1
|
Wang J, Ji X, Yang C, Xu J. Susceptibility from the immunological perspective of COVID-19-associated pulmonary aspergillosis: A literature review. Medicine (Baltimore) 2025; 104:e42363. [PMID: 40355215 PMCID: PMC12073940 DOI: 10.1097/md.0000000000042363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 04/18/2025] [Indexed: 05/14/2025] Open
Abstract
The incidence rate of COVID-19-associated pulmonary aspergillosis (CAPA) is rising. However, the pathogenesis of CAPA remains unclear. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection disrupts pathways related to type I interferon and Toll-like receptors, key components in innate immunity, thereby elevating the incidence of CAPA. Additionally, SARS-CoV-2 infection results in T and B cell functional deficiencies or exhaustion within adaptive immunity, weakening the defense against invasive Aspergillus. Furthermore, SARS-CoV-2 infection enhances the replication of cytomegalovirus and alters the gut microbiota, factors that may aid in diagnosing CAPA. Immunosuppressive therapy in COVID-19 patients is also believed to heighten the risk of invasive aspergillosis. Therefore, this review, examines the immune response to SARS-CoV-2 infection combined with invasive aspergillosis, and explores the pathogenesis and susceptibility factors of CAPA. We propose that variations in an individual's immune response significantly determine susceptibility to CAPA. The aim of this paper is to deepen clinical understanding of CAPA's pathogenesis, thereby aiding in mitigating susceptibility risk and advancing novel treatment approaches.
Collapse
Affiliation(s)
- Jiayin Wang
- Department of Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Xufeng Ji
- Department of Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Chun Yang
- Department of Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Jiancheng Xu
- Department of Laboratory, The First Hospital of Jilin University, Changchun, China
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Herrero-Fernández B, Ortega-Zapero M, Gómez-Bris R, Sáez A, Iborra S, Zorita V, Quintas A, Vázquez E, Dopazo A, Sánchez-Madrid F, Arribas SM, González-Granado JM. Role of lamin A/C on dendritic cell function in antiviral immunity. Cell Mol Life Sci 2024; 81:400. [PMID: 39264480 PMCID: PMC11393282 DOI: 10.1007/s00018-024-05423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Dendritic cells (DCs) play a crucial role in orchestrating immune responses, particularly in promoting IFNγ-producing-CD8 cytotoxic T lymphocytes (CTLs) and IFNγ-producing-CD4 T helper 1 (Th1) cells, which are essential for defending against viral infections. Additionally, the nuclear envelope protein lamin A/C has been implicated in T cell immunity. Nevertheless, the intricate interplay between innate and adaptive immunity in response to viral infections, particularly the role of lamin A/C in DC functions within this context, remains poorly understood. In this study, we demonstrate that mice lacking lamin A/C in myeloid LysM promoter-expressing cells exhibit a reduced capacity to induce Th1 and CD8 CTL responses, leading to impaired clearance of acute primary Vaccinia virus (VACV) infection. Remarkably, in vitro-generated granulocyte macrophage colony-stimulating factor bone marrow-derived DCs (GM-CSF BMDCs) show high levels of lamin A/C. Lamin A/C absence on GM-CSF BMDCs does not affect the expression of costimulatory molecules on the cell membrane but it reduces the cellular ability to form immunological synapses with naïve CD4 T cells. Lamin A/C deletion induces alterations in NFκB nuclear localization, thereby influencing NF-κB-dependent transcription. Furthermore, lamin A/C ablation modifies the gene accessibility of BMDCs, predisposing these cells to mount a less effective antiviral response upon TLR stimulation. This study highlights the critical role of DCs in interacting with CD4 T cells during antiviral responses and proposes some mechanisms through which lamin A/C may modulate DC function via gene accessibility and transcriptional regulation.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernández
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, 28029, Spain
| | - Marina Ortega-Zapero
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Raquel Gómez-Bris
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, 28029, Spain
| | - Angela Sáez
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Spain
| | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
- Fundacion Inmunotek, Alcalá de Henares, 28805, Spain
| | - Virginia Zorita
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Ana Quintas
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Enrique Vázquez
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
- Immunology Unit, Medicine Department, Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Instituto Investigacion Sanitaria-Princesa IIS-IP, Madrid, Spain, Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Silvia Magdalena Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, 28029, Spain.
| | - Jose Maria González-Granado
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain.
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
3
|
Shankar J, Thakur R, Clemons KV, Stevens DA. Interplay of Cytokines and Chemokines in Aspergillosis. J Fungi (Basel) 2024; 10:251. [PMID: 38667922 PMCID: PMC11051073 DOI: 10.3390/jof10040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Aspergillosis is a fungal infection caused by various species of Aspergillus, most notably A. fumigatus. This fungus causes a spectrum of diseases, including allergic bronchopulmonary aspergillosis, aspergilloma, chronic pulmonary aspergillosis, and invasive aspergillosis. The clinical manifestations and severity of aspergillosis can vary depending on individual immune status and the specific species of Aspergillus involved. The recognition of Aspergillus involves pathogen-associated molecular patterns (PAMPs) such as glucan, galactomannan, mannose, and conidial surface proteins. These are recognized by the pathogen recognition receptors present on immune cells such as Toll-like receptors (TLR-1,2,3,4, etc.) and C-type lectins (Dectin-1 and Dectin-2). We discuss the roles of cytokines and pathogen recognition in aspergillosis from both the perspective of human and experimental infection. Several cytokines and chemokines have been implicated in the immune response to Aspergillus infection, including interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), CCR4, CCR17, and other interleukins. For example, allergic bronchopulmonary aspergillosis (ABPA) is characterized by Th2 and Th9 cell-type immunity and involves interleukin (IL)-4, IL-5, IL-13, and IL-10. In contrast, it has been observed that invasive aspergillosis involves Th1 and Th17 cell-type immunity via IFN-γ, IL-1, IL-6, and IL-17. These cytokines activate various immune cells and stimulate the production of other immune molecules, such as antimicrobial peptides and reactive oxygen species, which aid in the clearance of the fungal pathogen. Moreover, they help to initiate and coordinate the immune response, recruit immune cells to the site of infection, and promote clearance of the fungus. Insight into the host response from both human and animal studies may aid in understanding the immune response in aspergillosis, possibly leading to harnessing the power of cytokines or cytokine (receptor) antagonists and transforming them into precise immunotherapeutic strategies. This could advance personalized medicine.
Collapse
Affiliation(s)
- Jata Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan 173234, Himachal Pradesh, India
| | - Raman Thakur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar 144001, Punjab, India;
| | - Karl V. Clemons
- California Institute for Medical Research, San Jose, CA 95128, USA; (K.V.C.); (D.A.S.)
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA; (K.V.C.); (D.A.S.)
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Bartels YL, van Lent PLEM, van der Kraan PM, Blom AB, Bonger KM, van den Bosch MHJ. Inhibition of TLR4 signalling to dampen joint inflammation in osteoarthritis. Rheumatology (Oxford) 2024; 63:608-618. [PMID: 37788083 PMCID: PMC10907820 DOI: 10.1093/rheumatology/kead493] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
Local and systemic low-grade inflammation, mainly involving the innate immune system, plays an important role in the development of OA. A receptor playing a key role in initiation of this inflammation is the pattern-recognition receptor Toll-like receptor 4 (TLR4). In the joint, various ligands for TLR4, many of which are damage-associated molecular patterns (DAMPs), are present that can activate TLR4 signalling. This leads to the production of pro-inflammatory and catabolic mediators that cause joint damage. In this narrative review, we will first discuss the involvement of TLR4 ligands and signalling in OA. Furthermore, we will provide an overview of methods for inhibit, TLR4 signalling by RNA interference, neutralizing anti-TLR4 antibodies, small molecules and inhibitors targeting the TLR4 co-receptor MD2. Finally, we will focus on possible applications and challenges of these strategies in the dampening of inflammation in OA.
Collapse
Affiliation(s)
- Yvonne L Bartels
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjen B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kimberly M Bonger
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
5
|
Kelty MT, Beattie SR. Development of a murine model to study the cerebral pathogenesis of Aspergillus fumigatus. mSphere 2023; 8:e0046823. [PMID: 38010145 PMCID: PMC10732035 DOI: 10.1128/msphere.00468-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Molds are environmental fungi that can cause disease in immunocompromised individuals. The most common pathogenic mold is Aspergillus fumigatus, which is typically inhaled into the lungs and causes invasive pulmonary disease. In a subset of these patients, this infection can spread from the lungs to other organs including the brain, resulting in cerebral aspergillosis. How A. fumigatus causes brain disease is not well understood and these infections are associated with extremely high mortality rates. Thus, we developed an animal model to study the pathogenesis of cerebral aspergillosis to better understand this disease and develop better treatments for these life-threatening infections.
Collapse
Affiliation(s)
- Martin T. Kelty
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Sarah R. Beattie
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Pieta A, Venetsanopoulou AI, Kittas C, Christaki E, Voulgari PV. Recurrent Scedosporium apiospermum Cutaneous Infection in a Patient with Rheumatoid Arthritis: The Potent Role of IL-6 Signaling Pathway Blockade: A Case-Based Review. J Fungi (Basel) 2023; 9:683. [PMID: 37367619 DOI: 10.3390/jof9060683] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
Rheumatoid arthritis (RA) patients deal with a higher risk of bacterial and fungal infections compared to the general population because of their dysregulated immune system as well as the immunosuppressive therapy they usually receive. Scedosporium spp. is a fungal pathogen responsible for cutaneous, lung, central nervous system, and eye infections, mostly in immunocompromised patients, leading to death in disseminated cases. We report the case of an 81-year-old woman with rheumatoid arthritis treated with steroids and an IL-6 inhibitor who was diagnosed with scedosporiosis of the upper limb. She was treated with voriconazole for one month, which was discontinued due to adverse events, and when scedosporiosis relapsed, she switched to itraconazole. We also reviewed the current literature on RA patients presenting with Scedosporium infections. Early and accurate diagnosis of scedosporiosis has therapeutic and prognostic implications, as traditionally this fungus is resistant to commonly used antifungals. Clinical alertness regarding uncommon infections, including fungal, in patients with autoimmune diseases on immunomodulatory agents is essential for effective treatment.
Collapse
Affiliation(s)
- Antigone Pieta
- Department of Rheumatology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Aliki I Venetsanopoulou
- Department of Rheumatology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Christos Kittas
- Microbiology Laboratory, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Eirini Christaki
- 1st Division of Internal Medicine & Infectious Diseases Unit, University General Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Paraskevi V Voulgari
- Department of Rheumatology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
7
|
Reyes EY, Shinohara ML. Host immune responses in the central nervous system during fungal infections. Immunol Rev 2022; 311:50-74. [PMID: 35672656 PMCID: PMC9489659 DOI: 10.1111/imr.13101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 12/19/2023]
Abstract
Fungal infections in the central nervous system (CNS) cause high morbidity and mortality. The frequency of CNS mycosis has increased over the last two decades as more individuals go through immunocompromised conditions for various reasons. Nevertheless, options for clinical interventions for CNS mycoses are still limited. Thus, there is an urgent need to understand the host-pathogen interaction mechanisms in CNS mycoses for developing novel treatments. Although the CNS has been regarded as an immune-privileged site, recent studies demonstrate the critical involvement of immune responses elicited by CNS-resident and CNS-infiltrated cells during fungal infections. In this review, we discuss mechanisms of fungal invasion in the CNS, fungal pathogen detection by CNS-resident cells (microglia, astrocytes, oligodendrocytes, neurons), roles of CNS-infiltrated leukocytes, and host immune responses. We consider that understanding host immune responses in the CNS is crucial for endeavors to develop treatments for CNS mycosis.
Collapse
Affiliation(s)
- Estefany Y. Reyes
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Mari L. Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27705, USA
| |
Collapse
|
8
|
Evaluation of blood cell viability rate, gene expression, and O-GlcNAcylation profiles as indicative signatures for fungal stimulation of salmonid cell models. Mol Immunol 2021; 142:120-129. [PMID: 34979452 DOI: 10.1016/j.molimm.2021.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022]
Abstract
Fungal diseases of fish are a significant economic problem in aquaculture. Using high-throughput expression analysis, we identified potential transcript markers in primary head kidney and secondary embryonic cells from salmonid fish after stimulation with the inactivated fungi Mucor hiemalis and Fusarium aveneacium and with purified fungal molecular patterns. The transcript levels of most of the 45 selected genes were altered in head-kidney cells after 24 h of stimulation with fungal antigens. Stimulation with the inactivated fungus M. hiemalis induced the most pronounced transcriptional changes, including the pathogen receptor-encoding genes CLEC18A and TLR22, the cytokine-encoding genes IL6 and TNF, and the gene encoding the antimicrobial peptide LEAP2. In parallel, we analyzed the total GlcNAcylation status of embryonic salmonid cells with or without stimulation with inactivated fungi. O-GlcNAcylation modulates gene expression, intracellular protein, and signal activity, but we detected no significant differences after a 3-h stimulation. A pathway analysis tool identified the "apoptosis of leukocytes" based on the expression profile 24 h after fungal stimulation. Fluorescence microscopy combined with flow cytometry revealed apoptosis in 50 % of head-kidney leukocytes after 3 h stimulation with M. hiemalis, but this level decreased by > 5% after 24 h of stimulation. The number of apoptotic cells significantly increased in all blood cells after a 3-h stimulation with fungal molecular patterns compared to unstimulated controls. This in vitro approach identified transcript-based parameters that were strongly modulated by fungal infections of salmonid fish.
Collapse
|
9
|
Watkinson RL, Looi K, Laing IA, Cianferoni A, Kicic A. Viral Induced Effects on a Vulnerable Epithelium; Lessons Learned From Paediatric Asthma and Eosinophilic Oesophagitis. Front Immunol 2021; 12:773600. [PMID: 34912343 PMCID: PMC8666438 DOI: 10.3389/fimmu.2021.773600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023] Open
Abstract
The epithelium is integral to the protection of many different biological systems and for the maintenance of biochemical homeostasis. Emerging evidence suggests that particular children have epithelial vulnerabilities leading to dysregulated barrier function and integrity, that resultantly contributes to disease pathogenesis. These epithelial vulnerabilities likely develop in utero or in early life due to various genetic, epigenetic and environmental factors. Although various epithelia are uniquely structured with specific function, prevalent allergic-type epithelial diseases in children potentially have common or parallel disease processes. These include inflammation and immune response dysregulation stemming from atypical epithelial barrier function and integrity. Two diseases where aetiology and pathogenesis are potentially linked to epithelial vulnerabilities include Paediatric Asthma and Eosinophilic Oesophagitis (EoE). For example, rhinovirus C (RV-C) is a known risk factor for paediatric asthma development and is known to disrupt respiratory epithelial barrier function causing acute inflammation. In addition, EoE, a prevalent atopic condition of the oesophageal epithelium, is characterised by similar innate immune and epithelial responses to viral injury. This review examines the current literature and identifies the gaps in the field defining viral-induced effects on a vulnerable respiratory epithelium and resulting chronic inflammation, drawing from knowledge generated in acute wheezing illness, paediatric asthma and EoE. Besides highlighting the importance of epithelial structure and barrier function in allergic disease pathogenesis regardless of specific epithelial sub-types, this review focuses on the importance of examining other parallel allergic-type disease processes that may uncover commonalities driving disease pathogenesis. This in turn may be beneficial in the development of common therapeutics for current clinical management and disease prevention in the future.
Collapse
Affiliation(s)
- Rebecca L Watkinson
- Division of Paediatrics, Medical School, The University of Western Australia, Nedlands, WA, Australia.,Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Kevin Looi
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia.,School of Public Health, Curtin University, Bentley, WA, Australia
| | - Ingrid A Laing
- Division of Paediatrics, Medical School, The University of Western Australia, Nedlands, WA, Australia.,Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Antonella Cianferoni
- Pediatrics Department, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia.,School of Public Health, Curtin University, Bentley, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
10
|
Galactomannan Produced by Aspergillus fumigatus: An Update on the Structure, Biosynthesis and Biological Functions of an Emblematic Fungal Biomarker. J Fungi (Basel) 2020; 6:jof6040283. [PMID: 33198419 PMCID: PMC7712326 DOI: 10.3390/jof6040283] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
The galactomannan (GM) that is produced by the human fungal pathogen Aspergillus fumigatus is an emblematic biomarker in medical mycology. The GM is composed of two monosaccharides: mannose and galactofuranose. The furanic configuration of galactose residues, absent in mammals, is responsible for the antigenicity of the GM and has favoured the development of ELISA tests to diagnose aspergillosis in immunocompromised patients. The GM that is produced by A. fumigatus is a unique fungal polysaccharide containing a tetramannoside repeat unit and having three different forms: (i) membrane bound through a glycosylphosphatidylinositol (GPI)-anchor, (ii) covalently linked to β-1,3-glucans in the cell wall, or (iii) released in the culture medium as a free polymer. Recent studies have revealed the crucial role of the GM during vegetative and polarized fungal growth. This review highlights these recent data on its biosynthetic pathway and its biological functions during the saprophytic and pathogenic life of this opportunistic human fungal pathogen.
Collapse
|
11
|
Holme JA, Øya E, Afanou AKJ, Øvrevik J, Eduard W. Characterization and pro-inflammatory potential of indoor mold particles. INDOOR AIR 2020; 30:662-681. [PMID: 32078193 DOI: 10.1111/ina.12656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/29/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
A number of epidemiological studies find an association between indoor air dampness and respiratory health effects. This is often suggested to be linked to enhanced mold growth. However, the role of mold is obviously difficult to disentangle from other dampness-related exposure including microbes as well as non-biological particles and chemical pollutants. The association may partly be due to visible mycelial growth and a characteristic musty smell of mold. Thus, the potential role of mold exposure should be further explored by evaluating information from experimental studies elucidating possible mechanistic links. Such studies show that exposure to spores and hyphal fragments may act as allergens and pro-inflammatory mediators and that they may damage airways by the production of toxins, enzymes, and volatile organic compounds. In the present review, we hypothesize that continuous exposure to mold particles may result in chronic low-grade pro-inflammatory responses contributing to respiratory diseases. We summarize some of the main methods for detection and characterization of fungal aerosols and highlight in vitro research elucidating how molds may induce toxicity and pro-inflammatory reactions in human cell models relevant for airway exposure. Data suggest that the fraction of fungal hyphal fragments in indoor air is much higher than that of airborne spores, and the hyphal fragments often have a higher pro-inflammatory potential. Thus, hyphal fragments of prevalent mold species with strong pro-inflammatory potential may be particularly relevant candidates for respiratory diseases associated with damp/mold-contaminated indoor air. Future studies linking of indoor air dampness with health effects should assess the toxicity and pro-inflammatory potential of indoor air particulate matter and combined this information with a better characterization of biological components including hyphal fragments from both pathogenic and non-pathogenic mold species. Such studies may increase our understanding of the potential role of mold exposure.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Øya
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Medicines Access, Norwegian Medicines Agency, Oslo, Norway
| | - Anani K J Afanou
- Group of Occupational Toxicology, STAMI National Institute of Occupational Health, Oslo, Norway
| | - Johan Øvrevik
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Wijnand Eduard
- Group of Occupational Toxicology, STAMI National Institute of Occupational Health, Oslo, Norway
| |
Collapse
|
12
|
Hatinguais R, Willment JA, Brown GD. PAMPs of the Fungal Cell Wall and Mammalian PRRs. Curr Top Microbiol Immunol 2020; 425:187-223. [PMID: 32180018 DOI: 10.1007/82_2020_201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fungi are opportunistic pathogens that infect immunocompromised patients and are responsible for an estimated 1.5 million deaths every year. The antifungal innate immune response is mediated through the recognition of pathogen-associated molecular patterns (PAMPs) by the host's pattern recognition receptors (PRRs). PRRs are immune receptors that ensure the internalisation and the killing of fungal pathogens. They also mount the inflammatory response, which contributes to initiate and polarise the adaptive response, controlled by lymphocytes. Both the innate and adaptive immune responses are required to control fungal infections. The immune recognition of fungal pathogen primarily occurs at the interface between the membrane of innate immune cells and the fungal cell wall, which contains a number of PAMPs. This chapter will focus on describing the main mammalian PRRs that have been shown to bind to PAMPs from the fungal cell wall of the four main fungal pathogens: Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans and Pneumocystis jirovecii. We will describe these receptors, their functions and ligands to provide the reader with an overview of how the immune system recognises fungal pathogens and responds to them.
Collapse
Affiliation(s)
- Remi Hatinguais
- MRC Centre for Medical Mycology at University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Janet A Willment
- MRC Centre for Medical Mycology at University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Gordon D Brown
- MRC Centre for Medical Mycology at University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK.
| |
Collapse
|
13
|
Øya E, Solhaug A, Bølling AK, Øvstebø R, Steensen TB, Afanou AKJ, Holme JA. Pro-inflammatory responses induced by A. fumigatus and A. versicolor in various human macrophage models. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:483-501. [PMID: 31116698 DOI: 10.1080/15287394.2019.1619114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exposure to mold-contaminated indoor air has been associated with various respiratory diseases, and there is a need for experimental data to confirm these associations. The pro-inflammatory properties of well-characterized aerosolized spores and hyphal fragments from Aspergillus fumigatus and Aspergillus versicolor were examined and compared using various human macrophage cell models including phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophages (THP-1 Ma), primary peripheral blood monocyte-derived macrophages (MDM), and primary airway macrophages (AM) from induced sputum. X-ray treated samples of the two mold species induced different responses with A. fumigatus displaying the most potent induction of pro-inflammatory responses. While hyphal fragments from A. fumigatus were more potent than spores, similar responses were produced by the two growth stages of A. versicolor. THP-1 Ma was the most sensitive model releasing a broad range of cytokines/chemokines. MDM exhibited a similar cytokine/chemokine profile as THP-1 Ma, except for a low-quantity release of interleukin-1β (IL-1β). In contrast, AM appeared to be nonresponsive and yielded a different pattern of pro-inflammatory markers. Toll-like receptor (TLR)4, but also to a certain degree TLR2, was involved in several responses induced by spores and aerosolized hyphal fragments of A. fumigatus in MDM. Taken together, MDM seems to be the most promising experimental macrophage model. Abbreviations: AF: A. fumigatus, Aspergillus fumigatus; AV: A. versicolor, Aspergillus versicolor; AM: Airway Macrophage; CBA: Cytometric Bead Array; CD: Cluster of Differentiation; DTT: dithiothreitol; ELISA: Enzyme Linked Immunosorbent Assay; FBS: fetal bovine serum; GM-CSF: Granulocyte macrophage colony-stimulating factor; IL-1β: Interleukin-1beta; MDM: Monocyte-Derived Macrophages; NF-κB: Nuclear Factor kappa light chain enhancer of activated B cells; NLR: NOD-like Receptor; PAMP: Pathogen Associated Molecular Pattern; PMA: Phorbol 12-myristate 13-acetate; PRR: Pattern Recognition Receptor; THP-1: Human leukemia monocyte cell line; TLR: Toll-like Receptor; TNF-α: Tumor Necrosis Factor- alpha.
Collapse
Affiliation(s)
- Elisabeth Øya
- a Department of Air Pollution and Noise , Norwegian Institute of Public Health , Oslo , Norway
| | - Anita Solhaug
- b Toxinology Research Group , Norwegian Veterinary Institute , Oslo , Norway
| | - Anette K Bølling
- a Department of Air Pollution and Noise , Norwegian Institute of Public Health , Oslo , Norway
| | - Reidun Øvstebø
- c Department for Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| | - Tonje B Steensen
- a Department of Air Pollution and Noise , Norwegian Institute of Public Health , Oslo , Norway
| | - Anani K J Afanou
- d Department for the Chemical and Biological Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Jørn A Holme
- a Department of Air Pollution and Noise , Norwegian Institute of Public Health , Oslo , Norway
| |
Collapse
|
14
|
Xuguang H, Aofei T, Tao L, Longyan Z, Weijian B, Jiao G. Hesperidin ameliorates insulin resistance by regulating the IRS1-GLUT2 pathway via TLR4 in HepG2 cells. Phytother Res 2019; 33:1697-1705. [PMID: 31074547 DOI: 10.1002/ptr.6358] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 02/22/2019] [Accepted: 03/11/2019] [Indexed: 11/07/2022]
Abstract
The aim of this study was to evaluate the effect and mechanism of hesperidin (HES) on insulin resistance (IR) in the human hepatocellular carcinoma cell line (HepG2 cells). HepG2 cells were induced with lipopolysaccharide (LPS) as a model of IR and treated with HES at three dosages. Next, the levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), the glucose content, and glucose uptake were evaluated by enzyme-linked immunosorbent assay, glucose oxidase-peroxidase method (GOD-POD), or (2-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino)-2-deoxyglucose) (2-NBDG). Moreover, the protein expression of toll-like receptors 4 (TLR4), insulin receptor substrate 1 (IRS1), nuclear factor kappa B (NF-κB), and glucose transporter 2 (GLUT2) in HepG2 cells treated with HES were assessed via western blotting analysis. In addition, GLUT2 protein expression exposed to HES was detected following treatment with TLR4 inhibitor (HTA125). Our results demonstrated that HES decreased the levels of TNF-α and IL-6, attenuated the glucose content in culture medium and increased glucose uptake in insulin-resistant HepG2 cells in vitro. Moreover, HES upregulated the expression of IRS1 and GLUT2 protein and downregulated the protein expression of TLR4 and NF-κB in insulin-resistant HepG2 cells. The expression of GLUT2 protein had no significant changes when treated with HES after blockade of TLR4. HES attenuated IR in LPS-inducedinsulin-resistant HepG2 cells. Therefore, regulating the IRS1-GLUT2 pathway via TLR4 represents a potential mechanism of HES on IR in HepG2 cells.
Collapse
Affiliation(s)
- Hu Xuguang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tian Aofei
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Liu Tao
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhou Longyan
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bei Weijian
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guo Jiao
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
15
|
Ayyappan P, Harms RZ, Buckner JH, Sarvetnick NE. Coordinated Induction of Antimicrobial Response Factors in Systemic Lupus Erythematosus. Front Immunol 2019; 10:658. [PMID: 31019506 PMCID: PMC6458289 DOI: 10.3389/fimmu.2019.00658] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by dysregulated autoantibody production and complement activation leading to multi-organ damage. The disease is associated with increased intestinal permeability. In this study, we tested the hypothesis that SLE subjects have increased systemic exposure to bacteria. Since bacteria induce the expression of antimicrobial response factors (ARFs), we measured the levels of a series of clinically relevant ARFs in the plasma of SLE subjects. We found that levels of sCD14, lysozyme, and CXCL16 were significantly elevated in SLE subjects. A strong positive correlation was also observed between sCD14 and SELENA-SLEDAI score. Interestingly, the ratio of EndoCAb IgM:total IgM was significantly decreased in SLE and this ratio was negatively correlated with sCD14 levels. Although, there were no significant differences in the levels of lipopolysaccharide binding protein (LBP) and fatty acid binding protein 2 (FABP2), we observed significant positive correlations between lysozyme levels and sCD14, LBP, and FABP2. Moreover, galectin-3 levels also positively correlate with lysozyme, sCD14, and LBP. Since our SLE cohort comprised 43.33% males, we were able to identify gender-specific changes in the levels of ARFs. Overall, these changes in the levels and relationships between ARFs link microbial exposure and SLE. Approaches to reduce microbial exposure or to improve barrier function may provide therapeutic strategies for SLE patients.
Collapse
Affiliation(s)
- Prathapan Ayyappan
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
| | - Robert Z. Harms
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jane H. Buckner
- Translational Research Program, Benaroya Research Institute, Seattle, WA, United States
| | - Nora E. Sarvetnick
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
16
|
Rossato L, Silvana dos Santos S, Ferreira LG, Rogério de Almeida S. The impact of the absence of Toll-like receptor-2 during Sporothrix brasiliensis infection. J Med Microbiol 2019; 68:87-94. [DOI: 10.1099/jmm.0.000876] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Luana Rossato
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil, Avenida Professor Lineu Prestes, 580, São Paulo, 05508-000, Brazil
| | - Suelen Silvana dos Santos
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil, Avenida Professor Lineu Prestes, 580, São Paulo, 05508-000, Brazil
| | - Lucas Gonçalves Ferreira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil, Avenida Professor Lineu Prestes, 580, São Paulo, 05508-000, Brazil
| | - Sandro Rogério de Almeida
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil, Avenida Professor Lineu Prestes, 580, São Paulo, 05508-000, Brazil
| |
Collapse
|
17
|
Fungal ligands released by innate immune effectors promote inflammasome activation during Aspergillus fumigatus infection. Nat Microbiol 2018; 4:316-327. [PMID: 30510167 DOI: 10.1038/s41564-018-0298-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/22/2018] [Indexed: 01/09/2023]
Abstract
Invasive pulmonary aspergillosis causes substantial mortality in immunocompromised individuals. Recognition of Aspergillus fumigatus by the host immune system leads to activation of the inflammasome, which provides protection against infection. However, regulation of inflammasome activation at the molecular level is poorly understood. Here, we describe two distinct pathways that coordinately control inflammasome activation during A. fumigatus infection. The C-type lectin receptor pathway activates both MAPK and NF-κB signalling, which leads to induction of downstream mediators, such as the transcription factor IRF1, and also primes the inflammasomes. Toll-like receptor signalling through the adaptor molecules MyD88 and TRIF in turn mediates efficient activation of IRF1, which induces IRGB10 expression. IRGB10 targets the fungal cell wall, and the antifungal activity of IRGB10 causes hyphae damage, modifies the A. fumigatus surface and inhibits fungal growth. We also demonstrate that one of the major fungal pathogen-associated molecular patterns, β-glucan, directly triggers inflammasome assembly. Thus, the concerted activation of both Toll-like receptors and C-type lectin receptors is required for IRF1-mediated IRGB10 regulation, which is a key event governing ligand release and inflammasome activation upon A. fumigatus infection.
Collapse
|
18
|
Hyphae fragments from A. fumigatus sensitize lung cells to silica particles (Min-U-Sil): Increased release of IL-1β. Toxicol In Vitro 2018; 55:1-10. [PMID: 30414920 DOI: 10.1016/j.tiv.2018.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022]
Abstract
Exposure to particulate matter (PM), such as mineral particles and biological particles/components may be linked to aggravation of respiratory diseases, including asthma. Here we report that exposure to Aspergillus fumigatus hyphae fragments (AFH) and lipopolysaccharide (LPS) induced both mRNA synthesis and release of pro-inflammatory interleukin-1 beta (IL-1β) in both human THP-1 monocytes (THP-1 Mo) and phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 monocytes (THP-1 macrophages; THP-1 Ma); while Min-U-Sil alone enhanced the release of IL-1β only in THP-1 Ma. Co-exposure to LPS or AFH with Min-U-Sil caused a synergistic release of IL-1β when compared to single exposures. In contrast, Min-U-Sil did not markedly change LPS- and AFH-induced release of tumor necrosis factor alpha (TNF-α). The combined exposures did not increase the LPS- and AFH-induced expression of IL-1β mRNA. Notably, the AFH- and LPS-induced IL-1β responses with and without co-exposure to Min-U-Sil in THP-1 Mo were found to be caspase-dependent as shown by inhibition with zYVAD-fmk. Furthermore, co-exposure with AFH and Min-U-Sil resulted in similar synergistic releases of IL-1β in primary human airway macrophages (AM; sputum), peripheral blood monocyte-derived macrophages (MDM) and in the human bronchial epithelial cell line (BEAS-2B). In conclusion, AFH induce both the synthesis and release of IL-1β. However, Min-U-Sil further enhanced the cleavage of the induced pro-IL-1β.
Collapse
|
19
|
Investigating multiple dysregulated pathways in rheumatoid arthritis based on pathway interaction network. J Genet 2018. [DOI: 10.1007/s12041-018-0897-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Song XD, Song XX, Liu GB, Ren CH, Sun YB, Liu KX, Liu B, Liang S, Zhu Z. Investigating multiple dysregulated pathways in rheumatoid arthritis based on pathway interaction network. J Genet 2018; 97:173-178. [PMID: 29666336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The traditional methods of identifying biomarkers in rheumatoid arthritis (RA) have focussed on the differentially expressed pathways or individual pathways, which however, neglect the interactions between pathways. To better understand the pathogenesis of RA, we aimed to identify dysregulated pathway sets using a pathway interaction network (PIN), which considered interactions among pathways. Firstly, RA-related gene expression profile data, protein-protein interactions (PPI) data and pathway data were taken up from the corresponding databases. Secondly, principal component analysis method was used to calculate the pathway activity of each of the pathway, and then a seed pathway was identified using data gleaned from the pathway activity. A PIN was then constructed based on the gene expression profile, pathway data, and PPI information. Finally, the dysregulated pathways were extracted from the PIN based on the seed pathway using the method of support vector machines and an area under the curve (AUC) index. The PIN comprised of a total of 854 pathways and 1064 pathway interactions. The greatest change in the activity score between RA and control samples was observed in the pathway of epigenetic regulation of gene expression, which was extracted and regarded as the seed pathway. Starting with this seed pathway, one maximum pathway set containing 10 dysregulated pathways was extracted from the PIN, having an AUC of 0.8249, and the result indicated that this pathway set could distinguish RA from the controls. These 10 dysregulated pathways might be potential biomarkers for RA diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Xian-Dong Song
- Department of Orthopaedics, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157000, Heilongjiang, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is a pulmonary disease caused by Aspergillus induced hypersensitivity. It usually occurs in immunocompetent but susceptible patients with bronchial asthma and cystic fibrosis. If ABPA goes undiagnosed and untreated, it may progress to bronchiectasis and/or pulmonary fibrosis with significant morbidity and mortality. ABPA is a well-recognized entity in adults; however, there is lack of literature in children. The aim of the present review is to summarize pathophysiology, diagnostic criteria, clinical features, and treatment of ABPA with emphasis on the pediatric population. A literature search was undertaken through PubMed till April 30, 2018, with keywords “ABPA or allergic bronchopulmonary aspergillosis” with limitation to “title.” The relevant published articles related to ABPA in pediatric population were included for the review. The ABPA is very well studied in adults. Recently, it is increasingly being recognized in children. There is lack of separate diagnostic criteria of ABPA for children. Although there are no trials regarding treatment of ABPA in children, steroids and itraconazole are the mainstay of therapy based on studies in adults and observational studies in children. Omalizumab is upcoming therapy, especially in refractory ABPA cases. There is a need to develop the pediatric-specific cutoffs for diagnostic criteria in ABPA. Well-designed trials are required to determine appropriate treatment regimen in children.
Collapse
Affiliation(s)
- Kana Ram Jat
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Pankaj C Vaidya
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Joseph L Mathew
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Jondhale
- Department of Pediatrics, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Meenu Singh
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
22
|
Huseyin CE, O'Toole PW, Cotter PD, Scanlan PD. Forgotten fungi-the gut mycobiome in human health and disease. FEMS Microbiol Rev 2017; 41:479-511. [PMID: 28430946 DOI: 10.1093/femsre/fuw047] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
The human body is home to a complex and diverse microbial ecosystem that plays a central role in host health. This includes a diversity of fungal species that is collectively referred to as our 'mycobiome'. Although research into the mycobiome is still in its infancy, its potential role in human disease is increasingly recognised. Here we review the existing literature available on the human mycobiota with an emphasis on the gut mycobiome, including how fungi interact with the human host and other microbes. In doing so, we provide a comprehensive critique of the methodologies available to research the human mycobiota as well as highlighting the latest research findings from mycological surveys of different groups of interest including infants, obese and inflammatory bowel disease cohorts. This in turn provides new insights and directions for future studies in this burgeoning research area.
Collapse
Affiliation(s)
- Chloe E Huseyin
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland.,APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland.,School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Paul W O'Toole
- APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland.,School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland.,APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland
| | - Pauline D Scanlan
- APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland
| |
Collapse
|
23
|
Abstract
Aspergillus fumigatus is an environmental filamentous fungus that can cause life-threatening disease in immunocompromised individuals. The interactions between A. fumigatus and the host environment are dynamic and complex. The host immune system needs to recognize the distinct morphological forms of A. fumigatus to control fungal growth and prevent tissue invasion, whereas the fungus requires nutrients and needs to adapt to the hostile environment by escaping immune recognition and counteracting host responses. Understanding these highly dynamic interactions is necessary to fully understand the pathogenesis of aspergillosis and to facilitate the design of new therapeutics to overcome the morbidity and mortality caused by A. fumigatus. In this Review, we describe how A. fumigatus adapts to environmental change, the mechanisms of host defence, and our current knowledge of the interplay between the host immune response and the fungus.
Collapse
|
24
|
Gouveia A, Bajwa E, Klegeris A. Extracellular cytochrome c as an intercellular signaling molecule regulating microglial functions. Biochim Biophys Acta Gen Subj 2017; 1861:2274-2281. [DOI: 10.1016/j.bbagen.2017.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 06/05/2017] [Accepted: 06/22/2017] [Indexed: 01/13/2023]
|
25
|
Taghavi M, Khosravi A, Mortaz E, Nikaein D, Athari SS. Role of pathogen-associated molecular patterns (PAMPS) in immune responses to fungal infections. Eur J Pharmacol 2017; 808:8-13. [DOI: 10.1016/j.ejphar.2016.11.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 10/22/2016] [Accepted: 11/08/2016] [Indexed: 12/26/2022]
|
26
|
Zhou X, Dang YJ, Wang GF, Jin XQ. Effects of Aspergillus fumigatus on glucocorticoid receptor and β2-adrenergic receptor expression in a rat model of asthma. Exp Lung Res 2017; 43:197-207. [PMID: 28696809 DOI: 10.1080/01902148.2017.1339142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Conventional inhaled corticosteroids or β2-adrenergic receptor agonists do not work well in some asthmatic populations while empirical antifungal therapy has obvious impact on those patients. The study was designed to investigate whether short-term exposure to Aspergillus fumigatus (A. fumigatus) could decrease glucocorticoid receptor (GCR) and β2-adrenergic receptor (ADRB2) expression in lung tissue of asthmatic rats. MATERIALS AND METHODS A rat model of chronic asthma was first established by ovalbumin sensitization and challenge. Rats with chronic asthma were then exposed to short-term application of A. fumigatus spores. Airway hyper-responsiveness, eosinophil ratio in bronchoalveolar lavage (BAL) fluid and total IgE in serum were counted in these experimental animals. GCR and ADRB2 expression in the lung were detected and analyzed. Furthermore, the levels of toll-like receptors (TLRs) 2, 3 and 4 in lung tissue were measured. RESULTS Short-term exposure to A. fumigatus could down-regulate the expression of GCR, aggravate airway hyper-responsiveness and increase the level of TLR2 in rats with asthma. There were no obvious changes in the levels of ADRB2 expression, recruited eosinophils, total IgE, TLR3 and TLR4 after application of A. fumigatus in asthmatic rats. CONCLUSIONS These findings indicate that A. fumigatus exposure may be involved in glucocorticoids unresponsiveness by down-regulating the expression of GCR in asthmatics. The possibility of A. fumigatus colonization or infection should not be ignored in patients of steroid-resistant asthma.
Collapse
Affiliation(s)
- Xia Zhou
- a Department of Respiratory Medicine , Huashan Hospital Affiliated to Fudan University , Shanghai , China
| | - Ya-Jie Dang
- b Department of Respiratory Medicine , Shanghai First People's Hospital Affiliated to Shanghai JiaoTong University , Shanghai , China
| | - Gui-Fang Wang
- a Department of Respiratory Medicine , Huashan Hospital Affiliated to Fudan University , Shanghai , China
| | - Xian-Qiao Jin
- a Department of Respiratory Medicine , Huashan Hospital Affiliated to Fudan University , Shanghai , China
| |
Collapse
|
27
|
Stevenson A, Hamill PG, O'Kane CJ, Kminek G, Rummel JD, Voytek MA, Dijksterhuis J, Hallsworth JE. Aspergillus penicillioidesdifferentiation and cell division at 0.585 water activity. Environ Microbiol 2017; 19:687-697. [DOI: 10.1111/1462-2920.13597] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Andrew Stevenson
- Institute for Global Food Security; School of Biological Sciences, MBC, Queen's University Belfast; Belfast BT9 7BL Northern Ireland
| | - Philip G. Hamill
- Institute for Global Food Security; School of Biological Sciences, MBC, Queen's University Belfast; Belfast BT9 7BL Northern Ireland
| | - Callum J. O'Kane
- Institute for Global Food Security; School of Biological Sciences, MBC, Queen's University Belfast; Belfast BT9 7BL Northern Ireland
| | - Gerhard Kminek
- Independent Safety Office; European Space Agency; 2200 AG Noordwijk The Netherlands
| | | | | | - Jan Dijksterhuis
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8; Utrecht CT 3584 The Netherlands
| | - John E. Hallsworth
- Institute for Global Food Security; School of Biological Sciences, MBC, Queen's University Belfast; Belfast BT9 7BL Northern Ireland
| |
Collapse
|
28
|
Azuma H, Yamamoto T, Chishima F. Effects of anti-β2-GPI antibodies on cytokine production in normal first-trimester trophoblast cells. J Obstet Gynaecol Res 2016; 42:769-75. [PMID: 27098191 DOI: 10.1111/jog.12993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/26/2016] [Accepted: 02/18/2016] [Indexed: 01/03/2023]
Abstract
AIM The anti-β2-GPI antibody (aβ2-GPIAb) has been detected in recurrent fetal loss with strong pathogenic activity. The effects of aβ2-GPIAb on cytokine production and aβ2-GPIAb binding sites in first-trimester trophoblast cells were evaluated. METHODS First-trimester trophoblast cells were cultured in 24-well tissue culture plates with immunoglobulin G (IgG) obtained from aβ2-GPIAb-positive and aβ2-GPIAb-negative serum. Cytokines in the cultured supernatant were measured using the suspension array system and enzyme-linked immunosorbent assays. To identify potential binding sites for aβ2-GPIAb, such as toll-like receptors (TLR) 2 or TLR4, we used mouse monoclonal anti-TLR2 and/or anti-TLR4 antibodies to inhibit TLR and then measured cytokine production. RESULTS The production of cytokines, such as interleukin-6 and interleukin-8, increased more in response to aβ2-GPIAb-positive IgG than to aβ2-GPIAb-negative IgG in trophoblast cells. The secretion of cytokines from trophoblast cells decreased when the TLR were blocked with mouse monoclonal anti-TLR2 and anti-TLR4 antibodies. CONCLUSION We suspect that aβ2-GPIAb might increase cytokine production by binding to TLR2 or TLR4. The increased cytokine production in response to aβ2-GPIAb might play a role in the increased inflammatory response in the placenta.
Collapse
Affiliation(s)
- Hiromitsu Azuma
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Tokyo, Japan
| | - Tatsuo Yamamoto
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Tokyo, Japan
| | - Fumihisa Chishima
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
29
|
van Tongeren J, Röschmann KIL, Reinartz SM, Luiten S, Fokkens WJ, de Jong EC, van Drunen CM. Expression profiling and functional analysis of Toll-like receptors in primary healthy human nasal epithelial cells shows no correlation and a refractory LPS response. Clin Transl Allergy 2015; 5:42. [PMID: 26668716 PMCID: PMC4677436 DOI: 10.1186/s13601-015-0086-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/24/2015] [Indexed: 11/24/2022] Open
Abstract
Background Innate immune recognition via Toll-like receptors (TLRs) on barrier cells like epithelial cells has been shown to influence the regulation of local immune responses. Here we determine expression level variations and functionality of TLRs in nasal epithelial cells from healthy donors. Methods Expression levels of the different TLRs on primary nasal epithelial cells from healthy donors derived from inferior turbinates was determined by RT-PCR. Functionality of the TLRs was determined by stimulation with the respective ligand and evaluation of released mediators by Luminex ELISA. Results Primary nasal epithelial cells express different levels of TLR1-6 and TLR9. We were unable to detect mRNA of TLR7, TLR8 and TLR10. Stimulation with Poly(I:C) resulted in a significant increased secretion of IL-4, IL-6, RANTES, IP-10, MIP-1β, VEGF, FGF, IL-1RA, IL-2R and G-CSF. Stimulation with PGN only resulted in significant increased production of IL-6, VEGF and IL-1RA. Although the expression of TLR4 and co-stimulatory molecules could be confirmed, primary nasal epithelial cells appeared to be unresponsive to stimulation with LPS. Furthermore, we observed huge individual differences in TLR agonist-induced mediator release, which did not correlate with the respective expression of TLRs. Conclusion Our data suggest that nasal epithelium seems to have developed a delicate system of discrimination and recognition of microbial patterns. Hypo-responsiveness to LPS could provide a mechanism to dampen the inflammatory response in the nasal mucosa in order to avoid a chronic inflammatory response. Individual, differential expression of TLRs on epithelial cells and functionality in terms of released mediators might be a crucial factor in explaining why some people develop allergies to common inhaled antigens, and others do not.
Collapse
Affiliation(s)
- J van Tongeren
- Department of Otorhinolaryngology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - K I L Röschmann
- Department of Otorhinolaryngology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - S M Reinartz
- Department of Otorhinolaryngology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - S Luiten
- Department of Otorhinolaryngology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - W J Fokkens
- Department of Otorhinolaryngology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - E C de Jong
- Department of Cell Biology & Histology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - C M van Drunen
- Department of Otorhinolaryngology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| |
Collapse
|
30
|
Karki R, Man SM, Malireddi RKS, Gurung P, Vogel P, Lamkanfi M, Kanneganti TD. Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection. Cell Host Microbe 2015; 17:357-368. [PMID: 25704009 DOI: 10.1016/j.chom.2015.01.006] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 12/08/2014] [Accepted: 01/05/2015] [Indexed: 12/23/2022]
Abstract
Invasive pulmonary aspergillosis is a leading cause of infection-associated mortality in immunocompromised individuals. Aspergillus fumigatus infection produces ligands that could activate inflammasomes, but the contribution of these host defenses remains unclear. We show that two inflammasome receptors, AIM2 and NLRP3, recognize intracellular A. fumigatus and collectively induce protective immune responses. Mice lacking both AIM2 and NLRP3 fail to confine Aspergillus hyphae to inflammatory foci, leading to widespread hyphal dissemination to lung blood vessels. These mice succumb to infection more rapidly than WT mice or mice lacking a single inflammasome receptor. AIM2 and NLRP3 activation initiates assembly of a single cytoplasmic inflammasome platform, composed of the adaptor protein ASC along with caspase-1 and caspase-8. Combined actions of caspase-1 and caspase-8 lead to processing of pro-inflammatory cytokines IL-1β and IL-18 that critically control the infection. Thus, AIM2 and NLRP3 form a dual cytoplasmic surveillance system that orchestrates responses against A. fumigatus infection.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Si Ming Man
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Prajwal Gurung
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter Vogel
- Animal Resources Center and the Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mohamed Lamkanfi
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | | |
Collapse
|
31
|
Barreto-Bergter E, Figueiredo RT. Fungal glycans and the innate immune recognition. Front Cell Infect Microbiol 2014; 4:145. [PMID: 25353009 PMCID: PMC4196476 DOI: 10.3389/fcimb.2014.00145] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/25/2014] [Indexed: 11/13/2022] Open
Abstract
Polysaccharides such as α- and β-glucans, chitin, and glycoproteins extensively modified with both N- and O-linked carbohydrates are the major components of fungal surfaces. The fungal cell wall is an excellent target for the action of antifungal agents, since most of its components are absent from mammalian cells. Recognition of these carbohydrate-containing molecules by the innate immune system triggers inflammatory responses and activation of microbicidal mechanisms by leukocytes. This review will discuss the structure of surface fungal glycoconjugates and polysaccharides and their recognition by innate immune receptors.
Collapse
Affiliation(s)
- Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Rodrigo T Figueiredo
- Instituto de Ciências Biomédicas/Unidade de Xerém, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Chotirmall SH, McElvaney NG. Fungi in the cystic fibrosis lung: bystanders or pathogens? Int J Biochem Cell Biol 2014; 52:161-73. [PMID: 24625547 DOI: 10.1016/j.biocel.2014.03.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/21/2014] [Accepted: 03/02/2014] [Indexed: 12/25/2022]
Abstract
Improvement to the life expectancy of people with cystic fibrosis (PWCF) brings about novel challenges including the need for evaluation of the role of fungi in the cystic fibrosis (CF) lung. To determine if such organisms represent bystanders or pathogens affecting clinical outcomes we review the existing knowledge from a clinical, biochemical, inflammatory and immunological perspective. The prevalence and importance of fungi in the CF airway has likely been underestimated with the most frequently isolated filamentous fungi being Aspergillus fumigatus and Scedosporium apiospermum and the major yeast Candida albicans. Developing non-culture based microbiological methods for fungal detection has improved both our classification and understanding of their clinical consequences including localized, allergic and systemic infections. Cross-kingdom interaction between bacteria and fungi are discussed as is the role of biofilms further affecting clinical outcome. A combination of host and pathogen-derived factors determines if a particular fungus represents a commensal, colonizer or pathogen in the setting of CF. The underlying immune state, disease severity and treatment burden represent key host variables whilst fungal type, form, chronicity and virulence including the ability to evade immune recognition determines the pathogenic potential of a specific fungus at a particular point in time. Further research in this emerging field is warranted to fully elucidate the spectrum of disease conferred by the presence of fungi in the CF airway and the indications for therapeutic interventions.
Collapse
Affiliation(s)
- Sanjay H Chotirmall
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland
| | - Noel G McElvaney
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland.
| |
Collapse
|
33
|
Skjeflo EW, Christiansen D, Espevik T, Nielsen EW, Mollnes TE. Combined inhibition of complement and CD14 efficiently attenuated the inflammatory response induced by Staphylococcus aureus in a human whole blood model. THE JOURNAL OF IMMUNOLOGY 2014; 192:2857-64. [PMID: 24516199 DOI: 10.4049/jimmunol.1300755] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The complement and TLR systems are activated in sepsis, contributing to an unfavorable inflammatory "storm." Combined inhibition of these systems has been documented to efficiently attenuate the inflammatory responses induced by Gram-negative bacteria. In this study, we hypothesized that the combined inhibition would attenuate the inflammatory responses induced by Gram-positive bacteria. Staphylococcus aureus bacteria (strains Cowan and Wood), as well as S. aureus cell wall lipoteichoic acid (LTA), were incubated in thrombin-inhibited human whole blood. Complement was inhibited at the level of C3 and C5, and the TLRs by inhibiting CD14 and TLR2. Thirty-four inflammatory markers were measured by multiplex technology and flow cytometry. Thirteen markers increased significantly in response to Cowan and Wood, and 12 in response to LTA. Combined inhibition with the C3 inhibitor compstatin and the anti-CD14 Ab 18D11 significantly reduced 92 (Cowan, LTA) and 85% (Wood) of these markers. Compstatin alone significantly reduced 54 (Cowan), 38 (Wood), and 83% (LTA), whereas anti-CD14 alone significantly reduced 23, 15, and 67%, respectively. Further experiments showed that the effects of complement inhibition were mainly due to inhibition of C5a interaction with the C5a receptor. The effects on inhibiting CD14 and TLR2 were similar. The combined regimen was more efficient toward the bacterial effects than either complement or anti-CD14 inhibition alone. Complement was responsible for activation of and phagocytosis by both granulocytes and monocytes. Disrupting upstream recognition by inhibiting complement and CD14 efficiently attenuated S. aureus-induced inflammation and might be a promising treatment in both Gram-negative and Gram-positive sepsis.
Collapse
|
34
|
Savva A, Roger T. Targeting toll-like receptors: promising therapeutic strategies for the management of sepsis-associated pathology and infectious diseases. Front Immunol 2013; 4:387. [PMID: 24302927 PMCID: PMC3831162 DOI: 10.3389/fimmu.2013.00387] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/05/2013] [Indexed: 01/04/2023] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors playing a fundamental role in sensing microbial invasion and initiating innate and adaptive immune responses. TLRs are also triggered by danger signals released by injured or stressed cells during sepsis. Here we focus on studies developing TLR agonists and antagonists for the treatment of infectious diseases and sepsis. Positioned at the cell surface, TLR4 is essential for sensing lipopolysaccharide of Gram-negative bacteria, TLR2 is involved in the recognition of a large panel of microbial ligands, while TLR5 recognizes flagellin. Endosomal TLR3, TLR7, TLR8, TLR9 are specialized in the sensing of nucleic acids produced notably during viral infections. TLR4 and TLR2 are favorite targets for developing anti-sepsis drugs, and antagonistic compounds have shown efficient protection from septic shock in pre-clinical models. Results from clinical trials evaluating anti-TLR4 and anti-TLR2 approaches are presented, discussing the challenges of study design in sepsis and future exploitation of these agents in infectious diseases. We also report results from studies suggesting that the TLR5 agonist flagellin may protect from infections of the gastrointestinal tract and that agonists of endosomal TLRs are very promising for treating chronic viral infections. Altogether, TLR-targeted therapies have a strong potential for prevention and intervention in infectious diseases, notably sepsis.
Collapse
Affiliation(s)
- Athina Savva
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne , Lausanne , Switzerland
| | | |
Collapse
|
35
|
Thacker RI, Retzinger AC, Cash JG, Dentler MD, Retzinger GS. Extracellular transport of cell-size particles and tumor cells by dendritic cells in culture. Exp Mol Pathol 2013; 95:385-91. [PMID: 24145002 DOI: 10.1016/j.yexmp.2013.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 09/27/2013] [Indexed: 11/18/2022]
Abstract
Many particulate materials of sizes approximating that of a cell disseminate after being introduced into the body. While some move about within phagocytic inflammatory cells, others appear to move about outside of, but in contact with, such cells. In this report, we provide unequivocal photomicroscopic evidence that cultured, mature, human dendritic cells can transport in extracellular fashion over significant distances both polymeric beads and tumor cells. At least in the case of polymeric beads, both fibrinogen and the β2-integrin subunit, CD18, appear to play important roles in the transport process. These discoveries may yield insight into a host of disease-related phenomena, including and especially tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Robert I Thacker
- Amnis Corporation, EMD-Millipore, Seattle, WA 98119, United States
| | | | | | | | | |
Collapse
|
36
|
Wang N, Zhao G, Gao A, Che C, Qu X, Liu Y, Guo Y. Association of TLR2 and TLR4 Gene Single Nucleotide Polymorphisms with Fungal Keratitis in Chinese Han Population. Curr Eye Res 2013; 39:47-52. [DOI: 10.3109/02713683.2013.827212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
|
38
|
The immune interplay between the host and the pathogen in Aspergillus fumigatus lung infection. BIOMED RESEARCH INTERNATIONAL 2013; 2013:693023. [PMID: 23984400 PMCID: PMC3745895 DOI: 10.1155/2013/693023] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/14/2013] [Indexed: 12/22/2022]
Abstract
The interplay between Aspergillus fumigatus and the host immune response in lung infection has been subject of studies over the last years due to its importance in immunocompromised patients. The multifactorial virulence factors of A. fumigatus are related to the fungus biological characteristics, for example, structure, ability to grow and adapt to high temperatures and stress conditions, besides capability of evading the immune system and causing damage to the host. In this context, the fungus recognition by the host innate immunity occurs when the pathogen disrupts the natural and chemical barriers followed by the activation of acquired immunity. It seems clear that a Th1 response has a protective role, whereas Th2 reactions are often associated with higher fungal burden, and Th17 response is still controversial. Furthermore, a fine regulation of the effector immunity is required to avoid excessive tissue damage associated with fungal clearance, and this role could be attributed to regulatory T cells. Finally, in this work we reviewed the aspects involved in the complex interplay between the host immune response and the pathogen virulence factors, highlighting the immunological issues and the importance of its better understanding to the development of novel therapeutic approaches for invasive lung aspergillosis.
Collapse
|
39
|
Chotirmall SH, Al-Alawi M, Mirkovic B, Lavelle G, Logan PM, Greene CM, McElvaney NG. Aspergillus-associated airway disease, inflammation, and the innate immune response. BIOMED RESEARCH INTERNATIONAL 2013; 2013:723129. [PMID: 23971044 PMCID: PMC3736487 DOI: 10.1155/2013/723129] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/24/2013] [Indexed: 01/19/2023]
Abstract
Aspergillus moulds exist ubiquitously as spores that are inhaled in large numbers daily. Whilst most are removed by anatomical barriers, disease may occur in certain circumstances. Depending on the underlying state of the human immune system, clinical consequences can ensue ranging from an excessive immune response during allergic bronchopulmonary aspergillosis to the formation of an aspergilloma in the immunocompetent state. The severest infections occur in those who are immunocompromised where invasive pulmonary aspergillosis results in high mortality rates. The diagnosis of Aspergillus-associated pulmonary disease is based on clinical, radiological, and immunological testing. An understanding of the innate and inflammatory consequences of exposure to Aspergillus species is critical in accounting for disease manifestations and preventing sequelae. The major components of the innate immune system involved in recognition and removal of the fungus include phagocytosis, antimicrobial peptide production, and recognition by pattern recognition receptors. The cytokine response is also critical facilitating cell-to-cell communication and promoting the initiation, maintenance, and resolution of the host response. In the following review, we discuss the above areas with a focus on the innate and inflammatory response to airway Aspergillus exposure and how these responses may be modulated for therapeutic benefit.
Collapse
|
40
|
Punsmann S, Liebers V, Stubel H, Brüning T, Raulf-Heimsoth M. Determination of inflammatory responses to Aspergillus versicolor and endotoxin with human cryo-preserved blood as a suitable tool. Int J Hyg Environ Health 2013; 216:402-7. [DOI: 10.1016/j.ijheh.2012.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 09/12/2012] [Accepted: 11/24/2012] [Indexed: 11/25/2022]
|
41
|
Wang J, Dong B, Tan Y, Yu S, Bao YX. A study on the immunomodulation of polysaccharopeptide through the TLR4-TIRAP/MAL-MyD88 signaling pathway in PBMCs from breast cancer patients. Immunopharmacol Immunotoxicol 2013; 35:497-504. [DOI: 10.3109/08923973.2013.805764] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Gladiator A, Trautwein-Weidner K, Bär E, LeibundGut-Landmann S. Arming Th17 Cells for Antifungal Host Defense. CURRENT FUNGAL INFECTION REPORTS 2013. [DOI: 10.1007/s12281-013-0130-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Gresnigt MS, Netea MG, van de Veerdonk FL. Pattern recognition receptors and their role in invasive aspergillosis. Ann N Y Acad Sci 2013; 1273:60-7. [PMID: 23230838 DOI: 10.1111/j.1749-6632.2012.06759.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pattern recognition receptors (PRRs) are germline receptors that recognize conserved structures on microorganisms. Several PRRs have been identified in the recent years that are involved in the immune response against Aspergillus fumigatus. The role of PRRs in invasive pulmonary aspergillosis becomes especially apparent in the setting of an immunocompromised status of the host because of the redundancy of many PRRs in the host defense against A. fumigatus. Studies that investigated the PRRs and their effector pathways in invasive aspergillosis have led to a better understanding of the pathogenesis of invasive aspergillosis in immunocompromised patients. This knowledge may pave the way for novel diagnostic and immunomodulatory treatment strategies that are needed to overcome the high mortality associated with invasive A. fumigatus infection in immunocompromised patients.
Collapse
Affiliation(s)
- Mark S Gresnigt
- Department of Medicine, Radboud University, Nijmegen Medical Center, Nijmegen Institute for Infection, Inflammation, and Immunity, Nijmegen, the Netherlands
| | | | | |
Collapse
|
44
|
Kanevskiy LM, Telford WG, Sapozhnikov AM, Kovalenko EI. Lipopolysaccharide induces IFN-γ production in human NK cells. Front Immunol 2013; 4:11. [PMID: 23372571 PMCID: PMC3556587 DOI: 10.3389/fimmu.2013.00011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/07/2013] [Indexed: 11/28/2022] Open
Abstract
Natural killer (NK) cells have been shown to play a regulatory role in sepsis. According to the current view, NK cells become activated via macrophages or dendritic cells primed by lipopolysaccharide (LPS). Recently, TLR4 gene expression was detected in human NK cells suggesting the possibility of a direct action of LPS on NK cells. In this study, effects of LPS on NK cell cytokine production and cytotoxicity were studied using highly purified human NK cells. LPS was shown to induce IFN-γ production in the presence of IL-2 in NK cell populations containing>98% CD56+ cells. Surprisingly, in the same experiments LPS decreased NK cell degranulation. No significant expression of markers related to blood dendritic cells, monocytes or T or B lymphocytes in the NK cell preparations was observed; the portions of HLA-DR-bright, CD14+, CD3+, and CD20+ cells amounted to less than 0.1% within the cell populations. No more than 0.2% of NK cells were shown to be slightly positive for surface TLR4 in our experimental system, although intracellular staining revealed moderate amounts of TLR4 inside the NK cell population. These cells were negative for surface CD14, the receptor participating in LPS recognition by TLR4. Incubation of NK cells with IL-2 or/and LPS did not lead to an increase in TLR4 surface expression. TLR4-CD56+ NK cells isolated by cell sorting secreted IFN-γ in response to LPS. Antibody to TLR4 did not block the LPS-induced increase in IFN-γ production. We have also shown that Re-form of LPS lacking outer core oligosaccharide and O-antigen induces less cytokine production in NK cells than full-length LPS. We speculate that the polysaccharide fragments of LPS molecule may take part in LPS-induced IFN-γ production by NK cells. Collectively our data suggest the existence of a mechanism of LPS direct action on NK cells distinct from established TLR4-mediated signaling.
Collapse
Affiliation(s)
- Leonid M Kanevskiy
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry,Russian Academy of Science Moscow, Russia
| | | | | | | |
Collapse
|
45
|
Hasenberg M, Stegemann-Koniszewski S, Gunzer M. Cellular immune reactions in the lung. Immunol Rev 2012; 251:189-214. [DOI: 10.1111/imr.12020] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mike Hasenberg
- Institute of Experimental Immunology and Imaging; University of Duisburg/Essen; University Hospital; Essen; Germany
| | | | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging; University of Duisburg/Essen; University Hospital; Essen; Germany
| |
Collapse
|
46
|
Mirkov I, Stosic-Grujicic S, Kataranovski M. Host immune defense against Aspergillus fumigatus: insight from experimental systemic (disseminated) infection. Immunol Res 2012; 52:120-6. [PMID: 22388638 DOI: 10.1007/s12026-012-8274-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Model of systemic Aspergillus fumigatus infection induced by intravenous application of conidia is suitable for studying important aspects of invasive aspergillosis including relationship between infection and mortality, dissemination of infection and immune mechanisms involved in host resistance to this fungus. Use of this model allows the investigation of both innate and adaptive immune response characteristics in resistant/susceptible host, and investigating the contribution of genetic background and cytokine gene deficiency improves the knowledge of the diversity of mechanisms of immune response to Aspergillus infection. Studying of various aspects of systemic aspergillosis contributes to development of antifungal drugs.
Collapse
Affiliation(s)
- I Mirkov
- Department of Ecology, Institute for Biological Research Sinisa Stankovic, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | | | | |
Collapse
|
47
|
Saluja R, Metz M, Maurer M. Role and relevance of mast cells in fungal infections. Front Immunol 2012; 3:146. [PMID: 22707950 PMCID: PMC3374363 DOI: 10.3389/fimmu.2012.00146] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/19/2012] [Indexed: 01/01/2023] Open
Abstract
In addition to their detrimental role in allergic diseases, mast cells (MCs) are well known to be important cells of the innate immune system. In the last decade, they have been shown to contribute significantly to optimal host defense against numerous pathogens including parasites, bacteria, and viruses. The contribution of MCs to the immune responses in fungal infections, however, is largely unknown. In this review, we first discuss key features of mast cell responses to pathogens in general and then summarize the current knowledge on the function of MCs in the defense against fungal pathogens. We especially focus on the potential and proven mechanisms by which MCs can detect fungal infections and on possible MC effector mechanisms in protecting from fungal infections.
Collapse
Affiliation(s)
- R Saluja
- Department of Dermatology and Allergy, Charite - Universitätsmedizin Berlin Berlin, Germany
| | | | | |
Collapse
|
48
|
Heinsbroek SE, Oei A, Roelofs JJTH, Dhawan S, te Velde A, Gordon S, de Jonge WJ. Genetic deletion of dectin-1 does not affect the course of murine experimental colitis. BMC Gastroenterol 2012; 12:33. [PMID: 22507600 PMCID: PMC3353241 DOI: 10.1186/1471-230x-12-33] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 04/16/2012] [Indexed: 02/06/2023] Open
Abstract
Background It is believed that inflammatory bowel diseases (IBD) result from an imbalance in the intestinal immune response towards the luminal microbiome. Dectin-1 is a widely expressed pattern recognition receptor that recognizes fungi and upon recognition it mediates cytokine responses and skewing of the adaptive immune system. Hence, dectin-1 may be involved in the pathogenesis of IBD. Methods We assessed the responses of dectin-1 deficient macrophages to the intestinal microbiota and determined the course of acute DSS and chronic Helicobacter hepaticus induced colitis in dectin-1 deficient mice. Results We show that the mouse intestinal microbiota contains fungi and the cytokine responses towards this microbiota were significantly reduced in dectin-1 deficient macrophages. However, in two different colitis models no significant differences in the course of inflammation were found in dectin-1 deficient mice compared to wild type mice. Conclusions Together our data suggest that, although at the immune cell level there is a difference in response towards the intestinal flora in dectin-1 deficient macrophages, during intestinal inflammation this response seems to be redundant since dectin-1 deficiency in mice does not affect intestinal inflammation in experimental colitis.
Collapse
Affiliation(s)
- Sigrid Em Heinsbroek
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, AMC, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
49
|
Beitnes ACR, Ráki M, Brottveit M, Lundin KEA, Jahnsen FL, Sollid LM. Rapid accumulation of CD14+CD11c+ dendritic cells in gut mucosa of celiac disease after in vivo gluten challenge. PLoS One 2012; 7:e33556. [PMID: 22438948 PMCID: PMC3306402 DOI: 10.1371/journal.pone.0033556] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 02/14/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Of antigen-presenting cells (APCs) expressing HLA-DQ molecules in the celiac disease (CD) lesion, CD11c(+) dendritic cells (DCs) co-expressing the monocyte marker CD14 are increased, whereas other DC subsets (CD1c(+) or CD103(+)) and CD163(+)CD11c(-) macrophages are all decreased. It is unclear whether these changes result from chronic inflammation or whether they represent early events in the gluten response. We have addressed this in a model of in vivo gluten challenge. METHODS Treated HLA-DQ2(+) CD patients (n = 12) and HLA-DQ2(+) gluten-sensitive control subjects (n = 12) on a gluten-free diet (GFD) were orally challenged with gluten for three days. Duodenal biopsies obtained before and after gluten challenge were subjected to immunohistochemistry. Single cell digests of duodenal biopsies from healthy controls (n = 4), treated CD (n = 3) and untreated CD (n = 3) patients were analyzed by flow cytometry. RESULTS In treated CD patients, the gluten challenge increased the density of CD14(+)CD11c(+) DCs, whereas the density of CD103(+)CD11c(+) DCs and CD163(+)CD11c(-) macrophages decreased, and the density of CD1c(+)CD11c(+) DCs remained unchanged. Most CD14(+)CD11c(+) DCs co-expressed CCR2. The density of neutrophils also increased in the challenged mucosa, but in most patients no architectural changes or increase of CD3(+) intraepithelial lymphocytes (IELs) were found. In control tissue no significant changes were observed. CONCLUSIONS Rapid accumulation of CD14(+)CD11c(+) DCs is specific to CD and precedes changes in mucosal architecture, indicating that this DC subset may be directly involved in the immunopathology of the disease. The expression of CCR2 and CD14 on the accumulating CD11c(+) DCs indicates that these cells are newly recruited monocytes.
Collapse
Affiliation(s)
- Ann-Christin Røberg Beitnes
- Centre for Immune Regulation and Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
50
|
Tighe RM, Potts EN, Feng F, Li Z, Frush B, He YW, Corry DB, Noble PW, Hollingsworth JW. Extracellular Matrix Protein Mindin is Required for the Complete Allergic Response to Fungal-Associated Proteinase. ACTA ACUST UNITED AC 2012; 2011. [PMID: 23560245 PMCID: PMC3613851 DOI: 10.4172/2155-6121.s1-001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Asthma remains an important cause of morbidity and mortality with an incidence that continues to rise. Despite the importance of this disease, the mechanisms by which the host develops allergic airways disease remain poorly understood. The development of allergic airways disease appears to be contingent on activation of both the innate and adaptive immune system, but little is known about the cross-talk between these two systems. The extracellular matrix protein mindin (Spondin 2) has been previously demonstrated to have functional roles in both the innate and adaptive immunological responses. Previous work supports that pulmonary challenge with fungal-associated allergenic proteinase (FAP) induces an innate allergic response. We hypothesized that mindin would modify the biological response to FAP. Saline or FAP was administered by oropharyngeal aspiration to C57BL/6 wild type or mindin-null mice every 4 days for a total of five exposures. FAP exposed C57BL/6 mice developed enhanced airway hyperresponsiveness (AHR) to methacholine challenge and increased neutrophils and eosinophils in the bronchoalveolar lavage as compared to saline exposed controls. These responses were significantly reduced in mindin-null mice exposed to FAP. FAP challenge was associated with a broad induction of cytokines (IL-1β, TNFα, Th1, Th2, and IL-17), chemokines, and growth factors, which were reduced in mindin-null mice exposed to FAP. RNA expression in lung monocytes for representative M1 and M2 activation markers were increased by FAP, but were independent of mindin. Our observations support that challenge with FAP results in activation of both innate and adaptive immune signaling pathways in a manner partially dependent on mindin. These findings suggest a potential role for the extracellular matrix protein mindin in cross-talk between the innate and adaptive immune systems.
Collapse
Affiliation(s)
- Robert M Tighe
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|