1
|
Kurniyati K, Clark ND, Wang H, Deng Y, Sze CW, Visser MB, Malkowski MG, Li C. A bipartite bacterial virulence factor targets the complement system and neutrophil activation. EMBO J 2025; 44:1154-1184. [PMID: 39753953 PMCID: PMC11833123 DOI: 10.1038/s44318-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
The complement system and neutrophils constitute the two main pillars of the host innate immune defense against infection by bacterial pathogens. Here, we identify T-Mac, a novel virulence factor of the periodontal pathogen Treponema denticola that allows bacteria to evade both defense systems. We show that T-Mac is expressed as a pre-protein that is cleaved into two functional units. The N-terminal fragment has two immunoglobulin-like domains and binds with high affinity to the major neutrophil chemokine receptors FPR1 and CXCR1, blocking N-formyl-Met-Leu-Phe- and IL-8-induced neutrophil chemotaxis and activation. The C-terminal fragment functions as a cysteine protease with a unique proteolytic activity and structure, which degrades several components of the complement system, such as C3 and C3b. Murine infection studies further reveal a critical T-Mac role in tissue damage and inflammation caused by bacterial infection. Collectively, these results disclose a novel innate immunity-evasion strategy, and open avenues for investigating the role of cysteine proteases and immunoglobulin-like domains of gram-positive and -negative bacterial pathogens.
Collapse
Affiliation(s)
- Kurni Kurniyati
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Nicholas D Clark
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, the State University of New York, Buffalo, NY, USA
| | - Hongxia Wang
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Yijie Deng
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Ching Wooen Sze
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Michelle B Visser
- Department of Oral Biology, School of Dentistry, University of Buffalo, the State University of New York, Buffalo, NY, USA
| | - Michael G Malkowski
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, the State University of New York, Buffalo, NY, USA.
| | - Chunhao Li
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Pisani F, Pisani V, Arcangeli F, Harding A, Singhrao SK. Treponema denticola Has the Potential to Cause Neurodegeneration in the Midbrain via the Periodontal Route of Infection-Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6049. [PMID: 37297653 PMCID: PMC10252855 DOI: 10.3390/ijerph20116049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/30/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the most common example of dementia. The neuropathological features of AD are the abnormal deposition of extracellular amyloid-β (Aβ) and intraneuronal neurofibrillary tangles with hyperphosphorylated tau protein. It is recognized that AD starts in the frontal cerebral cortex, and then it progresses to the entorhinal cortex, the hippocampus, and the rest of the brain. However, some studies on animals suggest that AD could also progress in the reverse order starting from the midbrain and then spreading to the frontal cortex. Spirochetes are neurotrophic: From a peripheral route of infection, they can reach the brain via the midbrain. Their direct and indirect effect via the interaction of their virulence factors and the microglia potentially leads to the host peripheral nerve, the midbrain (especially the locus coeruleus), and cortical damage. On this basis, this review aims to discuss the hypothesis of the ability of Treponema denticola to damage the peripheral axons in the periodontal ligament, to evade the complemental pathway and microglial immune response, to determine the cytoskeletal impairment and therefore causing the axonal transport disruption, an altered mitochondrial migration and the consequent neuronal apoptosis. Further insights about the central neurodegeneration mechanism and Treponema denticola's resistance to the immune response when aggregated in biofilm and its quorum sensing are suggested as a pathogenetic model for the advanced stages of AD.
Collapse
Affiliation(s)
- Flavio Pisani
- Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| | - Valerio Pisani
- IRCCS, “Santa Lucia” Foundation, Neurology and Neurorehabilitation Unit, Via Ardeatina, 306, 00179 Rome, Italy
| | - Francesca Arcangeli
- Azienda Sanitaria Locale ASLRM1, Nuovo Regina Margherita Hospital, Geriatric Department, Advanced Centre for Dementia and Cognitive Disorders, Via Emilio Morosini, 30, 00153 Rome, Italy
| | - Alice Harding
- Dementia and Neurodegenerative Disease Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| | - Simarjit Kaur Singhrao
- Dementia and Neurodegenerative Disease Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
3
|
Rivara-Espasandín M, Palumbo MC, Sosa EJ, Radío S, Turjanski AG, Sotelo-Silveira J, Fernandez Do Porto D, Smircich P. Omics data integration facilitates target selection for new antiparasitic drugs against TriTryp infections. Front Pharmacol 2023; 14:1136321. [PMID: 37089958 PMCID: PMC10115950 DOI: 10.3389/fphar.2023.1136321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Introduction:Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp., commonly referred to as TriTryps, are a group of protozoan parasites that cause important human diseases affecting millions of people belonging to the most vulnerable populations worldwide. Current treatments have limited efficiencies and can cause serious side effects, so there is an urgent need to develop new control strategies. Presently, the identification and prioritization of appropriate targets can be aided by integrative genomic and computational approaches.Methods: In this work, we conducted a genome-wide multidimensional data integration strategy to prioritize drug targets. We included genomic, transcriptomic, metabolic, and protein structural data sources, to delineate candidate proteins with relevant features for target selection in drug development.Results and Discussion: Our final ranked list includes proteins shared by TriTryps and covers a range of biological functions including essential proteins for parasite survival or growth, oxidative stress-related enzymes, virulence factors, and proteins that are exclusive to these parasites. Our strategy found previously described candidates, which validates our approach as well as new proteins that can be attractive targets to consider during the initial steps of drug discovery.
Collapse
Affiliation(s)
- Martin Rivara-Espasandín
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Miranda Clara Palumbo
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel J. Sosa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Santiago Radío
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Adrián G. Turjanski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Dario Fernandez Do Porto
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Dario Fernandez Do Porto, ; Pablo Smircich,
| | - Pablo Smircich
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Dario Fernandez Do Porto, ; Pablo Smircich,
| |
Collapse
|
4
|
Takeuchi H, Yamaga S, Sasaki N, Kuboniwa M, Matsusaki M, Amano A. Porphyromonas gingivalis induces penetration of lipopolysaccharide and peptidoglycan through the gingival epithelium via degradation of coxsackievirus and adenovirus receptor. Cell Microbiol 2021; 23:e13388. [PMID: 34448537 DOI: 10.1111/cmi.13388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 11/28/2022]
Abstract
Porphyromonas gingivalis is a major pathogen of human periodontitis and dysregulates innate immunity at the gingival epithelial surface. We previously reported that the bacterium specifically degrades junctional adhesion molecule 1 (JAM1), causing gingival epithelial barrier breakdown. However, the functions of other JAM family protein(s) in epithelial barrier dysregulation caused by P. gingivalis are not fully understood. The present results show that gingipains, Arg-specific or Lys-specific cysteine proteases produced by P. gingivalis, specifically degrade coxsackievirus and adenovirus receptor (CXADR), a JAM family protein, at R145 and K235 in gingival epithelial cells. In contrast, a gingipain-deficient P. gingivalis strain was found to be impaired in regard to degradation of CXADR. Furthermore, knockdown of CXADR in artificial gingival epithelium increased permeability to dextran 40 kDa, lipopolysaccharide and peptidoglycan, whereas overexpression of CXADR in a gingival epithelial tissue model prevented penetration by those agents following P. gingivalis infection. Together, these results suggest that P. gingivalis gingipains breach the stratified squamous epithelium barrier by degrading CXADR as well as JAM1, which allows for efficient transfer of bacterial virulence factors into subepithelial tissues. TAKEAWAYS: P. gingivalis, a periodontal pathogen, degraded coxsackievirus and adenovirus receptor (CXADR), a JAM family protein, in gingival epithelial tissues. P. gingivalis gingipains, cysteine proteases, degraded CXADR at R145 and K235. CXADR degradation by P. gingivalis caused increased permeability to lipopolysaccharide and peptidoglycan through gingival epithelial tissues.
Collapse
Affiliation(s)
- Hiroki Takeuchi
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Shunsuke Yamaga
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Naoko Sasaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Masae Kuboniwa
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Stokowa-Sołtys K, Wojtkowiak K, Jagiełło K. Fusobacterium nucleatum - Friend or foe? J Inorg Biochem 2021; 224:111586. [PMID: 34425476 DOI: 10.1016/j.jinorgbio.2021.111586] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 01/16/2023]
Abstract
Fusobacterium nucleatum (F. nucleatum) is one of the most abundant Gram-negative anaerobic bacteria, part of the gut, and oral commensal flora, generally found in human dental plaque. Its presence could be associated with various human diseases, including, e.g., periodontal, angina, lung and gynecological abscesses. This bacteria can enter the blood circulation as a result of periodontal infection. It was proven that F. nucleatum migrates from its primary site of colonization in the oral cavity to other parts of the body. It could cause numerous diseases, including cancers. On the other hand, it was shown that Fusobacterium produces significant amounts of butyric acid, which is a great source of energy for colonocytes (anti-inflammatory cells). Therefore, it is very interesting to get to know the two faces of F. nucleatum.
Collapse
Affiliation(s)
- Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Kamil Wojtkowiak
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Karolina Jagiełło
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
6
|
Goetting-Minesky MP, Godovikova V, Fenno JC. Approaches to Understanding Mechanisms of Dentilisin Protease Complex Expression in Treponema denticola. Front Cell Infect Microbiol 2021; 11:668287. [PMID: 34084756 PMCID: PMC8167434 DOI: 10.3389/fcimb.2021.668287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/04/2021] [Indexed: 11/25/2022] Open
Abstract
The oral spirochete Treponema denticola is a keystone periodontal pathogen that, in association with members of a complex polymicrobial oral biofilm, contributes to tissue damage and alveolar bone loss in periodontal disease. Virulence-associated behaviors attributed to T. denticola include disruption of the host cell extracellular matrix, tissue penetration and disruption of host cell membranes accompanied by dysregulation of host immunoregulatory factors. T. denticola dentilisin is associated with several of these behaviors. Dentilisin is an outer membrane-associated complex of acylated subtilisin-family PrtP protease and two other lipoproteins, PrcB and PrcA, that are unique to oral spirochetes. Dentilisin is encoded in a single operon consisting of prcB-prcA-prtP. We employ multiple approaches to study mechanisms of dentilisin assembly and PrtP protease activity. To determine the role of each protein in the protease complex, we have made targeted mutations throughout the protease locus, including polar and nonpolar mutations in each gene (prcB, prcA, prtP) and deletions of specific PrtP domains, including single base mutagenesis of key PrtP residues. These will facilitate distinguishing between host cell responses to dentilisin protease activity and its acyl groups. The boundaries of the divergent promoter region and the relationship between dentilisin and the adjacent iron transport operon are being resolved by incremental deletions in the sequence immediately 5’ to the protease locus. Comparison of the predicted three-dimensional structure of PrtP to that of other subtilisin-like proteases shows a unique PrtP C-terminal domain of approximately 250 residues. A survey of global gene expression in the presence or absence of protease gene expression reveals potential links between dentilisin and iron uptake and homeostasis in T. denticola. Understanding the mechanisms of dentilisin transport, assembly and activity of this unique protease complex may lead to more effective prophylactic or therapeutic treatments for periodontal disease.
Collapse
Affiliation(s)
- M Paula Goetting-Minesky
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Valentina Godovikova
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Motta FN, Azevedo CDS, Neves BP, Araújo CND, Grellier P, Santana JMD, Bastos IMD. Oligopeptidase B, a missing enzyme in mammals and a potential drug target for trypanosomatid diseases. Biochimie 2019; 167:207-216. [DOI: 10.1016/j.biochi.2019.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022]
|
8
|
Petrenko DE, Mikhailova AG, Timofeev VI, Agapova YК, Karlinsky DM, Komolov AS, Korzhenevskiy DA, Vlaskina AV, Rumsh LD, Rakitina TV. Molecular dynamics complemented by site-directed mutagenesis reveals significant difference between the interdomain salt bridge networks stabilizing oligopeptidases B from bacteria and protozoa in their active conformations. J Biomol Struct Dyn 2019; 38:4868-4882. [PMID: 31724904 DOI: 10.1080/07391102.2019.1692694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Oligopeptidases B (OpdBs) are trypsin-like peptidases from protozoa and bacteria that belong to the prolyl oligopeptidase (POP) family. All POPs consist of C-terminal catalytic domain and N-terminal β-propeller domain and exist in two major conformations: closed (active), where the domains and residues of the catalytic triad are positioned close to each other, and open (non-active), where two domains and residues of the catalytic triad are separated. The interdomain interface, particularly, one of its salt bridges (SB1), plays a role in the transition between these two conformations. However, due to double amino acid substitution (E/R and R/Q), this functionally important SB1 is absent in γ-proteobacterial OpdBs including peptidase from Serratia proteamaculans (PSP). In this study, molecular dynamics was used to analyze inter- and intradomain interactions stabilizing PSP in the closed conformation, in which catalytic H652 is located close to other residues of the catalytic triad. The 3D models of either wild-type PSP or of mutant PSPs carrying activating mutations E125A and D649A in complexes with peptide-substrates were subjected to the analysis. The mechanism that regulates transition of H652 from active to non-active conformation upon domain separation in PSP and other γ-proteobacterial OpdB was proposed. The complex network of polar interactions within H652-loop/C-terminal α-helix and between these areas and β-propeller domain, established in silico, was in a good agreement with both previously published results on the effects of single-residue mutations and new data on the effects of the activating mutations on each other and on the low active mutant PSP-K655A.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dmitry E Petrenko
- National Research Center "Kurchatov Institute", Moscow, Russian Federation
| | - Anna G Mikhailova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir I Timofeev
- National Research Center "Kurchatov Institute", Moscow, Russian Federation.,Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russian Federation
| | - Yulia К Agapova
- National Research Center "Kurchatov Institute", Moscow, Russian Federation
| | - David M Karlinsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Aleksandr S Komolov
- National Research Center "Kurchatov Institute", Moscow, Russian Federation.,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russian Federation
| | | | - Anna V Vlaskina
- National Research Center "Kurchatov Institute", Moscow, Russian Federation
| | - Lev D Rumsh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Tatiana V Rakitina
- National Research Center "Kurchatov Institute", Moscow, Russian Federation.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
9
|
Ovchinnikova MV, Mikhailova AG, Karlinsky DM, Gorlenko VA, Rumsh LD. Reversible Cyclic Thermal Inactivation of Oligopeptidase B from Serratia proteamaculans. Acta Naturae 2018; 10:65-70. [PMID: 30116617 PMCID: PMC6087823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
A unique property was found for oligopeptidase B from Serratia proteamaculans (PSP) as well as its mutants: they can undergo reversible thermal inactivation at 37°C, with activity being restored or even increased with respect to the initial one upon subsequent cooling. The process can be repeated several times, with the same results achieved (up to 5 cycles). This effect can be explained by a shift in the equilibrium between the inactive open form of the enzyme and the active closed one upon variation of the incubation temperature.
Collapse
Affiliation(s)
- M. V. Ovchinnikova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia ,Moscow State Pedagogical University, M. Pirogovskaya Str. 1, bldg. 1, Moscow, 119991, Russia
| | - A. G. Mikhailova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia
| | - D. M. Karlinsky
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia
| | - V. A. Gorlenko
- Moscow State Pedagogical University, M. Pirogovskaya Str. 1, bldg. 1, Moscow, 119991, Russia
| | - L. D. Rumsh
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia
| |
Collapse
|
10
|
The major outer sheath protein forms distinct conformers and multimeric complexes in the outer membrane and periplasm of Treponema denticola. Sci Rep 2017; 7:13260. [PMID: 29038532 PMCID: PMC5643300 DOI: 10.1038/s41598-017-13550-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022] Open
Abstract
The major outer sheath protein (MOSP) is a prominent constituent of the cell envelope of Treponema denticola (TDE) and one of its principal virulence determinants. Bioinformatics predicts that MOSP consists of N- and C-terminal domains, MOSPN and MOSPC. Biophysical analysis of constructs refolded in vitro demonstrated that MOSPC, previously shown to possess porin activity, forms amphiphilic trimers, while MOSPN forms an extended hydrophilic monomer. In TDE and E. coli expressing MOSP with a PelB signal sequence (PelB-MOSP), MOSPC is OM-embedded and surface-exposed, while MOSPN resides in the periplasm. Immunofluorescence assay, surface proteolysis, and novel cell fractionation schemes revealed that MOSP in TDE exists as outer membrane (OM) and periplasmic trimeric conformers; PelB-MOSP, in contrast, formed only OM-MOSP trimers. Although both conformers form hetero-oligomeric complexes in TDE, only OM-MOSP associates with dentilisin. Mass spectrometry (MS) indicated that OM-MOSP interacts with proteins in addition to dentilisin, most notably, oligopeptide-binding proteins (OBPs) and the β-barrel of BamA. MS also identified candidate partners for periplasmic MOSP, including TDE1658, a spirochete-specific SurA/PrsA ortholog. Collectively, our data suggest that MOSP destined for the TDE OM follows the canonical BAM pathway, while formation of a stable periplasmic conformer involves an export-related, folding pathway not present in E. coli.
Collapse
|
11
|
Mikhailova AG, Rakitina TV, Timofeev VI, Karlinsky DM, Korzhenevskiy DA, Agapova YК, Vlaskina AV, Ovchinnikova MV, Gorlenko VA, Rumsh LD. Activity modulation of the oligopeptidase B from Serratia proteamaculans by site-directed mutagenesis of amino acid residues surrounding catalytic triad histidine. Biochimie 2017; 139:125-136. [DOI: 10.1016/j.biochi.2017.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 11/16/2022]
|
12
|
Mikhailova AG, Nekrasov AN, Zinchenko AA, Rakitina TV, Korzhenevsky DA, Lipkin AV, Razguljaeva OA, Ovchinnikova MV, Gorlenko VA, Rumsh LD. Truncated Variants of Serratia proteamaculans Oligopeptidase B Having Different Activities. BIOCHEMISTRY (MOSCOW) 2016; 80:1331-43. [PMID: 26567578 DOI: 10.1134/s0006297915100156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Treatment of native psychrophilic oligopeptidase B from Serratia proteamaculans (PSP, 78 kDa) with chymotrypsin (soluble or immobilized on modified porous glass MPG-PA) in the presence of 50% glycerol leads to production of a truncated enzyme form (PSP-Chtr, ~66 kDa), which retains activity toward the low molecular weight substrate of PSP, BAPNA, but in contrast to PSP, is active toward the protein substrate azocasein. It has been shown by MALDI-TOF mass-spectrometry that PSP-Chtr lacks the N-terminal region of the molecule that envelops the catalytic domain of PSP and supposedly prevents hydrolysis of high molecular weight substrates. It has also been established that the lacking fragment corresponds to the N-terminal highest rank element of the informational structure of PSP. This finding confirms the usefulness of the method of informational structure analysis for protein engineering of enzymes. A similar treatment of PSP with immobilized trypsin also led to production of a stable truncated enzyme form (PSP-Tr, ~75 kDa) which lacked 22 C-terminal amino acid residues and completely lost enzymatic activity, presumably because of changes in the nearest environment of His652 of the catalytic triad.
Collapse
Affiliation(s)
- A G Mikhailova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dommisch H, Jepsen S. Diverse functions of defensins and other antimicrobial peptides in periodontal tissues. Periodontol 2000 2015; 69:96-110. [DOI: 10.1111/prd.12093] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2015] [Indexed: 02/06/2023]
|
14
|
Abiko Y, Nagano K, Yoshida Y, Yoshimura F. Characterization of Treponema denticola mutants defective in the major antigenic proteins, Msp and TmpC. PLoS One 2014; 9:e113565. [PMID: 25401769 PMCID: PMC4234677 DOI: 10.1371/journal.pone.0113565] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/27/2014] [Indexed: 12/28/2022] Open
Abstract
Treponema denticola, a gram-negative and anaerobic spirochete, is associated with advancing severity of chronic periodontitis. In this study, we confirmed that two major antigenic proteinswere Msp and TmpC, and examined their physiological and pathological roles using gene-deletion mutants. Msp formed a large complex that localized to the outer membrane, while TmpC existed as a monomer and largely localized to the inner membrane. However, TmpC was also detected in the outer membrane fraction, but its cell-surface exposure was not detected. Msp defects increased cell-surface hydrophobicity and secretion of TNF-α from macrophage-like cells, whereas TmpC defects decreased autoagglutination and chymotrypsin-like protease activities. Both mutants adhered to gingival epithelial cells similarly to the wild-type and showed slightly decreased motility. In addition, in Msp-defective mutants, the TDE1072 protein, which is a major membrane protein, was abolished; therefore, phenotypic changes in the mutant can be, at least in part, attributed to the loss of the TDE1072 protein. Thus, the major antigenic proteins, Msp and TmpC, have significant and diverse impacts on the characteristics of T. denticola, especially cell surface properties.
Collapse
Affiliation(s)
- Yuki Abiko
- Department of Microbiology, School of Dentistry, Aichi Gakuin University Nagoya, Aichi, Japan
| | - Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University Nagoya, Aichi, Japan
| | - Yasuo Yoshida
- Department of Microbiology, School of Dentistry, Aichi Gakuin University Nagoya, Aichi, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University Nagoya, Aichi, Japan
| |
Collapse
|
15
|
Gottumukkala SNVS, Sudarshan S, Mantena SR. Comparative evaluation of the efficacy of two controlled release devices: Chlorhexidine chips and indigenous curcumin based collagen as local drug delivery systems. Contemp Clin Dent 2014; 5:175-81. [PMID: 24963242 PMCID: PMC4067779 DOI: 10.4103/0976-237x.132310] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aim: To comparatively evaluate the therapeutic efficacy of chlorhexidine (CHX) chips (Periocol-CG) and indigenous curcumin (CU) based collagen as adjuncts to scaling and root planning in the nonsurgical management of chronic periodontitis. Materials and Methods: A total of 120 sites from 60 patients presenting with chronic periodontitis (age group 25-55 years) of both sexes, with pocket depth of ≥5 mm with radiographic evidence of bilateral bone loss were earmarked for the study. A split mouth design was employed, and all the clinical parameters-plaque index, gingival index, probing pocket depth (PPD) and clinical attachment levels (CAL) were recorded at baseline, 1 month, 3 months, and 6 months. However, the microbiological parameters, i.e., N-benzoyl-DL-arginine-β-naphthylamide (BANA) test and microbial colony count were recorded at baseline, 3 months and 6 months postoperatively. Results: Significant reduction in plaque and gingival index scores were observed in both groups at the end of the study period, i.e., 6 months. The microbiological parameters (BANA test, microbial colony count), PPD and CAL levels also showed significant improvement in both groups. However, at the end of the study period CHX group showed greater improvement in all of these parameters compared to CU collagen group. Conclusion: Future directions of this study should include targeting the beneficial effects of these local drug delivery systems at varied concentrations so that they could be utilized to achieve the maximum beneficial therapeutic effects in the nonsurgical treatment of periodontal disease.
Collapse
Affiliation(s)
| | - Sabitha Sudarshan
- Department of Periodontics, Vaels Institute of Dental Sciences, Chennai, Tamil Nadu, India
| | | |
Collapse
|
16
|
Mikhailova AG, Khairullin RF, Demidyuk IV, Kostrov SV, Grinberg NV, Burova TV, Grinberg VY, Rumsh LD. Cloning, sequencing, expression, and characterization of thermostability of oligopeptidase B from Serratia proteamaculans, a novel psychrophilic protease. Protein Expr Purif 2014; 93:63-76. [DOI: 10.1016/j.pep.2013.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 11/30/2022]
|
17
|
Svartström O, Mushtaq M, Pringle M, Segerman B. Genome-wide relatedness of Treponema pedis, from gingiva and necrotic skin lesions of pigs, with the human oral pathogen Treponema denticola. PLoS One 2013; 8:e71281. [PMID: 23977007 PMCID: PMC3747143 DOI: 10.1371/journal.pone.0071281] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/27/2013] [Indexed: 11/18/2022] Open
Abstract
Treponema pedis and T. denticola are two genetically related species with different origins of isolation. Treponema denticola is part of the human oral microbiota and is associated with periodontitis while T. pedis has been isolated from skin lesions in animals, e.g., digital dermatitis in cattle and necrotic ulcers in pigs. Although multiple Treponema phylotypes may exist in ulcerative lesions in pigs, T. pedis appears to be a predominant spirochete in these lesions. Treponema pedis can also be present in pig gingiva. In this study, we determined the complete genome sequence of T. pedis strain T A4, isolated from a porcine necrotic ear lesion, and compared its genome with that of T. denticola. Most genes in T. pedis were homologous to those in T. denticola and the two species were similar in general genomic features such as size, G+C content, and number of genes. In addition, many homologues of specific virulence-related genes in T. denticola were found in T. pedis. Comparing a selected pair of strains will usually not give a complete picture of the relatedness between two species. We therefore complemented the analysis with draft genomes from six T. pedis isolates, originating from gingiva and necrotic ulcers in pigs, and from twelve T. denticola strains. Each strain carried a considerable amount of accessory genetic material, of which a large part was strain specific. There was also extensive sequence variability in putative virulence-related genes between strains belonging to the same species. Signs of lateral gene-transfer events from bacteria known to colonize oral environments were found. This suggests that the oral cavity is an important habitat for T. pedis. In summary, we found extensive genomic similarities between T. pedis and T. denticola but also large variability within each species.
Collapse
Affiliation(s)
- Olov Svartström
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| | - Memoona Mushtaq
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Märit Pringle
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, Uppsala, Sweden
| | - Bo Segerman
- Department of Bacteriology, National Veterinary Institute, Uppsala, Sweden
| |
Collapse
|
18
|
Mikhailova AG, Khairullin RF, Kolomijtseva GY, Rumsh LD. Oligopeptidase B from Serratia proteamaculans. III. Inhibition analysis. Specific interactions with metalloproteinase inhibitors. BIOCHEMISTRY (MOSCOW) 2012; 77:300-6. [DOI: 10.1134/s0006297912030091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Mohamed Mustafa MS, Nakajima Y, Oyama H, Iwata N, Ito K. Assessment of Substrate Inhibition of Bacterial Oligopeptidase B. Biol Pharm Bull 2012; 35:2010-6. [DOI: 10.1248/bpb.b12-00544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Yoshitaka Nakajima
- Graduate School of Biomedical Sciences, Nagasaki University
- Department of Life Science, Faculty of Science and Engineering, Setsunan University
| | - Hiroshi Oyama
- Department of Life Science, Faculty of Science and Engineering, Setsunan University
| | - Nobuhisa Iwata
- Graduate School of Biomedical Sciences, Nagasaki University
| | - Kiyoshi Ito
- Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
20
|
Mikhailova AG, Khairullin RF, Demidyuk IV, Gromova TY, Kostrov SV, Rumsh LD. Oligopeptidase B from Serratia proteamaculans. II. Enzymatic characteristics: Substrate analysis, influence of calcium ions, pH and temperature dependences. BIOCHEMISTRY (MOSCOW) 2011; 76:480-90. [DOI: 10.1134/s0006297911040122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Visser M, Ellen R. New insights into the emerging role of oral spirochaetes in periodontal disease. Clin Microbiol Infect 2011; 17:502-12. [DOI: 10.1111/j.1469-0691.2011.03460.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
|
23
|
Dashper SG, Seers CA, Tan KH, Reynolds EC. Virulence factors of the oral spirochete Treponema denticola. J Dent Res 2010; 90:691-703. [PMID: 20940357 DOI: 10.1177/0022034510385242] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is compelling evidence that treponemes are involved in the etiology of several chronic diseases, including chronic periodontitis as well as other forms of periodontal disease. There are interesting parallels with other chronic diseases caused by treponemes that may indicate similar virulence characteristics. Chronic periodontitis is a polymicrobial disease, and recent animal studies indicate that co-infection of Treponema denticola with other periodontal pathogens can enhance alveolar bone resorption. The bacterium has a suite of molecular determinants that could enable it to cause tissue damage and subvert the host immune response. In addition to this, it has several non-classic virulence determinants that enable it to interact with other pathogenic bacteria and the host in ways that are likely to promote disease progression. Recent advances, especially in molecular-based methodologies, have greatly improved our knowledge of this bacterium and its role in disease.
Collapse
Affiliation(s)
- S G Dashper
- Cooperative Research Centre for Oral Health, Melbourne Dental School and Bio21 Institute, The University of Melbourne, 720 Swanston Street, Victoria 3010, Australia
| | | | | | | |
Collapse
|
24
|
Treponema denticola PrcB is required for expression and activity of the PrcA-PrtP (dentilisin) complex. J Bacteriol 2010; 192:3337-44. [PMID: 20435733 DOI: 10.1128/jb.00274-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Treponema denticola surface protease complex, consisting of PrtP protease (dentilisin) and two auxiliary polypeptides (PrcA1 and PrcA2), is believed to contribute to periodontal disease by degrading extracellular matrix components and disrupting host intercellular signaling. Previously, we showed that transcription of the protease operon initiates upstream of TDE0760 (herein designated prcB), the open reading frame immediately 5' of prcA-prtP. The prcB gene is conserved in T. denticola strains. PrcB localizes to the detergent phase of Triton X-114 cell surface extracts and migrates as a 22-kDa polypeptide, in contrast to the predicted 17-kDa cytoplasmic protein encoded in the annotated T. denticola genome. Consistent with this observation, the PrcB N terminus is unavailable for Edman sequencing, suggesting that it is acylated. Nonpolar deletion of prcB in T. denticola showed that PrcB is required for production of PrtP protease activity, including native PrtP cleavage of PrcA to PrcA1 and PrcA2. A 6xHis-tagged PrcB protein coimmunoprecipitates with native PrtP, using either anti-PrtP or anti-His-tag antibodies, and recombinant PrtP copurifies with PrcB-6xHis in nickel affinity chromatography. Taken together, these data are consistent with identification of PrcB as a PrtP-binding lipoprotein that likely stabilizes the PrtP polypeptide during localization to the outer membrane.
Collapse
|
25
|
Orth R, O'Brien-Simpson N, Dashper S, Walsh K, Reynolds E. An efficient method for enumerating oral spirochetes using flow cytometry. J Microbiol Methods 2009; 80:123-8. [PMID: 19932718 DOI: 10.1016/j.mimet.2009.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 11/11/2009] [Accepted: 11/16/2009] [Indexed: 10/20/2022]
Abstract
Spirochetes, such as Treponema denticola, are thin walled, helical, motile bacteria. They are notoriously difficult to enumerate due to their thinness and the difficulties associated with culturing them. Here we have developed a modified oral bacterial growth medium (OBGM) that significantly improves the cultivation of T. denticola compared with a previously published growth medium. Three methods for the enumeration of T. denticola, semi-solid growth medium colony-forming unit (CFU) counts, DNA analysis and flow cytometry, are described and compared. Enumeration of T. denticola using the semi-solid agar method resulted in a positive linear relationship with absorbance of the culture (R(2)=0.9423). However, the semi-solid agar method was found to consistently underestimate (by 50 fold) the T. denticola cell density compared to previously published data. DNA analysis of T. denticola cultures reliably and consistently resulted in a positive linear relationship with absorbance (R(2)=0.9360), giving a calculated cell density of 6.9 x 10(8)cells/mL at an absorbance of 0.2 at 650 nm. Flow cytometry was also found to result in a positive linear relationship with absorbance (R(2)=0.9874), giving a calculated cell density of 6.6 x 10(8)cells/mL at an absorbance of 0.2 at 650 nm. In comparing all of these enumeration methods, the flow cytometry method was found to have distinct advantages, as it is accurate, rapid, and could distinguish between live and dead bacteria. Thus flow cytometry is a recommended means for the rapid and reliable enumeration of viable spirochetes from culture.
Collapse
Affiliation(s)
- Rebecca Orth
- Cooperative Research Centre for Oral Health Science, Melbourne Dental School, Australia
| | | | | | | | | |
Collapse
|
26
|
Khairullin RF, Mikhailova AG, Sebyakina TY, Lubenets NL, Ziganshin RH, Demidyuk IV, Gromova TY, Kostrov SV, Rumsh LD. Oligopeptidase B from Serratia proteamaculans. I. Determination of primary structure, isolation, and purification of wild-type and recombinant enzyme variants. BIOCHEMISTRY (MOSCOW) 2009; 74:1164-72. [DOI: 10.1134/s0006297909100137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Veith PD, Dashper SG, O'Brien-Simpson NM, Paolini RA, Orth R, Walsh KA, Reynolds EC. Major proteins and antigens of Treponema denticola. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1421-32. [PMID: 19501677 DOI: 10.1016/j.bbapap.2009.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 05/20/2009] [Accepted: 06/01/2009] [Indexed: 11/15/2022]
Abstract
Treponema denticola is a Gram-negative, motile, asaccharolytic, anaerobic spirochaete which along with Porphyromonas gingivalis and Tannerella forsythia has been shown to form a bacterial consortium called the Red Complex that is strongly associated with the clinical progression of chronic periodontitis. T. denticola was grown in continuous culture in a complex medium with a mean generation time of 15.75 h. Samples from two different membrane-enriched preparations and a cytoplasm-enriched preparation were separated by two-dimensional gel electrophoresis and the proteins identified by MALDI-TOF/TOF mass spectrometry. In total, 219 non-redundant proteins were identified including numerous virulence factors, lipoproteins, ABC transporter proteins and enzymes involved in the metabolism of nine different amino acids of which glycine seems to be of particular importance. Novel findings include the identification of several abundant peptide uptake systems, and the identification of three flagellar filament outer layer proteins. Two-dimensional Western blot analysis using sera from mice immunized with formalin-killed T. denticola cells suggested that Msp, PrcA, OppA, OppA10, MglB, TmpC and several flagellar filament proteins are antigenic.
Collapse
Affiliation(s)
- Paul D Veith
- Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute, the University of Melbourne, Victoria, 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
28
|
Analysis of a unique interaction between the complement regulatory protein factor H and the periodontal pathogen Treponema denticola. Infect Immun 2009; 77:1417-25. [PMID: 19204088 DOI: 10.1128/iai.01544-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Treponema denticola, a spirochete associated with periodontitis, is abundant at the leading edge of subgingival plaque, where it interacts with gingival epithelia. T. denticola produces a number of virulence factors, including dentilisin, a protease which is cytopathic to host cells, and FhbB, a unique T. denticola lipoprotein that binds complement regulatory proteins. Earlier analyses suggested that FhbB specifically bound to factor H (FH)-like protein 1 (FHL-1). However, by using dentilisin-deficient mutants of T. denticola, we found that T. denticola preferentially binds FH and not FHL-1, and that FH is then cleaved by dentilisin to yield an FH subfragment of approximately 50 kDa. FH bound to dentilisin-deficient mutants but was not cleaved and retained its ability to serve as a cofactor for factor I in the cleavage of C3b. To assess the molecular basis of the interaction of FhbB with FH, mutational analyses were conducted. Replacement of specific residues in widely separated domains of FhbB and disruption of a central alpha helix with coiled-coil formation probability attenuated or eliminated FH binding. The data presented here are the first to demonstrate the retention at the cell surface of a proteolytic cleavage product of FH. The precise role of this FH fragment in the host-pathogen interaction remains to be determined.
Collapse
|
29
|
Oligopeptidase B: A processing peptidase involved in pathogenesis. Biochimie 2008; 90:336-44. [DOI: 10.1016/j.biochi.2007.10.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Accepted: 10/25/2007] [Indexed: 11/20/2022]
|
30
|
Yin L, Dale BA. Activation of protective responses in oral epithelial cells by Fusobacterium nucleatum and human beta-defensin-2. J Med Microbiol 2007; 56:976-987. [PMID: 17577065 DOI: 10.1099/jmm.0.47198-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oral epithelia are constantly exposed to non-pathogenic (commensal) bacteria, but generally remain healthy and uninflamed. Fusobacterium nucleatum, an oral commensal bacterium, strongly induces human beta-defensin-2 (hBD2), an antimicrobial and immunomodulatory peptide, in gingival epithelial cells (GECs). hBD2 is also expressed in normal oral tissue leading to the hypothesis that oral epithelia are in an activated state with respect to innate immune responses under normal in vivo conditions. In order to test this hypothesis, global gene expression was evaluated in GECs in response to stimulation by an F. nucleatum cell wall (FnCW) preparation and to hBD2 peptide. FnCW treatment altered 829 genes, while hBD2 altered 209 genes (P<0.005, ANOVA). Many induced genes were associated with the gene ontology categories of immune responses and defence responses. Consistent with the hypothesis, similar responses were activated by commensal bacteria and hBD2. These responses included up-regulation of common antimicrobial effectors and chemokines, and down-regulation of proliferation markers. In addition, FnCW up-regulated multiple protease inhibitors, and suppressed NF-kappaB function and the ubiquitin/proteasome system. These global changes may protect the tissue from inflammatory damage. Both FnCW and hBD2 also up-regulated genes that may enhance the epithelial barrier. The findings suggest that both commensal bacteria and hBD2 activate protective responses of GECs and play an important role in immune modulation in the oral cavity.
Collapse
Affiliation(s)
- Lei Yin
- Department of Oral Biology, University of Washington, Seattle, WA, USA
| | - Beverly A Dale
- Departments of Periodontics, Biochemistry and Medicine/Dermatology, University of Washington, Seattle, WA, USA
- Department of Oral Biology, University of Washington, Seattle, WA, USA
| |
Collapse
|
31
|
Miyamoto M, Ishihara K, Okuda K. The Treponema denticola surface protease dentilisin degrades interleukin-1 beta (IL-1 beta), IL-6, and tumor necrosis factor alpha. Infect Immun 2006; 74:2462-7. [PMID: 16552080 PMCID: PMC1418930 DOI: 10.1128/iai.74.4.2462-2467.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dentilisin is a major surface protease and virulence factor of the bacterium Treponema denticola. In this study, we found that T. denticola reduced inflammatory cytokines, including interleukin-1beta (IL-1beta), IL-6, and tumor necrosis factor alpha, in peripheral blood mononuclear cells through degradation by dentilisin.
Collapse
Affiliation(s)
- Meguru Miyamoto
- Department of Microbiology, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan.
| | | | | |
Collapse
|
32
|
Ouhara K, Komatsuzawa H, Yamada S, Shiba H, Fujiwara T, Ohara M, Sayama K, Hashimoto K, Kurihara H, Sugai M. Antimicrobial peptides in the oral environment: expression and function in health and disease. Curr Issues Mol Biol 2005; 55:888-96. [PMID: 15886266 DOI: 10.1093/jac/dki103] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The oral cavity is a unique environment in which antimicrobial peptides play a key role in maintaining health and may have future therapeutic applications. Present evidence suggests that alpha-defensins, beta-defensins, LL-37, histatin, and other antimicrobial peptides and proteins have distinct but overlapping roles in maintaining oral health and preventing bacterial, fungal, and viral adherence and infection. The expression of the inducible hBD-2 in normal oral epithelium, in contrast to other epithelia, and the apparent differential signaling in response to commensal and pathogenic organisms, provides new insights into innate immunity in this body site. Commensal bacteria are excellent inducers of hBD-2 in oral epithelial cells, suggesting that the commensal bacterial community acts in a manner to benefit the overall innate immune readiness of oral epithelia. This may have major significance for understanding host defense in the complex oral environment.
Collapse
Affiliation(s)
- Kazuhisa Ouhara
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yoshida A, Nagashima S, Ansai T, Tachibana M, Kato H, Watari H, Notomi T, Takehara T. Loop-mediated isothermal amplification method for rapid detection of the periodontopathic bacteria Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola. J Clin Microbiol 2005; 43:2418-24. [PMID: 15872275 PMCID: PMC1153746 DOI: 10.1128/jcm.43.5.2418-2424.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Loop-mediated isothermal amplification (LAMP), a novel nucleic acid amplification method, was developed for the rapid detection of the major periodontal pathogens Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola. The LAMP method amplifies DNA with high specificity, efficiency, and rapidity under isothermal conditions using a set of four specially designed primers and a DNA polymerase with strand displacement activity. In this study, we initially designed the primers for LAMP assays to detect these bacteria and evaluated the specificity and sensitivity of these assays. The specificities of the primers for these bacteria were examined using various oral bacteria and various reaction times. The lower detection limits of the 60-min LAMP reaction without loop primers were 1 microg/tube for P. gingivalis, 10 fg/tube for T. forsythia, and 1 ng/tube for T. denticola. Addition of the loop primers for each bacterium improved the detection specificities and sensitivities by several magnitudes. Furthermore, LAMP assays were applied to the rapid detection of these periodontal pathogens in clinical specimens, and the results were compared with those of conventional PCR detection. The results of the LAMP assays corresponded to those of conventional PCR assays. These results indicate that the LAMP assay is an extremely rapid, highly sensitive, specific method. This method is very useful for the rapid detection of periodontopathic bacteria and the diagnosis of periodontal disease.
Collapse
Affiliation(s)
- Akihiro Yoshida
- Division of Community Oral Health Science, Kyushu Dental College, 2-6-1 Manazuru, Kitakyushu 803-8580, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Dale BA, Fredericks LP. Antimicrobial peptides in the oral environment: expression and function in health and disease. Curr Issues Mol Biol 2005; 7:119-33. [PMID: 16053246 PMCID: PMC1479858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
The oral cavity is a unique environment in which antimicrobial peptides play a key role in maintaining health and may have future therapeutic applications. Present evidence suggests that alpha-defensins, beta-defensins, LL-37, histatin, and other antimicrobial peptides and proteins have distinct but overlapping roles in maintaining oral health and preventing bacterial, fungal, and viral adherence and infection. The expression of the inducible hBD-2 in normal oral epithelium, in contrast to other epithelia, and the apparent differential signaling in response to commensal and pathogenic organisms, provides new insights into innate immunity in this body site. Commensal bacteria are excellent inducers of hBD-2 in oral epithelial cells, suggesting that the commensal bacterial community acts in a manner to benefit the overall innate immune readiness of oral epithelia. This may have major significance for understanding host defense in the complex oral environment.
Collapse
Affiliation(s)
- Beverly A Dale
- Dept. of Oral Biology, Box 357132, University of Washington, Seattle, WA 98195-7132, USA.
| | | |
Collapse
|
35
|
Affiliation(s)
- Richard P Ellen
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
36
|
Edwards AM, Jenkinson HF, Woodward MJ, Dymock D. Binding properties and adhesion-mediating regions of the major sheath protein of Treponema denticola ATCC 35405. Infect Immun 2005; 73:2891-8. [PMID: 15845495 PMCID: PMC1087326 DOI: 10.1128/iai.73.5.2891-2898.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is growing evidence that a number of oral Treponema species, in particular Treponema denticola, are associated with the progression of human periodontal disease. The major sheath (or surface) protein (Msp) of T. denticola is implicated in adhesion of bacteria to host cells and tissue proteins and is likely to be an important virulence factor. However, the binding regions of the Msp are not known. We have purified from Escherichia coli recombinant Msp (rMsp) polypeptides corresponding to the following: full-length Msp (rMsp) minus 13 N-terminal amino acid (aa) residues, an amino-terminal fragment (rN-Msp, 189 aa residues), a 57-aa residue segment from the central region (rV-Msp), and a C-terminal fragment (rC-Msp, 272 aa residues). rMsp (530 aa residues) bound to immobilized fibronectin, keratin, laminin, collagen type I, fibrinogen, hyaluronic acid, and heparin. The N- and V-region polypeptides, but not rC-Msp, also bound to these substrates. Binding of rMsp to fibronectin was targeted to the N-terminal heparin I/fibrin I domain. Antibodies to the N-region or V-region polypeptides, but not antibodies to the rC-Msp fragment, blocked adhesion of T. denticola ATCC 35405 cells to a range of host protein molecules. These results suggest that the N-terminal half of Msp carries epitopes that are surface exposed and that are involved in mediating adhesion. Binding of rMsp onto the cell surface of low-level fibronectin-binding Treponema isolates conferred a 10-fold increase in fibronectin binding. This confirms that Msp functions autonomously as an adhesin and raises the possibility that phenotypic complementation of virulence functions might occur within mixed populations of Treponema species.
Collapse
Affiliation(s)
- Andrew M Edwards
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom.
| | | | | | | |
Collapse
|
37
|
Bian XL, Wang HT, Ning Y, Lee SY, Fenno JC. Mutagenesis of a novel gene in the prcA-prtP protease locus affects expression of Treponema denticola membrane complexes. Infect Immun 2005; 73:1252-5. [PMID: 15664975 PMCID: PMC547024 DOI: 10.1128/iai.73.2.1252-1255.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel gene was identified in the Treponema denticola prcA-prtP protease operon. Strains with mutations in either the prcA-prtP or the msp region showed altered expression of a product(s) of the other locus. Together, these results provide information on the assembly of outer membrane complexes involved in T. denticola interaction with host cells and tissue.
Collapse
Affiliation(s)
- Xue-Lin Bian
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | | | | | | | |
Collapse
|
38
|
Chung WO, Hansen SR, Rao D, Dale BA. Protease-activated receptor signaling increases epithelial antimicrobial peptide expression. THE JOURNAL OF IMMUNOLOGY 2004; 173:5165-70. [PMID: 15470061 DOI: 10.4049/jimmunol.173.8.5165] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Epithelial tissues provide both a physical barrier and an antimicrobial barrier. Antimicrobial peptides of the human beta-defensin (hBD) family are part of the innate immune responses that play a role in mucosal defense. hBDs are made in epithelia including oral epithelium where the bacterial load is particularly great. hBD-2 and hBD-3 are up-regulated in response to bacterial stimuli. Previous studies show that hBD-2 expression in human gingival epithelial cells (GEC) is stimulated by both nonpathogenic and pathogenic bacteria, including Porphyromonas gingivalis, a Gram-negative pathogen associated with periodontitis. Present evidence suggests that hBD-2 expression in GEC uses several signaling pathways, including an NF-kappaB-mediated pathway but without apparent LPS-TLR4 signaling. Protease-activated receptors (PAR) are G-protein-coupled receptors that mediate cellular responses to extracellular proteinases. P. gingivalis secretes multiple proteases that contribute to its virulence mechanisms. To determine whether PAR signaling is used in hBD-2 induction, GEC were stimulated with wild-type P. gingivalis or mutants lacking one or more proteases. hBD-2 mRNA expression was reduced in GEC stimulated with single protease mutants (11-67% compared with wild type), strongly reduced in double mutants (0.1-16%), and restored to wild-type levels (93%) in mutant with restored protease activity. Stimulation by wild type was partially blocked by inhibitors of phospholipase C, a main signaling pathway for PARs. Expression of hBD-3 was unaffected. Peptide agonist of PAR-2, but not PAR-1 activator, also induced hBD-2 in GEC. Thus, P. gingivalis proteases are directly involved in regulation of hBD-2 in cultured GEC, and this induction partially uses the PAR-2 receptor and signaling pathway.
Collapse
Affiliation(s)
- Whasun O Chung
- Department of Oral Biology, University of Washington, Seattle 98195-7132, USA.
| | | | | | | |
Collapse
|
39
|
O'Brien-Simpson NM, Veith PD, Dashper SG, Reynolds EC. Antigens of bacteria associated with periodontitis. Periodontol 2000 2004; 35:101-34. [PMID: 15107060 DOI: 10.1111/j.0906-6713.2004.003559.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Neil M O'Brien-Simpson
- Centre for Oral Health Science, School of Dental Science, The University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
40
|
Kent C, Gee P, Lee SY, Bian X, Fenno JC. A CDP-choline pathway for phosphatidylcholine biosynthesis in Treponema denticola. Mol Microbiol 2004; 51:471-81. [PMID: 14756787 DOI: 10.1046/j.1365-2958.2003.03839.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genomes of Treponema denticola and Treponema pallidum contain a gene, licCA, which is predicted to encode a fusion protein containing choline kinase and CTP:phosphocholine cytidylyltransferase activities. Because both organisms have been reported to contain phosphatidylcholine, this raises the possibility that they use a CDP-choline pathway for the biosynthesis of phosphatidylcholine. This report shows that phosphatidylcholine is a major phospholipid in T. denticola, accounting for 35-40% of total phospholipid. This organism readily incorporated [14C]choline into phosphatidylcholine, indicating the presence of a choline-dependent biosynthetic pathway. The licCA gene was cloned, and recombinant LicCA had choline kinase and CTP:phosphocholine cytidylyltransferase activity. The licCA gene was disrupted in T. denticola by erythromycin cassette mutagenesis, resulting in a viable mutant. This disruption completely blocked incorporation of either [14C]choline or 32Pi into phosphatidylcholine. The rate of production of another phospholipid in T. denticola, phosphatidylethanolamine, was elevated considerably in the licCA mutant, suggesting that the elevated level of this lipid compensated for the loss of phosphatidylcholine in the membranes. Thus it appears that T. denticola does contain a licCA-dependent CDP-choline pathway for phosphatidylcholine biosynthesis.
Collapse
Affiliation(s)
- Claudia Kent
- Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | | | | | | | |
Collapse
|
41
|
Correia FF, Plummer AR, Ellen RP, Wyss C, Boches SK, Galvin JL, Paster BJ, Dewhirst FE. Two paralogous families of a two-gene subtilisin operon are widely distributed in oral treponemes. J Bacteriol 2004; 185:6860-9. [PMID: 14617650 PMCID: PMC262700 DOI: 10.1128/jb.185.23.6860-6869.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain oral treponemes express a highly proteolytic phenotype and have been associated with periodontal diseases. The periodontal pathogen Treponema denticola produces dentilisin, a serine protease of the subtilisin family. The two-gene operon prcA-prtP is required for expression of active dentilisin (PrtP), a putative lipoprotein attached to the treponeme's outer membrane or sheath. The purpose of this study was to examine the diversity and structure of treponemal subtilisin-like proteases in order to better understand their distribution and function. The complete sequences of five prcA-prtP operons were determined for Treponema lecithinolyticum, "Treponema vincentii," and two canine species. Partial operon sequences were obtained for T. socranskii subsp. 04 as well as 450- to 1,000-base fragments of prtP genes from four additional treponeme strains. Phylogenetic analysis demonstrated that the sequences fall into two paralogous families. The first family includes the sequence from T. denticola. Treponemes possessing this operon family express chymotrypsin-like protease activity and can cleave the substrate N-succinyl-alanyl-alanyl-prolyl-phenylalanine-p-nitroanilide (SAAPFNA). Treponemes possessing the second paralog family do not possess chymotrypsin-like activity or cleave SAAPFNA. Despite examination of a range of protein and peptide substrates, the specificity of the second protease family remains unknown. Each of the fully sequenced prcA and prtP genes contains a 5' hydrophobic leader sequence with a treponeme lipobox. The two paralogous families of treponeme subtilisins represent a new subgroup within the subtilisin family of proteases and are the only subtilisin lipoprotein family. The present study demonstrated that the subtilisin paralogs comprising a two-gene operon are widely distributed among treponemes.
Collapse
Affiliation(s)
- Frederick F Correia
- Department of Molecular Genetics, The Forsyth Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hemerly JP, Oliveira V, Del Nery E, Morty RE, Andrews NW, Juliano MA, Juliano L. Subsite specificity (S3, S2, S1', S2' and S3') of oligopeptidase B from Trypanosoma cruzi and Trypanosoma brucei using fluorescent quenched peptides: comparative study and identification of specific carboxypeptidase activity. Biochem J 2003; 373:933-9. [PMID: 12737623 PMCID: PMC1223545 DOI: 10.1042/bj20030342] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Revised: 05/02/2003] [Accepted: 05/09/2003] [Indexed: 11/17/2022]
Abstract
We characterized the extended substrate binding site of recombinant oligopeptidase B enzymes from Trypanosoma cruzi (Tc-OP) and Trypanosoma brucei (Tb-OP), evaluating the specificity of their S3, S2, S1', S2' and S3' subsites. Five series of internally quenched fluorescent peptides based on the substrate Abz-AGGRGAQ-EDDnp [where Abz is o -aminobenzoic acid and EDDnp is N -(2,4-dinitrophenyl)ethylenediamine] were designed to contain amino acid residues with side chains of a minimum size, and each residue position of this substrate was modified. Synthetic peptides of different lengths derived from the human kininogen sequence were also examined, and peptides of up to 17 amino acids were found to be hydrolysed by Tc-OP and Tb-OP. These two oligopeptidases were essentially arginyl hydrolases, since for all peptides examined the only cleavage site was the Arg-Xaa bond. We also demonstrated that Tc-OP and Tb-OP have a very specific carboxypeptidase activity for basic amino acids, which depends on the presence of at least of a pair of basic amino acids at the C-terminal end of the substrate. The peptide with triple Arg residues (Abz-AGRRRAQ-EDDnp) was an efficient substrate for Tc-OP and Tb-OP: the Arg-Ala peptide bond was cleaved first and then two C-terminal Arg residues were successively removed. The S1' subsite seems to be an important determinant of the specificity of both enzymes, showing a preference for Tyr, Ser, Thr and Gln as hydrogen donors. The presence of these amino acids at P1' resulted in substrates that were hydrolysed with K (m) values in the sub-micromolar range. Taken together, this work supports the view that oligopeptidase B is a specialized protein-processing enzyme with a specific carboxypeptidase activity. Excellent substrates were obtained for Tb-OP and Tc-OP (Abz-AMRRTISQ-EDDnp and Abz-AHKRYSHQ-EDDnp respectively), which were hydrolysed with remarkably high k (cat) and low K (m) values.
Collapse
Affiliation(s)
- Jefferson P Hemerly
- Department of Biophysics, Escola Paulista de Medicina, Rua Três de Maio 100, São Paulo SP 04044-020, Brazil
| | | | | | | | | | | | | |
Collapse
|
43
|
Edwards AM, Dymock D, Woodward MJ, Jenkinson HF. Genetic relatedness and phenotypic characteristics of Treponema associated with human periodontal tissues and ruminant foot disease. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1083-1093. [PMID: 12724370 DOI: 10.1099/mic.0.26111-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Treponema have been implicated recently in the pathogenesis of digital dermatitis (DD) and contagious ovine digital dermatitis (CODD) that are infectious diseases of bovine and ovine foot tissues, respectively. Previous analyses of treponemal 16S rDNA sequences, PCR-amplified directly from DD or CODD lesions, have suggested relatedness of animal Treponema to some human oral Treponema species isolated from periodontal tissues. In this study a range of adhesion and virulence-related properties of three animal Treponema isolates have been compared with representative human oral strains of Treponema denticola and Treponema vincentii. In adhesion assays using biotinylated treponemal cells, T. denticola cells bound in consistently higher numbers to fibronectin, laminin, collagen type I, gelatin, keratin and lactoferrin than did T. vincentii or animal Treponema isolates. However, animal DD strains adhered to fibrinogen at equivalent or greater levels than T. denticola. All Treponema strains bound to the amino-terminal heparin I/fibrin I domain of fibronectin. 16S rDNA sequence analyses placed ovine strain UB1090 and bovine strain UB1467 within a cluster that was phylogenetically related to T. vincentii, while ovine strain UB1466 appeared more closely related to T. denticola. These observations correlated with phenotypic properties. Thus, T. denticola ATCC 35405, GM-1, and Treponema UB1466 had similar outer-membrane protein profiles, produced chymotrypsin-like protease (CTLP), trypsin-like protease and high levels of proline iminopeptidase, and co-aggregated with human oral bacteria Porphyromonas gingivalis and Streptococcus crista. Conversely, T. vincentii ATCC 35580, D2A-2, and animal strains UB1090 and UB1467 did not express CTLP or trypsin-like protease and did not co-aggregate with P. gingivalis or S. crista. Taken collectively, these results suggest that human oral-related Treponema have broad host specificity and that similar control or preventive strategies might be developed for human and animal Treponema-associated infections.
Collapse
Affiliation(s)
- Andrew M Edwards
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol Dental School, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - David Dymock
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol Dental School, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Martin J Woodward
- Molecular Genetics Unit, Department of Bacterial Diseases, Veterinary Laboratories Agency (Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Howard F Jenkinson
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol Dental School, Lower Maudlin Street, Bristol BS1 2LY, UK
| |
Collapse
|
44
|
Lee SY, Bian XL, Wong GWK, Hannam PM, McBride BC, Fenno JC. Cleavage of Treponema denticola PrcA polypeptide to yield protease complex-associated proteins Prca1 and Prca2 is dependent on PrtP. J Bacteriol 2002; 184:3864-70. [PMID: 12081957 PMCID: PMC135188 DOI: 10.1128/jb.184.14.3864-3870.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of potential virulence factors of oral spirochetes focuses on surface and secreted proteins. The Treponema denticola chymotrypsin-like protease (CTLP) is implicated in degradation of host cell molecules and contributes to tissue invasion. The CTLP complex, composed of the 72-kDa PrtP protein and two auxiliary proteins with molecular masses of approximately 40 and 30 kDa, is also involved in localization and oligomerization of the T. denticola major surface protein (Msp). The larger auxiliary protein was reported to be encoded by an open reading frame (ORF2) directly upstream of prtP. The deduced 39-kDa translation product of ORF2 contains a sequence matching the N-terminal sequence determined from one of the CTLP complex proteins. No proteins with significant homology are known, nor was information available on the third protein of the complex. DNA sequence analysis showed that ORF2 extended an additional 852 bp upstream of the reported sequence. The complete gene, designated prcA, encodes a predicted N-terminally-acylated polypeptide of approximately 70 kDa. Isogenic mutants with mutations in prtP, prcA, and prcA-prtP all lacked CTLP protease activity. The prcA mutant lacked all three CTLP proteins. The prcA-prtP mutant produced only a C-terminally-truncated 62-kDa PrcA protein. The prtP mutant produced a full-length 70-kDa PrcA. Immunoblot analysis of recombinant PrcA constructs confirmed that PrcA is cleaved to yield the two smaller proteins of the CTLP complex, designated PrcA1 and PrcA2. These data indicate that PrtP is required for cleavage of PrcA and suggest that this cleavage may be required for formation or stability of outer membrane complexes.
Collapse
Affiliation(s)
- Si Young Lee
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor 48109-1078, USA
| | | | | | | | | | | |
Collapse
|
45
|
Morty RE, Fülöp V, Andrews NW. Substrate recognition properties of oligopeptidase B from Salmonella enterica serovar Typhimurium. J Bacteriol 2002; 184:3329-37. [PMID: 12029050 PMCID: PMC135088 DOI: 10.1128/jb.184.12.3329-3337.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2002] [Accepted: 03/26/2002] [Indexed: 01/27/2023] Open
Abstract
Oligopeptidase B (OpdB) is a serine peptidase broadly distributed among unicellular eukaryotes, gram-negative bacteria, and spirochetes which has emerged as an important virulence factor and potential therapeutic target in infectious diseases. We report here the cloning and expression of the opdB homologue from Salmonella enterica serovar Typhimurium and demonstrate that it exhibits amidolytic activity exclusively against substrates with basic residues in P(1). While similar to its eukaryotic homologues in terms of substrate specificity, Salmonella OpdB differs significantly in catalytic power and inhibition and activation properties. In addition to oligopeptide substrates, restricted proteolysis of histone proteins was observed, although no cleavage was seen at or near residues that had been posttranslationally modified or at defined secondary structures. This supports the idea that the catalytic site of OpdB may be accessible only to unstructured oligopeptides, similar to the closely related prolyl oligopeptidase (POP). Salmonella OpdB was employed as a model enzyme to define determinants of substrate specificity that distinguish OpdB from POP, which hydrolyzes substrates exclusively at proline residues. Using site-directed mutagenesis, nine acidic residues that are conserved in OpdBs but absent from POPs were converted to their corresponding residues in POP. In this manner, we identified a pair of glutamic acid residues, Glu(576) and Glu(578), that define P(1) specificity and direct OpdB cleavage C terminal to basic residues. We have also identified a second pair of residues, Asp(460) and Asp(462), that may be involved in defining P(2) specificity and thus direct preferential cleavage by OpdB after pairs of basic residues.
Collapse
Affiliation(s)
- Rory E Morty
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | |
Collapse
|
46
|
Lee SY, Ning Y, Fenno JC. 23S rRNA point mutation associated with erythromycin resistance in Treponema denticola. FEMS Microbiol Lett 2002; 207:39-42. [PMID: 11886748 DOI: 10.1111/j.1574-6968.2002.tb11025.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mechanisms and occurrence of macrolide resistance in the periodontal pathogen Treponema denticola have received little attention. In this study, erythromycin resistance due to mutations in the genes encoding T. denticola 23S rRNA was investigated. The T. denticola genome was shown to contain two copies of 23S rDNA. 23S rRNA genes of nine erythromycin-resistant isolates derived from T. denticola were amplified and sequences were analyzed. All the erythromycin-resistant strains had at least one A-->G transition mutation at the 23S rRNA gene sequence cognate to position A2058 in Escherichia coli 23S rDNA. This suggests that antibiotic pressure is sufficient to select for point mutations that confer resistance in this organism.
Collapse
Affiliation(s)
- Si Young Lee
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA.
| | | | | |
Collapse
|