1
|
Lu B, Guo Z, Liu X, Ni Y, Xu L, Huang J, Li T, Feng T, Li R, Deng X. Comprehensive comparison of the third-generation sequencing tools for bacterial 6mA profiling. Nat Commun 2025; 16:3982. [PMID: 40295502 PMCID: PMC12037826 DOI: 10.1038/s41467-025-59187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
DNA N6-methyladenine (6mA) serves as an intrinsic and principal epigenetic marker in prokaryotes, impacting various biological processes. To date, limited advanced sequencing technologies and analyzing tools are available for bacterial DNA 6mA. Here, we evaluate eight tools designed for the 6mA identification or de novo methylation detection. This assessment includes Nanopore (R9 and R10), Single-Molecule Real-Time (SMRT) Sequencing, and cross-reference with 6mA-IP-seq and DR-6mA-seq. Our multi-dimensional evaluation report encompasses motif discovery, site-level accuracy, single-molecule accuracy, and outlier detection across six bacteria strains. While most tools correctly identify motifs, their performance varies at single-base resolution, with SMRT and Dorado consistently delivering strong performance. Our study indicates that existing tools cannot accurately detect low-abundance methylation sites. Additionally, we introduce an optimized method for advancing 6mA prediction, which substantially improves the detection performance of Dorado. Overall, our study provides a robust and detailed examination of computational tools for bacterial 6mA profiling, highlighting insights for further tool enhancement and epigenetic research.
Collapse
Grants
- Shenzhen Science and Technology Fund, JCYJ20210324134000002, recipient: Xin Deng Guangdong Major Project of Basic and Applied Basic Research, 2020B0301030005, recipient: Xin Deng National Natural Science Foundation of China, 32172358, recipient: Xin Deng General Research Funds of Hong Kong, 11103221, recipient: Xin Deng General Research Funds of Hong Kong, 11102223, recipient: Xin Deng General Research Funds of Hong Kong, 11101722, recipient: Xin Deng
Collapse
Affiliation(s)
- Beifang Lu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Zhihao Guo
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Xudong Liu
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Ying Ni
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Letong Xu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Jiadai Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Tianmin Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Tongtong Feng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China.
- Tung Biomedical Sciences Center, City University of Hong Kong, Hong Kong, China.
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.
- Tung Biomedical Sciences Center, City University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Babińska-Wensierska W, Motyka-Pomagruk A, Mengoni A, diCenzo GC, Lojkowska E. Gene expression analyses on Dickeya solani strains of diverse virulence levels unveil important pathogenicity factors for this species. Sci Rep 2025; 15:14531. [PMID: 40281029 PMCID: PMC12032288 DOI: 10.1038/s41598-025-98321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Dickeya solani causes soft rot and blackleg mainly on potato crops. High pathogenicity of this species results from efficient production of plant cell wall-degrading enzymes, especially pectate lyases, potent root colonization, and fast vascular movement. Despite genomic homogeneity, variations in virulence-related phenotypes suggest differences in the gene expression patterns between diverse strains. Therefore, the methylomes and transcriptomes of two strains (virulent IFB0099 and low virulent IFB0223), differing in tissue maceration capacity and virulence factors production, have been studied. Methylation analysis revealed no significant differences. However, the analysis of transcriptomes, studied under both non-induced and induced by polygalacturonic acid conditions (in order to mimic diverse stages of plant infection process), unveiled higher expression of pectate lyases (pelD, pelE, pelL), pectin esterase (pemA), proteases (prtE, prtD) and Vfm-associated quorum-sensing genes (vfmC, vfmD, vfmE) in IFB0099 strain compared to IFB0223. Additionally, the genes related to the secretion system II (T2SS) (gspJ, nipE) displayed higher induction of expression in IFB0099. Furthermore, IFB0099 showed more elevated expression of genes involved in flagella formation, which coincides with enhanced motility and pathogenicity of this strain compared to IFB0223. To sum up, differential expression analysis of genes important for the virulence of D. solani indicated candidate genes, which might be crucial for the pathogenicity of this species.
Collapse
Affiliation(s)
- Weronika Babińska-Wensierska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 58 Abrahama, Gdansk, 80-307, Poland
- Laboratory of Physical Biochemistry, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, Gdansk, 80-307, Poland
| | - Agata Motyka-Pomagruk
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 58 Abrahama, Gdansk, 80-307, Poland
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 20 Podwale Przedmiejskie, Gdansk, 80-824, Poland
| | - Alessio Mengoni
- Laboratorio di Genetica Microbica, Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, Florence, 50019, Italy
| | - George C diCenzo
- Department of Biology, Queen's University, 116 Barrie Street, Kingston, ON, K7L 3N6, Canada
| | - Ewa Lojkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 58 Abrahama, Gdansk, 80-307, Poland.
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 20 Podwale Przedmiejskie, Gdansk, 80-824, Poland.
| |
Collapse
|
3
|
Kiełkowska A, Brąszewska A. Demethylating drugs alter protoplast development, regeneration, and the genome stability of protoplast-derived regenerants of cabbage. BMC PLANT BIOLOGY 2025; 25:463. [PMID: 40217153 PMCID: PMC11987290 DOI: 10.1186/s12870-025-06473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Methylation is a major DNA modification contributing to the epigenetic regulation of nuclear gene expression and genome stability. DNA methyltransferases (DNMT) inhibitors are widely used in epigenetic and cancer research, but their biological effects and the mechanisms of their action are not well recognized in plants. This research focuses on comparing the effects of two DNMT inhibitors, namely 5-azacytidine (AZA) and zebularine (ZEB), on cellular processes, including organogenesis in vitro. Protoplasts are a unique single-cell system to analyze biological processes in plants; therefore in our study, both inhibitors were applied to protoplast culture medium or the medium used for the regeneration of protoplast-derived calluses. RESULTS AZA induced a dose-dependent reduction in protoplast viability, delayed cell wall reconstruction, and reduced mitotic activity, while ZEB in low concentration (2.5 µM) promoted mitoses and stimulated protoplast-derived callus development. The higher effectiveness of shoot regeneration was observed when drugs were applied directly to protoplasts compared to protoplast-derived callus treatments. Our findings reveal that both drugs affected the genome stability of the obtained regenerants by inducing polyploidization. Both drugs induced hypomethylation and modulated the distribution patterns of methylated DNA in the protoplast-derived callus. CONCLUSION AZA was more toxic to plant protoplasts compared to ZEB. Both inhibitors affect the ploidy status of protoplast-derived regenerants. A comparison of the data on global methylation levels with the regeneration efficiency suggests that organogenesis in cabbage is partially controlled by variations in DNA methylation levels.
Collapse
Affiliation(s)
- Agnieszka Kiełkowska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29-Listopada 54, Krakow, 31-425, Poland.
| | - Agnieszka Brąszewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska Street, Katowice, 40-032, Poland
| |
Collapse
|
4
|
Wang J, Liu X, Shao Y, Li R, Paudel S. Decoding the genome and epigenome of avian Escherichia coli strains by R10.4.1 nanopore sequencing. Front Vet Sci 2025; 12:1541964. [PMID: 40177680 PMCID: PMC11963381 DOI: 10.3389/fvets.2025.1541964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis in poultry, which is a very important disease worldwide. Despite well-documented genomic traits and diversity of APEC, its epigenomic characteristics are less understood. This study utilized the high throughput and long-read capabilities of Oxford Nanopore Technology (ONT) to elucidate the genome structures and methylation modifications of three E. coli isolates of avian origin: one intestinal isolate from a healthy wild bird and two systemic isolates from clinically affected chickens. Three complete genomes, each comprising a single chromosome and multiple plasmids were assembled. Diverse virulence-associated genes, antimicrobial resistance genes, mobile genetic elements plasmids and integrons were characterized from the genomes. Despite a limited sample size, our whole genome sequencing (WGS) data highlighted significant genomic diversity among the E. coli strains and enriched repertoire of gene clusters related to APEC pathogenicity. From the epigenetic analysis, multiple methylation modifications, including three N5-methylcytosine (5mC), eight N6-methyladenine (6mA) and two N4-methylcytosine (4mC) modification motifs were identified within all three isolates. Furthermore, common GATC and CCWGG methylation motifs were predominantly distributed within regulatory regions, suggesting a role in epigenetic transcription regulation. This study opens the avenue for future research into pathogenesis, diagnostic and therapeutic strategies of APEC considering epigenetic analysis.
Collapse
Affiliation(s)
| | | | | | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Surya Paudel
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
5
|
Zhang D, Gan Y, Le L, Pu L. Epigenetic variation in maize agronomical traits for breeding and trait improvement. J Genet Genomics 2025; 52:307-318. [PMID: 38310944 DOI: 10.1016/j.jgg.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
Epigenetics-mediated breeding (epibreeding) involves engineering crop traits and stress responses through the targeted manipulation of key epigenetic features to enhance agricultural productivity. While conventional breeding methods raise concerns about reduced genetic diversity, epibreeding propels crop improvement through epigenetic variations that regulate gene expression, ultimately impacting crop yield. Epigenetic regulation in crops encompasses various modes, including histone modification, DNA modification, RNA modification, non-coding RNA, and chromatin remodeling. This review summarizes the epigenetic mechanisms underlying major agronomic traits in maize and identifies candidate epigenetic landmarks in the maize breeding process. We propose a valuable strategy for improving maize yield through epibreeding, combining CRISPR/Cas-based epigenome editing technology and Synthetic Epigenetics (SynEpi). Finally, we discuss the challenges and opportunities associated with maize trait improvement through epibreeding.
Collapse
Affiliation(s)
- Daolei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
| | - Yujun Gan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
6
|
Bu X, Dou X, Chen Z, Liu L, Mei Y, Ren M. DNA methylation confers epigenetic changes in cold-adapted microorganisms in response to cold stress. Extremophiles 2025; 29:16. [PMID: 39945895 DOI: 10.1007/s00792-025-01381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/10/2025] [Indexed: 04/11/2025]
Abstract
DNA methylation modification regulates gene expression during temperature stress. The adaptation mechanisms of cold-adapted microorganisms to low temperatures have been explained at the gene and metabolic levels. However, considering the important epigenetic modification in cells, the role of genomic modification in cold-adapted microorganisms remains underexplored. This study aims to discuss the regulatory role of DNA methylation in the cold response of psychrotroph Exiguobacterium undae TRM 85608. Methylome analysis shows that the methylation level of most genes in the bacterium decreases under cold stress. Combined with transcriptome results, the expression of important cold-response genes such as ABC transporter permease and ATP-binding proteins increases, but their methylation levels decrease, which is associated with a reduction of DNA adenine methyltransferase. We believe that the reduction in genomic methylation modification caused by low temperature is a major factor in stabilizing the normal growth of the cell. The bacterium counteracts cold stress by reducing the expression of methylation modification enzymes and weakening the inhibition of cold-response gene modification. These findings provide new insights into how psychrophilic organisms adapt to low temperatures.
Collapse
Affiliation(s)
- Xuying Bu
- State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-Funded By Xinjiang Production and Construction Corps and the Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xufeng Dou
- State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-Funded By Xinjiang Production and Construction Corps and the Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
| | - Zhe Chen
- State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-Funded By Xinjiang Production and Construction Corps and the Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
| | - Lan Liu
- State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-Funded By Xinjiang Production and Construction Corps and the Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
| | - Yuxia Mei
- State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-Funded By Xinjiang Production and Construction Corps and the Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Min Ren
- State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-Funded By Xinjiang Production and Construction Corps and the Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, 843300, Xinjiang, People's Republic of China.
| |
Collapse
|
7
|
Liu H, Birk JW, Provatas AA, Vaziri H, Fan N, Rosenberg DW, Gharaibeh RZ, Jobin C. Correlation between intestinal microbiota and urolithin metabolism in a human walnut dietary intervention. BMC Microbiol 2024; 24:476. [PMID: 39548408 PMCID: PMC11566485 DOI: 10.1186/s12866-024-03626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
This study is to investigate the relationship between the intestinal microbiota and urine levels of the ellagic acid-derived polyphenols, the urolithins, in a cohort of subjects following a three-week walnut dietary intervention. We longitudinally collected fecal and urine samples from 39 subjects before and after walnut consumption (2 oz per day for 21 days). 16S RNA gene sequencing was performed on fecal DNA to study the association between microbiota composition and the levels of nine urolithin metabolites, which were measured using UHPLC/Q-TOF-MS/MS. Fecal microbial composition was found to be significantly different between pre- and post-walnut intervention (beta diversity, FDR-p = 0.018; alpha diversity, p = 0.018). Roseburia, Rothia, Parasutterella, Lachnospiraceae UCG-004, Butyricicoccus, Bilophila, Eubacterium eligens, Lachnospiraceae UCG-001, Gordonibacter, Paraprevotella, Lachnospira, Ruminococcus torques, and Sutterella were identified as the 13 most significantly enriched genera after daily intake of walnuts. We observed 26 genera that were significantly associated with 7 urolithin metabolites, with 22 genera positively correlating after walnut supplementation (FDR-p ≤ 0.05). PICRUSt analysis showed that several inferred KEGG orthologs were associated with 4 urolithin metabolites after walnut intake. In this study, we found that walnut supplementation altered urolithin metabolites, which associates with specific changes in bacterial taxa and inferred functional contents.
Collapse
Affiliation(s)
- Huijia Liu
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - John W Birk
- Division of Gastroenterology, University of Connecticut, Farmington, CT, USA
| | - Anthony A Provatas
- Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT, USA
| | - Haleh Vaziri
- Division of Gastroenterology, University of Connecticut, Farmington, CT, USA
| | - Nuoxi Fan
- School of Medicine, University of Connecticut, Farmington, CT, USA
| | | | - Raad Z Gharaibeh
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA.
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA.
| | - Christian Jobin
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA.
- Department of Infectious Diseases and Immunology, University of Florida College of Medicine, Gainesville, FL, USA.
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
8
|
Zhou X, Sun D, Guo J, Lv J, Liu P, Gao B. Insights into the DNA methylation of Portunus trituberculatus in response to Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109983. [PMID: 39461394 DOI: 10.1016/j.fsi.2024.109983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/11/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Vibrio parahaemolyticus is the main pathogen causing acute hepatopancreatic necrotic disease in crustaceans. To elucidate the epigenetic regulatory mechanism of crustacean resistance to V. parahaemolyticus infection, we conducted artificial infection studies on Portunus trituberculatus. The results showed that the mortality rate reached the highest at 12 h of artificial infection, which was 23.69 %. At 72 h after V parahaemolyticus infection, the expression level of DNA demethylase (ten-eleven-translocation protein) Tet was significantly decreased, the expression of DNA methyltransferase Dnmt3B fluctuated significantly. Based on the differential expression levels of Tet and Dnmt3B. We depict for DNA methylation profiles of the whole genome of P. trituberculatus at single-base resolution by using whole-genome bisulfite sequencing (WGBS) on hemolymph tissues. The overall DNA methylation level was low at 2.16 % in P. trituberculatus hemolymph. A total of 2590 differentially methylated regions (DMRs) were identified, of which 1329 were hypermethylated and 1261 were hypomethylated, and 1389 genes were annotated in these DMRs. Differently methylated genes (DMGs) were significantly enriched in ribosomes (KO03010), protein kinases (KO01001), cell cycle (HSA04110), endocrine resistance (HSA01522) and FoxO signaling pathway (KO04068). Finally, we selected six differentially methylated genes for quantitative analysis. The results showed that DNA methylation not only has a negative regulatory effect on gene expression, but also has a positive regulatory effect. These results indicated that DNA methylation in the regulation of genes involved in immune responses contributes to the resistance of P. trituberculatus to V. parahaemolyticus, which is valuable for understanding how crustaceans regulate the innate immune system to defend against bacterial infections.
Collapse
Affiliation(s)
- Xianfa Zhou
- Shanghai Ocean University, National Experimental Teaching Demonstration Center of Fisheries Science, Shanghai, 201306, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Dongfang Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Junyang Guo
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jianjian Lv
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Ping Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Baoquan Gao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
9
|
Arnold ND, Paper M, Fuchs T, Ahmad N, Jung P, Lakatos M, Rodewald K, Rieger B, Qoura F, Kandawa‐Schulz M, Mehlmer N, Brück TB. High-quality genome of a novel Thermosynechococcaceae species from Namibia and characterization of its protein expression patterns at elevated temperatures. Microbiologyopen 2024; 13:e70000. [PMID: 39365014 PMCID: PMC11450739 DOI: 10.1002/mbo3.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Thermophilic cyanobacteria thrive in extreme environments, making their thermoresistant enzymes valuable for industrial applications. Common habitats include hot springs, which act as evolutionary accelerators for speciation due to geographical isolation. The family Thermosynechococcaceae comprises thermophilic cyanobacteria known for their ability to thrive in high-temperature environments. These bacteria are notable for their photosynthetic capabilities, significantly contributing to primary production in extreme habitats. Members of Thermosynechococcaceae exhibit unique adaptations that allow them to perform photosynthesis efficiently at elevated temperatures, making them subjects of interest for studies on microbial ecology, evolution, and potential biotechnological applications. In this study, the genome of a thermophilic cyanobacterium, isolated from a hot spring near Okahandja in Namibia, was sequenced using a PacBio Sequel IIe long-read platform. Cultivations were performed at elevated temperatures of 40, 50, and 55°C, followed by proteome analyses based on the annotated genome. Phylogenetic investigations, informed by the 16S rRNA gene and aligned nucleotide identity (ANI), suggest that the novel cyanobacterium is a member of the family Thermosynechococcaceae. Furthermore, the new species was assigned to a separate branch, potentially representing a novel genus. Whole-genome alignments supported this finding, revealing few conserved regions and multiple genetic rearrangement events. Additionally, 129 proteins were identified as differentially expressed in a temperature-dependent manner. The results of this study broaden our understanding of cyanobacterial adaptation to extreme environments, providing a novel high-quality genome of Thermosynechococcaceae cyanobacterium sp. Okahandja and several promising candidate proteins for expression and characterization studies.
Collapse
Affiliation(s)
- Nathanael D. Arnold
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Michael Paper
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Tobias Fuchs
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Nadim Ahmad
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Patrick Jung
- Department of Integrative BiotechnologyUniversity of Applied Sciences KaiserslauternPirmasensGermany
| | - Michael Lakatos
- Department of Integrative BiotechnologyUniversity of Applied Sciences KaiserslauternPirmasensGermany
| | - Katia Rodewald
- Department of Chemistry, WACKER‐Chair of Macromolecular Chemistry, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Bernhard Rieger
- Department of Chemistry, WACKER‐Chair of Macromolecular Chemistry, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Farah Qoura
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | | | - Norbert Mehlmer
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Thomas B. Brück
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| |
Collapse
|
10
|
Shi Z, Zhang Y, Chen W, Yu Z. Crosstalk between 6-methyladenine and 4-methylcytosine in Geobacter sulfurreducens exposed to extremely low-frequency electromagnetic field. iScience 2024; 27:110607. [PMID: 39262814 PMCID: PMC11388800 DOI: 10.1016/j.isci.2024.110607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/05/2024] [Accepted: 07/25/2024] [Indexed: 09/13/2024] Open
Abstract
4-Methylcytosine (4mC) and 6-methyladenine (6mA) are the most prevalent types of DNA modifications in prokaryotes. However, whether there is crosstalk between 4mC and 6mA remain unknown. Here, methylomes and transcriptomes of Geobacter sulfurreducens exposed to different intensities of extremely low frequency electromagnetic fields (ELF-EMF) were investigated. Results showed that the second adenine of all the 5'-GTACAG-3' motif was modified to 6mA (M-6mA). For the other 6mA (O-6mA), the variation in their distance from the neighboring M-6mA increased with the intensity of ELF-EMF. Moreover, cytosine adjacent to O-6mA has a much higher probability of being modified to 4mC than cytosine adjacent to M-6mA, and the closer an unmodified cytosine is to 4mC, the higher the probability that the cytosine will be modified to 4mC. Furthermore, there was no significant correlation between DNA methylation and gene expression regulation. These results suggest a reference signal that goes from M-6mA to O-6mA to 4mC.
Collapse
Affiliation(s)
- Zhenhua Shi
- College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shang Xia Dian Road, Cang Shan District, Fuzhou, Fujian 350002, China
| | - Yingrong Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shang Xia Dian Road, Cang Shan District, Fuzhou, Fujian 350002, China
| | - Wanqiu Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shang Xia Dian Road, Cang Shan District, Fuzhou, Fujian 350002, China
| | - Zhen Yu
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, 7 Wu Si Road, Gu Lou District, Fuzhou, Fujian 350001, China
| |
Collapse
|
11
|
Zhou Z, Xiao C, Yin J, She J, Duan H, Liu C, Fu X, Cui F, Qi Q, Zhang Z. PSAC-6mA: 6mA site identifier using self-attention capsule network based on sequence-positioning. Comput Biol Med 2024; 171:108129. [PMID: 38342046 DOI: 10.1016/j.compbiomed.2024.108129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
DNA N6-methyladenine (6mA) modifications play a pivotal role in the regulation of growth, development, and diseases in organisms. As a significant epigenetic marker, 6mA modifications extensively participate in the intricate regulatory networks of the genome. Hence, gaining a profound understanding of how 6mA is intricately involved in these biological processes is imperative for deciphering the gene regulatory networks within organisms. In this study, we propose PSAC-6mA (Position-self-attention Capsule-6mA), a sequence-location-based self-attention capsule network. The positional layer in the model enables positional relationship extraction and independent parameter setting for each base position, avoiding parameter sharing inherent in convolutional approaches. Simultaneously, the self-attention capsule network enhances dimensionality, capturing correlation information between capsules and achieving exceptional results in feature extraction across multiple spatial dimensions within the model. Experimental results demonstrate the superior performance of PSAC-6mA in recognizing 6mA motifs across various species.
Collapse
Affiliation(s)
- Zheyu Zhou
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Cuilin Xiao
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Jinfen Yin
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Jiayi She
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Hao Duan
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Chunling Liu
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Xiuhao Fu
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Feifei Cui
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Qi Qi
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Zilong Zhang
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China.
| |
Collapse
|
12
|
Kang B, Park SV, Oh SS. Ionic liquid-caged nucleic acids enable active folding-based molecular recognition with hydrolysis resistance. Nucleic Acids Res 2024; 52:73-86. [PMID: 37994697 PMCID: PMC10783497 DOI: 10.1093/nar/gkad1093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
Beyond storage and transmission of genetic information in cellular life, nucleic acids can perform diverse interesting functions, including specific target recognition and biochemical reaction acceleration; the versatile biopolymers, however, are acutely vulnerable to hydrolysis-driven degradation. Here, we demonstrate that the cage effect of choline dihydrogen phosphate permits active folding of nucleic acids like water, but prevents their phosphodiester hydrolysis unlike water. The choline-based ionic liquid not only serves as a universal inhibitor of nucleases, exceptionally extending half-lives of nucleic acids up to 6 500 000 times, but highly useful tasks of nucleic acids (e.g. mRNA detection of molecular beacons, ligand recognition of aptamers, and transesterification reaction of ribozymes) can be also conducted with well-conserved affinities and specificities. As liberated from the function loss and degradation risk, the presence of undesired and unknown nucleases does not undermine desired molecular functions of nucleic acids without hydrolysis artifacts even in nuclease cocktails and human saliva.
Collapse
Affiliation(s)
- Byunghwa Kang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Soyeon V Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon 21983, South Korea
| |
Collapse
|
13
|
Zhang W, Lyu L, Xu Z, Ni J, Wang D, Lu J, Yao YF. Integrative DNA methylome and transcriptome analysis reveals DNA adenine methylation is involved in Salmonella enterica Typhimurium response to oxidative stress. Microbiol Spectr 2023; 11:e0247923. [PMID: 37882553 PMCID: PMC10715015 DOI: 10.1128/spectrum.02479-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE The intracellular pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) comes across a wide variety of stresses from entry to dissemination, such as reactive oxygen species. To adapt itself to oxidative stress, Salmonella must adopt various and complex strategies. In this study, we revealed that DNA adenine methyltransferase was essential for S. Typhimurium to survive in hydrogen peroxide. We then screened out oxidative stress-responsive genes that were potentially regulated by DNA methylation in S. Typhimurium. Our results show that the DNA methylome is highly stable throughout the genome, and the coupled change of m6A GATC with gene expression is identified in only a few positions, which suggests the complexity of the DNA methylation and gene expression regulation networks. The results may shed light on our understanding of m6A-mediated gene expression regulation in bacteria.
Collapse
Affiliation(s)
- Wenting Zhang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Lyu
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihiong Xu
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| |
Collapse
|
14
|
Barbachowska M, Arimondo PB. To target or not to target? The role of DNA and histone methylation in bacterial infections. Epigenetics 2023; 18:2242689. [PMID: 37731322 PMCID: PMC10515666 DOI: 10.1080/15592294.2023.2242689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/25/2023] [Indexed: 09/22/2023] Open
Abstract
Epigenetics describes chemical modifications of the genome that do not alter DNA sequence but participate in the regulation of gene expression and cellular processes such as proliferation, division, and differentiation of eukaryotic cell. Disruption of the epigenome pattern in a human cell is associated with different diseases, including infectious diseases. During infection pathogens induce epigenetic modifications in the host cell. This can occur by controlling expression of genes involved in immune response. That enables bacterial survival and replication within the host and evasion of the immune response. Methylation is an example of epigenetic modification that occurs on DNA and histones. Reasoning that DNA and histone methylation of human host cells plays a crucial role during pathogenesis, these modifications are promising targets for the development of alternative treatment strategies in infectious diseases. Here, we discuss the role of DNA and histone methyltransferases in human host cell upon bacterial infections. We further hypothesize that compounds targeting methyltransferases are tools to study epigenetics in the context of host-pathogen interactions and can open new avenues for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Magdalena Barbachowska
- Institut Pasteur, Université Paris Cité, CNRS UMR n°3523 Chem4Life, Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Paris, France
- Universite Paris Cité, Ecole Doctorale MTCI, Paris, France
- Institut Pasteur, Pasteur- Paris University (PPU)- Oxford International Doctoral Program, Paris, France
| | - Paola B. Arimondo
- Institut Pasteur, Université Paris Cité, CNRS UMR n°3523 Chem4Life, Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Paris, France
| |
Collapse
|
15
|
Van Hofwegen DJ, Hovde CJ, Minnich SA. Comparison of Yersinia enterocolitica DNA Methylation at Ambient and Host Temperatures. EPIGENOMES 2023; 7:30. [PMID: 38131902 PMCID: PMC10742451 DOI: 10.3390/epigenomes7040030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Pathogenic bacteria recognize environmental cues to vary gene expression for host adaptation. Moving from ambient to host temperature, Yersinia enterocolitica responds by immediately repressing flagella synthesis and inducing the virulence plasmid (pYV)-encoded type III secretion system. In contrast, shifting from host to ambient temperature requires 2.5 generations to restore motility, suggesting a link to the cell cycle. We hypothesized that differential DNA methylation contributes to temperature-regulated gene expression. We tested this hypothesis by comparing single-molecule real-time (SMRT) sequencing of Y. enterocolitica DNA from cells growing exponentially at 22 °C and 37 °C. The inter-pulse duration ratio rather than the traditional QV scoring was the kinetic metric to compare DNA from cells grown at each temperature. All 565 YenI restriction sites were fully methylated at both temperatures. Among the 27,118 DNA adenine methylase (Dam) sites, 42 had differential methylation patterns, while 17 remained unmethylated regardless of the temperature. A subset of the differentially methylated Dam sites localized to promoter regions of predicted regulatory genes including LysR-type and PadR-like transcriptional regulators and a cyclic-di-GMP phosphodiesterase. The unmethylated Dam sites localized with a bias to the replication terminus, suggesting they were protected from Dam methylase. No cytosine methylation was detected at Dcm sites.
Collapse
Affiliation(s)
| | | | - Scott A. Minnich
- Department of Animal Veterinary and Food Science, University of Idaho, Moscow, ID 83843, USA; (D.J.V.H.); (C.J.H.)
| |
Collapse
|
16
|
Ma J, Zhao H, Mo S, Li J, Ma X, Tang Y, Li H, Liu Z. Acquisition of Type I methyltransferase via horizontal gene transfer increases the drug resistance of Aeromonas veronii. Microb Genom 2023; 9:001107. [PMID: 37754275 PMCID: PMC10569733 DOI: 10.1099/mgen.0.001107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Aeromonas veronii is an opportunistic pathogen that affects both fish and mammals, including humans, leading to bacteraemia, sepsis, meningitis and even death. The increasing virulence and drug resistance of A. veronii are of significant concern and pose a severe risk to public safety. The Type I restriction-modification (RM) system, which functions as a bacterial defence mechanism, can influence gene expression through DNA methylation. However, little research has been conducted to explore its origin, evolutionary path, and relationship to virulence and drug resistance in A. veronii. In this study, we analysed the pan-genome of 233 A. veronii strains, and the results indicated that it was 'open', meaning that A. veronii has acquired additional genes from other species. This suggested that A. veronii had the potential to adapt and evolve rapidly, which might have contributed to its drug resistance. One Type I methyltransferase (MTase) and two complete Type I RM systems were identified, namely AveC4I, AveC4II and AveC4III in A. veronii strain C4, respectively. Notably, AveC4I was exclusive to A. veronii C4. Phylogenetic analysis revealed that AveC4I was derived from horizontal gene transfer from Thiocystis violascens and exchanged genes with the human pathogen Comamonas kerstersii. Single molecule real-time sequencing was applied to identify the motif methylated by AveC4I, which was unique and not recognized by any reported MTases in the REBASE database. We also annotated the functions and pathways of the genes containing the motif, revealing that AveC4I may control drug resistance in A. veronii C4. Our findings provide new insight on the mechanisms underlying drug resistance in pathogenic bacteria. By identifying the specific genes and pathways affected by AveC4I, this study may aid in the development of new therapeutic approaches to combat A. veronii infections.
Collapse
Affiliation(s)
- Jiayue Ma
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Honghao Zhao
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Shuangyi Mo
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Juanjuan Li
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Xiang Ma
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Yanqiong Tang
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Hong Li
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Zhu Liu
- School of Life Sciences, Hainan University, Haikou, PR China
| |
Collapse
|
17
|
Costeira R, Aduse-Opoku J, Vernon JJ, Rodriguez-Algarra F, Joseph S, Devine DA, Marsh PD, Rakyan V, Curtis MA, Bell JT. Hemin availability induces coordinated DNA methylation and gene expression changes in Porphyromonas gingivalis. mSystems 2023; 8:e0119322. [PMID: 37436062 PMCID: PMC10470040 DOI: 10.1128/msystems.01193-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/12/2023] [Indexed: 07/13/2023] Open
Abstract
Periodontal disease is a chronic inflammatory disease in which the oral pathogen Porphyromonas gingivalis plays an important role. Porphyromonas gingivalis expresses virulence determinants in response to higher hemin concentrations, but the underlying regulatory processes remain unclear. Bacterial DNA methylation has the potential to fulfil this mechanistic role. We characterized the methylome of P. gingivalis, and compared its variation to transcriptome changes in response to hemin availability. Porphyromonas gingivalis W50 was grown in chemostat continuous culture with excess or limited hemin, prior to whole-methylome and transcriptome profiling using Nanopore and Illumina RNA-Seq. DNA methylation was quantified for Dam/Dcm motifs and all-context N6-methyladenine (6mA) and 5-methylcytosine (5mC). Of all 1,992 genes analyzed, 161 and 268 were respectively over- and under-expressed with excess hemin. Notably, we detected differential DNA methylation signatures for the Dam "GATC" motif and both all-context 6mA and 5mC in response to hemin availability. Joint analyses identified a subset of coordinated changes in gene expression, 6mA, and 5mC methylation that target genes involved in lactate utilization and ABC transporters. The results identify altered methylation and expression responses to hemin availability in P. gingivalis, with insights into mechanisms regulating its virulence in periodontal disease. IMPORTANCE DNA methylation has important roles in bacteria, including in the regulation of transcription. Porphyromonas gingivalis, an oral pathogen in periodontitis, exhibits well-established gene expression changes in response to hemin availability. However, the regulatory processes underlying these effects remain unknown. We profiled the novel P. gingivalis epigenome, and assessed epigenetic and transcriptome variation under limited and excess hemin conditions. As expected, multiple gene expression changes were detected in response to limited and excess hemin that reflect health and disease, respectively. Notably, we also detected differential DNA methylation signatures for the Dam "GATC" motif and both all-context 6mA and 5mC in response to hemin. Joint analyses identified coordinated changes in gene expression, 6mA, and 5mC methylation that target genes involved in lactate utilization and ABC transporters. The results identify novel regulatory processes underlying the mechanism of hemin regulated gene expression in P. gingivalis, with phenotypic impacts on its virulence in periodontal disease.
Collapse
Affiliation(s)
- Ricardo Costeira
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Joseph Aduse-Opoku
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Jon J. Vernon
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Francisco Rodriguez-Algarra
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Susan Joseph
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Deirdre A. Devine
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Philip D. Marsh
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Vardhman Rakyan
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Michael A. Curtis
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| |
Collapse
|
18
|
Zhao J, Zhang M, Hui W, Zhang Y, Wang J, Wang S, Kwok LY, Kong J, Zhang H, Zhang W. Roles of adenine methylation in the physiology of Lacticaseibacillus paracasei. Nat Commun 2023; 14:2635. [PMID: 37149616 PMCID: PMC10164179 DOI: 10.1038/s41467-023-38291-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/21/2023] [Indexed: 05/08/2023] Open
Abstract
Lacticaseibacillus paracasei is an economically important bacterial species, used in the food industry and as a probiotic. Here, we investigate the roles of N6-methyladenine (6mA) modification in L. paracasei using multi-omics and high-throughput chromosome conformation capture (Hi-C) analyses. The distribution of 6mA-modified sites varies across the genomes of 28 strains, and appears to be enriched near genes involved in carbohydrate metabolism. A pglX mutant, defective in 6mA modification, shows transcriptomic alterations but only modest changes in growth and genomic spatial organization.
Collapse
Affiliation(s)
- Jie Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Wenyan Hui
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yue Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jing Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Shaojing Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
19
|
Beygmoradi A, Homaei A, Hemmati R, Fernandes P. Recombinant protein expression: Challenges in production and folding related matters. Int J Biol Macromol 2023; 233:123407. [PMID: 36708896 DOI: 10.1016/j.ijbiomac.2023.123407] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Protein folding is a biophysical process by which proteins reach a specific three-dimensional structure. The amino acid sequence of a polypeptide chain contains all the information needed to determine the final three-dimensional structure of a protein. When producing a recombinant protein, several problems can occur, including proteolysis, incorrect folding, formation of inclusion bodies, or protein aggregation, whereby the protein loses its natural structure. To overcome such limitations, several strategies have been developed to address each specific issue. Identification of proper protein refolding conditions can be challenging, and to tackle this high throughput screening for different recombinant protein folding conditions can prove a sound solution. Different approaches have emerged to tackle refolding issues. One particular approach to address folding issues involves molecular chaperones, highly conserved proteins that contribute to proper folding by shielding folding proteins from other proteins that could hinder the process. Proper protein folding is one of the main prerequisites for post-translational modifications. Incorrect folding, if not dealt with, can lead to a buildup of protein misfoldings that damage cells and cause widespread abnormalities. Said post-translational modifications, widespread in eukaryotes, are critical for protein structure, function and biological activity. Incorrect post-translational protein modifications may lead to individual consequences or aggregation of therapeutic proteins. In this review article, we have tried to examine some key aspects of recombinant protein expression. Accordingly, the relevance of these proteins is highlighted, major problems related to the production of recombinant protein and to refolding issues are pinpointed and suggested solutions are presented. An overview of post-translational modification, their biological significance and methods of identification are also provided. Overall, the work is expected to illustrate challenges in recombinant protein expression.
Collapse
Affiliation(s)
- Azadeh Beygmoradi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Pedro Fernandes
- DREAMS and Faculdade de Engenharia, Universidade Lusófona de Humanidades e Tecnologias, Av. Campo Grande 376, 1749-024 Lisboa, Portugal; iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
20
|
Has EG, Akçelik N, Akçelik M. Comparative global gene expression analysis of biofilm forms of Salmonella Typhimurium ATCC 14028 and its seqA mutant. Gene X 2023; 853:147094. [PMID: 36470486 DOI: 10.1016/j.gene.2022.147094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
In this study, comparative transcriptomic analyzes (mRNA and miRNA) were performed on the biofilm forms of S. Typhimurium ATCC 14028 wild-type strain and its seqA gene mutant in order to determine the regulation characteristics of the seqA gene in detail. The results of global gene expression analyses showed an increase in the expression level of 54 genes and a decrease in the expression level of 155 genes (p < 0.05) in the seqA mutant compared to the wild-type strain. 10 of the 48 miRNAs identified on behalf of sequence analysis are new miRNA records for Salmonella. Transcripts of 14 miRNAs differed between wild-type strain and seqA mutant (p < 0.05), of which eight were up-regulated and six were down-regulated. Bioinformatic analyzes showed that differentially expressed genes in the wild-type strain and its seqA gene mutant play a role in different metabolic processes as well as biofilm formation, pathogenicity and virulence. When the transcriptomic data were interpreted together with the findings obtained from phenotypic tests such as motility, attachment to host cells and biofilm morphotyping, it was determined that the seqA gene has a critical function especially for the adhesion and colonization stages of biofilm formation, as well as for biofilm stability. Transcriptomic data pointing out that the seqA gene is also a general positive regulator of T3SS effector proteins active in cell invasion in S. Typhimurium wild-type biofilm, proves that this gene is involved in Salmonella host cell invasion.
Collapse
Affiliation(s)
- Elif Gamze Has
- Department of Biology, Ankara University, Yenimahalle, 06100 Ankara, Turkey
| | - Nefise Akçelik
- Biotechnology Institute, Ankara University, Keçiören, 06135 Ankara, Turkey
| | - Mustafa Akçelik
- Department of Biology, Ankara University, Yenimahalle, 06100 Ankara, Turkey.
| |
Collapse
|
21
|
Decoding the metabolic response of Escherichia coli for sensing trace heavy metals in water. Proc Natl Acad Sci U S A 2023; 120:e2210061120. [PMID: 36745806 PMCID: PMC9963153 DOI: 10.1073/pnas.2210061120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Heavy metal contamination due to industrial and agricultural waste represents a growing threat to water supplies. Frequent and widespread monitoring for toxic metals in drinking and agricultural water sources is necessary to prevent their accumulation in humans, plants, and animals, which results in disease and environmental damage. Here, the metabolic stress response of bacteria is used to report the presence of heavy metal ions in water by transducing ions into chemical signals that can be fingerprinted using machine learning analysis of vibrational spectra. Surface-enhanced Raman scattering surfaces amplify chemical signals from bacterial lysate and rapidly generate large, reproducible datasets needed for machine learning algorithms to decode the complex spectral data. Classification and regression algorithms achieve limits of detection of 0.5 pM for As3+ and 6.8 pM for Cr6+, 100,000 times lower than the World Health Organization recommended limits, and accurately quantify concentrations of analytes across six orders of magnitude, enabling early warning of rising contaminant levels. Trained algorithms are generalizable across water samples with different impurities; water quality of tap water and wastewater was evaluated with 92% accuracy.
Collapse
|
22
|
CRISPR-Cas9-Mediated Mutation of Methyltransferase METTL4 Results in Embryonic Defects in Silkworm Bombyx mori. Int J Mol Sci 2023; 24:ijms24043468. [PMID: 36834878 PMCID: PMC9965800 DOI: 10.3390/ijms24043468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
DNA N6-methyladenine (6mA) has recently been found to play regulatory roles in gene expression that links to various biological processes in eukaryotic species. The functional identification of 6mA methyltransferase will be important for understanding the underlying molecular mechanism of epigenetic 6mA methylation. It has been reported that the methyltransferase METTL4 can catalyze the methylation of 6mA; however, the function of METTL4 remains largely unknown. In this study, we aim to investigate the role of the Bombyx mori homolog METTL4 (BmMETTL4) in silkworm, a lepidopteran model insect. By using CRISPR-Cas9 system, we somatically mutated BmMETTL4 in silkworm individuates and found that disruption of BmMETTL4 caused the developmental defect of late silkworm embryo and subsequent lethality. We performed RNA-Seq and identified that there were 3192 differentially expressed genes in BmMETTL4 mutant including 1743 up-regulated and 1449 down-regulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that genes involved in molecular structure, chitin binding, and serine hydrolase activity were significantly affected by BmMETTL4 mutation. We further found that the expression of cuticular protein genes and collagens were clearly decreased while collagenases were highly increased, which had great contributions to the abnormal embryo and decreased hatchability of silkworm. Taken together, these results demonstrated a critical role of 6mA methyltransferase BmMETTL4 in regulating embryonic development of silkworm.
Collapse
|
23
|
Feng X, He C. Mammalian DNA N 6-methyladenosine: Challenges and new insights. Mol Cell 2023; 83:343-351. [PMID: 36736309 PMCID: PMC10182828 DOI: 10.1016/j.molcel.2023.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 02/05/2023]
Abstract
DNA N6-methyldeoxyadenosine (6mA) modification was first discovered in Bacterium coli in the 1950s. Over the next several decades, 6mA was recognized as a critical DNA modification in the genomes of prokaryotes and protists. While important in prokaryotes, less is known about the presence and functional roles of DNA 6mA in eukaryotes, particularly in mammals. Taking advantage of recent technology advances that made 6mA detection and sequencing possible, studies over the past several years have brought new insights into 6mA biology in mammals. In this perspective, we present recent progress, discuss challenges, and pose four questions for future research regarding mammalian DNA 6mA.
Collapse
Affiliation(s)
- Xinran Feng
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
24
|
Alvarez JM, Hinckley WE, Leonelli L, Brooks MD, Coruzzi GM. DamID-seq: A Genome-Wide DNA Methylation Method that Captures Both Transient and Stable TF-DNA Interactions in Plant Cells. Methods Mol Biol 2023; 2698:87-107. [PMID: 37682471 DOI: 10.1007/978-1-0716-3354-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Capturing the dynamic and transient interactions of a transcription factor (TF) with its genome-wide targets whose regulation leads to plants' adaptation to their changing environment is a major technical challenge. This is a widespread problem with biochemical methods such as chromatin immunoprecipitation-sequencing (ChIP-seq) which are biased towards capturing stable TF-target gene interactions. Herein, we describe how DNA adenine methyltransferase identification and sequencing (DamID-seq) can be used to capture both transient and stable TF-target interactions by DNA methylation. The DamID technique uses a TF protein fused to a DNA adenine methyltransferase (Dam) from E. coli. When expressed in a plant cell, the Dam-TF fusion protein will methylate adenine (A) bases near the sites of TF-DNA interactions. In this way, DamID results in a permanent, stable DNA methylation mark on TF-target gene promoters, even if the target gene is only transiently "touched" by the Dam-TF fusion protein. Here we provide a step-by-step protocol to perform DamID-seq experiments in isolated plant cells for any Dam-TF fusion protein of interest. We also provide information that will enable researchers to analyze DamID-seq data to identify TF-binding sites in the genome. Our protocol includes instructions for vector cloning of the Dam-TF fusion proteins, plant cell protoplast transfections, DamID preps, library preparation, and sequencing data analysis. The protocol outlined in this chapter is performed in Arabidopsis thaliana, however, the DamID-seq workflow developed in this guide is broadly applicable to other plants and organisms.
Collapse
Affiliation(s)
- José M Alvarez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Will E Hinckley
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Lauriebeth Leonelli
- Department of Agricultural and Biological Engineering at the University of Illinois, Urbana, IL, USA
| | - Matthew D Brooks
- Global Change and Photosynthesis Research Unit, USDA ARS, Urbana, IL, USA
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
25
|
Tsukiyama S, Hasan MM, Kurata H. CNN6mA: Interpretable neural network model based on position-specific CNN and cross-interactive network for 6mA site prediction. Comput Struct Biotechnol J 2022; 21:644-654. [PMID: 36659917 PMCID: PMC9826936 DOI: 10.1016/j.csbj.2022.12.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
N6-methyladenine (6mA) plays a critical role in various epigenetic processing including DNA replication, DNA repair, silencing, transcription, and diseases such as cancer. To understand such epigenetic mechanisms, 6 mA has been detected by high-throughput technologies on a genome-wide scale at single-base resolution, together with conventional methods such as immunoprecipitation, mass spectrometry and capillary electrophoresis, but these experimental approaches are time-consuming and laborious. To complement these problems, we have developed a CNN-based 6 mA site predictor, named CNN6mA, which proposed two new architectures: a position-specific 1-D convolutional layer and a cross-interactive network. In the position-specific 1-D convolutional layer, position-specific filters with different window sizes were applied to an inquiry sequence instead of sharing the same filters over all positions in order to extract the position-specific features at different levels. The cross-interactive network explored the relationships between all the nucleotide patterns within the inquiry sequence. Consequently, CNN6mA outperformed the existing state-of-the-art models in many species and created the contribution score vector that intelligibly interpret the prediction mechanism. The source codes and web application in CNN6mA are freely accessible at https://github.com/kuratahiroyuki/CNN6mA.git and http://kurata35.bio.kyutech.ac.jp/CNN6mA/, respectively.
Collapse
Key Words
- 6mA, N6-methyladenine
- AUCs, Area under the curves
- BERT, Bidirectional Encoder Representations from Transformers
- CNN
- CNN, Convolutional neural network
- DNA modification
- Deep learning
- Interpretable prediction
- LSTM, Long short-term memory
- MCC, Matthews correlation coefficient
- Machine learning
- N6-methyladenine
- RF, Random forest
- SMRT, Single-molecule real-time
- SN, Sensitivity
- SP, Specificity
- UMAP, Uniform manifold approximation and projection
- t-SNE, t-distributed stochastic neighbor embedding
Collapse
Affiliation(s)
- Sho Tsukiyama
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680–4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Md Mehedi Hasan
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680–4 Kawazu, Iizuka, Fukuoka 820-8502, Japan,Corresponding author.
| |
Collapse
|
26
|
Grami E, Laadouze I, Ben Tiba S, Hafiane A, Sealey KS, Saidi N. Isolation, Characterization, and Comparative Genomic Analysis of vB_Pd_C23, a Novel Bacteriophage of Pantoea dispersa. Curr Microbiol 2022; 80:52. [PMID: 36562822 DOI: 10.1007/s00284-022-03152-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Pantoea bacteria species cause human animal infections, and contribute to soil and aquatic environmental pollution. A novel bacteriophage, vB_Pd_C23 was isolated from a Tunisian wastewater system and represents the first new phage infecting P. dispersa. Lysis kinetics, electron microscopy, and genomic analyses revealed that the vB_Pd_C23 phage has a head diameter of 50 nm and contractile tail dimensions of 100 nm by 23 nm; vB_Pd_C23 has a linear double-stranded DNA genome consisting of 44,714-bp and 49.66% GC-content. Predicted functions were assigned to 75 open reading frames (ORFs) encoding proteins and one tRNA, the annotation revealed that 21 ORFs encode for unique proteins of yet unknown function with no reliable homologies. This indicates that the new species vB_Pd_C23 exhibits novel viral genes. Phylogenetic analysis along with comparative analyses generating nucleotide identity and similarity of vB_Pd_C23 whole genome suggests that the phage is a candidate for a new genus within the Caudoviricetes Class. The characteristics of this phage could not be attributed to any previous genera recognized by the International Committee on Taxonomy of Viruses (ICTV).
Collapse
Affiliation(s)
- Emna Grami
- Centre de Recherches et des Technologies des Eaux (CERTE), Laboratoire Eaux, Membranes et Biotechnologies de L'Environnement (LR18CERTE04), Technopark of Borj Cedria, BP 273, 8020, Soliman, Tunisia.,Faculté des Sciences de Bizerte, Université de Carthage, 7021, Carthage, Tunisia
| | - Imen Laadouze
- Centre de Recherches et des Technologies des Eaux (CERTE), Laboratoire Eaux, Membranes et Biotechnologies de L'Environnement (LR18CERTE04), Technopark of Borj Cedria, BP 273, 8020, Soliman, Tunisia.,Faculté des Sciences de Bizerte, Université de Carthage, 7021, Carthage, Tunisia
| | - Saoussen Ben Tiba
- Faculté des Sciences de Bizerte, Université de Carthage, 7021, Carthage, Tunisia
| | - Amor Hafiane
- Centre de Recherches et des Technologies des Eaux (CERTE), Laboratoire Eaux, Membranes et Biotechnologies de L'Environnement (LR18CERTE04), Technopark of Borj Cedria, BP 273, 8020, Soliman, Tunisia
| | | | - Neila Saidi
- Centre de Recherches et des Technologies des Eaux (CERTE), Laboratoire Eaux, Membranes et Biotechnologies de L'Environnement (LR18CERTE04), Technopark of Borj Cedria, BP 273, 8020, Soliman, Tunisia.
| |
Collapse
|
27
|
Breckell GL, Silander OK. Growth condition-dependent differences in methylation imply transiently differentiated DNA methylation states in Escherichia coli. G3 (BETHESDA, MD.) 2022; 13:6858946. [PMID: 36454087 PMCID: PMC9911048 DOI: 10.1093/g3journal/jkac310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 12/05/2022]
Abstract
DNA methylation in bacteria frequently serves as a simple immune system, allowing recognition of DNA from foreign sources, such as phages or selfish genetic elements. However, DNA methylation also affects other cell phenotypes in a heritable manner (i.e. epigenetically). While there are several examples of methylation affecting transcription in an epigenetic manner in highly localized contexts, it is not well-established how frequently methylation serves a more general epigenetic function over larger genomic scales. To address this question, here we use Oxford Nanopore sequencing to profile DNA modification marks in three natural isolates of Escherichia coli. We first identify the DNA sequence motifs targeted by the methyltransferases in each strain. We then quantify the frequency of methylation at each of these motifs across the entire genome in different growth conditions. We find that motifs in specific regions of the genome consistently exhibit high or low levels of methylation. Furthermore, we show that there are replicable and consistent differences in methylated regions across different growth conditions. This suggests that during growth, E. coli transiently differentiate into distinct methylation states that depend on the growth state, raising the possibility that measuring DNA methylation alone can be used to infer bacterial growth states without additional information such as transcriptome or proteome data. These results show the utility of using Oxford Nanopore sequencing as an economic means to infer DNA methylation status. They also provide new insights into the dynamics of methylation during bacterial growth and provide evidence of differentiated cell states, a transient analog to what is observed in the differentiation of cell types in multicellular organisms.
Collapse
Affiliation(s)
- Georgia L Breckell
- Corresponding author: School of Natural and Sciences, Massey University, Auckland 0745, New Zealand. ; Corresponding author: School of Natural and Sciences, Massey University, Auckland 0745, New Zealand. Present address: Ministry for Primary Industries, Auckland 2022, New Zealand
| | - Olin K Silander
- Corresponding author: School of Natural and Sciences, Massey University, Auckland 0745, New Zealand. ; Corresponding author: School of Natural and Sciences, Massey University, Auckland 0745, New Zealand. Present address: Ministry for Primary Industries, Auckland 2022, New Zealand
| |
Collapse
|
28
|
Reingold V, Staropoli A, Faigenboim A, Maymone M, Matveev S, Keppanan R, Ghanim M, Vinale F, Ment D. The SWC4 subunit of the SWR1 chromatin remodeling complex is involved in varying virulence of Metarhizium brunneum isolates offering role of epigenetic regulation of pathogenicity. Virulence 2022; 13:1252-1269. [PMID: 35891589 PMCID: PMC9336478 DOI: 10.1080/21505594.2022.2101210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The host – pathogen interaction is a multifactorial process subject to a co-evolutionary arms race consisting of rapid changes in both host and pathogen, controlled at the genetic and epigenetic levels. Previously, we showed intra-species variation in disease progression and pathogenicity in aphids for Metarhizium brunneum isolates MbK and Mb7. Herein, we compared genomic, epigenetic, and metabolomic variations between these isolates and their effects on pathogenicity. Genomic variation could not completely explain the observed differences between the isolates. However, differential N6-adenine methylation (6 mA) and its correlation to reduced expression of the essential SWC4 subunit of SWR1 chromatin-remodelling complex (SWR1-C) led us to hypothesize a role for swc4 in the varying pathogenicity. Mutagenesis of the essential swc4 gene in MbKisolate resulted in reduction of secondary-metabolite (SM) secretion and impaired virulence in Galleria mellonella. Our results suggest the role of SWC4 in the regulation of SMs and the role of both SWC4 and SWR1-C in virulence of M. brunneum isolates. A better understanding of epigenetic regulation of SM production and secretion in entomopathogenic fungi may enable theirmanipulation for better biocontrol performance, and expand possibilities for environmentally friendly pest control.
Collapse
Affiliation(s)
- Victoria Reingold
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel.,The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alessia Staropoli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.,Institute for Sustainable Plant Protection, National Research Council, Portici, Italy
| | - Adi Faigenboim
- Institute of Plant Science, ARO, The Volcani Institute, Rishon Le Zion, Israel
| | - Marcel Maymone
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
| | - Sabina Matveev
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
| | - Ravindran Keppanan
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
| | - Murad Ghanim
- Department of Entomology, Nematology and Chemistry Units, ARO, The Volcani Institute, Rishon LeZion, Israel
| | - Francesco Vinale
- Institute for Sustainable Plant Protection, National Research Council, Portici, Italy.,Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
29
|
Adamczyk-Poplawska M, Bacal P, Mrozek A, Matczynska N, Piekarowicz A, Kwiatek A. Phase-variable Type I methyltransferase M.NgoAV from Neisseria gonorrhoeae FA1090 regulates phasevarion expression and gonococcal phenotype. Front Microbiol 2022; 13:917639. [PMID: 36267167 PMCID: PMC9577141 DOI: 10.3389/fmicb.2022.917639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The restriction-modification (RM) systems are compared to a primitive, innate, prokaryotic immune system, controlling the invasion by foreign DNA, composed of methyltransferase (MTase) and restriction endonuclease. The biological significance of RM systems extends beyond their defensive function, but the data on the regulatory role of Type I MTases are limited. We have previously characterized molecularly a non-canonical Type I RM system, NgoAV, with phase-variable specificity, encoded by Neisseria gonorrhoeae FA1090. In the current work, we have investigated the impact of methyltransferase NgoAV (M.NgoAV) activity on gonococcal phenotype and on epigenetic control of gene expression. For this purpose, we have constructed and studied genetic variants (concerning activity and specificity) within M.NgoAV locus. Deletion of M.NgoAV or switch of its specificity had an impact on phenotype of N. gonorrhoeae. Biofilm formation and planktonic growth, the resistance to antibiotics, which target bacterial peptidoglycan or other antimicrobials, and invasion of human epithelial host cells were affected. The expression of genes was deregulated in gonococcal cells with knockout M.NgoAV gene and the variant with new specificity. For the first time, the existence of a phasevarion (phase-variable regulon), directed by phase-variable Type I MTase, is demonstrated.
Collapse
Affiliation(s)
- Monika Adamczyk-Poplawska
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- *Correspondence: Monika Adamczyk-Poplawska,
| | - Pawel Bacal
- Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Mrozek
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Natalia Matczynska
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Andrzej Piekarowicz
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Kwiatek
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
30
|
Davies CP, Jurkiw T, Haendiges J, Reed E, Anderson N, Grasso-Kelley E, Hoffmann M, Zheng J. Changes in the genomes and methylomes of three Salmonella enterica serovars after long-term storage in ground black pepper. Front Microbiol 2022; 13:970135. [PMID: 36160197 PMCID: PMC9507087 DOI: 10.3389/fmicb.2022.970135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
Low moisture foods (LMFs) have traditionally been recognized as safe for consumption, as most bacteria require higher water content to grow. However, outbreaks due to LMF foods are increasing, and the microbial pathogen Salmonella enterica is frequently implicated. S. enterica can survive in LMFs for years, but few serovars have been studied, and the mechanisms which underlie this longevity are not well understood. Here, we determine that S. enterica serovars S. Tennessee, S. Anatum, and S. Reading but not S. Oranienburg can survive in the ground black pepper for 6 years. S. Reading was not previously associated with any LMF. Using both Illumina and Pacific Biosciences sequencing technologies, we also document changes in the genomes and methylomes of the surviving serovars over this 6-year period. The three serovars acquired a small number of single nucleotide polymorphisms (SNPs) including seven substitutions (four synonymous, two non-synonymous, and one substitution in a non-coding region), and two insertion-deletions. Nine distinct N6-methyladenine (m6A) methylated motifs across the three serovars were identified including five which were previously known, Gm6ATC, CAGm6AG, BATGCm6AT, CRTm6AYN6CTC, and CCm6AN7TGAG, and four novel serovar-specific motifs, GRTm6AN8TTYG, GAm6ACN7GTA, GAA m6ACY, and CAAm6ANCC. Interestingly, the BATGCAT motif was incompletely methylated (35–64% sites across the genome methylated), suggesting a possible role in gene regulation. Furthermore, the number of methylated BATGCm6AT motifs increased after storage in ground black pepper for 6 years from 475 to 657 (S. Tennessee), 366 to 608 (S. Anatum), and 525 to 570 (S. Reading), thus warranting further study as an adaptive mechanism. This is the first long-term assessment of genomic changes in S. enterica in a low moisture environment, and the first study to examine the methylome of any bacteria over a period of years, to our knowledge. These data contribute to our understanding of S. enterica survival in LMFs, and coupled with further studies, will provide the information necessary to design effective interventions which reduce S. enterica in LMFs and maintain a healthy, safe food supply.
Collapse
Affiliation(s)
- Cary P. Davies
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, NEA, U.S. Department of Agriculture, Beltsville, MD, United States
- *Correspondence: Cary P. Davies,
| | - Thomas Jurkiw
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Julie Haendiges
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Elizabeth Reed
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Nathan Anderson
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Bedford Park, IL, United States
| | - Elizabeth Grasso-Kelley
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Bedford Park, IL, United States
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Jie Zheng
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| |
Collapse
|
31
|
Dimitra Papagianeli S, Lianou A, Aspridou Z, Stathas L, Koutsoumanis K. The magnitude of heterogeneity in individual-cell growth dynamics is an inherent characteristic of Salmonella enterica ser. Typhimurium strains. Food Res Int 2022; 162:111991. [DOI: 10.1016/j.foodres.2022.111991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
|
32
|
Tang X, Zheng P, Li X, Wu H, Wei DQ, Liu Y, Huang G. Deep6mAPred: A CNN and Bi-LSTM-based deep learning method for predicting DNA N6-methyladenosine sites across plant species. Methods 2022; 204:142-150. [PMID: 35477057 DOI: 10.1016/j.ymeth.2022.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
DNA N6-methyladenine (6mA) is a key DNA modification, which plays versatile roles in the cellular processes, including regulation of gene expression, DNA repair, and DNA replication. DNA 6mA is closely associated with many diseases in the mammals and with growth as well as development of plants. Precisely detecting DNA 6mA sites is of great importance to exploration of 6mA functions. Although many computational methods have been presented for DNA 6mA prediction, there is still a wide gap in the practical application. We presented a convolution neural network (CNN) and bi-directional long-short term memory (Bi-LSTM)-based deep learning method (Deep6mAPred) for predicting DNA 6mA sites across plant species. The Deep6mAPred stacked the CNNs and the Bi-LSTMs in a paralleling manner instead of a series-connection manner. The Deep6mAPred also employed the attention mechanism for improving the representations of sequences. The Deep6mAPred reached an accuracy of 0.9556 over the independent rice dataset, far outperforming the state-of-the-art methods. The tests across plant species showed that the Deep6mAPred is of a remarkable advantage over the state of the art methods. We developed a user-friendly web application for DNA 6mA prediction, which is freely available at http://106.13.196.152:7001/ for all the scientific researchers. The Deep6mAPred would enrich tools to predict DNA 6mA sites and speed up the exploration of DNA modification.
Collapse
Affiliation(s)
- Xingyu Tang
- School of Electrical Engineering, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Peijie Zheng
- School of Electrical Engineering, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Xueyong Li
- School of Electrical Engineering, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Hongyan Wu
- The Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dong-Qing Wei
- The Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuewu Liu
- College of Information and Intelligence, Hunan Agricultural University, Changsha, Hunan 410081, China
| | - Guohua Huang
- School of Electrical Engineering, Shaoyang University, Shaoyang, Hunan 422000, China.
| |
Collapse
|
33
|
Boulias K, Greer EL. Means, mechanisms and consequences of adenine methylation in DNA. Nat Rev Genet 2022; 23:411-428. [PMID: 35256817 PMCID: PMC9354840 DOI: 10.1038/s41576-022-00456-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/29/2022]
Abstract
N6-methyl-2'-deoxyadenosine (6mA or m6dA) has been reported in the DNA of prokaryotes and eukaryotes ranging from unicellular protozoa and algae to multicellular plants and mammals. It has been proposed to modulate DNA structure and transcription, transmit information across generations and have a role in disease, among other functions. However, its existence in more recently evolved eukaryotes remains a topic of debate. Recent technological advancements have facilitated the identification and quantification of 6mA even when the modification is exceptionally rare, but each approach has limitations. Critical assessment of existing data, rigorous design of future studies and further development of methods will be required to confirm the presence and biological functions of 6mA in multicellular eukaryotes.
Collapse
|
34
|
O’Brown ZK, Greer EL. N6-methyladenine: A Rare and Dynamic DNA Mark. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:177-210. [DOI: 10.1007/978-3-031-11454-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Mandal RK, Jiang T, Kwon YM. Genetic Determinants in Salmonella enterica Serotype Typhimurium Required for Overcoming In Vitro Stressors in the Mimicking Host Environment. Microbiol Spectr 2021; 9:e0015521. [PMID: 34878334 PMCID: PMC8653844 DOI: 10.1128/spectrum.00155-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serotype Typhimurium, a nontyphoidal Salmonella (NTS), results in a range of enteric diseases, representing a major disease burden worldwide. There is still a significant portion of Salmonella genes whose mechanistic basis to overcome host innate defense mechanisms largely remains unknown. Here, we have applied transposon insertion sequencing (Tn-seq) method to unveil the genetic factors required for the growth or survival of S. Typhimurium under various host stressors simulated in vitro. A highly saturating Tn5 library of S. Typhimurium 14028s was subjected to selection during growth in the presence of short-chain fatty acid (100 mM propionate), osmotic stress (3% NaCl), or oxidative stress (1 mM H2O2) or survival in extreme acidic pH (30 min in pH 3) or starvation (12 days in 1× phosphate-buffered saline [PBS]). We have identified a total of 339 conditionally essential genes (CEGs) required to overcome at least one of these conditions mimicking host insults. Interestingly, all eight genes encoding FoF1-ATP synthase subunit proteins were required for fitness in all five stresses. Intriguingly, a total of 88 genes in Salmonella pathogenicity islands (SPI), including SPI-1, SPI-2, SPI-3, SPI-5, SPI-6, and SPI-11, are also required for fitness under the in vitro conditions. Additionally, by comparative analysis of the genes identified in this study and the genes previously shown to be required for in vivo fitness, we identified novel genes (marBCT, envF, barA, hscA, rfaQ, rfbI, and the genes encoding putative proteins STM14_1138, STM14_3334, STM14_4825, and STM_5184) that have compelling potential for the development of vaccines and antibacterial drugs to curb Salmonella infection. IMPORTANCE Salmonella enterica serotype Typhimurium is a major human bacterial pathogen that enters the food chain through meat animals asymptomatically carrying this pathogen. Despite the rich genome sequence data, a significant portion of Salmonella genes remain to be characterized for their potential contributions to virulence. In this study, we used transposon insertion sequencing (Tn-seq) to elucidate the genetic factors required for growth or survival under various host stressors, including short-chain fatty acids, osmotic stress, oxidative stress, extreme acid, and starvation. Among the total of 339 conditionally essential genes (CEGs) that are required under at least one of these five stress conditions were 221 previously known virulence genes required for in vivo fitness during infection in at least one of four animal species, including mice, chickens, pigs, and cattle. This comprehensive map of virulence phenotype-genotype in S. Typhimurium provides a roadmap for further interrogation of the biological functions encoded by the genome of this important human pathogen to survive in hostile host environments.
Collapse
Affiliation(s)
- Rabindra K. Mandal
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Tieshan Jiang
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Young Min Kwon
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
36
|
VirB4- and VirD4-Like ATPases, Components of a Putative Type 4C Secretion System in Clostridioides difficile. J Bacteriol 2021; 203:e0035921. [PMID: 34424036 DOI: 10.1128/jb.00359-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The type 4 secretion system (T4SS) represents a bacterial nanomachine capable of trans-cell wall transportation of proteins and DNA and has attracted intense interest due to its roles in the pathogenesis of infectious diseases. In the current investigation, we uncovered three distinct gene clusters in Clostridioides difficile strain 630 encoding proteins structurally related to components of the VirB4/D4 type 4C secretion system from Streptococcus suis strain 05ZYH33 and located within sequences of conjugative transposons (CTn). Phylogenic analysis revealed that VirB4- and VirD4-like proteins of the CTn4 locus, on the one hand, and those of the CTn2 and CTn5 loci, on the other hand, fit into separate clades, suggesting specific roles of identified secretion system variants in the physiology of C. difficile. Our further study on VirB4- and VirD4-like products encoded by CTn4 revealed that both proteins possess Mg2+-dependent ATPase activity, form oligomers (most likely hexamers) in aqueous solutions, and rely on potassium but not sodium ions for the highest catalytic rate. VirD4 binds nonspecifically to DNA and RNA. The DNA-binding activity of VirD4 strongly decreased with the W241A variant. Mutations in the nucleotide sequences encoding presumable Walker A and Walker B motifs decreased the stability of the oligomers and significantly but not completely attenuated the enzymatic activity of VirB4. In VirD4, substitutions of amino acid residues in the peptides reminiscent of Walker structural motifs neither attenuated the enzymatic activity of the protein nor influenced the oligomerization state of the ATPase. IMPORTANCE C. difficile is a Gram-positive, anaerobic, spore-forming bacterium that causes life-threatening colitis in humans. Major virulence factors of the microorganism include the toxins TcdA, TcdB, and CDT. However, other bacterial products, including a type 4C secretion system, have been hypothesized to contribute to the pathogenesis of the infection and are considered possible virulence factors of C. difficile. In the current paper, we describe the structural organization of putative T4SS machinery in C. difficile and characterize its VirB4- and VirD4-like components. Our studies, in addition to its significance for basic science, can potentially aid the development of antivirulence drugs suitable for the treatment of C. difficile infection.
Collapse
|
37
|
Kyger R, Luzuriaga-Neira A, Layman T, Milkewitz Sandberg TO, Singh D, Huchon D, Peri S, Atkinson SD, Bartholomew JL, Yi SV, Alvarez-Ponce D. Myxosporea (Myxozoa, Cnidaria) Lack DNA Cytosine Methylation. Mol Biol Evol 2021; 38:393-404. [PMID: 32898240 PMCID: PMC7826176 DOI: 10.1093/molbev/msaa214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA cytosine methylation is central to many biological processes, including regulation of gene expression, cellular differentiation, and development. This DNA modification is conserved across animals, having been found in representatives of sponges, ctenophores, cnidarians, and bilaterians, and with very few known instances of secondary loss in animals. Myxozoans are a group of microscopic, obligate endoparasitic cnidarians that have lost many genes over the course of their evolution from free-living ancestors. Here, we investigated the evolution of the key enzymes involved in DNA cytosine methylation in 29 cnidarians and found that these enzymes were lost in an ancestor of Myxosporea (the most speciose class of Myxozoa). Additionally, using whole-genome bisulfite sequencing, we confirmed that the genomes of two distant species of myxosporeans, Ceratonova shasta and Henneguya salminicola, completely lack DNA cytosine methylation. Our results add a notable and novel taxonomic group, the Myxosporea, to the very short list of animal taxa lacking DNA cytosine methylation, further illuminating the complex evolutionary history of this epigenetic regulatory mechanism.
Collapse
Affiliation(s)
- Ryan Kyger
- Department of Biology, University of Nevada, Reno, NV
| | | | - Thomas Layman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | | | - Devika Singh
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Dorothée Huchon
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel.,The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Sateesh Peri
- Department of Biology, University of Nevada, Reno, NV
| | | | | | - Soojin V Yi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | | |
Collapse
|
38
|
Hughes L, Roberts W, Johnson D. The impact of DNA adenine methyltransferase knockout on the development of triclosan resistance and antibiotic cross-resistance in Escherichia coli. Access Microbiol 2021; 3:acmi000178. [PMID: 33997609 PMCID: PMC8115981 DOI: 10.1099/acmi.0.000178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/27/2020] [Indexed: 11/18/2022] Open
Abstract
Background DNA adenine methyltransferase (dam) has been well documented for its role in regulation of replication, mismatch repair and transposition. Recent studies have also suggested a role for dam in protection against antibiotic stress, although this is not yet fully defined. We therefore evaluated the role of dam in the development of antibiotic resistance and triclosan-associated cross-resistance. Results A significant impact on growth rate was seen in the dam knockout compared to the parental strain. Known triclosan resistance-associated mutations in fabI were seen regardless of dam status, with an additional mutation in lrhA seen in the dam knockout. The expression of multiple antibiotic resistance-associated genes was significantly different between the parent and dam knockout post-resistance induction. Reversion rate assays showed that resistance mechanisms were stable. Conclusions dam knockout had a significant effect on growth, but its role in the development of antibiotic resistance is likely confined to those antibiotics using acrAD-containing efflux pumps.
Collapse
Affiliation(s)
- Lewis Hughes
- Biomedical Sciences, Leeds Beckett University, Leeds, UK
| | - Wayne Roberts
- Biomedical Sciences, Leeds Beckett University, Leeds, UK
| | - Donna Johnson
- Biomedical Sciences, Leeds Beckett University, Leeds, UK
- *Correspondence: Donna Johnson,
| |
Collapse
|
39
|
Tao G, Xu X, Li RS, Liu F, Li N. Nonamplification Multiplexed Assay of Endonucleases and DNA Methyltransferases by Colocalized Particle Counting. ACS Sens 2021; 6:1321-1329. [PMID: 33496573 DOI: 10.1021/acssensors.0c02665] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Restriction endonucleases (ENases) and DNA methyltransferases (MTases) are important enzymes in biological processes, and detection of ENases/MTases activity is significant for biological and pharmaceutical studies. However, available nonamplification methods with a versatile design, desirable sensitivity, and signal production mode of unbiased quantification toward multiple nucleases are rare. By combining deliberately designed hairpin DNA probes with the colocalized particle counting technique, we present a nonamplification, separation-free method for multiplexed detection of ENases and MTases. In the presence of target ENases, the hairpin DNA is cleaved and the resulting DNA sequence forms a sandwich structure to tie two different-colored fluorescent microbeads together to generate a colocalization signal that can be easily detected using a standard fluorescence microscope. The multiplexed assay is realized via different color combinations. For the assay of methyltransferase, methylation by MTases prevents cleavage of the hairpin by the corresponding ENase, leading to decreased colocalization events. Three ENases can be simultaneously detected with high selectivity, minimal cross-talk, and detection limits of (4.1-6.4) × 10-4 U/mL, and the corresponding MTase activity can be measured without a change of the probe design. The potential for practical application is evaluated with human serum samples and different ENase and MTase inhibitors with satisfactory results. The proposed method is separation-free, unbiased toward multiple targets, and easy to implement, and the strategy has the potential to be extended to other targets.
Collapse
Affiliation(s)
- Guangyu Tao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiao Xu
- Environmental Metrology Center, National Institute of Metrology, Beijing 100029, China
| | - Rong Sheng Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
40
|
Chen Z, Wang H. Antibiotic Toxicity Profiles of Escherichia coli Strains Lacking DNA Methyltransferases. ACS OMEGA 2021; 6:7834-7840. [PMID: 33778295 PMCID: PMC7992158 DOI: 10.1021/acsomega.1c00378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/04/2021] [Indexed: 05/05/2023]
Abstract
Antibiotic-resistant bacteria are causing more antibiotic treatment failures. Developing new antibiotics and identifying bacterial targets will help to mitigate the emergence and reduce the spread of antibiotic resistance in the environment. We investigated whether DNA methyltransferase (MTase) can be an adjunct target for improving antibiotic toxicity. We used Escherichia coli as an example. The genes encoding DNA adenine MTase and cytosine MTase, dam and dcm, respectively, were separately knocked out using the λRed system in E. coli MG1655. MG1655 and the two knockout strains were separately exposed in 96-well plates to 20 antibiotics from five classes. The EC50 values of almost all of the tested antibiotics were lower in the dam and dcm knockout lines than that of the control. Our statistical analysis showed that the variations observed in EC50 values were independent of the mechanism underlying each antibiotic's mechanistic action.
Collapse
Affiliation(s)
- Zheng Chen
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailin Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
- . Phone/Fax: +86-10-62849600
| |
Collapse
|
41
|
Conjoint expression and purification strategy for acquiring proteins with ultra-low DNA N6-methyladenine backgrounds in Escherichia coli. Biosci Rep 2021; 41:228016. [PMID: 33660764 PMCID: PMC7960888 DOI: 10.1042/bsr20203769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/21/2022] Open
Abstract
DNA N6-methyladenine (6mA), a kind of DNA epigenetic modification, is widespread in eukaryotes and prokaryotes. An enzyme activity study coupled with 6mA detection using ultra-high-performance liquid chromatography-quadruple mass spectrometry (UHPLC-MS/MS) is commonly applied to investigate 6mA potentially related enzymes in vitro. However, the protein expressed in a common Escherichia coli (E. coli) strain shows an extremely high 6mA background due to minute co-purified bacterial DNA, though it has been purified to remove DNA using multiple strategies. Furthermore, as occupied by DNA with abundant 6mA, the activity of 6mA-related proteins will be influenced seriously. Here, to address this issue, we for the first time construct a derivative of E. coli Rosetta (DE3) via the λRed knockout system specifically for the expression of 6mA-related enzymes. The gene dam encoding the 6mA methyltransferase (MTase) is knocked out in the newly constructed strain named LAMBS (low adenine methylation background strain). Contrasting with E. coli Rosetta (DE3), LAMBS shows an ultra-low 6mA background on the genomic DNA when analyzed by UHPLC-MS/MS. We also demonstrate an integral strategy of protein purification, coupled with the application of LAMBS. As a result, the purified protein expressed in LAMBS exhibits an ultra-low 6mA background comparing with the one expressed in E. coli Rosetta (DE3). Our integral strategy of protein expression and purification will benefit the in vitro investigation and application of 6mA-related proteins from eukaryotes, although these proteins are elusive until now.
Collapse
|
42
|
Wang Y, Zheng J, Duan C, Jiao J, Gong Y, Shi H, Xiang Y. Detection of locus-specific N6-methyladenosine modification based on Ag +-assisted ligation and supersandwich signal amplification. Analyst 2021; 146:1355-1360. [PMID: 33393556 DOI: 10.1039/d0an02214d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Emerging evidence reveals that the epitranscriptomic mark N6-methyladenosine (m6A) plays vital roles in organisms, including gene regulation and disease progression. However, developing sensitive methods to detect m6A modification, especially the identification of m6A marks at the single-site level, remains a challenge. Therefore, based on target-specific triggered signal amplification, we developed a highly sensitive electrochemical method to detect site-specific m6A modifications in DNA. In this work, the m6A site in DNA can restrict the ligation assisted by Ag+, and this restriction effect can activate the subsequent strand displacement reaction and hybridization chain reaction (HCR), thus achieving signal amplification from the m6A site, and finally realizing high sensitivity analysis of m6A methylation. Benefiting from the high specificity of base pairs and the extremely weak binding affinity between Ag+ and m6A, the proposed method was used for not only detecting the target DNA with a putative m6A site, but also identifying m6A marks at the single-site level in DNA. In addition, this study does not rely on antibodies and radiolabeling, so it has the advantage of cost-effectiveness. Therefore, we believe that the proposed strategy may provide a new perspective for methylation research, which can be used to test more clinical samples in further research.
Collapse
Affiliation(s)
- Yanxia Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Ji Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Chengjie Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Jin Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Youjing Gong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Hai Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
43
|
Li Z, Jiang H, Kong L, Chen Y, Lang K, Fan X, Zhang L, Pian C. Deep6mA: A deep learning framework for exploring similar patterns in DNA N6-methyladenine sites across different species. PLoS Comput Biol 2021; 17:e1008767. [PMID: 33600435 PMCID: PMC7924747 DOI: 10.1371/journal.pcbi.1008767] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/02/2021] [Accepted: 02/03/2021] [Indexed: 12/25/2022] Open
Abstract
N6-methyladenine (6mA) is an important DNA modification form associated with a wide range of biological processes. Identifying accurately 6mA sites on a genomic scale is crucial for under-standing of 6mA’s biological functions. However, the existing experimental techniques for detecting 6mA sites are cost-ineffective, which implies the great need of developing new computational methods for this problem. In this paper, we developed, without requiring any prior knowledge of 6mA and manually crafted sequence features, a deep learning framework named Deep6mA to identify DNA 6mA sites, and its performance is superior to other DNA 6mA prediction tools. Specifically, the 5-fold cross-validation on a benchmark dataset of rice gives the sensitivity and specificity of Deep6mA as 92.96% and 95.06%, respectively, and the overall prediction accuracy is 94%. Importantly, we find that the sequences with 6mA sites share similar patterns across different species. The model trained with rice data predicts well the 6mA sites of other three species: Arabidopsis thaliana, Fragaria vesca and Rosa chinensis with a prediction accuracy over 90%. In addition, we find that (1) 6mA tends to occur at GAGG motifs, which means the sequence near the 6mA site may be conservative; (2) 6mA is enriched in the TATA box of the promoter, which may be the main source of its regulating downstream gene expression. DNA N6 methyladenine (6mA) is a newly recognized methylation modification in eukaryotes. It exists widely and conservatively in organisms, and its modification level changes dynamically in the whole life cycle. This study proposes an algorithm based on a deep learning framework including LSTM and CNN to predict 6mA sites. The results showed that our method could accurately predict the 6mA sites in different species, which means DNA sub-sequences containing 6mA sites among species have certain conservation. Importantly, we found that 6mA methylation in most different species is more likely to occur on the GAGG motif. In addition, we also found that 6mA is rich in the promoter’s TATA box, which may be a mechanism of regulating downstream gene expression.
Collapse
Affiliation(s)
- Zutan Li
- Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing, China
| | - Hangjin Jiang
- Center for Data Science, Zhejiang University, Hangzhou, China
| | - Lingpeng Kong
- Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing, China
| | - Yuanyuan Chen
- Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing, China
| | - Kun Lang
- College of information science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaodan Fan
- Department of Statistics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangyun Zhang
- Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing, China
- * E-mail: (LYZ); (CP)
| | - Cong Pian
- Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing, China
- * E-mail: (LYZ); (CP)
| |
Collapse
|
44
|
Vandenbussche I, Sass A, Van Nieuwerburgh F, Pinto-Carbó M, Mannweiler O, Eberl L, Coenye T. Detection of cytosine methylation in Burkholderia cenocepacia by single-molecule real-time sequencing and whole-genome bisulfite sequencing. MICROBIOLOGY-SGM 2021; 167. [PMID: 33565960 DOI: 10.1099/mic.0.001027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Research on prokaryotic epigenetics, the study of heritable changes in gene expression independent of sequence changes, led to the identification of DNA methylation as a versatile regulator of diverse cellular processes. Methylation of adenine bases is often linked to regulation of gene expression in bacteria, but cytosine methylation is also frequently observed. In this study, we present a complete overview of the cytosine methylome in Burkholderia cenocepacia, an opportunistic respiratory pathogen in cystic fibrosis patients. Single-molecule real-time (SMRT) sequencing was used to map all 4mC-modified cytosines, as analysis of the predicted MTases in the B. cenocepacia genome revealed the presence of a 4mC-specific phage MTase, M.BceJII, targeting GGCC sequences. Methylation motif GCGGCCGC was identified, and out of 6850 motifs detected across the genome, 2051 (29.9 %) were methylated at the fifth position. Whole-genome bisulfite sequencing (WGBS) was performed to map 5mC methylation and 1635 5mC-modified cytosines were identified in CpG motifs. A comparison of the genomic positions of the modified bases called by each method revealed no overlap, which confirmed the authenticity of the detected 4mC and 5mC methylation by SMRT sequencing and WGBS, respectively. Large inter-strain variation of the 4mC-methylated cytosines was observed when B. cenocepacia strains J2315 and K56-2 were compared, which suggests that GGCC methylation patterns in B. cenocepacia are strain-specific. It seems likely that 4mC methylation of GGCC is not involved in regulation of gene expression but rather is a remnant of bacteriophage invasion, in which methylation of the phage genome was crucial for protection against restriction-modification systems of B. cenocepacia.
Collapse
Affiliation(s)
- Ian Vandenbussche
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | | | - Marta Pinto-Carbó
- Department of Plant and Microbial Microbiology, University of Zurich, Zurich, Switzerland
| | - Olga Mannweiler
- Department of Plant and Microbial Microbiology, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Microbiology, University of Zurich, Zurich, Switzerland
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
45
|
Prell C, Burgardt A, Meyer F, Wendisch VF. Fermentative Production of l-2-Hydroxyglutarate by Engineered Corynebacterium glutamicum via Pathway Extension of l-Lysine Biosynthesis. Front Bioeng Biotechnol 2021; 8:630476. [PMID: 33585425 PMCID: PMC7873477 DOI: 10.3389/fbioe.2020.630476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022] Open
Abstract
l-2-hydroxyglutarate (l-2HG) is a trifunctional building block and highly attractive for the chemical and pharmaceutical industries. The natural l-lysine biosynthesis pathway of the amino acid producer Corynebacterium glutamicum was extended for the fermentative production of l-2HG. Since l-2HG is not native to the metabolism of C. glutamicum metabolic engineering of a genome-streamlined l-lysine overproducing strain was required to enable the conversion of l-lysine to l-2HG in a six-step synthetic pathway. To this end, l-lysine decarboxylase was cascaded with two transamination reactions, two NAD(P)-dependent oxidation reactions and the terminal 2-oxoglutarate-dependent glutarate hydroxylase. Of three sources for glutarate hydroxylase the metalloenzyme CsiD from Pseudomonas putida supported l-2HG production to the highest titers. Genetic experiments suggested a role of succinate exporter SucE for export of l-2HG and improving expression of its gene by chromosomal exchange of its native promoter improved l-2HG production. The availability of Fe2+ as cofactor of CsiD was identified as a major bottleneck in the conversion of glutarate to l-2HG. As consequence of strain engineering and media adaptation product titers of 34 ± 0 mM were obtained in a microcultivation system. The glucose-based process was stable in 2 L bioreactor cultivations and a l-2HG titer of 3.5 g L−1 was obtained at the higher of two tested aeration levels. Production of l-2HG from a sidestream of the starch industry as renewable substrate was demonstrated. To the best of our knowledge, this study is the first description of fermentative production of l-2HG, a monomeric precursor used in electrochromic polyamides, to cross-link polyamides or to increase their biodegradability.
Collapse
Affiliation(s)
- Carina Prell
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Arthur Burgardt
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Florian Meyer
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
46
|
Gaultney RA, Vincent AT, Lorioux C, Coppée JY, Sismeiro O, Varet H, Legendre R, Cockram CA, Veyrier F, Picardeau M. 4-Methylcytosine DNA modification is critical for global epigenetic regulation and virulence in the human pathogen Leptospira interrogans. Nucleic Acids Res 2020; 48:12102-12115. [PMID: 33301041 PMCID: PMC7708080 DOI: 10.1093/nar/gkaa966] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 12/25/2022] Open
Abstract
In bacteria, DNA methylation can be facilitated by 'orphan' DNA methyltransferases lacking cognate restriction endonucleases, but whether and how these enzymes control key cellular processes are poorly understood. The effects of a specific modification, 4-methylcytosine (4mC), are even less clear, as this epigenetic marker is unique to bacteria and archaea, whereas the bulk of epigenetic research is currently performed on eukaryotes. Here, we characterize a 4mC methyltransferase from the understudied pathogen Leptospira spp. Inactivating this enzyme resulted in complete abrogation of CTAG motif methylation, leading to genome-wide dysregulation of gene expression. Mutants exhibited growth defects, decreased adhesion to host cells, higher susceptibility to LPS-targeting antibiotics, and, importantly, were no longer virulent in an acute infection model. Further investigation resulted in the discovery of at least one gene, that of an ECF sigma factor, whose transcription was altered in the methylase mutant and, subsequently, by mutation of the CTAG motifs in the promoter of the gene. The genes that comprise the regulon of this sigma factor were, accordingly, dysregulated in the methylase mutant and in a strain overexpressing the sigma factor. Our results highlight the importance of 4mC in Leptospira physiology, and suggest the same of other understudied species.
Collapse
Affiliation(s)
| | - Antony T Vincent
- Bacterial Symbionts Evolution, INRS-Centre Armand-Frappier, Laval, Quebec, Canada
| | - Céline Lorioux
- Unité Biologie des Spirochètes, Institut Pasteur, Paris, France
| | - Jean-Yves Coppée
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
| | - Odile Sismeiro
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
| | - Hugo Varet
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, Paris, France
| | - Rachel Legendre
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, Paris, France
| | | | - Frédéric J Veyrier
- Bacterial Symbionts Evolution, INRS-Centre Armand-Frappier, Laval, Quebec, Canada
| | | |
Collapse
|
47
|
Gong Z, Wang G, Zeng J, Stojkoska A, Huang H, Xie J. Differential DNA methylomes of clinical MDR, XDR and XXDR Mycobacterium tuberculosis isolates revealed by using single-molecule real-time sequencing. J Drug Target 2020; 29:69-77. [PMID: 32672115 DOI: 10.1080/1061186x.2020.1797049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Post-replicative DNA methylation is essential for diverse biological processes in both eukaryotes and prokaryotes. Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis, remains one of the most formidable threats worldwide. Although DNA methylation of M. tuberculosis has been documented, little information is available for clinical drug-resistant M. tuberculosis. Single-molecule real-time (SMRT) sequencing was used to profile the core methylome of three clinical isolates, namely multidrug-resistant (MDR), extensively drug-resistant (XDR) and extremely drug-resistant (XXDR) strains. 3812, 6808 and 6041 DNA methylated sites were identified in MDR-MTB, XDR-MTB and XXDR-MTB genome, respectively. There are two types of methylated motifs, namely N6-methyladenine (m6A) and N4-methylcytosine (m4C). A novel widespread 6 mA methylation motif 5'-CACGCAG-3' was found in XDR-MTB and XXDR-MTB. The methylated genes are involved in multiple cellular processes, especially metabolic enzymes engaged in glucose metabolism, fatty acid and TCA cycle. Many methylated genes are involved in mycobacterial virulence, antibiotic resistance and tolerance. This provided a comprehensive list of methylated genes in drug-resistant clinical isolates and the basis for further functional elucidation.
Collapse
Affiliation(s)
- Zhen Gong
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Guirong Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Jie Zeng
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Andrea Stojkoska
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| |
Collapse
|
48
|
Wang HC, Lin SJ, Mohapatra A, Kumar R, Wang HC. A Review of the Functional Annotations of Important Genes in the AHPND-Causing pVA1 Plasmid. Microorganisms 2020; 8:E996. [PMID: 32635298 PMCID: PMC7409025 DOI: 10.3390/microorganisms8070996] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 01/20/2023] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a lethal shrimp disease. The pathogenic agent of this disease is a special Vibrio parahaemolyticus strain that contains a pVA1 plasmid. The protein products of two toxin genes in pVA1, pirAvp and pirBvp, targeted the shrimp's hepatopancreatic cells and were identified as the major virulence factors. However, in addition to pirAvp and pirBvp, pVA1 also contains about ~90 other open-reading frames (ORFs), which may encode functional proteins. NCBI BLASTp annotations of the functional roles of 40 pVA1 genes reveal transposases, conjugation factors, and antirestriction proteins that are involved in horizontal gene transfer, plasmid transmission, and maintenance, as well as components of type II and III secretion systems that may facilitate the toxic effects of pVA1-containing Vibrio spp. There is also evidence of a post-segregational killing (PSK) system that would ensure that only pVA1 plasmid-containing bacteria could survive after segregation. Here, in this review, we assess the functional importance of these pVA1 genes and consider those which might be worthy of further study.
Collapse
Affiliation(s)
- Hao-Ching Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.L.); (R.K.)
| | - Shin-Jen Lin
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.L.); (R.K.)
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Arpita Mohapatra
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
- Mits School of Biotechnology, Utkal University, Bhubaneswar, Odisha 751004, India
| | - Ramya Kumar
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.L.); (R.K.)
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Han-Ching Wang
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.L.); (R.K.)
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
49
|
Cao J, Zhang Y, Dai M, Xu J, Chen L, Zhang F, Zhao N, Wang J. Profiling of Human Gut Virome with Oxford Nanopore Technology. MEDICINE IN MICROECOLOGY 2020. [DOI: 10.1016/j.medmic.2020.100012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
50
|
The complex phylogenetic relationships of a 4mC/6mA DNA methyltransferase in prokaryotes. Mol Phylogenet Evol 2020; 149:106837. [PMID: 32304827 DOI: 10.1016/j.ympev.2020.106837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/30/2020] [Accepted: 04/09/2020] [Indexed: 01/04/2023]
Abstract
DNA methyltransferases are proteins that modify DNA via attachment of methyl groups to nucleobases and are ubiquitous across the bacterial, archaeal, and eukaryotic domains of life. Here, we investigated the complex evolutionary history of the large and consequential 4mC/6mA DNA methyltransferase protein family using phylogenetic reconstruction of amino acid sequences. We present a well-supported phylogeny of this family based on systematic sampling of taxa across superphyla of bacteria and archaea. We compared the phylogeny to a current representation of the species tree of life and found that the 4mC/6mA methyltransferase family has a strikingly complex evolutionary history that likely began sometime after the last universal common ancestor of life diverged into the bacterial and archaeal lineages and probably involved many horizontal gene transfers within and between domains. Despite the complexity of its evolutionary history, we inferred that only one significant shift in molecular evolutionary rate characterizes the diversification of this protein family.
Collapse
|