1
|
Breidung D, Megas IF, Freytag DL, Bernhagen J, Grieb G. The Role of Macrophage Migration Inhibitory Factor (MIF) and D-Dopachrome Tautomerase (D-DT/MIF-2) in Infections: A Clinical Perspective. Biomedicines 2023; 12:2. [PMID: 38275363 PMCID: PMC10813530 DOI: 10.3390/biomedicines12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Macrophage migration inhibitory factor (MIF) and its homolog, D-dopachrome tautomerase (D-DT), are cytokines that play critical roles in the immune response to various infectious diseases. This review provides an overview of the complex involvement of MIF and D-DT in bacterial, viral, fungal, and parasitic infections. The role of MIF in different types of infections is controversial, as it has either a protective function or a host damage-enhancing function depending on the pathogen. Depending on the specific role of MIF, different therapeutic options for MIF-targeting drugs arise. Human MIF-neutralizing antibodies, anti-parasite MIF antibodies, small molecule MIF inhibitors or MIF-blocking peptides, as well as the administration of exogenous MIF or MIF activity-augmenting small molecules have potential therapeutic applications and need to be further explored in the future. In addition, MIF has been shown to be a potential biomarker and therapeutic target in sepsis. Further research is needed to unravel the complexity of MIF and D-DT in infectious diseases and to develop personalized therapeutic approaches targeting these cytokines. Overall, a comprehensive understanding of the role of MIF and D-DT in infections could lead to new strategies for the diagnosis, treatment, and management of infectious diseases.
Collapse
Affiliation(s)
- David Breidung
- Department of Plastic, Reconstructive and Hand Surgery, Burn Center for Severe Burn Injuries, Klinikum Nuremberg Hospital, Paracelsus Medical University, Breslauer Str. 201, 90471 Nuremberg, Germany;
| | - Ioannis-Fivos Megas
- Department of Orthopaedic and Trauma Surgery, Center of Plastic Surgery, Hand Surgery and Microsurgery, Evangelisches Waldkrankenhaus Spandau, Stadtrandstr. 555, 13589 Berlin, Germany;
| | - David Lysander Freytag
- Department of Plastic Surgery and Hand Surgery, Gemeinschaftskrankenhaus Havelhoehe, Kladower Damm 221, 14089 Berlin, Germany;
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), Feodor-Lynenstraße 17, 81377 Munich, Germany;
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynenstraße 17, 81377 Munich, Germany
| | - Gerrit Grieb
- Department of Plastic Surgery and Hand Surgery, Gemeinschaftskrankenhaus Havelhoehe, Kladower Damm 221, 14089 Berlin, Germany;
- Department of Plastic Surgery and Hand Surgery, Burn Center, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
2
|
Goto Y, Mizobuchi H. Pathological roles of macrophages in Leishmania infections. Parasitol Int 2023; 94:102738. [PMID: 36738983 DOI: 10.1016/j.parint.2023.102738] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Macrophages are the major host cells for Leishmania parasites, and determine the fate of infection by either limiting or allowing growth of the parasites, resulting in development or control of leishmaniasis, respectively. They also play important roles in causing pathological outcomes during Leishmania infection. The pathophysiology is complex and include a wide variety of molecular and cellular responses including enhancement of inflammatory responses by releasing cytokines, causing damages to surrounding cells by reactive oxygen species, or disordered phagocytosis of other cells. It is of note that disease severity in leishmaniasis sometimes does not correlate with parasite burdens, indicating that pathological roles of macrophages are not necessarily linked to their parasite-killing activities that are often defined by M1/M2 status. Here, we review the roles of macrophages in leishmaniasis with a focus on their pathological mechanisms in disease development.
Collapse
Affiliation(s)
- Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Haruka Mizobuchi
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
Bouabid C, Rabhi S, Thedinga K, Barel G, Tnani H, Rabhi I, Benkahla A, Herwig R, Guizani-Tabbane L. Host M-CSF induced gene expression drives changes in susceptible and resistant mice-derived BMdMs upon Leishmania major infection. Front Immunol 2023; 14:1111072. [PMID: 37187743 PMCID: PMC10175952 DOI: 10.3389/fimmu.2023.1111072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Leishmaniases are a group of diseases with different clinical manifestations. Macrophage-Leishmania interactions are central to the course of the infection. The outcome of the disease depends not only on the pathogenicity and virulence of the parasite, but also on the activation state, the genetic background, and the underlying complex interaction networks operative in the host macrophages. Mouse models, with mice strains having contrasting behavior in response to parasite infection, have been very helpful in exploring the mechanisms underlying differences in disease progression. We here analyzed previously generated dynamic transcriptome data obtained from Leishmania major (L. major) infected bone marrow derived macrophages (BMdMs) from resistant and susceptible mouse. We first identified differentially expressed genes (DEGs) between the M-CSF differentiated macrophages derived from the two hosts, and found a differential basal transcriptome profile independent of Leishmania infection. These host signatures, in which 75% of the genes are directly or indirectly related to the immune system, may account for the differences in the immune response to infection between the two strains. To gain further insights into the underlying biological processes induced by L. major infection driven by the M-CSF DEGs, we mapped the time-resolved expression profiles onto a large protein-protein interaction (PPI) network and performed network propagation to identify modules of interacting proteins that agglomerate infection response signals for each strain. This analysis revealed profound differences in the resulting responses networks related to immune signaling and metabolism that were validated by qRT-PCR time series experiments leading to plausible and provable hypotheses for the differences in disease pathophysiology. In summary, we demonstrate that the host's gene expression background determines to a large degree its response to L. major infection, and that the gene expression analysis combined with network propagation is an effective approach to help identifying dynamically altered mouse strain-specific networks that hold mechanistic information about these contrasting responses to infection.
Collapse
Affiliation(s)
- Cyrine Bouabid
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia
- Faculty of Sciences of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Sameh Rabhi
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Kristina Thedinga
- Department Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Gal Barel
- Department Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Hedia Tnani
- Laboratory de BioInformatic, BioMathematic and BioStatistic (BIMS), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Imen Rabhi
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia
- Higher Institute of Biotechnology at Sidi-Thabet (ISBST), Biotechnopole Sidi-Thabet- University of Manouba, Sidi-Thabet, Tunisia
| | - Alia Benkahla
- Laboratory de BioInformatic, BioMathematic and BioStatistic (BIMS), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Ralf Herwig
- Department Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lamia Guizani-Tabbane
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia
- *Correspondence: Lamia Guizani-Tabbane,
| |
Collapse
|
4
|
Abstract
Cytokines play crucial roles in commencing and coordinating the organized recruitment and activation of immune cells during infection. These molecular regulators play an important part in deciding the fate of disease outcomes in leishmaniasis, a parasitic disease of tropical and subtropical countries. T helper 1 (Th1) cell-mediated inflammatory cytokines usually play a host-protective role, while T helper 2 (Th2) cell activation produces an anti-inflammatory milieu necessary for parasite survival. It is noteworthy that in such a multifaceted disease, the role played by any particular cytokine cannot be generalized as either beneficial or detrimental. For example, a "host-favorable" cytokine in one form of the disease has been found to be "pathogen friendly" in another form of leishmaniasis. On the other hand, the complex signaling network regulating the production of cytokines is further complicated by the nature of the host as well as the presence of other cytokines in the milieu. The present review focuses on the differential roles played by cytokines and the intricate signaling network responsible for the regulation of such cytokines during infection by different species of Leishmania. While many more studies are required in the future to better understand the role of these molecules in both animal models and patient samples, current studies indicate that these molecules are potential candidates to be targeted for therapy against this deadly disease.
Collapse
|
5
|
Stijlemans B, Schoovaerts M, De Baetselier P, Magez S, De Trez C. The Role of MIF and IL-10 as Molecular Yin-Yang in the Modulation of the Host Immune Microenvironment During Infections: African Trypanosome Infections as a Paradigm. Front Immunol 2022; 13:865395. [PMID: 35464430 PMCID: PMC9022210 DOI: 10.3389/fimmu.2022.865395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
African trypanosomes are extracellular flagellated unicellular protozoan parasites transmitted by tsetse flies and causing Sleeping Sickness disease in humans and Nagana disease in cattle and other livestock. These diseases are usually characterized by the development of a fatal chronic inflammatory disease if left untreated. During African trypanosome infection and many other infectious diseases, the immune response is mediating a see-saw balance between effective/protective immunity and excessive infection-induced inflammation that can cause collateral tissue damage. African trypanosomes are known to trigger a strong type I pro-inflammatory response, which contributes to peak parasitaemia control, but this can culminate into the development of immunopathologies, such as anaemia and liver injury, if not tightly controlled. In this context, the macrophage migration inhibitory factor (MIF) and the interleukin-10 (IL-10) cytokines may operate as a molecular “Yin-Yang” in the modulation of the host immune microenvironment during African trypanosome infection, and possibly other infectious diseases. MIF is a pleiotropic pro-inflammatory cytokine and critical upstream mediator of immune and inflammatory responses, associated with exaggerated inflammation and immunopathology. For example, it plays a crucial role in the pro-inflammatory response against African trypanosomes and other pathogens, thereby promoting the development of immunopathologies. On the other hand, IL-10 is an anti-inflammatory cytokine, acting as a master regulator of inflammation during both African trypanosomiasis and other diseases. IL-10 is crucial to counteract the strong MIF-induced pro-inflammatory response, leading to pathology control. Hence, novel strategies capable of blocking MIF and/or promoting IL-10 receptor signaling pathways, could potentially be used as therapy to counteract immunopathology development during African trypanosome infection, as well as during other infectious conditions. Together, this review aims at summarizing the current knowledge on the opposite immunopathological molecular “Yin-Yang” switch roles of MIF and IL-10 in the modulation of the host immune microenvironment during infection, and more particularly during African trypanosomiasis as a paradigm.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Maxime Schoovaerts
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory of Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
6
|
Sumaiya K, Langford D, Natarajaseenivasan K, Shanmughapriya S. Macrophage migration inhibitory factor (MIF): A multifaceted cytokine regulated by genetic and physiological strategies. Pharmacol Ther 2021; 233:108024. [PMID: 34673115 DOI: 10.1016/j.pharmthera.2021.108024] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine encoded within a functionally polymorphic genetic locus. MIF was initially recognized as a cytokine generated by activated T cells, but in recent days it has been identified as a multipotent key cytokine secreted by many other cell types involved in immune response and physiological processes. MIF is a highly conserved 12.5 kDa secretory protein that is involved in numerous biological processes. The expression and secretion profile of MIF suggests that MIF to be ubiquitously and constitutively expressed in almost all mammalian cells and is vital for numerous physiological processes. MIF is a critical upstream mediator of host innate and adaptive immunity and survival pathways resulting in the clearance of pathogens thus playing a protective role during infectious diseases. On the other hand, MIF being an immune modulator accelerates detrimental inflammation, promotes cancer metastasis and progression, thus worsening disease conditions. Several reports demonstrated that genetic and physiological factors, including MIF gene polymorphisms, posttranslational regulations, and receptor binding control the functional activities of MIF. Taking into consideration the multi-faceted role of MIF both in physiology and pathology, we thought it is timely to review and summarize the expressional and functional regulation of MIF, its functional mechanisms associated with its beneficial and pathological roles, and MIF-targeting therapies. Thus, our review will provide an overview on how MIF is regulated, its response, and the potency of the therapies that target MIF.
Collapse
Affiliation(s)
- Krishnamoorthi Sumaiya
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Dianne Langford
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA..
| | - Santhanam Shanmughapriya
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey PA-17033, USA.
| |
Collapse
|
7
|
Juárez-Avelar I, Rodríguez T, García-García AP, Rodríguez-Sosa M. Macrophage migration inhibitory factor (MIF): Its role in the genesis and progression of colorectal cancer. IMMUNOTHERAPY IN RESISTANT CANCER: FROM THE LAB BENCH WORK TO ITS CLINICAL PERSPECTIVES 2021:173-193. [DOI: 10.1016/b978-0-12-822028-3.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Krayem I, Lipoldová M. Role of host genetics and cytokines in Leishmania infection. Cytokine 2020; 147:155244. [PMID: 33059974 DOI: 10.1016/j.cyto.2020.155244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 12/29/2022]
Abstract
Cytokines and chemokines are important regulators of innate and specific responses in leishmaniasis, a disease that currently affects 12 million people. We overviewed the current information about influences of genetically engineered mouse models of cytokine and chemokine on leishmaniasis. We found that genetic background of the host, parasite species and sub-strain, as well as experimental design often modify effects of genetically engineered cytokine genes. Next we analyzed genes and QTLs (quantitative trait loci) that control response to Leishmania species in mouse in order to establish relationship between genetic control of cytokine expression and organ pathology. These studies revealed a network-like complexity of the combined effects of the multiple functionally diverse QTLs and their individual specificity. Genetic control of organ pathology and systemic immune response overlap only partially. Some QTLs control both organ pathology and systemic immune response, but the effects of genes and loci with the strongest impact on disease are cytokine-independent, whereas several loci modify cytokines levels in serum without influencing organ pathology. Understanding this genetic control might be important in development of vaccines designed to stimulate certain cytokine spectrum.
Collapse
Affiliation(s)
- Imtissal Krayem
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítná 3105, 272 01 Kladno, Czech Republic.
| |
Collapse
|
9
|
Illescas O, Pacheco-Fernández T, Laclette JP, Rodriguez T, Rodriguez-Sosa M. Immune modulation by the macrophage migration inhibitory factor (MIF) family: D-dopachrome tautomerase (DDT) is not (always) a backup system. Cytokine 2020; 133:155121. [PMID: 32417648 DOI: 10.1016/j.cyto.2020.155121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 01/06/2023]
Abstract
Human macrophage migration inhibition factor (MIF) is a protein with cytokine and chemokine properties that regulates a diverse range of physiological functions related to innate immunity and inflammation. Most research has focused on the role of MIF in different inflammatory diseases. D-dopachrome tautomerase (DDT), a different molecule with structural similarities to MIF, which shares receptors and biological functions, has recently been reported, but little is known about its roles and mechanisms. In this review, we sought to understand the similarities and differences between these molecules by summarizing what is known about their different structures, receptors and mechanisms regulating their expression and biological activities with an emphasis on immunological aspects.
Collapse
Affiliation(s)
- Oscar Illescas
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico
| | - Thalia Pacheco-Fernández
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico
| | - Juan P Laclette
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City C.P. 04510, Mexico
| | - Tonathiu Rodriguez
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico
| | - Miriam Rodriguez-Sosa
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico.
| |
Collapse
|
10
|
Role of Host and Parasite MIF Cytokines during Leishmania Infection. Trop Med Infect Dis 2020; 5:tropicalmed5010046. [PMID: 32244916 PMCID: PMC7157535 DOI: 10.3390/tropicalmed5010046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an immunoregulatory cytokine that has been extensively characterized in human disease and in mouse models. Its pro-inflammatory functions in mammals includes the retention of tissue macrophages and a unique ability to counteract the immunosuppressive activity of glucocorticoids. MIF also acts as a survival factor by preventing activation-induced apoptosis and by promoting sustained expression of inflammatory factors such as TNF-α and nitric oxide. The pro-inflammatory activity of MIF has been shown to be protective against Leishmania major infection in mouse models of cutaneous disease, however the precise role of this cytokine in human infections is less clear. Moreover, various species of Leishmania produce their own MIF orthologs, and there is evidence that these may drive an inflammatory environment that is detrimental to the host response. Herein the immune response to Leishmania in mouse models and humans will be reviewed, and the properties and activities of mammalian and Leishmania MIF will be integrated into the current understandings in this field. Furthermore, the prospect of targeting Leishmania MIF for therapeutic purposes will be discussed.
Collapse
|
11
|
Herbst A, Hoang AN, Woo W, McKenzie D, Aiken JM, Miller RA, Allison DB, Liu N, Wanagat J. Mitochondrial DNA alterations in aged macrophage migration inhibitory factor-knockout mice. Mech Ageing Dev 2019; 182:111126. [PMID: 31381889 PMCID: PMC6718337 DOI: 10.1016/j.mad.2019.111126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 01/06/2023]
Abstract
The age-induced, exponential accumulation of mitochondrial DNA (mtDNA) deletion mutations contributes to muscle fiber loss. The causes of these mutations are not known. Systemic inflammation is associated with decreased muscle mass in older adults and is implicated in the formation of sporadic mtDNA deletions. Macrophage migration inhibitory factor knockout (MIF-KO) mice are long-lived with decreased inflammation. We hypothesized that aged MIF-KO mice would have lower mtDNA deletion frequencies and fewer electron transport chain (ETC) deficient fibers. We measured mtDNA copy number and mutation frequency as well as the number and length of ETC deficient fibers in 22-month old MIF-KO and F2 hybrid control mice. We also measured mtDNA copy number and deletion frequency in female UM-HET3 mice, a strain whose lifespan matches the MIF-KO mice. We did not observe a significant effect of MIF ablation on muscle mtDNA deletion frequency. There was a significantly lower mtDNA copy number in the MIF-KO mice and the lifespan-matched UM-HET3 mice compared to the F2 hybrids, suggesting the importance of genetic background in mtDNA copy number control. Our data do not support a definitive role for MIF in age-induced mtDNA deletions.
Collapse
Affiliation(s)
- Allen Herbst
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Austin N Hoang
- Department of Medicine, Division of Geriatrics, UCLA, Los Angeles, CA, USA
| | - Wendy Woo
- Department of Medicine, Division of Geriatrics, UCLA, Los Angeles, CA, USA
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Judd M Aiken
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - David B Allison
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - Nianjun Liu
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - Jonathan Wanagat
- Department of Medicine, Division of Geriatrics, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Jankauskas SS, Wong DW, Bucala R, Djudjaj S, Boor P. Evolving complexity of MIF signaling. Cell Signal 2019; 57:76-88. [DOI: 10.1016/j.cellsig.2019.01.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/27/2023]
|
13
|
Liu K, Wen H, Cai H, Wu M, An R, Chu D, Yu L, Shen J, Chen L, Du J. Protective Effect Against Toxoplasmosis in BALB/c Mice Vaccinated With Toxoplasma gondii Macrophage Migration Inhibitory Factor. Front Microbiol 2019; 10:813. [PMID: 31105655 PMCID: PMC6491892 DOI: 10.3389/fmicb.2019.00813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/01/2019] [Indexed: 01/02/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite responsible for toxoplasmosis, which can cause severe disease in the fetus and immunocompromised individuals. Developing an effective vaccine is crucial to control this disease. Macrophage migration inhibitory factor (MIF) has gained substantial attention as a pivotal upstream cytokine to mediate innate and adaptive immune responses. Homologs of MIF have been discovered in many parasitic species, and one homolog of MIF has been isolated from the parasite Toxoplasma gondii. In this study, the recombinant Toxoplasma gondii MIF (rTgMIF) as a protein vaccine was expressed and evaluated by intramuscular injection in BALB/c mice. We divided the mice into different dose groups of vaccines, and all immunizations with purified rTgMIF protein were performed at 0, 2, and 4 weeks. The protective efficacy of vaccination was analyzed by antibody assays, cytokine measurements and lymphoproliferative assays, respectively. The results obtained indicated that the rTgMIF vaccine elicited strong humoral and cellular immune responses with high levels of IgG antibody and IFN-γ production compared to those of the controls, in addition to slight higher levels of IL-4 production. After vaccination, a stronger lymphoproliferative response was also noted. Additionally, the survival time of mice immunized with rTgMIF was longer than that of the mice in control groups after challenge infection with virulent T. gondii RH tachyzoites. Moreover, the number of brain tissue cysts in vaccinated mice was reduced by 62.26% compared with the control group. These findings demonstrated that recombinant TgMIF protein is a potential candidate for vaccine development against toxoplasmosis.
Collapse
Affiliation(s)
- Kang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Hongyang Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Haijian Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Minmin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Ran An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Deyong Chu
- Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Li Yu
- Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Jilong Shen
- Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Barhoumi M, Koutsoni OS, Dotsika E, Guizani I. Leishmania infantum LeIF and its recombinant polypeptides induce the maturation of dendritic cells in vitro: An insight for dendritic cells based vaccine. Immunol Lett 2019; 210:20-28. [PMID: 30998957 DOI: 10.1016/j.imlet.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/30/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022]
Abstract
We previously showed that recombinant Leishmania infantum eukaryotic initiation factor (LieIF) was able to induce the secretion of cytokines IL-12, IL-10 and TNF-α by human monocytes. In this study, we explored in vitro the potential of LieIF to induce phenotypic maturation and functional differentiation of murine bone-marrow derived dendritic cells (BM-DCs). Moreover, in order to identify potential immunnomodulatory regions of LieIF, eight recombinant overlapping protein fragments covering the whole amino acid sequence of protein, were constructed and assessed in vitro for their ability to induce maturation of BM-DCs. Our data showed that LieIF and some of its recombinant polypeptides were able to induce elevated expression of CD40, CD80 and CD86 co-stimulatory molecules with concurrent IL-12 production. Moreover, we used an in vivo experimental model of cutaneous leishmaniasis consisted of susceptible Leishmania major-infected BALB/c mice and we demonstrated that LieIF-pulsed-BM-DCs adoptively transferred in mice were capable to confer protection against a high dose parasite challenge. This study further describes the immunomodulatory properties of LieIF and its polypeptides bringing relevant information for their exploitation as candidate molecules for vaccine development against leishmaniasis.
Collapse
Affiliation(s)
- Mourad Barhoumi
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur, BP 74, 1002 Tunis-Belvedère, Tunisia.
| | - Olga S Koutsoni
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, 127 Vass Sofias Av, Athens 11521, Greece.
| | - Eleni Dotsika
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, 127 Vass Sofias Av, Athens 11521, Greece.
| | - Ikram Guizani
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur, BP 74, 1002 Tunis-Belvedère, Tunisia.
| |
Collapse
|
15
|
de Souza GF, Muraro SP, Santos LD, Monteiro APT, da Silva AG, de Souza APD, Stein RT, Bozza PT, Porto BN. Macrophage migration inhibitory factor (MIF) controls cytokine release during respiratory syncytial virus infection in macrophages. Inflamm Res 2019; 68:481-491. [PMID: 30944975 DOI: 10.1007/s00011-019-01233-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/15/2019] [Accepted: 03/29/2019] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE AND DESIGN Respiratory syncytial virus (RSV) is the major cause of infection in children up to 2 years old and reinfection is very common among patients. Tissue damage in the lung caused by RSV leads to an immune response and infected cells activate multiple signaling pathways and massive production of inflammatory mediators like macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine. Therefore, we sought to investigate the role of MIF during RSV infection in macrophages. METHODS We evaluated MIF expression in BALB/c mice-derived macrophages stimulated with different concentrations of RSV by Western blot and real-time PCR. Additionally, different inhibitors of signaling pathways and ROS were used to evaluate their importance for MIF expression. Furthermore, we used a specific MIF inhibitor, ISO-1, to evaluate the role of MIF in viral clearance and in RSV-induced TNF-α, MCP-1 and IL-10 release from macrophages. RESULTS We showed that RSV induces MIF expression dependently of ROS, 5-LOX, COX and PI3K activation. Moreover, viral replication is necessary for RSV-triggered MIF expression. Differently, p38 MAPK in only partially needed for RSV-induced MIF expression. In addition, MIF is important for the release of TNF-α, MCP-1 and IL-10 triggered by RSV in macrophages. CONCLUSIONS In conclusion, we demonstrate that MIF is expressed during RSV infection and controls the release of pro-inflammatory cytokines from macrophages in an in vitro model.
Collapse
Affiliation(s)
- Gabriela F de Souza
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Stéfanie P Muraro
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Leonardo D Santos
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Ana Paula T Monteiro
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Amanda G da Silva
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Ana Paula D de Souza
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Renato T Stein
- Laboratory of Pediatric Respirology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Bárbara N Porto
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
16
|
Kim HK, Garcia AB, Siu E, Tilstam P, Das R, Roberts S, Leng L, Bucala R. Macrophage migration inhibitory factor regulates innate γδ T-cell responses via IL-17 expression. FASEB J 2019; 33:6919-6932. [PMID: 30817226 DOI: 10.1096/fj.201802433r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
T cells expressing invariant γδ antigen receptors (γδ T cells) bridge innate and adaptive immunity and facilitate barrier responses to pathogens. Macrophage migration inhibitory factor (MIF) is an upstream mediator of host defense that up-regulates the expression of pattern recognition receptors and sustains inflammatory responses by inhibiting activation-induced apoptosis in monocytes and macrophages. Surprisingly, Mif-/- γδ T cells, when compared with wild type, were observed to produce >10-fold higher levels of the proinflammatory cytokine IL-17 after stimulation with gram-positive exotoxins. High-IL-17 expression was associated with the characteristic features of IL-17-producing γδ T (γδ17) cells, including expression of IL-23R, IL-1R1, and the transcription factors RORγt and Sox13. In the gram-positive model of shock mediated by toxic shock syndrome toxin (TSST-1), Mif-/- mice succumbed to death more quickly with increased pulmonary neutrophil accumulation and higher production of cytokines, including IL-1β and IL-23. Mif-/- γδ T cells also produced high levels of IL-17 in response to Mycobacterium lipomannan, and depletion of γδ T cells improved survival from acutely lethal Mycobacterium infection or TSST-1 administration. These data indicate that MIF deficiency is associated with a compensatory amplification of γδ17 cell responses, with implications for innate immunity and IL-17-mediated pathology in situations such as gram-positive toxic shock or Mycobacterium infection.-Kim, H. K., Garcia, A. B., Siu, E., Tilstam, P., Das, R., Roberts, S., Leng, L., Bucala, R. Macrophage migration inhibitory factor regulates innate γδ T-cell responses via IL-17 expression.
Collapse
Affiliation(s)
- Hee Kyung Kim
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA; and
| | - Alvaro Baeza Garcia
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA; and
| | - Edwin Siu
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA; and
| | - Pathricia Tilstam
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA; and
| | - Rita Das
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA; and.,Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Scott Roberts
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA; and
| | - Lin Leng
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA; and
| | - Richard Bucala
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
17
|
Mishra A, Sundaravadivel P, Tripathi SK, Jha RK, Badrukhiya J, Basak N, Anerao I, Sharma A, Idowu AE, Mishra A, Pandey S, Kumar U, Singh S, Nizamuddin S, Tupperwar NC, Jha AN, Thangaraj K. Variations in macrophage migration inhibitory factor gene are not associated with visceral leishmaniasis in India. J Infect Public Health 2019; 12:380-387. [PMID: 30611734 DOI: 10.1016/j.jiph.2018.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/24/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The host genetic factors play important role in determining the outcome of visceral leishmaniasis (VL). Macrophage migration inhibitory factor (MIF) is an important host cytokine, which is a key regulator of innate immune system. Genetic variants in MIF gene have been found to be associated with several inflammatory and infectious diseases. Role of MIF is well documented in leishmaniasis diseases, including Indian visceral leishmaniasis, where elevated level of serum MIF has been associated with VL phenotypes. However, there was no genetic study to correlate MIF variants in VL, therefore, we aimed to study the possible association of three reported MIF gene variants -794 CATT, -173G > C and non-coding RNA gene LOC284889 in Indian VL phenotype. METHODS Study subjects comprised of 214 VL patients along with ethnically and demographically matched 220 controls from VL endemic regions of Bihar state in India. RESULTS We found no significant difference between cases and controls in allelic, genotypic and haplotype frequency of the markers analysed [-794 CATT repeats (χ2=0.86; p=0.35; OR=0.85; 95% CI=0.61-1.19); -173 G>C polymorphism (χ2=1.11; p=0.29; OR=0.83; 95% CI=0.59-1.16); and LOC284889 (χ2=0.78; p=0.37; OR=0.86; 95% CI=0.61-1.20)]. CONCLUSION Since we did not find any significant differences between case and control groups, we conclude that sequencing of complete MIF gene and extensive study on innate and adaptive immunity genes may help in identifying genetic variations that are associated with VL susceptibility/resistance among Indians.
Collapse
Affiliation(s)
- Anshuman Mishra
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India; Vinoba Bhave Research Institute, Allahabad, India; Institute of Advanced Materials, Linkoping, Sweden
| | | | | | - Rajan Kumar Jha
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Nipa Basak
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India; Academy of Scientific and Innovative Research, India
| | - Isha Anerao
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Akshay Sharma
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Ajayi Ebenezer Idowu
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India; Osun State University, Oshogbo, Nigeria
| | | | | | - Umesh Kumar
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Sakshi Singh
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Aditya Nath Jha
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India; Sickle Cell Institute Chhattisgarh, Raipur, India
| | | |
Collapse
|
18
|
HIF-1α-regulated MIF activation and Nox2-dependent ROS generation promote Leishmania amazonensis killing by macrophages under hypoxia. Cell Immunol 2019; 335:15-21. [DOI: 10.1016/j.cellimm.2018.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/08/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022]
|
19
|
Ma’ayeh SY, Liu J, Peirasmaki D, Hörnaeus K, Bergström Lind S, Grabherr M, Bergquist J, Svärd SG. Characterization of the Giardia intestinalis secretome during interaction with human intestinal epithelial cells: The impact on host cells. PLoS Negl Trop Dis 2017; 11:e0006120. [PMID: 29228011 PMCID: PMC5739509 DOI: 10.1371/journal.pntd.0006120] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/21/2017] [Accepted: 11/17/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Giardia intestinalis is a non-invasive protozoan parasite that causes giardiasis in humans, the most common form of parasite-induced diarrhea. Disease mechanisms are not completely defined and very few virulence factors are known. METHODOLOGY To identify putative virulence factors and elucidate mechanistic pathways leading to disease, we have used proteomics to identify the major excretory-secretory products (ESPs) when Giardia trophozoites of WB and GS isolates (assemblages A and B, respectively) interact with intestinal epithelial cells (IECs) in vitro. FINDINGS The main parts of the IEC and parasite secretomes are constitutively released proteins, the majority of which are associated with metabolism but several proteins are released in response to their interaction (87 and 41 WB and GS proteins, respectively, 76 and 45 human proteins in response to the respective isolates). In parasitized IECs, the secretome profile indicated effects on the cell actin cytoskeleton and the induction of immune responses whereas that of Giardia showed anti-oxidation, proteolysis (protease-associated) and induction of encystation responses. The Giardia secretome also contained immunodominant and glycosylated proteins as well as new candidate virulence factors and assemblage-specific differences were identified. A minor part of Giardia ESPs had signal peptides (29% for both isolates) and extracellular vesicles were detected in the ESPs fractions, suggesting alternative secretory pathways. Microscopic analyses showed ESPs binding to IECs and partial internalization. Parasite ESPs reduced ERK1/2 and P38 phosphorylation and NF-κB nuclear translocation. Giardia ESPs altered gene expression in IECs, with a transcriptional profile indicating recruitment of immune cells via chemokines, disturbances in glucose homeostasis, cholesterol and lipid metabolism, cell cycle and induction of apoptosis. CONCLUSIONS This is the first study identifying Giardia ESPs and evaluating their effects on IECs. It highlights the importance of host and parasite ESPs during interactions and reveals the intricate cellular responses that can explain disease mechanisms and attenuated inflammatory responses during giardiasis.
Collapse
Affiliation(s)
- Showgy Y. Ma’ayeh
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
| | - Jingyi Liu
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
| | - Dimitra Peirasmaki
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
| | - Katarina Hörnaeus
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Sara Bergström Lind
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Manfred Grabherr
- Department of Medical Biochemsitry and Microbiology, BMC, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
20
|
da Silva RJ, Gomes AO, Franco PS, Pereira AS, Milian ICB, Ribeiro M, Fiorenzani P, dos Santos MC, Mineo JR, da Silva NM, Ferro EAV, de Freitas Barbosa B. Enrofloxacin and Toltrazuril Are Able to Reduce Toxoplasma gondii Growth in Human BeWo Trophoblastic Cells and Villous Explants from Human Third Trimester Pregnancy. Front Cell Infect Microbiol 2017; 7:340. [PMID: 28798905 PMCID: PMC5526852 DOI: 10.3389/fcimb.2017.00340] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/11/2017] [Indexed: 12/11/2022] Open
Abstract
Classical treatment for congenital toxoplasmosis is based on combination of sulfadiazine and pyrimethamine plus folinic acid. Due to teratogenic effects and bone marrow suppression caused by pyrimethamine, the establishment of new therapeutic strategies is indispensable to minimize the side effects and improve the control of infection. Previous studies demonstrated that enrofloxacin and toltrazuril reduced the incidence of Neospora caninum and Toxoplasma gondii infection. The aim of the present study was to evaluate the efficacy of enrofloxacin and toltrazuril in the control of T. gondii infection in human trophoblast cells (BeWo line) and in human villous explants from the third trimester. BeWo cells and villous were treated with several concentrations of enrofloxacin, toltrazuril, sulfadiazine, pyrimethamine, or combination of sulfadiazine+pyrimethamine, and the cellular or tissue viability was verified. Next, BeWo cells were infected by T. gondii (2F1 clone or the ME49 strain), whereas villous samples were only infected by the 2F1 clone. Then, infected cells and villous were treated with all antibiotics and the T. gondii intracellular proliferation as well as the cytokine production were analyzed. Finally, we evaluated the direct effect of enrofloxacin and toltrazuril in tachyzoites to verify possible changes in parasite structure. Enrofloxacin and toltrazuril did not decrease the viability of cells and villous in lower concentrations. Both drugs were able to significantly reduce the parasite intracellular proliferation in BeWo cells and villous explants when compared to untreated conditions. Regardless of the T. gondii strain, BeWo cells infected and treated with enrofloxacin or toltrazuril induced high levels of IL-6 and MIF. In villous explants, enrofloxacin induced high MIF production. Finally, the drugs increased the number of unviable parasites and triggered damage to tachyzoite structure. Taken together, it can be concluded that enrofloxacin and toltrazuril are able to control T. gondii infection in BeWo cells and villous explants, probably by a direct action on the host cells and parasites, which leads to modifications of cytokine release and tachyzoite structure.
Collapse
Affiliation(s)
- Rafaela J. da Silva
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of UberlândiaUberlândia, Brazil
| | - Angelica O. Gomes
- Departament of Morphology, Federal University of Triângulo MineiroUberaba, Brazil
| | - Priscila S. Franco
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of UberlândiaUberlândia, Brazil
| | - Ariane S. Pereira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of UberlândiaUberlândia, Brazil
| | - Iliana C. B. Milian
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of UberlândiaUberlândia, Brazil
| | - Mayara Ribeiro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of UberlândiaUberlândia, Brazil
| | - Paolo Fiorenzani
- Department of Medical, Surgery and Neuroscience, University of SienaSiena, Italy
| | - Maria C. dos Santos
- Department of Gynecology and Obstetrics, Faculty of Medicine, Federal University of UberlândiaUberlândia, Brazil
| | - José R. Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Science, Federal University of UberlândiaUberlândia, Brazil
| | - Neide M. da Silva
- Laboratory of Immunopathology, Institute of Biomedical Science, Federal University of UberlandiaUberlândia, Brazil
| | - Eloisa A. V. Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of UberlândiaUberlândia, Brazil
| | - Bellisa de Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of UberlândiaUberlândia, Brazil
| |
Collapse
|
21
|
Kim JH, Lee J, Bae SJ, Kim Y, Park BJ, Choi JW, Kwon J, Cha GH, Yoo HJ, Jo EK, Bae YS, Lee YH, Yuk JM. NADPH oxidase 4 is required for the generation of macrophage migration inhibitory factor and host defense against Toxoplasma gondii infection. Sci Rep 2017; 7:6361. [PMID: 28743960 PMCID: PMC5526938 DOI: 10.1038/s41598-017-06610-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/14/2017] [Indexed: 12/31/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox) are an important family of catalytic enzymes that generate reactive oxygen species (ROS), which mediate the regulation of diverse cellular functions. Although phagocyte Nox2/gp91phox is closely associated with the activation of host innate immune responses, the roles of Nox family protein during Toxoplasma gondii (T. gondii) infection have not been fully investigated. Here, we found that T. gondii-mediated ROS production was required for the upregulation of macrophage migration inhibitory factor (MIF) mRNA and protein levels via activation of mitogen-activated protein kinase and nuclear factor-κB signaling in macrophages. Interestingly, MIF knockdown led to a significant increase in the survival of intracellular T. gondii in bone marrow-derived macrophages (BMDMs). Moreover, Nox4 deficiency, but not Nox2/gp91phox and the cytosolic subunit p47phox, resulted in enhanced survival of the intracellular T. gondii RH strain and impaired expression of T. gondii-mediated MIF in BMDMs. Additionally, Nox4-deficient mice showed increased susceptibility to virulent RH strain infection and increased cyst burden in brain tissues and low levels of MIF expression following infection with the avirulent ME49 strain. Collectively, our findings indicate that Nox4-mediated ROS generation plays a central role in MIF production and resistance to T. gondii infection.
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jina Lee
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Su-Jin Bae
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Yeeun Kim
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Byung-Joon Park
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jae-Won Choi
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jaeyul Kwon
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Education, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Guang-Ho Cha
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Heon Jong Yoo
- Department of Obstetrics and Gynecology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Yun Soo Bae
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Young-Ha Lee
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea. .,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea.
| | - Jae-Min Yuk
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea. .,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
22
|
Damle SR, Martin RK, Cross JV, Conrad DH. Macrophage migration inhibitory factor deficiency enhances immune response to Nippostrongylus brasiliensis. Mucosal Immunol 2017; 10:205-214. [PMID: 27049059 PMCID: PMC5053838 DOI: 10.1038/mi.2016.29] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 02/19/2016] [Indexed: 02/04/2023]
Abstract
Infections with helminth parasites are endemic in the developing world and are a target for intervention with new therapies. Macrophage migration inhibitory factor (MIF) is a cytokine with pleiotropic effects in inflammation and immune responses. We investigated the role of MIF in a naturally cleared model of helminth infection in rodents, Nippostrongylus brasiliensis. At day 7 postinfection, MIF-deficient (MIF-/-) mice had reduced parasite burden and mounted an enhanced type 2 immune response (Th2), including increased Gata3 expression and interleukin-13 (IL-13) production in the mesenteric lymph nodes (MLNs). Bone marrow reconstitution demonstrated that MIF produced from hematopoietic cells was crucial and Rag1-/- reconstitution provided direct evidence that MIF-/- CD4+ T cells were responsible for the augmented parasite clearance. MIF-/- CD4+ T cells produced less IL-6 postinfection, which correlated with enhanced Th2 responses. MIF-/- CD4+ T cells exhibited lower nuclear factor-κB activation, potentially explaining the reduction in IL-6. Finally, we demonstrated enhanced clearance of the parasite and Th2 response in wild-type mice treated with the MIF tautomerase inhibitor, sulforaphane, a compound found naturally found in cruciferous vegetables. These results are the first to describe the importance of the tautomerase enzyme activity in MIF function in N. brasiliensis infection.
Collapse
Affiliation(s)
- Sheela R. Damle
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| | - Rebecca K. Martin
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| | - Janet V. Cross
- Department of Pathology, University of Virginia, Charlottesville, VA 22904
| | - Daniel H. Conrad
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
23
|
Borges IP, Castanheira LE, Barbosa BF, de Souza DLN, da Silva RJ, Mineo JR, Tudini KAY, Rodrigues RS, Ferro EAV, de Melo Rodrigues V. Anti-parasitic effect on Toxoplasma gondii induced by BnSP-7, a Lys49-phospholipase A2 homologue from Bothrops pauloensis venom. Toxicon 2016; 119:84-91. [DOI: 10.1016/j.toxicon.2016.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 12/20/2022]
|
24
|
MIF Promotes Classical Activation and Conversion of Inflammatory Ly6C(high) Monocytes into TipDCs during Murine Toxoplasmosis. Mediators Inflamm 2016; 2016:9101762. [PMID: 27057101 PMCID: PMC4789477 DOI: 10.1155/2016/9101762] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/27/2015] [Indexed: 11/19/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) mediates immunity against Toxoplasma gondii infection by inducing inflammatory cytokines required to control the parasite replication. However, the role of this inflammatory mediator in the cell-mediated immune response against this infection is still poorly understood. Here, we used T. gondii-infected WT and Mif−/− mice to analyze the role of MIF in the maturation of CD11b+ and CD8α+ dendritic cells (DCs). We found that MIF promotes maturation of CD11b+ but not CD8α+ DCs, by inducing IL-12p70 production and CD86 expression. Infected Mif−/− mice showed significantly lower numbers of TNF and inducible nitric oxide synthase- (iNOS-) producing DCs (TipDCs) compared to infected WT mice. The adoptive transfer of Ly6Chigh monocytes into infected WT or Mif−/− mice demonstrated that MIF participates in the differentiation of Ly6Chigh monocytes into TipDCs. In addition, infected Mif−/− mice display a lower percentage of IFN-γ-producing natural killer (NK) cells compared to WT mice, which is associated with reducing numbers of TipDCs in Mif−/− mice. Furthermore, administration of recombinant MIF (rMIF) into T. gondii-infected Mif−/− mice restored the numbers of TipDCs and reversed the susceptible phenotype of Mif−/− mice. Collectively, these results demonstrate an important role for MIF inducing cell-mediated immunity to T. gondii infection.
Collapse
|
25
|
Role of cysteine-58 and cysteine-95 residues in the thiol di-sulfide oxidoreductase activity of Macrophage Migration Inhibitory Factor-2 of Wuchereria bancrofti. Acta Trop 2016; 153:14-20. [PMID: 26432350 DOI: 10.1016/j.actatropica.2015.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 01/25/2023]
Abstract
Macrophage Migration Inhibitory Factor (MIF) is the first human cytokine reported and was thought to have a central role in the regulation of inflammatory responses. Homologs of this molecule have been reported in bacteria, invertebrates and plants. Apart from cytokine activity, it also has two catalytic activities viz., tautomerase and di-sulfide oxidoreductase, which appear to be involved in immunological functions. The CXXC catalytic site is responsible for di-sulfide oxidoreductase activity of MIF. We have recently reported thiol-disulfide oxidoreductase activity of Macrophage Migration Inhibitory Factor-2 of Wuchereria bancrofti (Wba-MIF-2), although it lacks the CXXC motif. We hypothesized that three conserved cysteine residues might be involved in the formation of di-sulfide oxidoreductase catalytic site. Homology modeling of Wba-MIF-2 showed that among the three cysteine residues, Cys58 and Cys95 residues came in close proximity (3.23Å) in the tertiary structure with pKa value 9, indicating that these residues might play a role in the di-sulfide oxidoreductase catalytic activity. We carried out site directed mutagenesis of these residues (Cys58Ser & Cys95Ser) and expressed mutant proteins in Escherichia coli. The mutant proteins did not show any oxidoreductase activity in the insulin reduction assay, thus indicating that these two cysteine residues are vital for the catalytic activity of Wba-MIF-2.
Collapse
|
26
|
Djudjaj S, Lue H, Rong S, Papasotiriou M, Klinkhammer BM, Zok S, Klaener O, Braun GS, Lindenmeyer MT, Cohen CD, Bucala R, Tittel AP, Kurts C, Moeller MJ, Floege J, Ostendorf T, Bernhagen J, Boor P. Macrophage Migration Inhibitory Factor Mediates Proliferative GN via CD74. J Am Soc Nephrol 2015; 27:1650-64. [PMID: 26453615 DOI: 10.1681/asn.2015020149] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/24/2015] [Indexed: 01/09/2023] Open
Abstract
Pathologic proliferation of mesangial and parietal epithelial cells (PECs) is a hallmark of various glomerulonephritides. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that mediates inflammation by engagement of a receptor complex involving the components CD74, CD44, CXCR2, and CXCR4. The proliferative effects of MIF may involve CD74 together with the coreceptor and PEC activation marker CD44. Herein, we analyzed the effects of local glomerular MIF/CD74/CD44 signaling in proliferative glomerulonephritides. MIF, CD74, and CD44 were upregulated in the glomeruli of patients and mice with proliferative glomerulonephritides. During disease, CD74 and CD44 were expressed de novo in PECs and colocalized in both PECs and mesangial cells. Stress stimuli induced MIF secretion from glomerular cells in vitro and in vivo, in particular from podocytes, and MIF stimulation induced proliferation of PECs and mesangial cells via CD74. In murine crescentic GN, Mif-deficient mice were almost completely protected from glomerular injury, the development of cellular crescents, and the activation and proliferation of PECs and mesangial cells, whereas wild-type mice were not. Bone marrow reconstitution studies showed that deficiency of both nonmyeloid and bone marrow-derived Mif reduced glomerular cell proliferation and injury. In contrast to wild-type mice, Cd74-deficient mice also were protected from glomerular injury and ensuing activation and proliferation of PECs and mesangial cells. Our data suggest a novel molecular mechanism and glomerular cell crosstalk by which local upregulation of MIF and its receptor complex CD74/CD44 mediate glomerular injury and pathologic proliferation in GN.
Collapse
Affiliation(s)
- Sonja Djudjaj
- Department of Pathology, Department of Nephrology and Immunology, and
| | - Hongqi Lue
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Song Rong
- Department of Nephrology and Immunology, and
| | | | | | | | - Ole Klaener
- Department of Pathology, Department of Nephrology and Immunology, and
| | | | - Maja T Lindenmeyer
- Division of Nephrology and Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Clemens D Cohen
- Division of Nephrology and Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Andre P Tittel
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; and
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; and
| | | | | | | | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany;
| | - Peter Boor
- Department of Pathology, Department of Nephrology and Immunology, and Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
27
|
Tong X, Zheng B, Tong Q, Liu S, Peng S, Yang X, Fan H. The MIF -173G/C gene polymorphism increase gastrointestinal cancer and hematological malignancy risk: evidence from a meta-analysis and FPRP test. Int J Clin Exp Med 2015; 8:15949-15957. [PMID: 26629098 PMCID: PMC4658987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/05/2015] [Indexed: 06/05/2023]
Abstract
UNLABELLED The macrophage migration inhibitory factor (MIF) -173G/C gene polymorphism has been implicated in the susceptibility to cancer, but the results are not conclusive. So the aim of study to investigate the association between MIF -173G/C gene polymorphism and cancer risk by a comprehensive meta-analysis. We searched the PubMed, Embase, Wanfang and China National Knowledge Internet (CNKI) databases, with the last updated search being performed on May 24, 2015. The odds ratio (OR) and 95% confidence interval (95% CI) were used to assess the association. Statistical analysis was performed by STATA 11.0 software. Finally, 7,253 participants from 15 studies were included in the meta-analysis. The results of meta-analysis indicated the significant association between MIF -173G/C gene polymorphism and cancer susceptibility, especially in Asians (C vs. G, OR 1.22, 95% CI=1.00-1.50). In addition, the significant relationship between MIF -173G/C gene polymorphism and gastrointestinal tumors (CC+CG vs. GG, OR 1.25, 95% CI=1.05-1.50), hematological malignancy (CC+CG vs. GG, OR 1.27, 95% CI=1.03-1.56), gynecolgical tumors (CC vs. CG+ GG, OR 1.51, 95% CI=1.04-2.19) risk was found. However, to avoid the "false positive report", we investigated the significant associations observed in the present meta-analysis by the false positive report probabilities (FPRPs) test. Interestingly, the results of FPRP test indicated the MIF -173G/C gene polymorphism only associated with gastrointestinal cancer and hematological malignancy risk (FPRP=0.132, 0.067 respectively) at the level of a prior probability is 0.1. Therefore, the meta-analysis suggested MIF -173G/C gene polymorphism would be a risk factor for the gastrointestinal cancer and hematological malignancy.
Collapse
Affiliation(s)
- Xiang Tong
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan UniversityChengdu, Sichuan, China
| | - Bing Zheng
- Department of Neurological Surgery, The First Affiliated Hospital of Kunming Medical UniversityKunming, Yunnan, China
| | - Qiaoyi Tong
- The Faculty of Nursing, Luzhou Medical CollegeLuzhou, Sichuan, China
| | - Sitong Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan UniversityChengdu, Sichuan, China
| | - Sifeng Peng
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan UniversityChengdu, Sichuan, China
| | - Xin Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan UniversityChengdu, Sichuan, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan UniversityChengdu, Sichuan, China
| |
Collapse
|
28
|
Chauhan N, Sharma R, Hoti S. Identification and biochemical characterization of macrophage migration inhibitory factor-2 (MIF-2) homologue of human lymphatic filarial parasite, Wuchereria bancrofti. Acta Trop 2015; 142:71-8. [PMID: 25446175 DOI: 10.1016/j.actatropica.2014.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/24/2014] [Accepted: 10/12/2014] [Indexed: 10/24/2022]
Abstract
Homologues of human macrophage migration inhibitory factor (hMIF) have been reported from vertebrates, invertebrates and prokaryotes, as well as plants. Filarial parasites produce two homologues of hMIF viz., MIF-1 and MIF-2, which play important role in the host immune modulation. Earlier, we have characterized MIF-1 (Wba-mif-1) from Wuchereria bancrofti, the major causal organism of human lymphatic filariasis. Here, we are reporting the molecular and biochemical characterization of MIF-2 from this parasite (Wba-mif-2). The complete Wba-mif-2 gene and its cDNA were amplified, cloned and sequenced. The size of Wba-mif-2 gene and cDNA were found to be 4.275 kb and 363 bp, respectively. The gene annotation revealed the presence of a large intron of 3.912 kb interspersed with two exons of 183 bp and 180 bp. The alignment of derived amino acid sequences of Wba-MIF-2 with Wba-MIF-1 showed 44% homology. The conserved CXXC oxido-reductase catalytic site present in Wba-mif-1 was found absent in Wba-mif-2 coding sequence. The amplified Wba-mif-2 cDNA was cloned into an expression vector pRSET-B and transformed into salt inducible Escherichia coli strain GJ1158. The expressed recombinant Wba-MIF-2 protein showed tautomerase activity against L-dopachrome methyl ester and the specific activity was determined to be 18.57±0.77 μmol/mg/min. Three known inhibitors of hMIF tautomerase activity significantly inhibited the tautomerase activity of recombinant Wba-MIF-2. Although the conserved CXXC oxido-reductase motif is absent in Wba-mif-2, the recombinant protein showed significant oxido-reductase activity in the insulin reduction assay, possibly because of the presence of vicinal cysteine residues.
Collapse
|
29
|
Tong X, He J, Liu S, Peng S, Yan Z, Zhang Y, Fan H. Macrophage migration inhibitory factor -173G/C gene polymorphism increases the risk of renal disease: A meta-analysis. Nephrology (Carlton) 2015; 20:68-76. [PMID: 25329590 DOI: 10.1111/nep.12353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Xiang Tong
- West China School of Medicine/West China Hospital; Sichuan University; Chengdu China
| | - Jie He
- First Affiliated Hospital of Chengdu Medical College; Chengdu China
| | - Sitong Liu
- West China School of Medicine/West China Hospital; Sichuan University; Chengdu China
| | - Shifeng Peng
- West China School of Medicine/West China Hospital; Sichuan University; Chengdu China
| | - Zhipeng Yan
- West China School of Medicine/West China Hospital; Sichuan University; Chengdu China
| | - Yonggang Zhang
- The Periodical Press of West China Hospital; Sichuan University; Chengdu China
| | - Hong Fan
- West China School of Medicine/West China Hospital; Sichuan University; Chengdu China
| |
Collapse
|
30
|
Mohammadi R, Hosseini-Safa A, Ehsani Ardakani MJ, Rostami-Nejad M. The relationship between intestinal parasites and some immune-mediated intestinal conditions. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2015; 8:123-31. [PMID: 25926937 PMCID: PMC4403024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/03/2015] [Indexed: 11/16/2022]
Abstract
Over the last decades, the incidence of infestation by minor parasites has decreased in developed countries. Infectious agents can also suppress autoimmune and allergic disorders. Some investigations show that various protozoa and helminthes are connected with the main immune-mediated intestinal conditions including celiac disease (CD), inflammatory bowel diseases (IBD) and irritable bowel syndrome (IBS). Celiac disease is a digestive and autoimmune disorder that can damage the small intestine and characterized by a multitude gastrointestinal (GI) and extra GI symptoms. IBD (including ulcerative colitis and Crohn's disease) is a group of inflammatory conditions of the small intestine and colon. The etiology of IBD is unknown, but it may be related to instability in the intestinal microflora that leading to an immoderate inflammatory response to commensal microbiota. Irritable bowel syndrome (IBS) is a common, long-term condition of the digestive system. Bloating, diarrhoea and/or constipation are nonspecific symptoms of IBS. Various studies have shown that some intestinal parasites can effect on immune system of infected hosts and in some cases, they are able to modify and change the host's immune responses, particularly in autoimmune disorders like celiac disease and IBD. The main objective of this review is to investigate the relationship between intestinal parasites and different inflammatory bowel disorders.
Collapse
Affiliation(s)
- Rasoul Mohammadi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,
| | - Ahmad Hosseini-Safa
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Aguiar BGA, Coelho DL, Costa DL, Drumond BP, Coelho LFL, Figueiredo LC, Zacarias DA, Silva JCD, Alonso DP, Ribolla PEM, Ishikawa EAY, Gaído SB, Costa CHN. Genes that encodes NAGT, MIF1 and MIF2 are not virulence factors for kala-azar caused by Leishmania infantum. Rev Soc Bras Med Trop 2014; 47:593-8. [PMID: 25467261 DOI: 10.1590/0037-8682-0183-2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/13/2014] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Kala-azar is a disease resulting from infection by Leishmania donovani and Leishmania infantum. Most patients with the disease exhibit prolonged fever, wasting, anemia and hepatosplenomegaly without complications. However, some patients develop severe disease with hemorrhagic manifestations, bacterial infections, jaundice, and edema dyspnea, among other symptoms, followed by death. Among the parasite molecules that might influence the disease severity are the macrophage migration inhibitory factor-like proteins (MIF1 and MIF2) and N-acetylglucosamine-1-phosphotransferase (NAGT), which act in the first step of protein N-glycosylation. This study aimed to determine whether MIF1, MIF2 and NAGT are virulence factors for severe kala-azar. METHODS To determine the parasite genotype in kala-azar patients from Northeastern Brazil, we sequenced the NAGT genes of L. infantum from 68 patients as well as the MIF1 and MIF2 genes from 76 different subjects with diverse clinical manifestations. After polymerase chain reaction (PCR), the fragments were sequenced, followed by polymorphism identification. RESULTS The nucleotide sequencing of the 144 amplicons revealed the absence of genetic variability of the NAGT, MIF1 and MIF2 genes between the isolates. The conservation of these genes suggests that the clinical variability of kala-azar does not depend upon these genes. Additionally, this conservation suggests that these genes may be critical for parasite survival. CONCLUSIONS NAGT, MIF1 and MIF2 do not alter the severity of kala-azar. NAGT, MIF1 and MIF2 are highly conserved among different isolates of identical species and exhibit potential for use in phylogenetic inferences or molecular diagnosis.
Collapse
Affiliation(s)
- Bruno Guedes Alcoforado Aguiar
- Laboratório de Leishmanioses, Instituto de Doenças Tropicais Natan Portella, Universidade Federal do Piauí, Teresina, PI, Brasil
| | - Daniela Lemos Coelho
- Laboratório de Leishmanioses, Instituto de Doenças Tropicais Natan Portella, Universidade Federal do Piauí, Teresina, PI, Brasil
| | - Dorcas Lamounier Costa
- Laboratório de Leishmanioses, Instituto de Doenças Tropicais Natan Portella, Universidade Federal do Piauí, Teresina, PI, Brasil
| | - Betânia Paiva Drumond
- Laboratório de Virologia, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| | | | - Lívio Carvalho Figueiredo
- Departamento de Agricultura, Centro de Ciências Humanas, Sociais e Agrárias, Universidade Federal da Paraíba, Bananeiras, PB, Brasil
| | - Danielle Alves Zacarias
- Laboratório de Leishmanioses, Instituto de Doenças Tropicais Natan Portella, Universidade Federal do Piauí, Teresina, PI, Brasil
| | - Jailthon Carlos da Silva
- Laboratório de Leishmanioses, Instituto de Doenças Tropicais Natan Portella, Universidade Federal do Piauí, Teresina, PI, Brasil
| | - Diego Peres Alonso
- Departamento de Parasitologia, Instituto de Biociências, Universidade Estadual Paulista, São Paulo, SP, Brazil
| | | | - Edna Aoba Yassui Ishikawa
- Laboratório de Biologia Molecular, Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, PA, Brazil
| | - Samara Belchior Gaído
- Laboratório de Leishmanioses, Instituto de Doenças Tropicais Natan Portella, Universidade Federal do Piauí, Teresina, PI, Brasil
| | - Carlos Henrique Nery Costa
- Laboratório de Leishmanioses, Instituto de Doenças Tropicais Natan Portella, Universidade Federal do Piauí, Teresina, PI, Brasil
| |
Collapse
|
32
|
Jha AN, Sundaravadivel P, Pati SS, Patra PK, Thangaraj K. Variations in ncRNA gene LOC284889 and MIF-794CATT repeats are associated with malaria susceptibility in Indian populations. Malar J 2013; 12:345. [PMID: 24066864 PMCID: PMC3849407 DOI: 10.1186/1475-2875-12-345] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/15/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND There are increasing evidences on the role of non-coding RNA (ncRNA) as key regulator of cellular homeostasis. LOC284889 is an uncharacterized ncRNA gene on reverse strand to MIF mapped to 22q11.23. MIF, a lymphokine, regulates innate immune response by up-regulating the expression of TLR4, suppressing the p53 activity and has been shown to be involved in malaria pathogenesis. METHODS In this study, the possible effect of MIF variations on malaria susceptibility was investigated by re-sequencing the complete MIF gene along with 1 kb each of 5' and 3' region in 425 individuals from malaria endemic regions of the Orissa and Chhattisgarh states of India. The subjects comprised of 160 cases of severe malaria, 101 of mild malaria and 164 ethnically matched asymptomatic controls. Data were statistically compared between cases and controls for their possible association with Plasmodium falciparum malarial outcome. RESULTS It is the first study, which shows that the allele A (rs34383331T > A) in ncRNA is significantly associated with increased risk to P. falciparum malaria [severe: OR = 2.08, p = 0.002 and mild: OR = 2.09, P = 0.005]. In addition, it has been observed that the higher MIF-794CATT repeats (>5) increases malaria risk (OR = 1.61, p = 0.01). Further, diplotype (MIF-794CATT and rs34383331T > A) 5 T confers protection to severe malaria (OR = 0.55, p = 0.002) while 6A (OR = 3.07, p = 0.001) increases malaria risk. CONCLUSIONS These findings support the involvement of ncRNA in malarial pathogenesis and further emphasize the complex genetic regulation of malaria outcome. In addition, the study shows that the higher MIF-794CATT repeats (>5) is a risk factor for severe malaria. The study would help in identifying people who are at higher risk to malaria and adapt strategies for prevention and treatment.
Collapse
Affiliation(s)
- Aditya N Jha
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
| | | | | | | | | |
Collapse
|
33
|
Macrophage migration inhibitory factor (MIF) is a critical mediator of the innate immune response to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2013; 110:E2997-3006. [PMID: 23882081 DOI: 10.1073/pnas.1301128110] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF), an innate cytokine encoded in a functionally polymorphic genetic locus, contributes to detrimental inflammation but may be crucial for controlling infection. We explored the role of variant MIF alleles in tuberculosis. In a Ugandan cohort, genetic low expressers of MIF were 2.4-times more frequently identified among patients with Mycobacterium tuberculosis (TB) bacteremia than those without. We also found mycobacteria-stimulated transcription of MIF and serum MIF levels to be correlated with MIF genotype in human macrophages and in a separate cohort of US TB patients, respectively. To determine mechanisms for MIF's protective role, we studied both aerosolized and i.v. models of mycobacterial infection and observed MIF-deficient mice to succumb more quickly with higher organism burden, increased lung pathology, and decreased innate cytokine production (TNF-α, IL-12, IL-10). MIF-deficient animals showed increased pulmonary neutrophil accumulation but preserved adaptive immune response. MIF-deficient macrophages demonstrated decreased cytokine and reactive oxygen production and impaired mycobacterial killing. Transcriptional investigation of MIF-deficient macrophages revealed reduced expression of the pattern recognition receptor dectin-1; restoration of dectin-1 expression recovered innate cytokine production and mycobacterial killing. Our data place MIF in a crucial upstream position in the innate immune response to mycobacteria and suggest that commonly occurring low expression MIF alleles confer an increased risk of TB disease in some populations.
Collapse
|
34
|
Cho Y, Baldán A. Quest for new biomarkers in atherosclerosis. MISSOURI MEDICINE 2013; 110:325-330. [PMID: 24003651 PMCID: PMC3894743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Cho and Baldan labs focus their efforts on novel pathways that control atherogenesis. MIF (Macrophage migration inhibitory factor) recruits macrophages to atherosclerotic lesions and activates the production of matrix proteinases, which in turn destabilize atherosclerotic plaques. On the other hand, miR-33 coordinates the expression of several sterol transporters essential for high-density lipoprotein metabolism and bile secretion. Thus, both MIF and miR-33 are promising therapeutic targets to manage patients at risk of developing atherosclerosis.
Collapse
Affiliation(s)
- Yoonsang Cho
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, USA.
| | | |
Collapse
|
35
|
Stein A, Panjwani A, Sison C, Rosen L, Chugh R, Metz C, Bank M, Bloom O. Pilot study: elevated circulating levels of the proinflammatory cytokine macrophage migration inhibitory factor in patients with chronic spinal cord injury. Arch Phys Med Rehabil 2013; 94:1498-507. [PMID: 23618747 DOI: 10.1016/j.apmr.2013.04.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 03/08/2013] [Accepted: 04/01/2013] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To test the hypothesis that the proinflammatory cytokine macrophage migration inhibitory factor (MIF) is elevated in the circulation of patients with chronic spinal cord injury (SCI) relative to uninjured subjects, and secondarily to identify additional immune mediators that are elevated in subjects with chronic SCI. DESIGN Prospective, observational pilot study. SETTING Outpatient clinic of a department of physical medicine and rehabilitation and research institute in an academic medical center. PARTICIPANTS Individuals with chronic (>1y from initial injury) SCI (n=22) and age- and sex-matched uninjured subjects (n=19). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Plasma levels of MIF, as determined by a commercially available multiplex suspension immunoassay. The relationship between MIF levels and clinical/demographic variables was also examined. As a secondary outcome, we evaluated other cytokines, chemokines, and growth factors. RESULTS Plasma MIF levels were significantly higher in subjects with chronic SCI than in control subjects (P<.001). Elevated MIF levels were not correlated significantly with any one clinical or demographic characteristic. Subjects with SCI also exhibited significantly higher plasma levels of monokine induced by interferon-gamma/chemokine C-X-C motif ligand 9 (P<.03), macrophage colony stimulating factor (P<.035), interleukin-3 (P<.044), and stem cell growth factor beta (SCGF-β) (P<.016). Among subjects with SCI, the levels of SCGF-β increased with the time from initial injury. CONCLUSIONS These data confirm the hypothesis that MIF is elevated in subjects with chronic SCI and identify additional novel immune mediators that are also elevated in these subjects. This study suggests the importance of examining the potential functional roles of MIF and other immune factors in subjects with chronic SCI.
Collapse
Affiliation(s)
- Adam Stein
- Department of Physical Medicine and Rehabilitation, Hofstra North Shore-Long Island Jewish School of Medicine, The North Shore-Long Island Jewish Health System, Manhasset, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Candidate gene case-control and functional study shows macrophage inhibitory factor (MIF) polymorphism is associated with cutaneous leishmaniasis. Cytokine 2013; 61:168-72. [DOI: 10.1016/j.cyto.2012.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 08/23/2012] [Accepted: 09/18/2012] [Indexed: 11/22/2022]
|
37
|
Roger T, Delaloye J, Chanson AL, Giddey M, Le Roy D, Calandra T. Macrophage migration inhibitory factor deficiency is associated with impaired killing of gram-negative bacteria by macrophages and increased susceptibility to Klebsiella pneumoniae sepsis. J Infect Dis 2012; 207:331-9. [PMID: 23125447 DOI: 10.1093/infdis/jis673] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cytokine macrophage migration inhibitory factor (MIF) is an important component of the early proinflammatory response of the innate immune system. However, the antimicrobial defense mechanisms mediated by MIF remain fairly mysterious. In the present study, we examined whether MIF controls bacterial uptake and clearance by professional phagocytes, using wild-type and MIF-deficient macrophages. MIF deficiency did not affect bacterial phagocytosis, but it strongly impaired the killing of gram-negative bacteria by macrophages and host defenses against gram-negative bacterial infection, as shown by increased mortality in a Klebsiella pneumonia model. Consistent with MIF's regulatory role of Toll-like 4 expression in macrophages, MIF-deficient cells stimulated with lipopolysaccharide or Escherichia coli exhibited reduced nuclear factor κB activity and tumor necrosis factor (TNF) production. Addition of recombinant MIF or TNF corrected the killing defect of MIF-deficient macrophages. Together, these data show that MIF is a key mediator of host responses against gram-negative bacteria, acting in part via a modulation of bacterial killing by macrophages.
Collapse
Affiliation(s)
- Thierry Roger
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
38
|
Macrophage migration inhibitory factor in protozoan infections. J Parasitol Res 2012; 2012:413052. [PMID: 22496958 PMCID: PMC3306950 DOI: 10.1155/2012/413052] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/01/2011] [Accepted: 11/07/2011] [Indexed: 12/12/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine that plays a central role in immune and inflammatory responses. In the present paper, we discussed the participation of MIF in the immune response to protozoan parasite infections. As a general trend, MIF participates in the control of parasite burden at the expense of promoting tissue damage due to increased inflammation.
Collapse
|
39
|
de Dios Rosado J, Rodriguez-Sosa M. Macrophage migration inhibitory factor (MIF): a key player in protozoan infections. Int J Biol Sci 2011; 7:1239-56. [PMID: 22110378 PMCID: PMC3221362 DOI: 10.7150/ijbs.7.1239] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/01/2011] [Indexed: 12/27/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine produced by the pituitary gland and multiple cell types, including macrophages (Mø), dendritic cells (DC) and T-cells. Upon releases MIF modulates the expression of several inflammatory molecules, such as TNF-α, nitric oxide and cyclooxygenase 2 (COX-2). These important MIF characteristics have prompted investigators to study its role in parasite infections. Several reports have demonstrated that MIF plays either a protective or deleterious role in the immune response to different pathogens. Here, we review the role of MIF in the host defense response to some important protozoan infections.
Collapse
Affiliation(s)
| | - Miriam Rodriguez-Sosa
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), 54090 Tlalnepantla, Estado de México, México
| |
Collapse
|
40
|
Cavalcanti MG, Mesquita JS, Madi K, Feijó DF, Assunção-Miranda I, Souza HSP, Bozza MT. MIF participates in Toxoplasma gondii-induced pathology following oral infection. PLoS One 2011; 6:e25259. [PMID: 21977228 PMCID: PMC3178626 DOI: 10.1371/journal.pone.0025259] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 08/30/2011] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) is essential for controlling parasite burden and survival in a model of systemic Toxoplasma gondii infection. Peroral T. gondii infection induces small intestine necrosis and death in susceptible hosts, and in many aspects resembles inflammatory bowel disease (IBD). Considering the critical role of MIF in the pathogenesis of IBD, we hypothesized that MIF participates in the inflammatory response induced by oral infection with T. gondii. METHODOLOGY/PRINCIPAL FINDINGS Mif deficient (Mif(-/-)) and wild-type mice in the C57Bl/6 background were orally infected with T. gondii strain ME49. Mif(-/-) mice had reduced lethality, ileal inflammation and tissue damage despite of an increased intestinal parasite load compared to wt mice. Lack of MIF caused a reduction of TNF-α, IL-12, IFN-γ and IL-23 and an increased expression of IL-22 in ileal mucosa. Moreover, suppressed pro-inflammatory responses at the ileal mucosa observed in Mif(-/-) mice was not due to upregulation of IL-4, IL-10 or TGF-β. MIF also affected the expression of matrix metalloproteinase-9 (MMP-9) but not MMP-2 in the intestine of infected mice. Signs of systemic inflammation including the increased concentrations of inflammatory cytokines in the plasma and liver damage were less pronounced in Mif(-/-) mice compared to wild-type mice. CONCLUSION/SIGNIFICANCE In conclusion, our data suggested that in susceptible hosts MIF controls T. gondii infection with the cost of increasing local and systemic inflammation, tissue damage and death.
Collapse
Affiliation(s)
- Marta G. Cavalcanti
- Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Serviço de Doenças Infecciosas e Parasitárias, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Jacilene S. Mesquita
- Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Kalil Madi
- Departamento de Patologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratório Sérgio Franco, Rio de Janeiro, Brazil
| | - Daniel F. Feijó
- Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Iranaia Assunção-Miranda
- Departamento de Virologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Heitor S. P. Souza
- Departamento de Clínica Médica, Laboratório Multidisciplinar de Pesquisa, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcelo T. Bozza
- Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Departamento de Clínica Médica, Laboratório Multidisciplinar de Pesquisa, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Jang SI, Lillehoj HS, Lee SH, Kim DK, Pagés M, Hong YH, Min W, Lillehoj EP. Distinct immunoregulatory properties of macrophage migration inhibitory factors encoded by Eimeria parasites and their chicken host. Vaccine 2011; 29:8998-9004. [PMID: 21945252 DOI: 10.1016/j.vaccine.2011.09.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/22/2011] [Accepted: 09/10/2011] [Indexed: 10/17/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that plays an important role in host defense against a variety of microorganisms including protozoan parasites. Interestingly, some microbial pathogens also express a MIF-like protein, although its role in disease pathogenesis is not well understood. The aim of this study was to compare an Eimeria-encoded MIF (E.MIF) protein with chicken MIF (C.MIF) on the basis of their structural, immunological, and biological properties. E.MIF and C.MIF proteins, each with a glutathione S-transferase epitope tag, were expressed in Escherichia coli or COS-7 cells and purified by glutathione affinity chromatography. Rabbit antisera against the purified proteins demonstrated their mutual immunological cross-reactivity on Western blots, and immunolocalized intracellular native E.MIF to the Eimeria schizont, merozoite, and oocyst life cycle stages. HD11 chicken macrophages treated in vitro with C.MIF recombinant protein expressed increased levels of transcripts encoding interleukin-6 (IL-6), IL-17, and tumor necrosis factor superfamily member 15 (TNFSF15), but decreased levels of IL-8 transcripts, compared with cells treated with the PBS control; similar treatment with E.MIF only down-regulated IL-8 transcripts. Unlike recombinant E.MIF, C.MIF exhibited in vitro chemotactic activity for HD11 cells. Conversely, E.MIF, but not C.MIF, enhanced protection against experimental Eimeria infection, compared with the PBS control. These studies provide evidence for overlapping structural and antigenic properties, but distinct immunoregulatory roles, of E.MIF and C.MIF.
Collapse
Affiliation(s)
- Seung I Jang
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, United States
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Malu DT, Bélanger B, Desautels F, Kelendji K, Dalko E, Sanchez-Dardon J, Leng L, Bucala R, Satoskar AR, Scorza T. Macrophage migration inhibitory factor: a downregulator of early T cell-dependent IFN-gamma responses in Plasmodium chabaudi adami (556 KA)-infected mice. THE JOURNAL OF IMMUNOLOGY 2011; 186:6271-9. [PMID: 21518974 DOI: 10.4049/jimmunol.1003355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neutralization of macrophage migration inhibitory factor (MIF) increases anti-tumor cytotoxic T cell responses in vivo and IFN-γ responses in vitro, suggesting a plausible regulatory role for MIF in T cell activation. Considering that IFN-γ production by CD4(+) T cells is pivotal to resolve murine malaria and that secretion of MIF is induced by Plasmodium chabaudi adami parasites, we investigated the effect of MIF deficiency on the infection with this pathogen. Infections with P. c. adami 556 KA parasites were more efficiently controlled in MIF-neutralized and MIF-deficient (knockout [KO]) BALB/c mice. The reduction in parasitemia was associated with reduced production of IL-4 by non-T/non-B cells throughout patent infection. At day 4 postinfection, higher numbers of activated CD4(+) cells were measured in MIF KO mice, which secreted more IFN-γ, less IL-4, and less IL-10 than did CD4(+) T cells from wild-type mice. Enhanced IFN-γ and decreased IL-4 responses also were measured in MIF KO CD4(+) T cells stimulated with or without IL-12 and anti-IL-4 blocking Ab to induce Th1 polarization. However, MIF KO CD4(+) T cells efficiently acquired a Th2 phenotype when stimulated in the presence of IL-4 and anti-IL-12 Ab, indicating normal responsiveness to IL-4/STAT6 signaling. These results suggest that by promoting IL-4 responses in cells other than T/B cells during early P. c. adami infection, MIF decreases IFN-γ secretion in CD4(+) T cells and, additionally, has the intrinsic ability to render CD4(+) T cells less capable of acquiring a robust Th1 phenotype when stimulated in the presence of IL-12.
Collapse
Affiliation(s)
- Diane Tshikudi Malu
- Département des Sciences Biologiques, Université du Québec à Montréal, Québec H3B 3H5, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kithcart AP, Cox GM, Sielecki T, Short A, Pruitt J, Papenfuss T, Shawler T, Gienapp I, Satoskar AR, Whitacre CC. A small-molecule inhibitor of macrophage migration inhibitory factor for the treatment of inflammatory disease. FASEB J 2010; 24:4459-66. [PMID: 20624927 PMCID: PMC2974415 DOI: 10.1096/fj.10-162347] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 06/24/2010] [Indexed: 01/15/2023]
Abstract
Multiple sclerosis (MS) is a chronic, debilitating disease of the central nervous system (CNS) characterized by demyelination and axon loss. The proinflammatory cytokine macrophage migration inhibitory factor (MIF) has been shown to be elevated in the cerebrospinal fluid of patients during relapses. The purpose of this study was to evaluate a new small-molecule inhibitor of MIF and its ability to reduce the severity of an animal model of MS, experimental autoimmune encephalomyelitis (EAE). We utilized 2 structurally related isoxazolines, which show in vitro inhibition of MIF tautomerase activity. We found that administration of an inhibitor of MIF to mice with established EAE immediately reduced the severity of clinical signs and expanded a population of regulatory T lymphocytes. We also noted that the inhibitor reduced relapses of disease in a relapsing/remitting model of EAE. An analysis of leukocyte migration into the brain revealed that administration of inhibitor reduced entry of these cells. No effects on inflammatory cytokine production or T-cell activation in the periphery were noted. From these studies, we conclude that a small-molecule inhibitor of MIF reduces the severity of EAE and prevents access of immune cells into the CNS, which could be of therapeutic relevance to MS.
Collapse
Affiliation(s)
- Aaron P. Kithcart
- Department of Molecular Virology, Immunology, and Molecular Genetics
| | - Gina M. Cox
- Department of Molecular Virology, Immunology, and Molecular Genetics
| | - Thais Sielecki
- Cytokine PharmaSciences, King of Prussia, Pennsylvania, USA
| | - Abigail Short
- Department of Molecular Virology, Immunology, and Molecular Genetics
| | - James Pruitt
- Cytokine PharmaSciences, King of Prussia, Pennsylvania, USA
| | | | - Todd Shawler
- Department of Molecular Virology, Immunology, and Molecular Genetics
| | - Ingrid Gienapp
- Department of Molecular Virology, Immunology, and Molecular Genetics
| | - Abhay R. Satoskar
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA; and
| | | |
Collapse
|
44
|
Plasma concentration of malaria parasite-derived macrophage migration inhibitory factor in uncomplicated malaria patients correlates with parasitemia and disease severity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1524-32. [PMID: 20702656 DOI: 10.1128/cvi.00149-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Host macrophage migration inhibitory factor (MIF) has been implicated in the pathogenesis of malaria infections. Several Plasmodium parasite-derived MIFs were identified to have the potential to regulate host immune response. However, the role of Plasmodium MIFs in the immunopathogenesis of malaria infection and the relationships between these mediators and inflammatory cytokines remained unclear. In this study, we have investigated two Plasmodium MIFs in peripheral blood of uncomplicated malaria patients and analyzed their correlations with several major factors during malaria infection. We found that both Plasmodium falciparum MIF (PfMIF) and Plasmodium vivax MIF (PvMIF) levels in patients were positively correlated with parasitemia, tumor necrosis factor alpha, interleukin-10 (IL-10), and monocyte chemoattractant protein 1 but were not correlated with transforming growth factor β1 and IL-12. Of interest was that the PvMIF level was positively correlated with host body temperature and human MIF (HuMIF) concentrations. Moreover, multiple stepwise regression analysis also showed that parasitemia, IL-10, and HuMIF expression were significant predictors of Plasmodium MIF production. In addition, during antimalarial drug treatment, the decreasing of Plasmodium MIF concentrations was followed by parasitemia in most patients. Our results suggested that the Plasmodium MIF circulating level reflects the level of parasitemia and thus was closely correlated with disease severity in uncomplicated malaria. Therefore, this factor has the potential to be a promising disease predictor and is applicable in clinical diagnosis.
Collapse
|
45
|
Analysis of MIF, FCGR2A and FCGR3A gene polymorphisms with susceptibility to pulmonary tuberculosis in Moroccan population. J Genet Genomics 2010; 37:257-64. [PMID: 20439102 DOI: 10.1016/s1673-8527(09)60044-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 02/09/2010] [Accepted: 02/24/2010] [Indexed: 01/17/2023]
Abstract
In order to investigate the influence of functional polymorphisms of macrophage migration inhibitory factor (MIF), Fcg receptors CD16A (FCGR3A) and CD32A (FCGR2A) genes on susceptibility to pulmonary tuberculosis (PTB) in the Moroccan population, we analyzed 123 patients with PTB and 154 healthy controls. The genotyping for MIF-173 (G/C) (rs755622), FCGR2A-131H/R (rs1801274) and FCGR3A-158V/F (rs396991) was carried out using TaqMan SNP Genotyping Assay method. We found a statistically significant increase of the MIF -173CC homozygote genotype and MIF -173*C allele frequencies in PTB patients compared with healthy controls (17.07%versus 5.84%, P = 0.003; and 35.37%versus 26.30%, P = 0.02; respectively). In contrast, no association was observed between FCGR2A-131H/R and FCGR3A-158V/F polymorphisms and tuberculosis disease. Our finding suggests that MIF -173*C variant may play an important role in the development of active tuberculosis.
Collapse
|
46
|
Toxoplasma gondii: impaired maturation and pro-inflammatory response of dendritic cells in MIF-deficient mice favors susceptibility to infection. Exp Parasitol 2010; 126:348-58. [PMID: 20331989 DOI: 10.1016/j.exppara.2010.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 02/15/2010] [Accepted: 03/17/2010] [Indexed: 01/26/2023]
Abstract
Macrophage migration inhibitory factor (MIF) has been found to be involved in host resistance to several parasitic infections. To determine the mechanisms of MIF-dependent responses to Toxoplasma gondii, we investigated host resistance in MIF-/- mice (BALB/c background) during natural oral infection. We focused on the potential involvement of MIF in Dendritic Cell (DC) maturation and IL-12 production. Following oral T. gondii infection, wild type mice developed a strong IL-12 response with an adequate maturation of their draining mesenteric lymph node DC (MLNDC) population and were resistant to challenge with either 40 or 100 cysts (ME49 strain). In contrast, similarly infected MIF-/- mice mounted a weak IL-12 response, displayed immature MLNDCs in the early phases of infection and rapidly succumbed to both type of challenges. Lack of maturation and IL-12 production of DCs in response to T. gondii antigens was confirmed by in vitro studies, and these effects were reversed following treatment with recombinant MIF. These findings demonstrate that MIF-induced early DC maturation and IL-12 production mediate resistance to T. gondii infection.
Collapse
|
47
|
Harper JM, Wilkinson JE, Miller RA. Macrophage migration inhibitory factor-knockout mice are long lived and respond to caloric restriction. FASEB J 2010; 24:2436-42. [PMID: 20219983 DOI: 10.1096/fj.09-152223] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Macrophage migration inhibitory factor (MIF) affects inflammation, glucose homeostasis, and cellular proliferation in mammals. Previously, we found that MIF was significantly elevated in multiple long-lived mouse models, including calorie restriction (CR), which led us to hypothesize that MIF might be important in the control of mammalian life span and be necessary for the life-extending effects of CR. To test this hypothesis, we examined the life span of mice with a targeted deletion of the Mif gene on a segregating B6 x 129/Sv background (MIF-KO) under ad libitum (AL) feeding and CR conditions. Control mice were generated by mating C57BL/6J females with 129/SvJ males to make an F1 hybrid, and crossing F1 males to F1 females to produce segregating F2 mice homozygous for the normal MIF allele. Not only did MIF-KO mice show a life span extension in response to CR, they were, unexpectedly, longer lived than controls under standard AL conditions. MIF-KO mice were significantly protected against lethal hemangiosarcoma, but more likely than controls to die of disseminated amyloid, an age-related inflammatory syndrome. Overall, these data refute the suggestion that MIF is required for the CR effect on life span, but raise the possibility that MIF may limit life span in normal mice.
Collapse
Affiliation(s)
- James M Harper
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | |
Collapse
|
48
|
Shao D, Zhong X, Zhou YF, Han Z, Lin Y, Wang Z, Bu L, Zhang L, Su XD, Wang H. Structural and functional comparison of MIF ortholog from Plasmodium yoelii with MIF from its rodent host. Mol Immunol 2009; 47:726-37. [PMID: 20004020 DOI: 10.1016/j.molimm.2009.10.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 10/22/2009] [Accepted: 10/22/2009] [Indexed: 11/27/2022]
Abstract
Host-derived macrophage migration inhibitory factor (MIF) has been implicated in the pathogenesis of malaria infection, especially in malarial anemia. Although two Plasmodium parasite-derived MIF orthologs, Plasmodium falciparum MIF and P. berghei MIF were identified recently, the crystal structure and the precise roles of Plasmodium-derived MIFs, particularly in combination with the host MIF, remain unknown. In this study, we identified another MIF ortholog from a rodent-specific P. yoelii (PyMIF). This molecule shares a conserved three-dimensional structure with murine MIF (MmMIF), but with a different substrate binding pattern and much lower tautomerase activity. It could activate host cells via several signaling pathways in vitro, and inhibiting macrophage apoptosis, also similarly to MmMIF. However, we found that PyMIF and MmMIF acted synergistically to activate the MAPK-ERK1/2 signaling pathway at very low concentration but acted antagonistically at higher concentration. Furthermore, we detected PyMIF in the sera of infected mice and found that injection of recombinant PyMIF (rPyMIF) during infection could up-regulate several pro-inflammatory cytokines in vivo and slightly delay the death of infected mice. These data suggest that PyMIF modulates host immune responses together with host MIF and has potential to prolong parasitemia or the chronicity of malaria infection.
Collapse
Affiliation(s)
- Dingding Shao
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5# Dong Dan 3 Tiao, Beijing 100005, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Assunção-Miranda I, Amaral FA, Bozza FA, Fagundes CT, Sousa LP, Souza DG, Pacheco P, Barbosa-Lima G, Gomes RN, Bozza PT, Da Poian AT, Teixeira MM, Bozza MT. Contribution of macrophage migration inhibitory factor to the pathogenesis of dengue virus infection. FASEB J 2009; 24:218-28. [PMID: 19776337 DOI: 10.1096/fj.09-139469] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dengue fever is an emerging viral disease transmitted by arthropods to humans in tropical countries. Dengue hemorrhagic fever (DHF) is escalating in frequency and mortality rates. Here we studied the involvement of macrophage migration inhibitory factor (MIF) in dengue virus (DENV) infection and its pathogenesis. Patients with DHF had elevated plasma concentrations of MIF. Both leukocytes from these patients and macrophages from healthy donors infected in vitro with DENV showed a substantial amount of MIF within lipid droplets. The secretion of MIF by macrophages and hepatocytes required a productive infection and occurred without an increase in gene transcription or cell death, thus indicating active secretion from preformed stocks. In vivo infection of wild-type and mif-deficient (Mif(-/-)) mice demonstrated a role of MIF in dengue pathogenesis. Clinical disease was less severe in Mif(-/-) mice, and they exhibited a significant delay in lethality, lower viremia, and lower viral load in the spleen than wild-type mice. This reduction in all parameters of severity on DENV infection in Mif(-/-) mice correlated with reduced proinflammatory cytokine concentrations. These results demonstrated the contribution of MIF to the pathogenesis of dengue and pointed to a possible beneficial role of neutralizing MIF as an adjunctive therapeutic approach to treat the severe forms of the disease.
Collapse
Affiliation(s)
- Iranaia Assunção-Miranda
- Programa de Biologia Estrutural, Departamento de Imunologia, Instituto de Microbiologia, CCS Bloco I, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Cidade Universitária, Rio de Janeiro/RJ, 21941-902 Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yende S, Angus DC, Kong L, Kellum JA, Weissfeld L, Ferrell R, Finegold D, Carter M, Leng L, Peng ZY, Bucala R. The influence of macrophage migration inhibitory factor gene polymorphisms on outcome from community-acquired pneumonia. FASEB J 2009; 23:2403-11. [PMID: 19346297 PMCID: PMC2717777 DOI: 10.1096/fj.09-129445] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 03/12/2009] [Indexed: 11/11/2022]
Abstract
The cytokine, macrophage migration inhibitory factor (MIF), is encoded in a functionally polymorphic locus and subjects with high-expression MIF alleles are at an increased risk of inflammatory disease. Severe sepsis is the leading cause of death in intensive care units, and the prevailing hypothesis is that an excessive innate response contributes to its pathogenesis. To assess if MIF alleles influence the clinical course of infection, we conducted a case-control study to assess susceptibility and a parallel inception cohort study of community-acquired pneumonia (CAP) to assess risk of severe sepsis and 90-d mortality. Two distinct polymorphisms in the MIF promoter were analyzed: a G/C transition at -173 and a CATT repeat at -794. The frequency of both polymorphisms was similar in the CAP cohort (n=1739) and controls (n=639); however, the 90-d mortality was lower for the high-expression C allele (P=0.003). This association remained significant after adjusting for demographics, comorbid conditions, and disease severity score [hazard ratio=0.64 (0.44-0.91), P=0.01]. The hazard ratio was similar in different geographic subcohorts, and the association remained significant after adjusting for false discovery. These data indicate that polymorphisms associated with higher MIF expression may have a beneficial effect in community-acquired pneumonia.
Collapse
Affiliation(s)
- Sachin Yende
- Clinical Research, Investigation, and Systems Modeling of Acute Illness Laboratory, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|