1
|
Mitran CJ, Yanow SK. The Case for Exploiting Cross-Species Epitopes in Malaria Vaccine Design. Front Immunol 2020; 11:335. [PMID: 32174924 PMCID: PMC7056716 DOI: 10.3389/fimmu.2020.00335] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
The infection dynamics between different species of Plasmodium that infect the same human host can both suppress and exacerbate disease. This could arise from inter-parasite interactions, such as competition, from immune regulation, or both. The occurrence of protective, cross-species (heterologous) immunity is an unlikely event, especially considering that strain-transcending immunity within a species is only partial despite lifelong exposure to that species. Here we review the literature in humans and animal models to identify the contexts where heterologous immunity can arise, and which antigens may be involved. From the perspective of vaccine design, understanding the mechanisms by which exposure to an antigen from one species can elicit a protective response to another species offers an alternative strategy to conventional approaches that focus on immunodominant antigens within a single species. The underlying hypothesis is that certain epitopes are conserved across evolution, in sequence or in structure, and shared in antigens from different species. Vaccines that focus on conserved epitopes may overcome the challenges posed by polymorphic immunodominant antigens; but to uncover these epitopes requires approaches that consider the evolutionary history of protein families across species. The key question for vaccinologists will be whether vaccines that express these epitopes can elicit immune responses that are functional and contribute to protection against Plasmodium parasites.
Collapse
Affiliation(s)
| | - Stephanie K. Yanow
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Olsen TM, Stone BC, Chuenchob V, Murphy SC. Prime-and-Trap Malaria Vaccination To Generate Protective CD8 + Liver-Resident Memory T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:1984-1993. [PMID: 30127085 DOI: 10.4049/jimmunol.1800740] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/02/2018] [Indexed: 11/19/2022]
Abstract
Tissue-resident memory CD8+ T (Trm) cells in the liver are critical for long-term protection against pre-erythrocytic Plasmodium infection. Such protection can usually be induced with three to five doses of i.v. administered radiation-attenuated sporozoites (RAS). To simplify and accelerate vaccination, we tested a DNA vaccine designed to induce potent T cell responses against the SYVPSAEQI epitope of Plasmodium yoelii circumsporozoite protein. In a heterologous "prime-and-trap" regimen, priming using gene gun-administered DNA and boosting with one dose of RAS attracted expanding Ag-specific CD8+ T cell populations to the liver, where they became Trm cells. Vaccinated in this manner, BALB/c mice were completely protected against challenge, an outcome not reliably achieved following one dose of RAS or following DNA-only vaccination. This study demonstrates that the combination of CD8+ T cell priming by DNA and boosting with liver-homing RAS enhances formation of a completely protective liver Trm cell response and suggests novel approaches for enhancing T cell-based pre-erythrocytic malaria vaccines.
Collapse
Affiliation(s)
- Tayla M Olsen
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98109.,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109
| | - Brad C Stone
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98109.,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109
| | - Vorada Chuenchob
- Center for Infectious Disease Research, University of Washington, Seattle, WA 98109; and
| | - Sean C Murphy
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98109; .,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109.,Department of Microbiology, University of Washington, Seattle, WA 98195
| |
Collapse
|
3
|
Ghosn S, Chamat S, Prieur E, Stephan A, Druilhe P, Bouharoun-Tayoun H. Evaluating Human Immune Responses for Vaccine Development in a Novel Human Spleen Cell-Engrafted NOD-SCID-IL2rγNull Mouse Model. Front Immunol 2018; 9:601. [PMID: 29628927 PMCID: PMC5876497 DOI: 10.3389/fimmu.2018.00601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/09/2018] [Indexed: 12/15/2022] Open
Abstract
The lack of preclinical models able to faithfully predict the immune responses which are later obtained in the clinic is a major hurdle for vaccines development as it increases markedly the delays and the costs required to perform clinical studies. We developed and evaluated the relevance to human immune responses of a novel humanized mouse model, humanized-spleen cells-NOD-SCID-gamma null (Hu-SPL-NSG), in which we grafted human spleen cells in immunodeficient NOD-SCID-IL-2rγnull (NSG) mice. We selected the malaria vaccine candidate, Liver Stage Antigen 3-Full Length, because we had previously observed a major discrepancy between preclinical and clinical results, and compared its immunogenicity with that of a shorter form of the molecule, LSA3-729. NSG mice engrafted with human spleen lymphocytes were immunized with either LSA3-FL or LSA3-729, both adjuvanted with montanide ISA720. We found that the shorter LSA3-729 triggered the production of human antibodies and a T-helper-type 1 cellular immune response associated with protection whereas LSA3-FL did not. Results were consistent in five groups receiving lymphocytes from five distinct human donors. We identified antigenic regions in the full-length molecule, but not in the shorter version, which induced T-regulatory type of cellular responses. These regions had failed to be predicted by previous preclinical experiments in a wide range of animal models, including primates. Results were reproducible using spleen cells from all five human donors. The findings in the Hu-SPL-NSG model were similar to the results obtained using LSA3-FL in the clinic and hence could have been used to predict them. The model does not present graft versus host reaction, low survival of engrafted B lymphocytes and difficulty to raise primary immune responses, all limitations previously reported in humanized immune-compromised mice. Results also point to the shorter construct, LSA3-729 as a more efficient vaccine candidate. In summary, our findings indicate that the Hu-SPL-NSG model could be a relevant and cost-saving choice for early selection of vaccine candidates before clinical development, and deserves being further evaluated.
Collapse
Affiliation(s)
- Stéphanie Ghosn
- Laboratory of Immunology and Vector Born Diseases, Faculty of Public Health-Fanar, Lebanese University, Beirut, Lebanon.,Vac4All Initiative, Paris, France
| | - Soulaima Chamat
- Laboratory of Immunology and Vector Born Diseases, Faculty of Public Health-Fanar, Lebanese University, Beirut, Lebanon.,Faculty of Medicine, Lebanese University, Hadath, Lebanon
| | | | - Antoine Stephan
- National Organization for Organ and Tissues Donation and Transplantation (NOOTDT), Beirut, Lebanon
| | | | - Hasnaa Bouharoun-Tayoun
- Laboratory of Immunology and Vector Born Diseases, Faculty of Public Health-Fanar, Lebanese University, Beirut, Lebanon
| |
Collapse
|
4
|
Assessment of the Plasmodium falciparum Preerythrocytic Antigen UIS3 as a Potential Candidate for a Malaria Vaccine. Infect Immun 2017; 85:IAI.00641-16. [PMID: 28031267 PMCID: PMC5328496 DOI: 10.1128/iai.00641-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/20/2016] [Indexed: 01/03/2023] Open
Abstract
Efforts are under way to improve the efficacy of subunit malaria vaccines through assessments of new adjuvants, vaccination platforms, and antigens. In this study, we further assessed the Plasmodium falciparum antigen upregulated in infective sporozoites 3 (PfUIS3) as a vaccine candidate. PfUIS3 was expressed in the viral vectors chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) and used to immunize mice in a prime-boost regimen. We previously demonstrated that this regimen could provide partial protection against challenge with chimeric P. berghei parasites expressing PfUIS3. We now show that ChAd63-MVA PfUIS3 can also provide partial cross-species protection against challenge with wild-type P. berghei parasites. We also show that PfUIS3-specific cellular memory responses could be recalled in human volunteers exposed to P. falciparum parasites in a controlled human malaria infection study. When ChAd63-MVA PfUIS3 was coadministered with the vaccine candidate P. falciparum thrombospondin-related adhesion protein (PfTRAP) expressed in the ChAd63-MVA system, there was no significant change in immunogenicity to either vaccine. However, when mice were challenged with double chimeric P. berghei-P. falciparum parasites expressing both PfUIS3 and PfTRAP, vaccine efficacy was improved to 100% sterile protection. This synergistic effect was evident only when the two vaccines were mixed and administered at the same site. We have therefore demonstrated that vaccination with PfUIS3 can induce a consistent delay in patent parasitemia across mouse strains and against chimeric parasites expressing PfUIS3 as well as wild-type P. berghei; when this vaccine is combined with another partially protective regimen (ChAd63-MVA PfTRAP), complete protection is induced.
Collapse
|
5
|
Ewer KJ, Sierra-Davidson K, Salman AM, Illingworth JJ, Draper SJ, Biswas S, Hill AVS. Progress with viral vectored malaria vaccines: A multi-stage approach involving "unnatural immunity". Vaccine 2015; 33:7444-51. [PMID: 26476366 PMCID: PMC4687526 DOI: 10.1016/j.vaccine.2015.09.094] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/17/2015] [Accepted: 09/22/2015] [Indexed: 12/20/2022]
Abstract
Viral vectors used in heterologous prime-boost regimens are one of very few vaccination approaches that have yielded significant protection against controlled human malaria infections. Recently, protection induced by chimpanzee adenovirus priming and modified vaccinia Ankara boosting using the ME-TRAP insert has been correlated with the induction of potent CD8(+) T cell responses. This regimen has progressed to field studies where efficacy against infection has now been reported. The same vectors have been used pre-clinically to identify preferred protective antigens for use in vaccines against the pre-erythrocytic, blood-stage and mosquito stages of malaria and this work is reviewed here for the first time. Such antigen screening has led to the prioritization of the PfRH5 blood-stage antigen, which showed efficacy against heterologous strain challenge in non-human primates, and vectors encoding this antigen are in clinical trials. This, along with the high transmission-blocking activity of some sexual-stage antigens, illustrates well the capacity of such vectors to induce high titre protective antibodies in addition to potent T cell responses. All of the protective responses induced by these vectors exceed the levels of the same immune responses induced by natural exposure supporting the view that, for subunit vaccines to achieve even partial efficacy in humans, "unnatural immunity" comprising immune responses of very high magnitude will need to be induced.
Collapse
Affiliation(s)
- Katie J Ewer
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK.
| | - Kailan Sierra-Davidson
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Ahmed M Salman
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Simon J Draper
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Sumi Biswas
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
6
|
Comparative assessment of vaccine vectors encoding ten malaria antigens identifies two protective liver-stage candidates. Sci Rep 2015; 5:11820. [PMID: 26139288 PMCID: PMC4490344 DOI: 10.1038/srep11820] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/01/2015] [Indexed: 12/15/2022] Open
Abstract
The development of an efficacious Plasmodium falciparum malaria vaccine remains a top priority for global health. Vaccination with irradiated sporozoites is able to provide complete sterile protection through the action of CD8+ T cells at the liver-stage of infection. However, this method is currently unsuitable for large-scale deployment and focus has instead turned to the development of sub-unit vaccines. Sub-unit vaccine efforts have traditionally focused on two well-known pre-erythrocytic antigens, CSP and TRAP, yet thousands of genes are expressed in the liver-stage. We sought to assess the ability of eight alternative P. falciparum pre-erythrocytic antigens to induce a high proportion of CD8+ T cells. We show that all antigens, when expressed individually in the non-replicating viral vectors ChAd63 and MVA, are capable of inducing an immune response in mice. Furthermore, we also developed chimeric P. berghei parasites expressing the cognate P. falciparum antigen to enable assessment of efficacy in mice. Our preliminary results indicate that vectors encoding either PfLSA1 or PfLSAP2 are capable of inducing sterile protection dependent on the presence of CD8+ T cells. This work has identified two promising P. falciparum liver-stage candidate antigens that will now undergo further testing in humans.
Collapse
|
7
|
Sheehy SH, Spencer AJ, Douglas AD, Sim BKL, Longley RJ, Edwards NJ, Poulton ID, Kimani D, Williams AR, Anagnostou NA, Roberts R, Kerridge S, Voysey M, James ER, Billingsley PF, Gunasekera A, Lawrie AM, Hoffman SL, Hill AVS. Optimising Controlled Human Malaria Infection Studies Using Cryopreserved P. falciparum Parasites Administered by Needle and Syringe. PLoS One 2013; 8:e65960. [PMID: 23823332 PMCID: PMC3688861 DOI: 10.1371/journal.pone.0065960] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 04/29/2013] [Indexed: 11/18/2022] Open
Abstract
Background Controlled human malaria infection (CHMI) studies have become a routine tool to evaluate efficacy of candidate anti-malarial drugs and vaccines. To date, CHMI trials have mostly been conducted using the bite of infected mosquitoes, restricting the number of trial sites that can perform CHMI studies. Aseptic, cryopreserved P. falciparum sporozoites (PfSPZ Challenge) provide a potentially more accurate, reproducible and practical alternative, allowing a known number of sporozoites to be administered simply by injection. Methodology We sought to assess the infectivity of PfSPZ Challenge administered in different dosing regimens to malaria-naive healthy adults (n = 18). Six participants received 2,500 sporozoites intradermally (ID), six received 2,500 sporozoites intramuscularly (IM) and six received 25,000 sporozoites IM. Findings Five out of six participants receiving 2,500 sporozoites ID, 3/6 participants receiving 2,500 sporozoites IM and 6/6 participants receiving 25,000 sporozoites IM were successfully infected. The median time to diagnosis was 13.2, 17.8 and 12.7 days for 2,500 sporozoites ID, 2,500 sporozoites IM and 25,000 sporozoites IM respectively (Kaplan Meier method; p = 0.024 log rank test). Conclusions 2,500 sporozoites ID and 25,000 sporozoites IM have similar infectivities. Given the dose response in infectivity seen with IM administration, further work should evaluate increasing doses of PfSPZ Challenge IM to identify a dosing regimen that reliably infects 100% of participants. Trial Registration ClinicalTrials.gov NCT01465048
Collapse
Affiliation(s)
- Susanne H. Sheehy
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | | | | | - B. Kim Lee Sim
- Sanaria Inc., Rockville, Maryland, United States of America
| | - Rhea J. Longley
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Nick J. Edwards
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Ian D. Poulton
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | - Domtila Kimani
- Centre for Geographical Medical Research (Coast), Kenya Medical Research Institute, Kilifi, Kenya
| | - Andrew R. Williams
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Nicholas A. Anagnostou
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel Roberts
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon Kerridge
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | - Merryn Voysey
- Centre for Statistics in Medicine, University of Oxford, Oxford, United Kingdom
| | - Eric R. James
- Sanaria Inc., Rockville, Maryland, United States of America
| | | | | | - Alison M. Lawrie
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Adrian V. S. Hill
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
O-GlcNAc modification of the anti-malarial vaccine candidate PfAMA1: in silico-defined structural changes and potential to generate a better vaccine. Mol Biol Rep 2011; 39:4663-72. [PMID: 22020851 DOI: 10.1007/s11033-011-1258-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 09/14/2011] [Indexed: 10/16/2022]
Abstract
The complex life cycle of plasmodial parasites makes the selection of a single subunit protein a less than optimal strategy to generate an efficient vaccinal protection against malaria. Moreover, the full protection afforded by malarial proteins carried by intact parasites implies that immune responses against different antigens expressed in different phases of the cycle are required, but also suggests that native malarial antigens are presented to the host immune system in a manner that recombinant proteins do not achieve. The malarial apical membrane antigen 1 (AMA1) represents a suitable vaccine candidate because AMA1 is expressed on sporozoites and merozoites and allows them to invade hepatocytes and erythrocytes, respectively. Anti-AMA1 antibodies and cytotoxic T-cells are therefore expected to interfere both with the primary invasion of hepatocytes by sporozoites and with the later propagation of merozoites in erythrocytes, and thus efficiently counteract parasite development in its human host. AMA1 bears potential glycosylation sites and the human erythrocytic O-linked N-acetylglucosamine transferase (OGT) could glycosylate AMA1 through combinatorial metabolism. This hypothesis was tested in silico by developing binding models of AMA1 with human OGT complexed with UDP-GlcNc, and followed by the binding of O-GlcNAc with the hydroxyl group of AMA1 serine and threonine residues. Our results suggests that AMA1 shows potential for glycosylation at Thr517 and Ser498 and that O-GlcNAc AMA1 may constitute a conformationally more appropriate antigen for developing a protective anti-malarial immune response.
Collapse
|
9
|
Kim TS, Kim HH, Kim JY, Kong Y, Na BK, Lin K, Moon SU, Kim YJ, Kwon MH, Sohn Y, Kim H, Lee HW. Comparison of the antibody responses to Plasmodium vivax and Plasmodium falciparum antigens in residents of Mandalay, Myanmar. Malar J 2011; 10:228. [PMID: 21819610 PMCID: PMC3163629 DOI: 10.1186/1475-2875-10-228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 08/06/2011] [Indexed: 11/18/2022] Open
Abstract
Background The aim of this study was to investigate the profile of antibodies against several antigens of Plasmodium vivax and Plasmodium falciparum in Mandalay, Myanmar. Methods Malaria parasites were identified by microscopic examination. To test the antibodies against P. vivax and P. falciparum in sera, an indirect immunofluorescence antibody test (IFAT) was performed using asexual blood parasite antigens. An enzyme-linked immunosorbent assay (ELISA) was performed with circumsporozoite protein (CSP), Pvs25 and Pvs28 recombinant proteins of transmission-blocking vaccine candidates for P. vivax, and liver stage specific antigen-1 and -3 (PfLSA-1, PfLSA-3) for P. falciparum. Results Fourteen patients among 112 were found to be infected with P. vivax and 26 with P. falciparum by thick smear examination. Twenty-three patients were found to be infected with P. vivax, 19 with P. falciparum and five with both by thin smear examination. Blood samples were divided into two groups: Group I consisted of patients who were positive for infection by microscopic examination, and Group II consisted of those who showed symptoms, but were negative in microscopic examination. In P. falciparum, IgG against the blood stage antigen in Group I (80.8%) was higher than in Group II (70.0%). In P. vivax, IgG against the blood stage antigen in Group I (53.8%) was higher than in Group II (41.7%). However, the positivity rate of the PvCSP VK210 subtype in Group II (40.0%) was higher than in Group I (23.1%). Similarly for the PvCSP VK247 subtype, Group II (21.7%) was higher than that for Group I (9.6%). A similar pattern was observed in the ELISA using Pvs25 and Pvs28: positive rates of Group II were higher than those for Group I. However, those differences were not shown significant in statistics. Conclusions The positive rates for blood stage antigens of P. falciparum were higher in Group I than in Group II, but the positive rates for antigens of other stages (PfLSA-1 and -3) showed opposite results. Similar to P. falciparum, the positive rate of pre-blood stage (CSP VK210 and 247 subtype) and post-blood stage (Pvs25 and 28) antigens of P. vivax were higher in Group II than in Group I. Therefore, sero-diagnosis is not helpful to discriminate between malaria patients and symptomatic individuals during the epidemic season in Myanmar.
Collapse
Affiliation(s)
- Tong-Soo Kim
- Department of Parasitology, College of Medicine, Inha University, Incheon405-751, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
A baculovirus dual expression system-based malaria vaccine induces strong protection against Plasmodium berghei sporozoite challenge in mice. Infect Immun 2009; 77:1782-9. [PMID: 19223476 DOI: 10.1128/iai.01226-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that a recombinant baculovirus that displays Plasmodium berghei circumsporozoite protein (PbCSP), a homolog of the leading human malaria vaccine candidate, on the viral envelope protected 60% of mice against P. berghei infection. Here, we describe a second-generation baculovirus vaccine based on the "baculovirus dual expression system," which drives PbCSP expression by a dual promoter that consists of tandemly arranged baculovirus-derived polyhedrin and mammal-derived cytomegalovirus promoters. The baculovirus-based PbCSP vaccine not only displayed PbCSP on the viral envelope but also expressed PbCSP upon transduction of mammalian cells. Immunization with the baculovirus-based PbCSP vaccine elicited high PbCSP-specific antibody titers (predominantly immunoglobulin G1 [IgG1] and IgG2a) and PbCSP-specific CD8(+) T-cell responses without extraneous immunological adjuvants in mice, indicating that there was induction of both Th1 and Th2 responses (a mixed Th1/Th2 response). Importantly, upon intramuscular inoculation, the baculovirus-based PbCSP vaccine conferred complete protection against sporozoite challenge. Thus, the baculovirus-based PbCSP vaccine induced strong protective immune responses against preerythrocytic parasites. These results introduce a novel concept for the baculovirus dual expression system that functions as both a subunit vaccine and a DNA vaccine and offer a promising new alternative to current human vaccine delivery platforms.
Collapse
|
11
|
Evidence for multiple B- and T-cell epitopes in Plasmodium falciparum liver-stage antigen 3. Infect Immun 2009; 77:1189-96. [PMID: 19139199 DOI: 10.1128/iai.00780-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Liver-stage antigen 3 (LSA-3) is a new vaccine candidate that can induce protection against Plasmodium falciparum sporozoite challenge. Using a series of long synthetic peptides (LSP) encompassing most of the 210-kDa LSA-3 protein, a study of the antigenicity of this protein was carried out in 203 inhabitants from the villages of Dielmo (n = 143) and Ndiop (n = 60) in Senegal (the level of malaria transmission differs in these two villages). Lymphocyte responses to each individual LSA-3 peptide were recorded, some at high prevalences (up to 43%). Antibodies were also detected to each of the 20 peptides, many at high prevalence (up to 84% of responders), and were directed to both nonrepeat and repeat regions. Immune responses to LSA-3 were detectable even in individuals of less than 5 years of age and increased with age and hence exposure to malaria, although they were not directly related to the level of malaria transmission. Thus, several valuable T- and B-cell epitopes were characterized all along the LSA-3 protein, supporting the antigenicity of this P. falciparum vaccine candidate. Finally, antibodies specific for peptide LSP10 located in a nonrepeat region of LSA-3 were found significantly associated with a lower risk of malaria attack over 1 year of daily clinical follow-up in children between the ages of 7 and 15 years, but not in older individuals.
Collapse
|
12
|
Perlaza BL, Valencia AZ, Zapata C, Castellanos A, Sauzet JP, Blanc C, Cohen J, Arévalo-Herrera M, Corradin G, Herrera S, Druilhe P. Protection against Plasmodium falciparum challenge induced in Aotus monkeys by liver-stage antigen-3-derived long synthetic peptides. Eur J Immunol 2008; 38:2610-5. [PMID: 18792413 DOI: 10.1002/eji.200738055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The vaccine potential of Plasmodium falciparum liver stage antigen-3 (LSA3) was investigated in Aotus monkeys using two long synthetic peptides corresponding respectively to an N-terminal non-repeat peptide (NRP) and repeat 2 (R2) region of the LSA3, adjuvanted by ASO2. Both 100-222 (NRP) and 501-596 repeat peptides induced effector B- and T-cell responses in terms of antigen-driven antibodies and/or specific IFN-gamma secretion. Animals challenged with P. falciparum sporozoites were protected following immunization with either the NRP region alone or the NRP combined with the R2 repeat region, as compared with controls receiving the adjuvant alone. These results indicate that the NRP may be sufficient to induce full, sterile protection and confirm the vaccine potential of LSA3 previously demonstrated in chimpanzees and in Aotus.
Collapse
|
13
|
Daubersies P, Ollomo B, Sauzet JP, Brahimi K, Perlaza BL, Eling W, Moukana H, Rouquet P, de Taisne C, Druilhe P. Genetic immunisation by liver stage antigen 3 protects chimpanzees against malaria despite low immune responses. PLoS One 2008; 3:e2659. [PMID: 18628827 PMCID: PMC2441826 DOI: 10.1371/journal.pone.0002659] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 06/05/2008] [Indexed: 11/19/2022] Open
Abstract
Background The true interest of genetic immunisation might have been hastily underestimated based on overall immunogenicity data in humans and lack of parallelism with other, more classical immunisation methods. Principal Findings Using malaria Liver Stage Antigen-3 (LSA-3), we report that genetic immunization induces in chimpanzees, the closest relative of humans, immune responses which are as scarce as those reported using other DNA vaccines in humans, but which nonetheless confer strong, sterile and reproducible protection. The pattern was consistent in 3/4 immunized apes against two high dose sporozoite challenges performed as late as 98 and 238 days post-immunization and by a heterologous strain. Conclusions These results should, in our opinion, lead to a revisiting of the value of this unusual means of immunisation, using as a model a disease, malaria, in which virulent challenges of volunteers are ethically acceptable.
Collapse
Affiliation(s)
| | - Benjamin Ollomo
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | | | - Karima Brahimi
- Unité de Parasitologie Biomédicale, Institut Pasteur, Paris, France
| | | | - Wijnand Eling
- Department of Medical Microbiology, University of Nijmegen, Nijmegen, The Netherlands
| | - Hubert Moukana
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Pierre Rouquet
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | | | - Pierre Druilhe
- Unité de Parasitologie Biomédicale, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
14
|
Abstract
The development and implementation of a malaria vaccine would constitute a major breakthrough for global health. Recently, numerous new candidates have entered clinical testing, following strategies that are as diverse as the malaria cycle is complex. While promising results have been obtained, some candidate vaccines have not fulfilled expectations. The challenges are not merely scientific; further progresses will require the development of competent investigator networks, partnerships between academics, industry and funding agencies, and continuous political commitment. In this review, we present the developmental status of all malaria vaccine candidates that are currently in human clinical testing against Plasmodium falciparum, as well as selected malaria vaccine candidates at preclinical development stage, and discuss the main challenges facing the field of malaria vaccine development.
Collapse
Affiliation(s)
- Johan Vekemans
- GlaxoSmithKline Biologicals, Emerging Diseases, Global Clinical Research and Development Vaccines, Rixensart, Belgium.
| | | |
Collapse
|
15
|
Srivastava IK, Kan E, Srivastava IN, Cisto J, Biron Z. Structure, Immunopathogenesis and Vaccines Against SARS Coronavirus. IMMUNITY AGAINST MUCOSAL PATHOGENS 2008. [PMCID: PMC7122221 DOI: 10.1007/978-1-4020-8412-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new disease, severe atypical respiratory syndrome (SARS), emerged in China in late 2002 and developed into the first epidemic of the 21st century. The disease was caused by an unknown animal coronavirus (CoV) that had crossed the species barrier through close contact of humans with infected animals, and was identified as the etiological agent for SARS. This new CoV not only became readily transmissible between humans but also was also more pathogenic. The disease spread across the world rapidly due to the air travel, and infected 8096 people and caused 774 deaths in 26 countries on 5 continents. The disease is characterized by flu-like symptoms, including high fever, malaise, cough, diarrhea, and infiltrates visible on chest radiography. The overall mortality was about 10%, but varied profoundly with age; the course of disease seemed to be milder in the pediatric age group and resulted rarely in a fatal outcome, but the mortality in the elderly was as high as 50%. Aggressive quarantine measures taken by the health authorities have successfully contained and terminated the disease transmission. As a result there are no SARS cases recorded recently. Nevertheless there is a possibility that the disease may emerge in the population with high vigor. Significant progress has been made in understanding the disease biology, pathogenesis, development of animal models, and design and evaluation of different vaccines, and these are the focus of this chapter.
Collapse
|
16
|
Scorza T, Grubb K, Cambos M, Santamaria C, Tshikudi Malu D, Spithill TW. Vaccination with a Plasmodium chabaudi adami multivalent DNA vaccine cross-protects A/J mice against challenge with P. c. adami DK and virulent Plasmodium chabaudi chabaudi AS parasites. Int J Parasitol 2007; 38:819-27. [PMID: 18062974 DOI: 10.1016/j.ijpara.2007.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 10/13/2007] [Accepted: 10/15/2007] [Indexed: 10/22/2022]
Abstract
A current goal of malaria vaccine research is the development of vaccines that will cross-protect against multiple strains of malaria. In the present study, the breadth of cross-reactivity induced by a 30K multivalent DNA vaccine has been evaluated in susceptible A/J mice (H-2a) against infection with the Plasmodium chabaudi adami DK strain and a virulent parasite subspecies, Plasmodium chabaudi chabaudi AS. Immunized A/J mice were significantly protected against infection with both P. c. adami DK (31-40% reduction in cumulative parasitemia) and P. c. chabaudi AS parasites, where a 30-39% reduction in cumulative parasitemia as well as enhanced survival was observed. The 30K vaccine-induced specific IFN-gamma production by splenocytes in response to native antigens from both P. c. chabaudi AS and P. c. adami DK. Specific antibodies reacting with surface antigens expressed on P. c. adami DS and P. c. chabaudi AS infected red blood cells, and with opsonizing properties, were detected. These results suggest that multivalent vaccines encoding conserved antigens can feasibly induce immune cross-reactivity that span Plasmodium strains and subspecies and can protect hosts of distinct major histocompatibility complex haplotypes.
Collapse
Affiliation(s)
- T Scorza
- Department of Biological Sciences, Université du Québec à Montréal, Case postale 8888, Succursale Centre-Ville, Montréal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Garcia JE, Puentes A, Patarroyo ME. Developmental biology of sporozoite-host interactions in Plasmodium falciparum malaria: implications for vaccine design. Clin Microbiol Rev 2006; 19:686-707. [PMID: 17041140 PMCID: PMC1592691 DOI: 10.1128/cmr.00063-05] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Plasmodium falciparum sporozoite infects different types of cells in a mosquito's salivary glands and human epithelial and Kuppfer cells and hepatocytes. These become differentiated later on, transforming themselves into the invasive red blood cell form, the merozoite. The ability of sporozoites to interact with different types of cells requires a wide variety of mechanisms allowing them to survive in both hosts: mobility, receptor-ligand interactions with different cellular receptors, and transformation and development into other invasive parasite forms, which are vitally important for parasite survival. Sporozoite complexity is reflected in the large quantity of proteins that can be expressed. Some of them have been extensively studied, such as CSP, TRAP, STARP, LSA-1, LSA-3, SALSA, SPECT1, SPECT2, MAEBL, and SPATR, due to their importance in infection and their potential use as vaccines. Our work has been focused on the search for the molecular mechanisms of parasite-host cellular receptor-ligand interactions by identifying amino acid sequences and the critical binding residues from these proteins relevant to parasite invasion. Once such sequences have been identified, it will be possible to modify them to induce a strong immune response against P. falciparum in the experimental Aotus monkey model. This all leads towards developing multistage, multicomponent, subunit-based vaccines that will be effective in eradicating or controlling malaria caused by P. falciparum.
Collapse
Affiliation(s)
- Javier E Garcia
- Fundacion Instituto de Immunología de Colombia, Carrera 50 #26-00, Bogotá, Colombia
| | | | | |
Collapse
|
18
|
Lee HW, Moon SU, Ryu HS, Kim YJ, Cho SH, Chung GT, Lin K, Na BK, Kong Y, Chung KS, Kim TS. Usefulness of the recombinant liver stage antigen-3 for an early serodiagnosis of Plasmodium falciparum infection. THE KOREAN JOURNAL OF PARASITOLOGY 2006; 44:49-54. [PMID: 16514282 PMCID: PMC2532649 DOI: 10.3347/kjp.2006.44.1.49] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to develop tools for an early serodiagnosis of Plasmodium falciparum infection, we evaluated the usefulness of P. falciparum liver stage antigen-3 (LSA-3) as a serodiagnostic antigen. A portion of LSA-3 gene was cloned, and its recombinant protein (rLSA-3) was expressed in Escherichia coli and purified by column chromatography. The purified rLSA-3 and 120 test blood/serum samples collected from inhabitants in malaria-endemic areas of Mandalay, Myanmar were used for this study. In microscopic examinations of blood samples, P. falciparum positive rate was 39.1% (47/120) in thin smear trials, and 33.3% (40/120) in thick smear trials. Although the positive rate associated with the rLSA-3 (30.8%) was lower than that of the blood stage antigens (70.8%), rLSA-3 based enzyme-linked immunosorbent assay could detect 12 seropositive cases (10.0%), in which blood stage antigens were not detected. These results indicate that the LSA-3 is a useful antigen for an early serodiagnosis of P. falciparum infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Protozoan/biosynthesis
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Base Sequence
- Cloning, Molecular/methods
- DNA Primers/chemistry
- DNA, Protozoan/chemistry
- Early Diagnosis
- Enzyme-Linked Immunosorbent Assay/methods
- Escherichia coli/genetics
- Fluorescent Antibody Technique, Direct/methods
- Genes, Protozoan/genetics
- Genes, Protozoan/immunology
- Humans
- Malaria, Falciparum/blood
- Malaria, Falciparum/diagnosis
- Molecular Sequence Data
- Plasmodium falciparum/immunology
- Plasmodium vivax/isolation & purification
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
Collapse
Affiliation(s)
- Hyeong-Woo Lee
- Division of Tropical and Endemic Parasitic Diseases, National Institute of Health, Korea Center for Disease Control and Prevention, Seoul
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jin H, Kang Y, Xiao C, Zhu K, Ma Y, Xie Q, Ma J, Xie Q, He C, Yang Z, Sun Z, Zhang X, Chen M, Zhang F, Wang B. DNA Prime Followed by Protein Boost Enhances Neutralization and Th1 Type Immunity Against FMDV. Viral Immunol 2005; 18:539-48. [PMID: 16212533 DOI: 10.1089/vim.2005.18.539] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Prime-boost strategy has been exhibited its potency to enhance immune responses, which would be important to the success to develop a vaccine against the foot-and-mouth disease virus (FMDV). An eukaryotic expression construct encoding the FMDV capsid VP1 protein with a recombinant VP1 protein or a commercial FMDV vaccine were tested in the prime-boost strategy in mice and cattle trials. The levels of induced specific antibodies, T cell proliferations, and DTH activities were significantly higher in the prime-boost groups than in those vaccinated with DNA, protein or FMDV vaccine alone. More importantly, the levels of neutralizing antibodies in the former groups were significantly higher than others and could last for at least four months in cattle trials. This study suggests that the prime-boost strategy significantly improves the effective immunity and may provide a longer protection against FMDV infection.
Collapse
Affiliation(s)
- Huali Jin
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Scorza T, Grubb K, Smooker P, Rainczuk A, Proll D, Spithill TW. Induction of strain-transcending immunity against Plasmodium chabaudi adami malaria with a multiepitope DNA vaccine. Infect Immun 2005; 73:2974-85. [PMID: 15845504 PMCID: PMC1087359 DOI: 10.1128/iai.73.5.2974-2985.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 11/22/2004] [Accepted: 01/21/2005] [Indexed: 11/20/2022] Open
Abstract
A major goal of current malaria vaccine programs is to develop multivalent vaccines that will protect humans against the many heterologous malaria strains that circulate in endemic areas. We describe a multiepitope DNA vaccine, derived from a genomic Plasmodium chabaudi adami DS DNA expression library of 30,000 plasmids, which induces strain-transcending immunity in mice against challenge with P. c. adami DK. Segregation of this library and DNA sequence analysis identified vaccine subpools encoding open reading frames (ORFs)/peptides of >9 amino acids [aa] (the V9+ pool, 303 plasmids) and >50 aa (V50+ pool, 56 plasmids), respectively. The V9+ and V50+ plasmid vaccine subpools significantly cross-protected mice against heterologous P. c. adami DK challenge, and protection correlated with the induction of both specific gamma interferon production by splenic cells and opsonizing antibodies. Bioinformatic analysis showed that 22 of the V50+ ORFs were polypeptides conserved among three or more Plasmodium spp., 13 of which are predicted hypothetical proteins. Twenty-nine of these ORFs are orthologues of predicted Plasmodium falciparum sequences known to be expressed in the blood stage, suggesting that this vaccine pool encodes multiple blood-stage antigens. The results have implications for malaria vaccine design by providing proof-of-principle that significant strain-transcending immunity can be induced using multiepitope blood-stage DNA vaccines and suggest that both cellular responses and opsonizing antibodies are necessary for optimal protection against P. c. adami.
Collapse
Affiliation(s)
- T Scorza
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste.-Anne-De-Bellevue, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Jin H, Xiao C, Chen Z, Kang Y, Ma Y, Zhu K, Xie Q, Tu Y, Yu Y, Wang B. Induction of Th1 type response by DNA vaccinations with N, M, and E genes against SARS-CoV in mice. Biochem Biophys Res Commun 2005; 328:979-86. [PMID: 15707974 PMCID: PMC7092846 DOI: 10.1016/j.bbrc.2005.01.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2005] [Indexed: 11/24/2022]
Abstract
Vaccination against the SARS-CoV infection is an attractive means to control the spread of viruses in public. In this study, we employed a DNA vaccine technology with the levamisole, our newly discovered chemical adjuvant, to generate Th1 type of response. To avoid the enhancement antibody issue, genes encoding the nucleocapsid, membrane, and envelope protein of SARS-CoV were cloned and their expressions in mammalian cells were determined. After the intramuscular introduction into animals, we observed that the constructs of the E, M, and N genes could induce high levels of specific antibodies, T cell proliferations, IFN-γ, DTH responses, and in vivo cytotoxic T cells activities specifically against SARS-CoV antigens. The highest immune responses were generated by the construct encoding the nucleocapsid protein. The results suggest that the N, M, and E genes could be used as the targets to prevent SARS-CoV infection in the DNA vaccine development.
Collapse
Affiliation(s)
- Huali Jin
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
BenMohamed L, Thomas A, Druilhe P. Long-term multiepitopic cytotoxic-T-lymphocyte responses induced in chimpanzees by combinations of Plasmodium falciparum liver-stage peptides and lipopeptides. Infect Immun 2004; 72:4376-84. [PMID: 15271893 PMCID: PMC470687 DOI: 10.1128/iai.72.8.4376-4384.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Preclinical immunogenicity studies of 12 malaria peptides, selected from four Plasmodium falciparum antigens (Ags), namely, LSA1, LSA3, SALSA, and STARP, that are expressed at the pre-erythrocytic (sporozoite and liver) stages of the human parasite were carried out in chimpanzees. To strengthen their immunogenicity, six of these synthetic peptides were modified by the C-terminal addition of a single palmitoyl chain (lipopeptides) and delivered without adjuvant, whereas the remaining six unmodified peptides were emulsified and delivered by using Montanide ISA51 adjuvant. We have previously reported that these peptides and lipopeptides induce high B-cell and CD4(+)-T-helper responses in chimpanzees. In this report, we show their ability to induce multiepitopic and long-lasting antigen-specific CD8(+) cytotoxic-T-lymphocyte (CTL) responses. The magnitude, consistency, and memory of CTL responses generated by LSA3 peptides point to the strong immunogenicity of this liver-stage Ag. These findings support the screening strategy used to select the four P. falciparum pre-erythrocytic Ags and emphasize their valuable immunogenic properties. The successful immunization of nonhuman primates with combinations of corresponding peptides in a mineral oil emulsion (ISA51) and lipopeptides in saline provide a vaccine formulation that can be tested in humans.
Collapse
Affiliation(s)
- Lbachir BenMohamed
- Unité de Parasitologie Bio-Médicale, Institut Pasteur, 75015 Paris, France
| | | | | |
Collapse
|
23
|
Bhardwaj D, Kushwaha A, Puri SK, Herrera A, Singh N, Chauhan VS. DNA primeâprotein boost immunization in monkeys: efficacy of a novel construct containing functional domains ofPlasmodium cynomolgiCS and TRAP. ACTA ACUST UNITED AC 2003; 39:241-50. [PMID: 14642309 DOI: 10.1016/s0928-8244(03)00227-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the efficacy of a bimodal immunization regimen that involved priming with naked DNA (multiple doses) followed by a booster with recombinant protein in rhesus monkeys with a chimeric construct containing the N-terminus of thrombospondin-related adhesive protein and the C-terminus of circumsporozoite protein of Plasmodium cynomolgi. The vaccinated animals developed high titer antibodies against the chimeric antigen, the two components of the hybrid and the native proteins of sporozoites. The peripheral blood mononuclear cells isolated from the vaccinated animals had significant in vitro T cell proliferation activity when stimulated with the recombinant chimeric protein. Furthermore, following challenge with 1000 P. cynomolgi sporozoites, the peak and total parasitemia were significantly lower in vaccinated animals than in the control animals.
Collapse
Affiliation(s)
- Devesh Bhardwaj
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | |
Collapse
|
24
|
Yoshida S, Kondoh D, Arai E, Matsuoka H, Seki C, Tanaka T, Okada M, Ishii A. Baculovirus virions displaying Plasmodium berghei circumsporozoite protein protect mice against malaria sporozoite infection. Virology 2003; 316:161-70. [PMID: 14599800 DOI: 10.1016/j.virol.2003.08.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The display of foreign proteins on the surface of baculovirus virions has provided a tool for the analysis of protein-protein interactions and for cell-specific targeting in gene transfer applications. To evaluate the baculovirus display system as a vaccine vehicle, we have generated a recombinant baculovirus (AcNPV-CSPsurf) that displays rodent malaria Plasmodium berghei circumsporozoite protein (PbCSP) on the virion surface as a fusion protein with the major baculovirus envelope glycoprotein gp64. The PbCSP-gp64 fusion protein was incorporated and oligomerized on the virion surface and led to a 12-fold increase in the binding activity of AcNPV-CSPsurf virions to HepG2 cells. Immunization with adjuvant-free AcNPV-CSPsurf virions induced high levels of antibodies and gamma interferon-secreting cells against PbCSP and protected 60% of mice against sporozoite challenge. These data demonstrate that AcNPV-CSPsurf displays sporozoite-like PbCSP on the virion surface and possesses dual potentials as a malaria vaccine candidate and a liver-directed gene delivery vehicle.
Collapse
Affiliation(s)
- Shigeto Yoshida
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical School, 329-0498, Tochigi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Pancholi P, Perkus M, Tricoche N, Liu Q, Prince AM. DNA immunization with hepatitis C virus (HCV) polycistronic genes or immunization by HCV DNA priming-recombinant canarypox virus boosting induces immune responses and protection from recombinant HCV-vaccinia virus infection in HLA-A2.1-transgenic mice. J Virol 2003; 77:382-90. [PMID: 12477843 PMCID: PMC140575 DOI: 10.1128/jvi.77.1.382-390.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We studied immune responses to hepatitis C virus (HCV) genes delivered as DNA encoding the entire HCV protein coding genome in two polycistronic plasmids encoding HCV capsid-E1-E2-NS2-NS3 and HCV NS3-NS4-NS5 in HLA-A2.1-transgenic mice. Immune responses to HCV DNA prime and recombinant canarypox virus boost were also studied with the above constructs. At 8 weeks after a canarypox virus boost, the DNA prime/canarypox virus boosting regimen induced potent cellular immune responses to HCV structural and nonstructural proteins on target cells expressing the HLA-A2.1 allele. High frequencies of gamma interferon-secreting cells, as detected by enzyme-linked immunospot assay, were obtained in response to several endogenously expressed HCV proteins. We also observed cytotoxic-T-lymphocyte reactivity in response to endogenously expressed HCV proteins in fresh spleen cells without in vitro expansion. Upon challenge with a recombinant vaccinia virus expressing HCV proteins at 2 months postimmunization, the HCV DNA prime/canarypox virus-immunized mice showed a complete reduction in vaccinia virus titers compared to HCV DNA prime/boost- and mock-immunized controls. Immune responses were still detectable 4 months after canarypox virus boost in immunized mice. Interestingly, at 10 months postimmunization (8 months after canarypox virus boost), the protection in HCV DNA prime/boost-immunized mice against recombinant HCV-vaccinia virus challenge was higher than that observed in HCV DNA prime/canarypox virus boost-immunized mice.
Collapse
Affiliation(s)
- Preeti Pancholi
- Laboratory of Virology, Lindsley F. Kimball Research Institute of the New York Blood Center, New York 10021, USA
| | | | | | | | | |
Collapse
|
26
|
Perlaza BL, Sauzet JP, Balde AT, Brahimi K, Tall A, Corradin G, Druilhe P. Long synthetic peptides encompassing the Plasmodium falciparum LSA3 are the target of human B and T cells and are potent inducers of B helper, T helper and cytolytic T cell responses in mice. Eur J Immunol 2001; 31:2200-9. [PMID: 11449374 DOI: 10.1002/1521-4141(200107)31:7<2200::aid-immu2200>3.0.co;2-l] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We synthesized 17 long synthetic peptides (LSP) spanning the whole 200-kDa Plasmodium falciparum liver stage antigen-3 (LSA3), an antigen that induces protection in chimpanzee, and analyzed their immunogenicity in BALB/c mice and their antigenicity in individuals living in a hyper-endemic malaria area. Our findings show that both specific antibodies and T cell proliferation against most LSA3-LSP develop in malaria-exposed adults. All individuals studied had detectable antibodies against a minimum of 6 and a maximum of 15 polypeptides. It is noteworthy that antibody prevalence and titers were as high against non-repeat as repeat regions. Although the extent of T cell reactivity was lower than that observed for B cells, most of the sequences contained at least one T helper epitope, indicating that the majority of LSA3-LSP contain both B and T cell epitopes within the same sequence. Injection of LSA3-LSP with SBSA2 adjuvant in mice, showed strong immunogenicity for most of them, eliciting both T cell responses and specific antibody production. While all the peptides were immunogenic for B cells, different patterns of T cell responses were induced. These peptides were thus classified in three sets according to the levels of the T cell proliferative and of the IFN-gamma-specific responses. Importantly, antibodies and T cells against some of the LSP were able to recognize LSA3 native protein on P. falciparum sporozoites. Additionally, some LSP (44-119, 1026-1095, 1601-1712) also contained epitopes recognized by H-2(d) class I-restricted T cells. These results led to the identification of numerous domains that are highly antigenic and immunogenic within the LSA3 protein, and underline the value of the LSP approach for vaccine development.
Collapse
MESH Headings
- Adult
- Animals
- Antibodies, Protozoan/biosynthesis
- Antigens, Protozoan/immunology
- B-Lymphocytes/immunology
- Cells, Cultured
- Cytotoxicity Tests, Immunologic
- Epitope Mapping
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/immunology
- Female
- H-2 Antigens/immunology
- Histocompatibility Antigen H-2D
- Humans
- Interferon-gamma/biosynthesis
- Lymphocyte Activation
- Malaria Vaccines
- Malaria, Falciparum/immunology
- Malaria, Falciparum/therapy
- Male
- Mice
- Mice, Inbred BALB C
- Peptides/immunology
- Plasmodium falciparum/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Helper-Inducer/immunology
Collapse
Affiliation(s)
- B L Perlaza
- Bio-medical Parasitology Unit, Pasteur Institute, Paris, France
| | | | | | | | | | | | | |
Collapse
|