. parahaemolyticus bacteria. The Colony Forming Unit (CFU) assay, live/dead cell staining, lipid peroxidation assay, and bacteria morphological analysis showed substantial growth inhibition of bacteria. Moreover, to confirm the interaction of reactive nitrogen species (RNS) with bacterial membrane biotin switch assay, DAF-FM, and FTIR analysis were carried out, which established the formation of S-nitrosothiols in the cell membrane, intracellular accumulation of RNS, and changes in the cell composition post-PG-NOW treatment. Furthermore, the conventional culture-based method and a quantitative PCR using propidium monoazide showed minimal VBNC induction under similar condition. The efficiency of bacteria to adhere to mammalian colon cells was significantly reduced. In addition, the infection rate was also controlled by disrupting the virulent genes, leading to the collapse of the infection mechanism. This study provides insights into whether RNS generated from PG-NOW might be beneficial for preventing diarrheal infections.
Collapse
Affiliation(s)
- Shweta B Borkar
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Manorma Negi
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Tirtha Raj Acharya
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Prajwal Lamichhane
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, South Korea.
| | - Eun Ha Choi
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea.
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea.
| |
Collapse
|
4
|
Cruz E, Haeberle AL, Westerman TL, Durham ME, Suyemoto MM, Knodler LA, Elfenbein JR. Nonredundant Dimethyl Sulfoxide Reductases Influence Salmonella enterica Serotype Typhimurium Anaerobic Growth and Virulence. Infect Immun 2023; 91:e0057822. [PMID: 36722978 PMCID: PMC9933680 DOI: 10.1128/iai.00578-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
Facultative anaerobic enteric pathogens can utilize a diverse array of alternate electron acceptors to support anaerobic metabolism and thrive in the hypoxic conditions within the mammalian gut. Dimethyl sulfoxide (DMSO) is produced by methionine catabolism and can act as an alternate electron acceptor to support anaerobic respiration. The DMSO reductase complex consists of three subunits, DmsA, DmsB, and DmsC, and allows bacteria to grow anaerobically with DMSO as an electron acceptor. The genomes of nontyphoidal Salmonella enterica encode three putative dmsABC operons, but the impact of the apparent genetic redundancy in DMSO reduction on the fitness of nontyphoidal S. enterica during infection remains unknown. We hypothesized that DMSO reduction would be needed for S. enterica serotype Typhimurium to colonize the mammalian gut. We demonstrate that an S. Typhimurium mutant with loss of function in all three putative DMSO reductases (ΔdmsA3) poorly colonizes the mammalian intestine when the microbiota is intact and when inflammation is absent. DMSO reduction enhances anaerobic growth through nonredundant contributions of two of the DMSO reductases. Furthermore, DMSO reduction influences virulence by increasing expression of the type 3 secretion system 2 and reducing expression of the type 3 secretion system 1. Collectively, our data demonstrate that the DMSO reductases of S. Typhimurium are functionally nonredundant and suggest DMSO is a physiologically relevant electron acceptor that supports S. enterica fitness in the gut.
Collapse
Affiliation(s)
- E. Cruz
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - A. L. Haeberle
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - T. L. Westerman
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - M. E. Durham
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - M. M. Suyemoto
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - L. A. Knodler
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - J. R. Elfenbein
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Dos Santos AMP, Ferrari RG, Panzenhagen P, Rodrigues GL, Conte-Junior CA. Virulence genes identification and characterization revealed the presence of the Yersinia High Pathogenicity Island (HPI) in Salmonella from Brazil. Gene 2021; 787:145646. [PMID: 33848574 DOI: 10.1016/j.gene.2021.145646] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 11/30/2022]
Abstract
Salmonella spp. is one of the major agents of foodborne disease worldwide, and its virulence genes are responsible for the main pathogenic mechanisms of this micro-organism. The whole-genome sequencing (WGS) of pathogens has become a lower-cost and more accessible genotyping tool providing many gene analysis possibilities. This study provided an in silico investigation of 129 virulence genes, including plasmidial and bacteriophage genes from Brazilian strains' public Salmonella genomes. The frequency analysis of the four most sequenced serovars and a temporal analysis over the past four decades was also performed. The NCBI sequence reads archive (SRA) database comprised 1077 Salmonella public whole-genome sequences of strains isolated in Brazil between 1968 and 2018. Among the 1077 genomes, 775 passed in Salmonella in silico Typing (SISTR) quality control, which also identified 41 different serovars in which the four most prevalent were S. Enteritidis, S. Typhimurium, S. Dublin, and S. Heidelberg. Among these, S. Heidelberg presented the most distinct virulence profile, besides presenting Yersinia High Pathogenicity Island (HPI), rare and first reported in Salmonella from Brazil. The genes mgtC, csgC, ssaI and ssaS were the most prevalent within the 775 genomes with more than 99% prevalence. On the other hand, the less frequent genes were astA, iucBCD, tptC and shdA, with less than 1% frequency. All of the plasmids and bacteriophages virulence genes presented a decreasing trend between the 2000 s and 2010 s decades, except for the phage gene grvA, which increased in this period. This study provides insights into Salmonella virulence genes distribution in Brazil using freely available bioinformatics tools. This approach could guide in vivo and in vitro studies besides being an interesting method for the investigation and surveillance of Salmonella virulence. Moreover, here we propose the genes mgtC, csgC, ssaI and ssaS as additional targets for PCR identification of Salmonella in Brazil due to their very high frequency in the studied genomes.
Collapse
Affiliation(s)
- Anamaria M P Dos Santos
- Molecular & Analytical Laboratory Center, Faculty of Veterinary, Department of Food Technology, Universidade Federal Fluminense, Niterói, Brazil; Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Center for Food Analysis (NAL-LADETEC), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafaela G Ferrari
- Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil.
| | - Pedro Panzenhagen
- Molecular & Analytical Laboratory Center, Faculty of Veterinary, Department of Food Technology, Universidade Federal Fluminense, Niterói, Brazil; Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Center for Food Analysis (NAL-LADETEC), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Grazielle L Rodrigues
- Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Center for Food Analysis (NAL-LADETEC), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Conte-Junior
- Molecular & Analytical Laboratory Center, Faculty of Veterinary, Department of Food Technology, Universidade Federal Fluminense, Niterói, Brazil; Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Center for Food Analysis (NAL-LADETEC), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Vohra P, Vrettou C, Hope JC, Hopkins J, Stevens MP. Nature and consequences of interactions between Salmonella enterica serovar Dublin and host cells in cattle. Vet Res 2019; 50:99. [PMID: 31771636 PMCID: PMC6880441 DOI: 10.1186/s13567-019-0720-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/27/2019] [Indexed: 01/14/2023] Open
Abstract
Salmonella enterica is a veterinary and zoonotic pathogen of global importance. While murine and cell-based models of infection have provided considerable knowledge about the molecular basis of virulence of Salmonella, relatively little is known about salmonellosis in naturally-affected large animal hosts such as cattle, which are a reservoir of human salmonellosis. As in humans, Salmonella causes bovine disease ranging from self-limiting enteritis to systemic typhoid-like disease and exerts significant economic and welfare costs. Understanding the nature and consequences of Salmonella interactions with bovine cells will inform the design of effective vaccines and interventions to control animal and zoonotic infections. In calves challenged orally with S. Dublin expressing green fluorescent protein (GFP) we observed that the bacteria were predominantly extracellular in the distal ileal mucosa and within gut-associated lymph nodes 48 h post-infection. Intracellular bacteria, identified by flow cytometry using the GFP signal, were predominantly within MHCII+ macrophage-like cells. In contrast to observations from murine models, these S. Dublin-infected cells had elevated levels of MHCII and CD40 compared to both uninfected cells from the same tissue and cells from the cognate tissue of uninfected animals. Moreover, no gross changes of the architecture of infected lymph nodes were observed as was described previously in a mouse model. In order to further investigate Salmonella-macrophage interactions, net replication of S. enterica serovars that differ in virulence in cattle was measured in bovine blood-derived macrophages by enumeration of gentamicin-protected bacteria and fluorescence dilution, but did not correlate with host-specificity.
Collapse
Affiliation(s)
- Prerna Vohra
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK.
| | - Christina Vrettou
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Jayne C Hope
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - John Hopkins
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Mark P Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| |
Collapse
|
7
|
SlyA and HilD Counteract H-NS-Mediated Repression on the ssrAB Virulence Operon of Salmonella enterica Serovar Typhimurium and Thus Promote Its Activation by OmpR. J Bacteriol 2019; 201:JB.00530-18. [PMID: 30718301 DOI: 10.1128/jb.00530-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/26/2019] [Indexed: 02/03/2023] Open
Abstract
H-NS-mediated repression of acquired genes and the subsequent adaptation of regulatory mechanisms that counteract this repression have played a central role in the Salmonella pathogenicity evolution. The Salmonella pathogenicity island 2 (SPI-2) is an acquired chromosomal region containing genes necessary for Salmonella enterica to colonize and replicate in different niches of hosts. The ssrAB operon, located in SPI-2, encodes the two-component system SsrA-SsrB, which positively controls the expression of the SPI-2 genes but also other many genes located outside SPI-2. Several regulators have been involved in the expression of ssrAB, such as the ancestral regulators SlyA and OmpR, and the acquired regulator HilD. In this study, we show how SlyA, HilD, and OmpR coordinate to induce the expression of ssrAB under different growth conditions. We found that when Salmonella enterica serovar Typhimurium is grown in nutrient-rich lysogeny broth (LB), SlyA and HilD additively counteract H-NS-mediated repression on ssrAB, whereas in N-minimal medium (N-MM), SlyA antagonizes H-NS-mediated repression on ssrAB independently of HilD. Interestingly, our results indicate that OmpR is required for the expression of ssrAB independently of the growth conditions, even in the absence of repression by H-NS. Therefore, our data support two mechanisms adapted for the expression of ssrAB under different growth conditions. One involves the additive action of SlyA and HilD, whereas the other involves SlyA, but not HilD, to counteract H-NS-mediated repression on ssrAB, thus favoring in both cases the activation of ssrAB by OmpR.IMPORTANCE The global regulator H-NS represses the expression of acquired genes and thus avoids possible detrimental effects on bacterial fitness. Regulatory mechanisms are adapted to induce expression of the acquired genes in particular niches to obtain a benefit from the information encoded in the foreign DNA, as for pathogenesis. Here, we show two mechanisms that were integrated for the expression of virulence genes in Salmonella Typhimurium. One involves the additive action of the regulators SlyA and HilD, whereas the other involves SlyA, but not HilD, to counteract H-NS-mediated repression on the ssrAB operon, thus favoring its activation by the OmpR regulator. To our knowledge, this is the first report involving the coordinated action of two regulators to counteract H-NS-mediated repression.
Collapse
|
8
|
Vohra P, Chaudhuri RR, Mayho M, Vrettou C, Chintoan-Uta C, Thomson NR, Hope JC, Hopkins J, Stevens MP. Retrospective application of transposon-directed insertion-site sequencing to investigate niche-specific virulence of Salmonella Typhimurium in cattle. BMC Genomics 2019; 20:20. [PMID: 30621582 PMCID: PMC6325888 DOI: 10.1186/s12864-018-5319-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/27/2018] [Indexed: 01/05/2023] Open
Abstract
Background Salmonella enterica subspecies enterica is an animal and zoonotic pathogen of global importance. Cattle are a significant reservoir of human non-typhoidal salmonellosis and can suffer enteric and systemic disease owing to the ability of Salmonella to survive within the bovine lymphatic system and intestines. Contamination of food can occur due to the incorporation of contaminated peripheral lymph nodes or by direct contamination of carcasses with gut contents. It is essential to understand the mechanisms used by Salmonella to enter and persist within the bovine lymphatic system and how they differ from those required for intestinal colonization to minimize zoonotic infections. Results Transposon-directed insertion site sequencing (TraDIS) was applied to pools of mutants recovered from mesenteric lymph nodes (MLNs) draining the distal ileum of calves after oral inoculation with a library of 8550 random S. Typhimurium mini-Tn5Km2 mutants in pools of 475 mutants per calf. A total of 8315 mutants representing 2852 different genes were detected in MLNs and their in vivo fitness was calculated. Using the same improved algorithm for analysis of transposon-flanking sequences, the identity and phenotype of mutants recovered from the distal ileal mucosa of the same calves was also defined, enabling comparison with previously published data and of mutant phenotypes across the tissues. Phenotypes observed for the majority of mutants were highly significantly correlated in the two tissues. However, 32 genes were identified in which transposon insertions consistently resulted in differential fitness in the ileal wall and MLNs, suggesting niche-specific roles for these genes in pathogenesis. Defined null mutations affecting ptsN and spvC were confirmed to result in tissue-specific phenotypes in calves, thus validating the TraDIS dataset. Conclusions This validation of the role of thousands of Salmonella genes and identification of genes with niche-specific roles in a key target species will inform the design of control strategies for bovine salmonellosis and zoonotic infections, for which efficacious and cross-protective vaccines are currently lacking. Electronic supplementary material The online version of this article (10.1186/s12864-018-5319-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Prerna Vohra
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK.
| | - Roy R Chaudhuri
- Department of Molecular Biology and Biotechnology, University of Sheffield, S10 2TN, Sheffield, UK
| | - Matthew Mayho
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Christina Vrettou
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Cosmin Chintoan-Uta
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | | | - Jayne C Hope
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - John Hopkins
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Mark P Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| |
Collapse
|
9
|
Bierschenk D, Monteleone M, Moghaddas F, Baker PJ, Masters SL, Boucher D, Schroder K. The
Salmonella
pathogenicity island‐2 subverts human NLRP3 and NLRC4 inflammasome responses. J Leukoc Biol 2018; 105:401-410. [DOI: 10.1002/jlb.ma0318-112rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 01/02/2023] Open
Affiliation(s)
- Damien Bierschenk
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research The University of Queensland Brisbane Queensland Australia
| | - Mercedes Monteleone
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research The University of Queensland Brisbane Queensland Australia
| | - Fiona Moghaddas
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Melbourne Victoria Australia
- Department of Medical Biology The University of Melbourne Melbourne Victoria Australia
| | - Paul J. Baker
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Melbourne Victoria Australia
- Department of Medical Biology The University of Melbourne Melbourne Victoria Australia
| | - Seth L. Masters
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Melbourne Victoria Australia
- Department of Medical Biology The University of Melbourne Melbourne Victoria Australia
| | - Dave Boucher
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research The University of Queensland Brisbane Queensland Australia
| | - Kate Schroder
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
10
|
HilD and PhoP independently regulate the expression of grhD1, a novel gene required for Salmonella Typhimurium invasion of host cells. Sci Rep 2018; 8:4841. [PMID: 29555922 PMCID: PMC5859253 DOI: 10.1038/s41598-018-23068-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/06/2018] [Indexed: 01/28/2023] Open
Abstract
When Salmonella is grown in the nutrient-rich lysogeny broth (LB), the AraC-like transcriptional regulator HilD positively controls the expression of genes required for Salmonella invasion of host cells, such as the Salmonella pathogenicity island 1 (SPI-1) genes. However, in minimal media, the two-component system PhoP/Q activates the expression of genes necessary for Salmonella replication inside host cells, such as the SPI-2 genes. Recently, we found that the SL1344_1872 hypothetical gene, located in a S. Typhimurium genomic island, is co-expressed with the SPI-1 genes. In this study we demonstrate that HilD induces indirectly the expression of SL1344_1872 when S. Typhimurium is grown in LB; therefore, we named SL1344_1872 as grhD1 for gene regulated by HilD. Furthermore, we found that PhoP positively controls the expression of grhD1, independently of HilD, when S. Typhimurium is grown in LB or N-minimal medium. Moreover, we demonstrate that the grhD1 gene is required for the invasion of S. Typhimurium into epithelial cells, macrophages and fibroblasts, as well as for the intestinal inflammatory response caused by S. Typhimurium in mice. Thus, our results reveal a novel virulence factor of Salmonella, whose expression is positively and independently controlled by the HilD and PhoP transcriptional regulators.
Collapse
|
11
|
Jennings E, Thurston TL, Holden DW. Salmonella SPI-2 Type III Secretion System Effectors: Molecular Mechanisms And Physiological Consequences. Cell Host Microbe 2017; 22:217-231. [DOI: 10.1016/j.chom.2017.07.009] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/14/2017] [Accepted: 07/19/2017] [Indexed: 11/30/2022]
|
12
|
De la Cruz MA, Pérez-Morales D, Palacios IJ, Fernández-Mora M, Calva E, Bustamante VH. The two-component system CpxR/A represses the expression of Salmonella virulence genes by affecting the stability of the transcriptional regulator HilD. Front Microbiol 2015; 6:807. [PMID: 26300871 PMCID: PMC4526804 DOI: 10.3389/fmicb.2015.00807] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/22/2015] [Indexed: 11/30/2022] Open
Abstract
Salmonella enterica can cause intestinal or systemic infections in humans and animals mainly by the presence of pathogenicity islands SPI-1 and SPI-2, containing 39 and 44 genes, respectively. The AraC-like regulator HilD positively controls the expression of the SPI-1 genes, as well as many other Salmonella virulence genes including those located in SPI-2. A previous report indicates that the two-component system CpxR/A regulates the SPI-1 genes: the absence of the sensor kinase CpxA, but not the absence of its cognate response regulator CpxR, reduces their expression. The presence and absence of cell envelope stress activates kinase and phosphatase activities of CpxA, respectively, which in turn controls the level of phosphorylated CpxR (CpxR-P). In this work, we further define the mechanism for the CpxR/A-mediated regulation of SPI-1 genes. The negative effect exerted by the absence of CpxA on the expression of SPI-1 genes was counteracted by the absence of CpxR or by the absence of the two enzymes, AckA and Pta, which render acetyl-phosphate that phosphorylates CpxR. Furthermore, overexpression of the lipoprotein NlpE, which activates CpxA kinase activity on CpxR, or overexpression of CpxR, repressed the expression of SPI-1 genes. Thus, our results provide several lines of evidence strongly supporting that the absence of CpxA leads to the phosphorylation of CpxR via the AckA/Pta enzymes, which represses both the SPI-1 and SPI-2 genes. Additionally, we show that in the absence of the Lon protease, which degrades HilD, the CpxR-P-mediated repression of the SPI-1 genes is mostly lost; moreover, we demonstrate that CpxR-P negatively affects the stability of HilD and thus decreases the expression of HilD-target genes, such as hilD itself and hilA, located in SPI-1. Our data further expand the insight on the different regulatory pathways for gene expression involving CpxR/A and on the complex regulatory network governing virulence in Salmonella.
Collapse
Affiliation(s)
- Miguel A. De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XX1-IMSSMéxico DF, Mexico
| | - Deyanira Pérez-Morales
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Morelos, Mexico
| | - Irene J. Palacios
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Morelos, Mexico
| | - Marcos Fernández-Mora
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Morelos, Mexico
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Morelos, Mexico
| | - Víctor H. Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Morelos, Mexico
| |
Collapse
|
13
|
HilD induces expression of Salmonella pathogenicity island 2 genes by displacing the global negative regulator H-NS from ssrAB. J Bacteriol 2014; 196:3746-55. [PMID: 25135218 DOI: 10.1128/jb.01799-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) have essential roles in the pathogenesis of Salmonella enterica. Previously, we reported transcriptional cross talk between SPI-1 and SPI-2 when the SPI-1 regulator HilD induces expression of the SsrA/B two-component system, the central positive regulator of SPI-2, during the growth of Salmonella to late stationary phase in LB rich medium. Here, we further define the mechanism of the HilD-mediated expression of ssrAB. Expression analysis of cat transcriptional fusions containing different regions of ssrAB revealed the presence of negative regulatory sequences located downstream of the ssrAB promoter. In the absence of these negative cis elements, ssrAB was expressed in a HilD-independent manner and was no longer repressed by the global regulator H-NS. Consistently, when the activity of H-NS was inactivated, the expression of ssrAB also became independent of HilD. Furthermore, electrophoretic mobility shift assays showed that both HilD and H-NS bind to the ssrAB region containing the repressing sequences. Moreover, HilD was able to displace H-NS bound to this region, whereas H-NS did not displace HilD. Our results support a model indicating that HilD displaces H-NS from a region downstream of the promoter of ssrAB by binding to sites overlapping or close to those sites bound by H-NS, which leads to the expression of ssrAB. Although the role of HilD as an antagonist of H-NS has been reported before for other genes, this is the first study showing that HilD is able to effectively displace H-NS from the promoter of one of its target genes.
Collapse
|
14
|
Zou QH, Li RQ, Liu GR, Liu SL. Comparative genomic analysis between typhoidal and non-typhoidal Salmonella serovars reveals typhoid-specific protein families. INFECTION GENETICS AND EVOLUTION 2014; 26:295-302. [PMID: 24951835 DOI: 10.1016/j.meegid.2014.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 06/04/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND The genus Salmonella contains more than 2600 serovars. While most cause a self-limiting gastroenteritis, four serovars, S. Typhi, S. Paratyphi A, B and C, elicit typhoid, a potentially fatal systemic infection. Because of the prevalence in certain regions, such as South Asia, and the disease severity of typhoidal Salmonella infections, comprehensive studies are needed to elucidate the pathogenesis of diseases caused by these typhoidal serovars. RESULTS We performed comparative genomic analyses on eight human typhoidal strains and 27 non-human typhoidal Salmonella strains to elucidate their evolutionary relationships and identify the genes specific to the four typhoidal serovars. Our results indicate that Salmonella may have an open pan-genome. A core-genome based phylogeny demonstrated that divergence between S. Paratyphi A and S. Typhi took place not long ago and S. Paratyphi B shared a recent common ancestor with S. Paratyphi C. Of great interest, the divergence between S. Paratyphi B and S. Paratyphi C was shown to be more recent than that between S. Paratyphi A and S. Typhi. Alignment and comparisons of the genomes identified unique complements of protein families to each of the typhoidal serovars. Most of these protein families are phage related and some are candidate virulence factors. Importantly, we found 88 protein families specific to two to three of the four typhoidal serovars. All but two of the 88 genes are present in S. Typhi, with a few in the three paratyphoidal serovars but none in the non-human typhoidal serovars. Most of these genes are predicted to encode hypothetical proteins and some are known to code for virulence factors such as Vi polysaccharide related proteins. CONCLUSIONS By comprehensive genomic comparisons, we identified protein families specific to the human typhoidal serovars, which will greatly facilitate investigations on typhoid pathogenesis.
Collapse
Affiliation(s)
- Qing-Hua Zou
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ren-Qing Li
- Institute of Immunology, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Gui-Rong Liu
- Genomics Research Center (one of The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China.
| | - Shu-Lin Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Genomics Research Center (one of The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China; HMU-UCFM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; Department of Biopharmaceutical Sciences, Faculty of Pharmacy, Harbin Medical University, Harbin, China; Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
15
|
Abstract
Salmonella enterica serovar Typhimurium is a food-borne pathogen that causes severe gastroenteritis. The ability of Salmonella to cause disease depends on two type III secretion systems (T3SSs) encoded in two distinct Salmonella pathogenicity islands, 1 and 2 (SPI1 and SPI2, respectively). S. Typhimurium encodes a solo LuxR homolog, SdiA, which can detect the acyl-homoserine lactones (AHLs) produced by other bacteria and upregulate the rck operon and the srgE gene. SrgE is predicted to encode a protein of 488 residues with a coiled-coil domain between residues 345 and 382. In silico studies have provided conflicting predictions as to whether SrgE is a T3SS substrate. Therefore, in this work, we tested the hypothesis that SrgE is a T3SS effector by two methods, a β-lactamase activity assay and a split green fluorescent protein (GFP) complementation assay. SrgE with β-lactamase fused to residue 40, 100, 150, or 300 was indeed expressed and translocated into host cells, but SrgE with β-lactamase fused to residue 400 or 488 was not expressed, suggesting interference by the coiled-coil domain. Similarly, SrgE with GFP S11 fused to residue 300, but not to residue 488, was expressed and translocated into host cells. With both systems, translocation into host cells was dependent upon SPI2. A phylogenetic analysis indicated that srgE is found only within Salmonella enterica subspecies. It is found sporadically within both typhoidal and nontyphoidal serovars, although the SrgE protein sequences found within typhoidal serovars tend to cluster separately from those found in nontyphoidal serovars, suggesting functional diversification.
Collapse
|
16
|
Felmy B, Songhet P, Slack EMC, Müller AJ, Kremer M, Van Maele L, Cayet D, Heikenwalder M, Sirard JC, Hardt WD. NADPH oxidase deficient mice develop colitis and bacteremia upon infection with normally avirulent, TTSS-1- and TTSS-2-deficient Salmonella Typhimurium. PLoS One 2013; 8:e77204. [PMID: 24143212 PMCID: PMC3797104 DOI: 10.1371/journal.pone.0077204] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/08/2013] [Indexed: 12/22/2022] Open
Abstract
Infections, microbe sampling and occasional leakage of commensal microbiota and their products across the intestinal epithelial cell layer represent a permanent challenge to the intestinal immune system. The production of reactive oxygen species by NADPH oxidase is thought to be a key element of defense. Patients suffering from chronic granulomatous disease are deficient in one of the subunits of NADPH oxidase. They display a high incidence of Crohn’s disease-like intestinal inflammation and are hyper-susceptible to infection with fungi and bacteria, including a 10-fold increased risk of Salmonellosis. It is not completely understood which steps of the infection process are affected by the NADPH oxidase deficiency. We employed a mouse model for Salmonella diarrhea to study how NADPH oxidase deficiency (Cybb−/−) affects microbe handling by the large intestinal mucosa. In this animal model, wild type S. Typhimurium causes pronounced enteropathy in wild type mice. In contrast, an avirulent S. Typhimurium mutant (S.Tmavir; invGsseD), which lacks virulence factors boosting trans-epithelial penetration and growth in the lamina propria, cannot cause enteropathy in wild type mice. We found that Cybb−/− mice are efficiently infected by S.Tmavir and develop enteropathy by day 4 post infection. Cell depletion experiments and infections in Cybb−/−Myd88−/− mice indicated that the S.Tmavir-inflicted disease in Cybb−/− mice hinges on CD11c+CX3CR1+ monocytic phagocytes mediating colonization of the cecal lamina propria and on Myd88-dependent proinflammatory immune responses. Interestingly, in mixed bone marrow chimeras a partial reconstitution of Cybb-proficiency in the bone marrow derived compartment was sufficient to ameliorate disease severity. Our data indicate that NADPH oxidase expression is of key importance for restricting the growth of S.Tmavir in the mucosal lamina propria. This provides important insights into microbe handling by the large intestinal mucosa and the role of NADPH oxidase in maintaining microbe-host mutualism at this exposed body surface.
Collapse
Affiliation(s)
- Boas Felmy
- Institute of Microbiology, D-BIOL, ETH Zürich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chaudhuri RR, Morgan E, Peters SE, Pleasance SJ, Hudson DL, Davies HM, Wang J, van Diemen PM, Buckley AM, Bowen AJ, Pullinger GD, Turner DJ, Langridge GC, Turner AK, Parkhill J, Charles IG, Maskell DJ, Stevens MP. Comprehensive assignment of roles for Salmonella typhimurium genes in intestinal colonization of food-producing animals. PLoS Genet 2013; 9:e1003456. [PMID: 23637626 PMCID: PMC3630085 DOI: 10.1371/journal.pgen.1003456] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 03/02/2013] [Indexed: 11/19/2022] Open
Abstract
Chickens, pigs, and cattle are key reservoirs of Salmonella enterica, a foodborne pathogen of worldwide importance. Though a decade has elapsed since publication of the first Salmonella genome, thousands of genes remain of hypothetical or unknown function, and the basis of colonization of reservoir hosts is ill-defined. Moreover, previous surveys of the role of Salmonella genes in vivo have focused on systemic virulence in murine typhoid models, and the genetic basis of intestinal persistence and thus zoonotic transmission have received little study. We therefore screened pools of random insertion mutants of S. enterica serovar Typhimurium in chickens, pigs, and cattle by transposon-directed insertion-site sequencing (TraDIS). The identity and relative fitness in each host of 7,702 mutants was simultaneously assigned by massively parallel sequencing of transposon-flanking regions. Phenotypes were assigned to 2,715 different genes, providing a phenotype–genotype map of unprecedented resolution. The data are self-consistent in that multiple independent mutations in a given gene or pathway were observed to exert a similar fitness cost. Phenotypes were further validated by screening defined null mutants in chickens. Our data indicate that a core set of genes is required for infection of all three host species, and smaller sets of genes may mediate persistence in specific hosts. By assigning roles to thousands of Salmonella genes in key reservoir hosts, our data facilitate systems approaches to understand pathogenesis and the rational design of novel cross-protective vaccines and inhibitors. Moreover, by simultaneously assigning the genotype and phenotype of over 90% of mutants screened in complex pools, our data establish TraDIS as a powerful tool to apply rich functional annotation to microbial genomes with minimal animal use. Salmonella Typhimurium is a major cause of human diarrhoeal infections, usually acquired from chickens, pigs, cattle, or their products. To understand the basis of persistence and pathogenesis in these reservoir hosts, and to inform the design of novel vaccines and treatments, we generated a library of 7,702 S. Typhimurium mutants, each bearing an insertion at a random position in the genome. Using DNA sequencing, we identified the disrupted gene in each mutant and determined its relative abundance in a laboratory culture and after experimental infection of mice, chickens, pigs, and cattle. The method allowed large numbers of mutants to be investigated simultaneously, drastically reducing the number of animals required to perform a comprehensive screen. We identified mutants that grow in culture but do not survive in one or more of the animals. The genes disrupted in these mutants are inferred to be important for the infection process. Most of these genes were required in all three food-producing animals, but smaller subsets of genes may mediate persistence in a specific host species. The data provide the most comprehensive map of virulence-associated genes for any bacterial pathogen in natural hosts and are highly relevant for the design of control strategies.
Collapse
Affiliation(s)
- Roy R. Chaudhuri
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Eirwen Morgan
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Sarah E. Peters
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stephen J. Pleasance
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Debra L. Hudson
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Holly M. Davies
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Jinhong Wang
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Pauline M. van Diemen
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Anthony M. Buckley
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Alison J. Bowen
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Gillian D. Pullinger
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Daniel J. Turner
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Gemma C. Langridge
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - A. Keith Turner
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Ian G. Charles
- The ithree institute, University of Technology Sydney, Broadway, Australia
| | - Duncan J. Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Mark P. Stevens
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire, United Kingdom
| |
Collapse
|
18
|
Transposon mutagenesis of Salmonella enterica serovar Enteritidis identifies genes that contribute to invasiveness in human and chicken cells and survival in egg albumen. Infect Immun 2012; 80:4203-15. [PMID: 22988017 DOI: 10.1128/iai.00790-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is an important food-borne pathogen, and chickens are a primary reservoir of human infection. While most knowledge about Salmonella pathogenesis is based on research conducted on Salmonella enterica serovar Typhimurium, S. Enteritidis is known to have pathobiology specific to chickens that impacts epidemiology in humans. Therefore, more information is needed about S. Enteritidis pathobiology in comparison to that of S. Typhimurium. We used transposon mutagenesis to identify S. Enteritidis virulence genes by assay of invasiveness in human intestinal epithelial (Caco-2) cells and chicken liver (LMH) cells and survival within chicken (HD-11) macrophages as a surrogate marker for virulence. A total of 4,330 transposon insertion mutants of an invasive G1 Nal(r) strain were screened using Caco-2 cells. This led to the identification of attenuating mutations in a total of 33 different loci, many of which include genes previously known to contribute to enteric infection (e.g., Salmonella pathogenicity island 1 [SPI-1], SPI-4, SPI-5, CS54, fliH, fljB, csgB, spvR, and rfbMN) in S. Enteritidis and other Salmonella serovars. Several genes or genomic islands that have not been reported previously (e.g., SPI-14, ksgA, SEN0034, SEN2278, and SEN3503) or that are absent in S. Typhimurium or in most other Salmonella serovars (e.g., pegD, SEN1152, SEN1393, and SEN1966) were also identified. Most mutants with reduced Caco-2 cell invasiveness also showed significantly reduced invasiveness in chicken liver cells and impaired survival in chicken macrophages and in egg albumen. Consequently, these genes may play an important role during infection of the chicken host and also contribute to successful egg contamination by S. Enteritidis.
Collapse
|
19
|
Nielsen LR. Review of pathogenesis and diagnostic methods of immediate relevance for epidemiology and control of Salmonella Dublin in cattle. Vet Microbiol 2012; 162:1-9. [PMID: 22925272 DOI: 10.1016/j.vetmic.2012.08.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/01/2012] [Indexed: 10/28/2022]
Abstract
Salmonella enterica subsp. enterica serovar Dublin (S. Dublin) receives increasing attention in cattle production. It is host-adapted to cattle, and leads to unacceptable levels of morbidity, mortality and production losses in both newly and persistently infected herds. Cattle health promoting institutions in several countries are currently constructing active surveillance programmes or voluntary certification programmes, and encourage control and eradication of S. Dublin infected cattle herds. There is a need to understand the underlying pathogenesis of the infection at both animal and herd level to design successful programmes. Furthermore, knowledge about and access to diagnostic tests for use in practice including information about test accuracy and interpretation of available diagnostic test methods are requested. The aim is to synthesise the abundant literature on elements of pathogenesis and diagnosis of immediate relevance for epidemiology and control of S. Dublin at animal and herd level. Relatively few in vivo studies on S. Dublin pathogenesis in cattle included more than a few animals and often showed varying result. It makes it difficult to draw conclusions about mechanisms that affect dissemination in cattle and that might be targets for control methods directed towards improving resistance against the bacteria, e.g. new vaccines. It is recommended to perform larger studies to elucidate dose-response relationships and age- and genetic effects of immunity. Furthermore, it is recommended to attempt to develop faster and more sensitive methods for detection of S. Dublin for diagnosis of infectious animals.
Collapse
Affiliation(s)
- Liza Rosenbaum Nielsen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Large Animal Sciences, Grønnegårdsvej 8, 1870 Frederiksberg C, Denmark.
| |
Collapse
|
20
|
Salmonellosis in cattle: Advantages of being an experimental model. Res Vet Sci 2012; 93:1-6. [DOI: 10.1016/j.rvsc.2012.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/05/2012] [Accepted: 03/11/2012] [Indexed: 12/27/2022]
|
21
|
In vitro inhibition of expression of virulence genes responsible for colonization and systemic spread of enteric pathogens using Bifidobacterium bifidum secreted molecules. Int J Food Microbiol 2012; 156:255-63. [PMID: 22541391 DOI: 10.1016/j.ijfoodmicro.2012.03.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/23/2012] [Accepted: 03/31/2012] [Indexed: 12/28/2022]
Abstract
Enteric pathogens such as Salmonella enterica serovar Typhimurium and Enterohaemorrhagic Escherichia coli require an initial indispensable step of attachment or invasion of enterocytes before they can produce systemic disease and translocate to their target organs. Prevention of either of these steps will result in an avirulent state and limit their pathogenicity. In vitro tests demonstrated that molecules secreted by Bifidobacterium bifidum interfere with both attachment and invasion. The main regulatory genes controlling the virulence factors essential for these pathogenicity steps were efficiently down-regulated when treated with chromatographically separated B. bifidum cell free fractions as measured by reporter constructs and confirmed by RT-PCR. Moreover, the ability of both pathogens to colonize eukaryotic cells was significantly reduced, and the capacity of Salmonella to survive and multiply within macrophages was also diminished upon treatment with these bioactive molecules. These results indicate that probiotic Bifidobacteria strains may represent an effective alternative approach to control food-borne enteric pathogens.
Collapse
|
22
|
Cardenal-Muñoz E, Ramos-Morales F. Analysis of the expression, secretion and translocation of the Salmonella enterica type III secretion system effector SteA. PLoS One 2011; 6:e26930. [PMID: 22046414 PMCID: PMC3203157 DOI: 10.1371/journal.pone.0026930] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/06/2011] [Indexed: 11/28/2022] Open
Abstract
Many Gram-negative pathogens possess virulence-related type III secretion systems. Salmonella enterica uses two of these systems, encoded on the pathogenicity islands SPI-1 and SPI-2, respectively, to translocate more than 30 effector proteins into eukaryotic host cells. SteA is one of the few effectors that can be translocated by both systems. We investigated the conditions affecting the synthesis of this effector, its secretion to culture media and its translocation into host cells. Whereas steA was expressed under a wide range of conditions, some factors, including low and high osmolarity, and presence of butyrate, decreased expression. SteA was efficiently secreted to the culture media under both SPI-1 and SPI-2 inducing conditions. The kinetics of translocation into murine macrophages and human epithelial cells was studied using fusions with the 3xFLAG tag, and fusions with CyaA from Bordetella pertussis. Translocation into macrophages under non-invasive conditions was mainly dependent on the SPI-2-encoded type III secretion system but some participation of the SPI-1 system was also detected 6 hours post-infection. Interestingly, both type III secretion systems had a relevant role in the translocation of SteA into epithelial cells. Finally, a deletion approach allowed the identification of the N-terminal signal necessary for translocation of this effector. The amino acid residues 1–10 were sufficient to direct translocation into host cells through both type III secretion systems. Our results provide new examples of functional overlapping between the two type III secretion systems of Salmonella.
Collapse
Affiliation(s)
- Elena Cardenal-Muñoz
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Francisco Ramos-Morales
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- * E-mail:
| |
Collapse
|
23
|
Yu XJ, Liu M, Matthews S, Holden DW. Tandem translation generates a chaperone for the Salmonella type III secretion system protein SsaQ. J Biol Chem 2011; 286:36098-36107. [PMID: 21878641 PMCID: PMC3195561 DOI: 10.1074/jbc.m111.278663] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type III secretion systems (T3SSs) of bacterial pathogens involve the assembly of a surface-localized needle complex, through which translocon proteins are secreted to form a pore in the eukaryotic cell membrane. This enables the transfer of effector proteins from the bacterial cytoplasm to the host cell. A structure known as the C-ring is thought to have a crucial role in secretion by acting as a cytoplasmic sorting platform at the base of the T3SS. Here, we studied SsaQ, an FliN-like putative C-ring protein of the Salmonella pathogenicity island 2 (SPI-2)-encoded T3SS. ssaQ produces two proteins by tandem translation: a long form (SsaQ(L)) composed of 322 amino acids and a shorter protein (SsaQ(S)) comprising the C-terminal 106 residues of SsaQ(L). SsaQ(L) is essential for SPI-2 T3SS function. Loss of SsaQ(S) impairs the function of the T3SS both ex vivo and in vivo. SsaQ(S) binds to its corresponding region within SsaQ(L) and stabilizes the larger protein. Therefore, SsaQ(L) function is optimized by a novel chaperone-like protein, produced by tandem translation from its own mRNA species.
Collapse
Affiliation(s)
- Xiu-Jun Yu
- Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mei Liu
- Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Steve Matthews
- Division of Molecular Biosciences, Centre for Structural Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - David W Holden
- Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
24
|
Osborne SE, Coombes BK. Transcriptional priming of Salmonella Pathogenicity Island-2 precedes cellular invasion. PLoS One 2011; 6:e21648. [PMID: 21738750 PMCID: PMC3125303 DOI: 10.1371/journal.pone.0021648] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/04/2011] [Indexed: 11/19/2022] Open
Abstract
Invasive salmonellosis caused by Salmonella enterica involves an enteric stage of infection where the bacteria colonize mucosal epithelial cells, followed by systemic infection with intracellular replication in immune cells. The type III secretion system encoded in Salmonella Pathogenicity Island (SPI)-2 is essential for intracellular replication and the regulators governing high-level expression of SPI-2 genes within the macrophage phagosome and in inducing media thought to mimic this environment have been well characterized. However, low-level expression of SPI-2 genes is detectable in media thought to mimic the extracellular environment suggesting that additional regulatory pathways are involved in SPI-2 gene expression prior to cellular invasion. The regulators involved in this activity are not known and the extracellular transcriptional activity of the entire SPI-2 island in vivo has not been studied. We show that low-level, SsrB-independent promoter activity for the ssrA-ssrB two-component regulatory system and the ssaG structural operon encoded in SPI-2 is dependent on transcriptional input by OmpR and Fis under non-inducing conditions. Monitoring the activity of all SPI-2 promoters in real-time following oral infection of mice revealed invasion-independent transcriptional activity of the SPI2 T3SS in the lumen of the gut, which we suggest is a priming activity with functional relevance for the subsequent intracellular host-pathogen interaction.
Collapse
Affiliation(s)
- Suzanne E. Osborne
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Brian K. Coombes
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
25
|
Martínez LC, Yakhnin H, Camacho MI, Georgellis D, Babitzke P, Puente JL, Bustamante VH. Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of the Salmonella SPI-1 and SPI-2 virulence regulons through HilD. Mol Microbiol 2011; 80:1637-56. [PMID: 21518393 PMCID: PMC3116662 DOI: 10.1111/j.1365-2958.2011.07674.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) play key roles in the pathogenesis of Salmonella enterica. Previously, we showed that when Salmonella grows in Luria-Bertani medium, HilD, encoded in SPI-1, first induces the expression of hilA, located in SPI-1, and subsequently of the ssrAB operon, located in SPI-2. These genes code for HilA and the SsrA/B two-component system, the positive regulators of the SPI-1 and SPI-2 regulons respectively. In this study, we demonstrate that CsrA, a global regulatory RNA binding protein, post-transcriptionally regulates hilD expression by directly binding near the Shine-Dalgarno and translation initiation codon sequences of the hilD mRNA, preventing its translation and leading to its accelerated turnover. Negative regulation is counteracted by the global SirA/BarA two-component system, which directly activates the expression of CsrB and CsrC, two non-coding regulatory RNAs that sequester CsrA, thereby preventing it from binding to its target mRNAs. Our results illustrate the integration of global and specific regulators into a multifactorial regulatory cascade controlling the expression of virulence genes acquired by horizontal transfer events.
Collapse
Affiliation(s)
- Luary C. Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Morelos 62210, Mexico
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Martha I. Camacho
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. México D.F. 04510, Mexico
| | - Dimitris Georgellis
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. México D.F. 04510, Mexico
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - José L. Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Morelos 62210, Mexico
| | - Víctor H. Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
26
|
Pullinger GD, van Diemen PM, Dziva F, Stevens MP. Role of two-component sensory systems of Salmonella enterica serovar Dublin in the pathogenesis of systemic salmonellosis in cattle. MICROBIOLOGY (READING, ENGLAND) 2010; 156:3108-3122. [PMID: 20656781 DOI: 10.1099/mic.0.041830-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
Salmonella enterica serovar Dublin (S. Dublin) is associated with enteritis, typhoid and abortion in cattle. Infections are acquired by the oral route, and the bacteria transit through varied anatomical and cellular niches to elicit systemic disease. S. Dublin must therefore sense and respond to diverse extrinsic stimuli to control gene expression in a spatial and temporal manner. Two-component systems (TCSs) play key roles in such processes, and typically contain a membrane-associated sensor kinase (SK) that modifies a cognate response regulator. Analysis of the genome sequence of S. Dublin identified 31 conserved SK genes. Each SK gene was separately disrupted by lambda Red recombinase-mediated insertion of transposons harbouring unique sequence tags. Calves were challenged with a pool of the mutants together with control strains of defined virulence by the oral and intravenous routes. Quantification of tagged mutants in output pools derived from various tissues and cannulated lymphatic vessels allowed the assignment of spatial roles for each SK following oral inoculation or when the intestinal barrier was bypassed by intravenous delivery. Mutant phenotypes were also assigned in cultured intestinal epithelial cells. Mutants with insertions in barA, envZ, phoQ, ssrA or qseC were significantly negatively selected at all enteric and systemic sites sampled after oral dosing. Mutants lacking baeS, dpiB or citA were negatively selected at some but not all sites. After intravenous inoculation, only barA and phoQ mutants were significantly under-represented at systemic sites. The novel role of baeS in intestinal colonization was confirmed by oral co-infection studies, with a mutant exhibiting modest but significant attenuation at a number of enteric sites. This is the first systematic analysis of the role of all Salmonella TCSs in a highly relevant model of enteric fever. Spatial roles were assigned to eight S. Dublin SKs, but most were not essential for intestinal or systemic infection of the target host.
Collapse
Affiliation(s)
- Gillian D Pullinger
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Pauline M van Diemen
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Francis Dziva
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Mark P Stevens
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| |
Collapse
|
27
|
Bayoumi MA, Griffiths MW. Probiotics down-regulate genes in Salmonella enterica serovar typhimurium pathogenicity islands 1 and 2. J Food Prot 2010; 73:452-60. [PMID: 20202329 DOI: 10.4315/0362-028x-73.3.452] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Salmonella Typhimurium pathogenesis relies mainly on the expression of genes of two pathogenicity islands, Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2). Each island has its own pattern of expression and regulation. Success in suppression of the responsible key activator of each island would be an effective way of controlling Salmonella, especially with the emerging problem of antibiotic-resistant strains. Probiotics have been shown to inhibit several foodborne pathogens, and their mode of action may partly involve down-regulation of virulence genes. To investigate whether probiotics played a role in the regulation of the pathogenicity islands SPI1 and SPI2 in Salmonella, two reporter strains were constructed in which the general regulator of SPI1, hilA, and the response regulator of SPI2, ssrB, were fused with luxCDABE genes. These constructs were used to screen the effect of probiotics on the expression of each gene. Molecules secreted by Bifidobacterium bifidum were able to down-regulate both genes.
Collapse
Affiliation(s)
- Mohamed A Bayoumi
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | | |
Collapse
|
28
|
Pullinger GD, Carnell SC, Sharaff FF, van Diemen PM, Dziva F, Morgan E, Lyte M, Freestone PPE, Stevens MP. Norepinephrine augments Salmonella enterica-induced enteritis in a manner associated with increased net replication but independent of the putative adrenergic sensor kinases QseC and QseE. Infect Immun 2010; 78:372-80. [PMID: 19884332 PMCID: PMC2798220 DOI: 10.1128/iai.01203-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 10/24/2009] [Indexed: 11/20/2022] Open
Abstract
Stress has long been correlated with susceptibility to microbial infection. One explanation for this phenomenon is the ability of pathogens to sense and respond to host stress-related catecholamines, such as norepinephrine (NE). In Gram-negative enteric pathogens, it has been proposed that NE may facilitate growth by mediating iron supply, or it may alter gene expression by activating adrenergic sensor kinases. The aim of this work was to investigate the relative importance of these processes in a model in which NE alters the outcome of Salmonella enterica serovar Typhimurium infection. A bovine ligated ileal loop model was used to study the effect of NE on enteritis induced by S. Typhimurium and on the bacterial in vivo replication rate. Mutants lacking putative adrenergic receptor genes were assessed in the loop model, in a calf intestinal colonization model, and in vitro. S. Typhimurium-induced enteritis was significantly enhanced by addition of 5 mM NE. This effect was associated with increased net bacterial replication in the same model. Exogenous ferric iron also stimulated bacterial replication in the medium used but not transcription of enteritis-associated loci. The putative adrenergic sensors QseC and QseE were not required for NE-enhanced enteritis, intestinal colonization of calves, or NE-dependent growth in iron-restricted medium and did not influence expression or secretion of enteritis-associated virulence factors. Our findings support a role for stress-related catecholamines in modulating the virulence of enteric bacterial pathogens in vivo but suggest that bacterial adrenergic sensors may not be the vital link in such interkingdom signaling in Salmonella.
Collapse
Affiliation(s)
- Gillian D. Pullinger
- Division of Microbiology, Institute for Animal Health, Compton, United Kingdom, Department of Infection, Immunity and Inflammation, University of Leicester School of Medicine, Leicester, United Kingdom, School of Pharmacy, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Sonya C. Carnell
- Division of Microbiology, Institute for Animal Health, Compton, United Kingdom, Department of Infection, Immunity and Inflammation, University of Leicester School of Medicine, Leicester, United Kingdom, School of Pharmacy, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Fathima F. Sharaff
- Division of Microbiology, Institute for Animal Health, Compton, United Kingdom, Department of Infection, Immunity and Inflammation, University of Leicester School of Medicine, Leicester, United Kingdom, School of Pharmacy, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Pauline M. van Diemen
- Division of Microbiology, Institute for Animal Health, Compton, United Kingdom, Department of Infection, Immunity and Inflammation, University of Leicester School of Medicine, Leicester, United Kingdom, School of Pharmacy, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Francis Dziva
- Division of Microbiology, Institute for Animal Health, Compton, United Kingdom, Department of Infection, Immunity and Inflammation, University of Leicester School of Medicine, Leicester, United Kingdom, School of Pharmacy, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Eirwen Morgan
- Division of Microbiology, Institute for Animal Health, Compton, United Kingdom, Department of Infection, Immunity and Inflammation, University of Leicester School of Medicine, Leicester, United Kingdom, School of Pharmacy, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Mark Lyte
- Division of Microbiology, Institute for Animal Health, Compton, United Kingdom, Department of Infection, Immunity and Inflammation, University of Leicester School of Medicine, Leicester, United Kingdom, School of Pharmacy, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Primrose P. E. Freestone
- Division of Microbiology, Institute for Animal Health, Compton, United Kingdom, Department of Infection, Immunity and Inflammation, University of Leicester School of Medicine, Leicester, United Kingdom, School of Pharmacy, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Mark P. Stevens
- Division of Microbiology, Institute for Animal Health, Compton, United Kingdom, Department of Infection, Immunity and Inflammation, University of Leicester School of Medicine, Leicester, United Kingdom, School of Pharmacy, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
29
|
Stevens MP, Humphrey TJ, Maskell DJ. Molecular insights into farm animal and zoonotic Salmonella infections. Philos Trans R Soc Lond B Biol Sci 2009; 364:2709-23. [PMID: 19687040 PMCID: PMC2865095 DOI: 10.1098/rstb.2009.0094] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Salmonella enterica is a facultative intracellular pathogen of worldwide importance. Infections may present in a variety of ways, from asymptomatic colonization to inflammatory diarrhoea or typhoid fever depending on serovar- and host-specific factors. Human diarrhoeal infections are frequently acquired via the food chain and farm environment by virtue of the ability of selected non-typhoidal serovars to colonize the intestines of food-producing animals and contaminate the avian reproductive tract and egg. Colonization of reservoir hosts often occurs in the absence of clinical symptoms; however, some S. enterica serovars threaten animal health owing to their ability to cause acute enteritis or translocate from the intestines to other organs causing fever, septicaemia and abortion. Despite the availability of complete genome sequences of isolates representing several serovars, the molecular mechanisms underlying Salmonella colonization, pathogenesis and transmission in reservoir hosts remain ill-defined. Here we review current knowledge of the bacterial factors influencing colonization of food-producing animals by Salmonella and the basis of host range, differential virulence and zoonotic potential.
Collapse
Affiliation(s)
- Mark P Stevens
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK.
| | | | | |
Collapse
|
30
|
Comparative proteomic analysis on Salmonella Gallinarum and Salmonella Enteritidis exploring proteins that may incorporate host adaptation in poultry. J Proteomics 2009; 72:815-21. [DOI: 10.1016/j.jprot.2009.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/22/2009] [Accepted: 05/18/2009] [Indexed: 11/18/2022]
|
31
|
Andrews-Polymenis HL, Santiviago CA, McClelland M. Novel genetic tools for studying food-borne Salmonella. Curr Opin Biotechnol 2009; 20:149-57. [PMID: 19285855 PMCID: PMC2762399 DOI: 10.1016/j.copbio.2009.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 02/04/2009] [Accepted: 02/04/2009] [Indexed: 11/17/2022]
Abstract
Nontyphoidal Salmonellae are highly prevalent food-borne pathogens. High-throughput sequencing of Salmonella genomes is expanding our knowledge of the evolution of serovars and epidemic isolates. Genome sequences have also allowed the creation of complete microarrays. Microarrays have improved the throughput of in vivo expression technology (IVET) used to uncover promoters active during infection. In another method, signature tagged mutagenesis (STM), pools of mutants are subjected to selection. Changes in the population are monitored on a microarray, revealing genes under selection. Complete genome sequences permit the construction of pools of targeted in-frame deletions that have improved STM by minimizing the number of clones and the polarity of each mutant. Together, genome sequences and the continuing development of new tools for functional genomics will drive a revolution in the understanding of Salmonellae in many different niches that are critical for food safety.
Collapse
Affiliation(s)
- Helene L. Andrews-Polymenis
- Texas A&M University System Health Science Center, College of Medicine, 407 Joe H. Reynolds Medical Building, College Station, TX 77843-1114,
| | - Carlos A Santiviago
- Programa de Microbiologia y Micologia, Instituto de Ciencias Biome´dicas (ICBM), Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Santiago, Chile
| | - Michael McClelland
- Sidney Kimmel Cancer Center, 10905 Road to the Cure, San Diego CA 92121,
| |
Collapse
|
32
|
Cerovic V, McDonald V, Nassar MA, Paulin SM, Macpherson GG, Milling SWF. New insights into the roles of dendritic cells in intestinal immunity and tolerance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 272:33-105. [PMID: 19121816 DOI: 10.1016/s1937-6448(08)01602-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) play a critical key role in the initiation of immune responses to pathogens. Paradoxically, they also prevent potentially damaging immune responses being directed against the multitude of harmless antigens, to which the body is exposed daily. These roles are particularly important in the intestine, where only a single layer of epithelial cells provides a barrier against billions of commensal microorganisms, pathogens, and food antigens, over a huge surface area. In the intestine, therefore, DCs are required to perform their dual roles very efficiently to protect the body from the dual threats of invading pathogens and unwanted inflammatory reactions. In this review, we first describe the biology of DCs and their interactions with other cells types, paying particular attention to intestinal DCs. We, then, examine the ways in which this biology may become misdirected, resulting in inflammatory bowel disease. Finally, we discuss how DCs potentiate immune responses against viral, bacterial, parasitic infections, and their importance in the pathogenesis of prion diseases. We, therefore, provide an overview of the complex cellular interactions that affect intestinal DCs and control the balance between immunity and tolerance.
Collapse
Affiliation(s)
- Vuk Cerovic
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
33
|
Pullinger GD, Dziva F, Charleston B, Wallis TS, Stevens MP. Identification of Salmonella enterica serovar Dublin-specific sequences by subtractive hybridization and analysis of their role in intestinal colonization and systemic translocation in cattle. Infect Immun 2008; 76:5310-21. [PMID: 18794283 PMCID: PMC2573319 DOI: 10.1128/iai.00960-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 08/16/2008] [Accepted: 09/04/2008] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Dublin is a host-restricted serovar associated with typhoidal disease in cattle. In contrast, the fowl-associated serovar S. enterica serovar Gallinarum is avirulent in calves, yet it invades ileal mucosa and induces enteritis at levels comparable to those induced by S. enterica serovar Dublin. Suppression subtractive hybridization was employed to identify S. enterica serovar Dublin strain SD3246 genes absent from S. enterica serovar Gallinarum strain SG9. Forty-one S. enterica serovar Dublin fragments were cloned and sequenced. Among these, 24 mobile-element-associated genes were identified, and 12 clones exhibited similarity with sequences of known or predicted function in other serovars. Three S. enterica serovar Dublin-specific regions were homologous to regions from the genome of Enterobacter sp. strain 638. Sequencing of fragments adjacent to these three sequences revealed the presence of a 21-kb genomic island, designated S. enterica serovar Dublin island 1 (SDI-1). PCR analysis and Southern blotting showed that SDI-1 is highly conserved within S. enterica serovar Dublin isolates but rarely found in other serovars. To probe the role of genes identified by subtractive hybridization in vivo, 24 signature-tagged S. enterica serovar Dublin SD3246 mutants lacking loci not present in Salmonella serovar Gallinarum SG9 were created and screened by oral challenge of cattle. Though attenuation of tagged SG9 and SD3246 Salmonella pathogenicity island-1 (SPI-1) and SPI-2 mutant strains was detected, no obvious defects of these 24 mutants were detected. Subsequently, a DeltaSDI-1 mutant was found to exhibit weak but significant attenuation compared with the parent strain in coinfection of calves. SDI-1 mutation did not impair invasion, intramacrophage survival, or virulence in mice, implying that SDI-1 does not influence fitness per se and may act in a host-specific manner.
Collapse
Affiliation(s)
- Gillian D Pullinger
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom
| | | | | | | | | |
Collapse
|
34
|
Abstract
The acquisition of new genetic traits by horizontal gene transfer and their incorporation into preexisting regulatory networks have been essential events in the evolution of bacterial pathogens. An example of successful assimilation of virulence traits is Salmonella enterica, which acquired, at distinct evolutionary times, Salmonella pathogenicity island 1 (SPI-1), required for efficient invasion of the intestinal epithelium and intestinal disease, and SPI-2, essential for Salmonella replication and survival within macrophages and the progression of a systemic infection. A positive regulatory cascade mainly composed of HilD, HilA, and InvF, encoded in SPI-1, controls the expression of SPI-1 genes, whereas the two-component regulatory system SsrA/B, encoded in SPI-2, controls expression of SPI-2 genes. In this study, we report a previously undescribed transcriptional cross-talk between SPI-1 and SPI-2, where the SPI-1-encoded regulator HilD is essential for the activation of both the SPI-1 and SPI-2 regulons but at different times during the stationary phase of growth in Luria-Bertani medium. Our data indicate that HilD counteracts the H-NS-mediated repression exerted on the OmpR-dependent activation of the ssrAB operon by specifically interacting with its regulatory region. In contrast, HilD is not required for SPI-2 regulon expression under the in vitro growth conditions that are thought to resemble the intracellular environment. Our results suggest that two independent SPI-2 activation pathways evolved to take advantage of the SPI-2-encoded information at different niches and, in consequence, in response to different growth conditions.
Collapse
|
35
|
Dudley EG. In VivoExpression Technology and Signature-Tagged Mutagenesis Screens for Identifying Mechanisms of Survival of Zoonotic Foodborne Pathogens. Foodborne Pathog Dis 2008; 5:473-85. [DOI: 10.1089/fpd.2008.0104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Edward G. Dudley
- Department of Food Science, Penn State University, University Park, Pennsylvania
| |
Collapse
|
36
|
Dziva F, Stevens MP. Colibacillosis in poultry: unravelling the molecular basis of virulence of avian pathogenicEscherichia coliin their natural hosts. Avian Pathol 2008; 37:355-66. [DOI: 10.1080/03079450802216652] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Boyen F, Pasmans F, Van Immerseel F, Morgan E, Botteldoorn N, Heyndrickx M, Volf J, Favoreel H, Hernalsteens JP, Ducatelle R, Haesebrouck F. A limited role for SsrA/B in persistent Salmonella Typhimurium infections in pigs. Vet Microbiol 2008; 128:364-73. [DOI: 10.1016/j.vetmic.2007.10.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 10/31/2007] [Accepted: 10/31/2007] [Indexed: 12/12/2022]
|
38
|
Stecher B, Hardt WD. The role of microbiota in infectious disease. Trends Microbiol 2008; 16:107-14. [PMID: 18280160 DOI: 10.1016/j.tim.2007.12.008] [Citation(s) in RCA: 348] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 12/11/2007] [Accepted: 12/11/2007] [Indexed: 02/08/2023]
Abstract
The intestine harbors an ecosystem composed of the intestinal mucosa and the commensal microbiota. The microbiota fosters development, aids digestion and protects host cells from pathogens - a function referred to as colonization resistance. Little is known about the molecular basis of colonization resistance and how it can be overcome by enteropathogenic bacteria. Recently, studies on inflammatory bowel diseases and on animal models for enteric infection have provided new insights into colonization resistance. Gut inflammation changes microbiota composition, disrupts colonization resistance and enhances pathogen growth. Thus, some pathogens can benefit from inflammatory defenses. This new paradigm will enable the study of host factors enhancing or inhibiting bacterial growth in health and disease.
Collapse
Affiliation(s)
- Bärbel Stecher
- Institute of Microbiology, Eidgenoessische Technische Hochschule (ETH) Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
39
|
Hapfelmeier S, Müller AJ, Stecher B, Kaiser P, Barthel M, Endt K, Eberhard M, Robbiani R, Jacobi CA, Heikenwalder M, Kirschning C, Jung S, Stallmach T, Kremer M, Hardt WD. Microbe sampling by mucosal dendritic cells is a discrete, MyD88-independent step in DeltainvG S. Typhimurium colitis. ACTA ACUST UNITED AC 2008; 205:437-50. [PMID: 18268033 PMCID: PMC2271026 DOI: 10.1084/jem.20070633] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Intestinal dendritic cells (DCs) are believed to sample and present commensal bacteria to the gut-associated immune system to maintain immune homeostasis. How antigen sampling pathways handle intestinal pathogens remains elusive. We present a murine colitogenic Salmonella infection model that is highly dependent on DCs. Conditional DC depletion experiments revealed that intestinal virulence of S. Typhimurium SL1344 ΔinvG mutant lacking a functional type 3 secretion system-1 (ΔinvG)critically required DCs for invasion across the epithelium. The DC-dependency was limited to the early phase of infection when bacteria colocalized with CD11c+CX3CR1+ mucosal DCs. At later stages, the bacteria became associated with other (CD11c−CX3CR1−) lamina propria cells, DC depletion no longer attenuated the pathology, and a MyD88-dependent mucosal inflammation was initiated. Using bone marrow chimeric mice, we showed that the MyD88 signaling within hematopoietic cells, which are distinct from DCs, was required and sufficient for induction of the colitis. Moreover, MyD88-deficient DCs supported transepithelial uptake of the bacteria and the induction of MyD88-dependent colitis. These results establish that pathogen sampling by DCs is a discrete, and MyD88-independent, step during the initiation of a mucosal innate immune response to bacterial infection in vivo.
Collapse
|
40
|
Stecher B, Barthel M, Schlumberger MC, Haberli L, Rabsch W, Kremer M, Hardt WD. Motility allows S. Typhimurium to benefit from the mucosal defence. Cell Microbiol 2008; 10:1166-80. [PMID: 18241212 DOI: 10.1111/j.1462-5822.2008.01118.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mammalian intestine is colonized by a dense bacterial community, called microbiota. The microbiota shields from intestinal infection (colonization resistance). Recently, we have shown that enteropathogenic Salmonella spp. can exploit inflammation to compete with the intestinal microbiota. The mechanisms explaining the enhanced pathogen growth in the inflamed intestine are elusive. Here, we analysed the function of bacterial flagella in the inflamed intestine using a mouse model for acute Salmonella Typhimurium enterocolitis. Mutations affecting flagellar assembly (Fla(-)) and chemotaxis (Che(-)) impaired the pathogen's fitness in the inflamed intestine, but not in the normal gut. This was attributable to a localized source of high-energy nutrients (e.g. galactose-containing glyco-conjugates, mucin) released as an element of the mucosal defence. Motility allows Salmonella Typhimurium to benefit from these nutrients and utilize them for enhanced growth. Thus, nutrient availability contributes to enhanced pathogen growth in the inflamed intestine. Strategies interfering with bacterial motility or nutrient availability might offer starting points for therapeutic approaches.
Collapse
Affiliation(s)
- Bärbel Stecher
- Institute of Microbiology, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
41
|
Bohez L, Gantois I, Ducatelle R, Pasmans F, Dewulf J, Haesebrouck F, Van Immerseel F. The Salmonella Pathogenicity Island 2 regulator ssrA promotes reproductive tract but not intestinal colonization in chickens. Vet Microbiol 2008; 126:216-24. [PMID: 17689891 DOI: 10.1016/j.vetmic.2007.06.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 06/25/2007] [Accepted: 06/26/2007] [Indexed: 01/20/2023]
Abstract
Using a deletion mutant in the regulator of SPI-2, ssrA, we investigated the role of SPI-2 in invasion, intestinal colonization and reproductive tract infection of chickens by Salmonella Enteritidis. The ssrA mutant was fully invasive in phagocytic and non-phagocytic cells but failed to persist within chicken macrophages. The ability of Salmonella Enteritidis to cause disease in orally infected 1-day-old chicks was not altered when ssrA was deleted. Furthermore, caecal colonization was not affected, while spleen and liver showed reduced colonization. Following intra-peritoneal and intravenous infection of 1-day-old chicks, internal organ colonization was strongly reduced. After intravenous inoculation in adult laying hens bacterial numbers of the ssrA mutant were significantly lower in oviducts and ovaries as compared to the wild type strain. The chickens showed less reproductive tract lesions and the recovery of egg production were faster compared to the wild type strain infected chickens. These findings indicate that the SPI-2 regulator ssrA promotes reproductive tract colonization, but is not essential for intestinal colonization of chickens with the host non-specific serotype Enteritidis.
Collapse
Affiliation(s)
- Lotte Bohez
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | | | | | | | |
Collapse
|
42
|
Lavigne JP, Blanc-Potard AB. Molecular evolution of Salmonella enterica serovar Typhimurium and pathogenic Escherichia coli: from pathogenesis to therapeutics. INFECTION GENETICS AND EVOLUTION 2007; 8:217-26. [PMID: 18226587 DOI: 10.1016/j.meegid.2007.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Revised: 11/20/2007] [Accepted: 11/22/2007] [Indexed: 12/31/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) and certain Escherichia coli are human pathogens that have evolved through the acquisition of multiple virulence determinants by horizontal gene transfer. Similar genetic elements, as pathogenicity islands and virulence plasmids, have driven molecular evolution of virulence in both species. In addition, the contribution of prophages has been recently highlighted as a reservoir for pathogenic diversity. Characterization of horizontally acquired virulence genes has several clinical implications. First, identification of virulence determinants that have a sporadic distribution and are specifically associated with a pathotype and/or a pathology can be useful markers for risk assessment and diagnosis. Secondly, virulence factors widely distributed in pathogenic strains, but absent from non-pathogenic bacteria, are interesting targets for the development of novel antimicrobial chemotherapies and vaccines. Here, we summarize the horizontally acquired virulence factors of S. Typhimurium, enterohemorrhagic E. coli O157:H7 and uropathogenic E. coli, and we describe their use in novel therapeutic approaches.
Collapse
Affiliation(s)
- Jean-Philippe Lavigne
- Institut National de la Santé et de la Recherche Médicale, Espri 26, Avenue J.F. Kennedy, 30908 Nîmes Cedex 02, France
| | | |
Collapse
|
43
|
Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M, Kremer M, Chaffron S, Macpherson AJ, Buer J, Parkhill J, Dougan G, von Mering C, Hardt WD. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol 2007; 5:2177-89. [PMID: 17760501 PMCID: PMC1951780 DOI: 10.1371/journal.pbio.0050244] [Citation(s) in RCA: 824] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 07/16/2007] [Indexed: 12/13/2022] Open
Abstract
Most mucosal surfaces of the mammalian body are colonized by microbial communities ("microbiota"). A high density of commensal microbiota inhabits the intestine and shields from infection ("colonization resistance"). The virulence strategies allowing enteropathogenic bacteria to successfully compete with the microbiota and overcome colonization resistance are poorly understood. Here, we investigated manipulation of the intestinal microbiota by the enteropathogenic bacterium Salmonella enterica subspecies 1 serovar Typhimurium (S. Tm) in a mouse colitis model: we found that inflammatory host responses induced by S. Tm changed microbiota composition and suppressed its growth. In contrast to wild-type S. Tm, an avirulent invGsseD mutant failing to trigger colitis was outcompeted by the microbiota. This competitive defect was reverted if inflammation was provided concomitantly by mixed infection with wild-type S. Tm or in mice (IL10(-/-), VILLIN-HA(CL4-CD8)) with inflammatory bowel disease. Thus, inflammation is necessary and sufficient for overcoming colonization resistance. This reveals a new concept in infectious disease: in contrast to current thinking, inflammation is not always detrimental for the pathogen. Triggering the host's immune defence can shift the balance between the protective microbiota and the pathogen in favour of the pathogen.
Collapse
Affiliation(s)
- Bärbel Stecher
- Institute of Microbiology, Swiss Institute of Technology Zurich, Zurich, Switzerland
| | - Riccardo Robbiani
- Institute of Microbiology, Swiss Institute of Technology Zurich, Zurich, Switzerland
| | - Alan W Walker
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Astrid M Westendorf
- Department of Mucosal Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Manja Barthel
- Institute of Microbiology, Swiss Institute of Technology Zurich, Zurich, Switzerland
| | | | - Samuel Chaffron
- Bioinformatics Group, Institute of Molecular Biology, University of Zurich, Zurich, Switzerland
| | | | - Jan Buer
- Department of Mucosal Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Christian von Mering
- Bioinformatics Group, Institute of Molecular Biology, University of Zurich, Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Swiss Institute of Technology Zurich, Zurich, Switzerland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Pullinger GD, Paulin SM, Charleston B, Watson PR, Bowen AJ, Dziva F, Morgan E, Villarreal-Ramos B, Wallis TS, Stevens MP. Systemic translocation of Salmonella enterica serovar Dublin in cattle occurs predominantly via efferent lymphatics in a cell-free niche and requires type III secretion system 1 (T3SS-1) but not T3SS-2. Infect Immun 2007; 75:5191-9. [PMID: 17724072 PMCID: PMC2168298 DOI: 10.1128/iai.00784-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 07/13/2007] [Accepted: 08/14/2007] [Indexed: 12/31/2022] Open
Abstract
Salmonella enterica is an important diarrheal pathogen, and infections may involve severe systemic sequelae depending on serovar- and host-specific factors. The molecular mechanisms underlying translocation of host-restricted and -specific serovars of S. enterica from the intestines to distal organs are ill defined. By surgical cannulation of lymph and blood vessels draining the distal ileum in cattle, S. enterica serovar Dublin was observed to translocate predominantly via mesenteric lymph nodes to efferent lymphatics in a manner that correlates with systemic virulence, since the fowl typhoid-associated serovar Gallinarum translocated at a significantly lower level. While both S. enterica serovars Dublin and Gallinarum were intracellular while in the intestinal mucosa and associated with major histocompatibility complex class II-positive cells, the bacteria were predominantly extracellular within efferent lymph. Screening of a library of signature-tagged serovar Dublin mutants following oral inoculation of calves defined the role of 36 virulence-associated loci in enteric and systemic phases of infection. The number and proportion of tagged clones reaching the liver and spleen early after oral infection were identical to the values in efferent lymph, implying that this may be a relevant mode of dissemination. Coinfection studies confirmed that lymphatic translocation requires the function of type III secretion system 1 (T3SS-1) but, remarkably, not T3SS-2. This is the first description of the mode and genetics of systemic translocation of serovar Dublin in its natural host.
Collapse
Affiliation(s)
- Gillian D Pullinger
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dowd SE, Killinger-Mann K, Blanton J, San Francisco M, Brashears M. Positive adaptive state: microarray evaluation of gene expression in Salmonella enterica Typhimurium exposed to nalidixic acid. Foodborne Pathog Dis 2007; 4:187-200. [PMID: 17600486 DOI: 10.1089/fpd.2006.0075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The emergence of antimicrobial resistance among foodborne bacteria associated with food animal production is an important global issue. We hypothesised that antibiotics generate a positive adaptive state in Salmonella that actively contributes to the development of antimicrobial resistance. This is opposed to common views that antimicrobials only act as a passive selective pressure. Microarray analysis was used to evaluate changes in gene expression that occur upon exposure of Salmonella enterica Typhimurium ATCC 14028 to 1.6 microg/mL of nalidixic acid. The results showed a significant (P < 0.02) difference (fold expression differences >2.0) in the expression of 226 genes. Comparatively repressed transcripts included Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2). Induced genes included efflux pumps representing all five families of multidrug-resistance efflux pumps, outer membrane lipoproteins, and genes involved in regulating lipopolysaccharide chain length. This profile suggests both enhanced antimicrobial export from the cell and membrane permeability adaptations to limit diffusion of nalidixic acid into the cell. Finally, increased expression of the error-prone DNA repair mechanisms were also observed. From these data we show a highly integrated genetic response to nalidixic acid that places Salmonella into a positive adaptive state that elicits mutations. Evaluation of gene expression profile changes that occur during exposure to antibiotics will continue to improve our understanding of the development of antibiotic resistance.
Collapse
Affiliation(s)
- Scot E Dowd
- United States Department of Agriculture, Agricultural Research Service, Livestock Issues Research Unit, Lubbock, Texas 79403, USA.
| | | | | | | | | |
Collapse
|
46
|
Carnell SC, Bowen A, Morgan E, Maskell DJ, Wallis TS, Stevens MP. Role in virulence and protective efficacy in pigs of Salmonella enterica serovar Typhimurium secreted components identified by signature-tagged mutagenesis. MICROBIOLOGY (READING, ENGLAND) 2007; 153:1940-1952. [PMID: 17526851 DOI: 10.1099/mic.0.2006/006726-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a zoonotic enteric pathogen of worldwide importance and pigs are a significant reservoir of human infection. Signature-tagged transposon mutagenesis (STM) was used to identify genes required by S. Typhimurium to colonize porcine intestines. A library of 1045 signature-tagged mutants of S. Typhimurium ST4/74 Nal(R) was screened following oral inoculation of pigs in duplicate. A total of 119 attenuating mutations were identified in 95 different genes, many of which encode known or putative secreted or surface-anchored molecules. A large number of attenuating mutations were located within Salmonella pathogenicity islands (SPI)-1 and -2, confirming important roles for type III secretion systems (T3SS)-1 and -2 in intestinal colonization of pigs. Roles for genes encoded in other pathogenicity islands and islets, including the SPI-6-encoded Saf atypical fimbriae, were also identified. Given the role of secreted factors and the protection conferred against other pathogens by vaccination with extracellular and type III secreted proteins, the efficacy of a secreted protein vaccine from wild-type S. Typhimurium following intramuscular vaccination of pigs was evaluated. Serum IgG responses against type III secreted proteins were induced following vaccination and a significant reduction in faecal excretion of S. Typhimurium was observed in the acute phase of infection compared to mock-vaccinated animals. Vaccination with secreted proteins from an isogenic S. Typhimurium prgH mutant produced comparable levels of protection to vaccination with the preparation from the parent strain, indicating that protection was not reliant on T3SS-1 secreted proteins. The data provide valuable information for the control of Salmonella in pigs.
Collapse
Affiliation(s)
- Sonya C Carnell
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Alison Bowen
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Eirwen Morgan
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Timothy S Wallis
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Mark P Stevens
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| |
Collapse
|
47
|
Jones MA, Hulme SD, Barrow PA, Wigley P. TheSalmonellapathogenicity island 1 andSalmonellapathogenicity island 2 type III secretion systems play a major role in pathogenesis of systemic disease and gastrointestinal tract colonization ofSalmonella entericaserovar Typhimurium in the chicken. Avian Pathol 2007; 36:199-203. [PMID: 17497331 DOI: 10.1080/03079450701264118] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Salmonella enterica serovar Typhimurium infection of chickens is a major public and animal health problem. In young chicks, S. Typhimurium infection results in severe systemic infection; in older chicks, infection results in prolonged gastrointestinal tract colonization. Here we determined the role of the Salmonella pathogenicity island 1 (SPI-1) and Salmonella pathogenicity island 2 (SPI-2) type III secretion systems in systemic infection and gastrointestinal tract colonization of the chicken though experimental infection of chicks with a S. Typhimurium strain with mutations in the genes encoding the secretion system machinery of SPI-1 (spaS) and SPI-2 (ssaU) that prevent secretion of effector proteins. In 1-day-old chicks, mutation of SPI-2 lead to a decrease in both systemic bacterial numbers and pathology, although no difference in gastrointestinal numbers was observed. Mutation of SPI-1 had little effect in 1-day old chicks. In 1-week-old animals the SPI-2 mutants could not be detected systemically and colonized the gastrointestinal tract only in low numbers in comparison with the parent strain, and was cleared in 1 week. The SPI-1 mutant showed greatly reduced levels of systemic infection, and colonized the gastrointestinal tract at a lower level than the parent strain. The findings show that the SPI-2 type III secretion system is required for systemic S. Typhimurium infection in both infection models, and that it plays a significant role in gastrointestinal colonization. The SPI-1 system is involved in both systemic infection and gastrointestinal colonization, but does not appear absolutely essential for either infection process.
Collapse
Affiliation(s)
- Michael A Jones
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, UK
| | | | | | | |
Collapse
|
48
|
Brumme S, Arnold T, Sigmarsson H, Lehmann J, Scholz HC, Hardt WD, Hensel A, Truyen U, Roesler U. Impact of Salmonella Typhimurium DT104 virulence factors invC and sseD on the onset, clinical course, colonization patterns and immune response of porcine salmonellosis. Vet Microbiol 2007; 124:274-85. [PMID: 17524577 DOI: 10.1016/j.vetmic.2007.04.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 04/22/2007] [Accepted: 04/25/2007] [Indexed: 12/29/2022]
Abstract
The present study was conducted to study the impact of the virulence factors invC and sseD of the two type III secretion systems of Salmonella enterica serovar Typhimurium (S. Typhimurium) on the pathogenesis of the porcine S. Typhimurium DT104 infection. For this purpose, two S. Typhimurium mutant strains with a disrupted invC gene of the Salmonella pathogenicity island 1 or with a disrupted sseD gene of the Salmonella pathogenicity island 2 have been studied in experimental infection of pigs. Twenty-two 7-week-old male hybrid pigs were either infected with one of the mutants or the wild-type S. Typhimurium DT104 strain. Each group was examined for clinical signs, Salmonella shedding rate and the specific antibody response. Survival and replication were evaluated by qualitative and quantitative determination of the colonization rate. The humoral and cellular immune responses were examined using isotype-specific ELISA and quantitative real-time PCR of IL-2, IL-4, IL-10, IL-12 and IFN-gamma. The results proved that both mutants had a lower virulence (with marked differences between both mutants) than the wild-type and that both virulence factors have importance in porcine salmonellosis. Only pigs infected with the wild-type S. Typhimurium DT104 exhibited typical clinical symptoms of salmonellosis like anorexia, vomiting, disturbed demeanour, fever and diarrhoea. Deletion of the invC gene resulted in a significantly reduced colonization rate. Interestingly, the mRNA expression of both type-1 and type-2 cytokines were significantly decreased in pigs infected with either the invC-mutant and the sseD-mutant strain.
Collapse
Affiliation(s)
- Steffi Brumme
- Institute of Animal Hygiene and Veterinary Public Health, University Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Morgan E, Bowen AJ, Carnell SC, Wallis TS, Stevens MP. SiiE is secreted by the Salmonella enterica serovar Typhimurium pathogenicity island 4-encoded secretion system and contributes to intestinal colonization in cattle. Infect Immun 2007; 75:1524-33. [PMID: 17220313 PMCID: PMC1828598 DOI: 10.1128/iai.01438-06] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 10/16/2006] [Accepted: 12/21/2006] [Indexed: 11/20/2022] Open
Abstract
Here we report that Salmonella enterica serovar Typhimurium pathogenicity island 4 carries a type I secretion system (siiCDF) which secretes an approximately 600-kDa protein (encoded by siiE). SiiE is surface expressed, and its production is regulated by HilA. SiiE and SiiF influence colonization in cattle and the invasion of bovine enterocytes.
Collapse
Affiliation(s)
- Eirwen Morgan
- Division of Microbiology, Institute for Animal Health, Compton, Nr Newbury, Berkshire, RG20 7NN, United Kingdom.
| | | | | | | | | |
Collapse
|
50
|
Systematic analysis of the regulation of type three secreted effectors in Salmonella enterica serovar Typhimurium. BMC Microbiol 2007; 7:3. [PMID: 17233907 PMCID: PMC1781944 DOI: 10.1186/1471-2180-7-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 01/18/2007] [Indexed: 01/08/2023] Open
Abstract
Background The type III secretion system (TTSS) is an important virulence determinant of Gram-negative bacterial pathogens. It enables the injection of effector proteins into the cytosol of eukaryotic cells. These effectors ultimately manipulate the cellular functions of the infected organism. Salmonella enterica serovar Typhimurium encodes two virulence associated TTSSs encoded by the Salmonella Pathogenicity Islands (SPI) 1 and 2 that are required for the intestinal and systemic phases of the infection, respectively. However, recent studies suggest that the roles of these TTSSs are not restricted to these compartments. The regulation of TTSSs in Salmonella is very complex with several regulators operating to activate or to repress expression depending on the environmental conditions. Results We performed a systematic analysis of the regulation of type III effectors during growth in vitro. We have tested the ability of seven regulatory genes to regulate ten effector genes. Each regulator was expressed in the absence of the other six to avoid cascade effects. Our results confirm and extend the previously reported regulation of TTSS1 and TTSS2 effectors by InvF-SicA and SsrB respectively. Conclusion The set of strains constructed for this study can be used to quickly and systematically study the regulation of newly identified effector genes of Salmonella enterica. The approach we have used can also be applied to study complex regulatory cascades in other bacterial species.
Collapse
|