1
|
Bacon EE, Myers KS, Iruegas-López R, Banta AB, Place M, Ebersberger I, Peters JM. Physiological roles of an Acinetobacter-specific σ factor. mBio 2025:e0096825. [PMID: 40387328 DOI: 10.1128/mbio.00968-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/15/2025] [Indexed: 05/20/2025] Open
Abstract
The Gram-negative pathogen Acinetobacter baumannii is considered an "urgent threat" to human health due to its propensity to become antibiotic resistant. Understanding the distinct regulatory paradigms used by A. baumannii to mitigate cellular stresses may uncover new therapeutic targets. Many γ-proteobacteria use the extracytoplasmic function (ECF) σ factor, RpoE, to invoke envelope homeostasis networks in response to stress. Acinetobacter species contain the poorly characterized ECF "SigAb"; however, it is unclear if SigAb has the same physiological role as RpoE. Here, we show that SigAb is a metal stress-responsive ECF that appears unique to Acinetobacter species and distinct from RpoE-like ECFs. We combine promoter mutagenesis, motif scanning, and chromatin immunoprecipitation-sequencing (ChIP-seq) to define the direct SigAb regulon, which consists of genes encoding SigAb itself, the stringent response mediator, RelA, and the uncharacterized small RNA, "SabS." However, RNA-seq of strains overexpressing SigAb revealed a large, indirect regulon containing hundreds of genes. Metal resistance genes are key elements of the indirect regulon, as CRISPRi knockdown of sigAb or sabS resulted in increased copper sensitivity and excess copper-induced SigAb-dependent transcription. Furthermore, we found that two uncharacterized genes in the sigAb operon, "aabA" and "aabB," have anti-SigAb activity. Finally, employing a targeted Tn-seq approach that uses CRISPR-associated transposons, we show that sigAb, aabA, and aabB are important for fitness even during optimal growth conditions. Our work reveals new physiological roles for SigAb and SabS, provides a novel approach for assessing gene fitness, and highlights the distinct regulatory architecture of A. baumannii. IMPORTANCE Acinetobacter baumannii is a hospital-acquired pathogen, and many strains are resistant to multiple antibiotics. Understanding how A. baumannii senses and responds to stress may uncover novel routes to treat infections. Here, we examine how the Acinetobacter-specific transcription factor, SigAb, mitigates stress. We find that SigAb directly regulates only a small number of genes, but indirectly controls hundreds of genes that have substantial impacts on cell physiology. We show that SigAb is required for maximal growth, even during optimal conditions, and is acutely required during growth in the presence of elevated copper. Given that copper toxicity plays roles in pathogenesis and on copper-containing surfaces in hospitals, we speculate that SigAb function may be important in clinically relevant contexts.
Collapse
Affiliation(s)
- Emily E Bacon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin S Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rubén Iruegas-López
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Hesse, Germany
| | - Amy B Banta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ingo Ebersberger
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Hesse, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIKF), Frankfurt, Hesse, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt, Hesse, Germany
| | - Jason M Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Liu H, Lei H, Cao J, Xie Z, Shi Y, Zhao Y. AcfA Regulates the Virulence and Cell Envelope Stress Response of Vibrio parahaemolyticus. Microorganisms 2024; 13:7. [PMID: 39858775 PMCID: PMC11767970 DOI: 10.3390/microorganisms13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
Vibrio parahaemolyticus is a ubiquitous inhabitant of estuarine and marine environments that causes vibriosis in aquatic animals and food poisoning in humans. Accessory colonizing factor (ACF) is employed by Vibrio to assist in the colonization and invasion of host cells leading to subsequent illnesses. In this work, ΔacfA, an in-frame deletion mutant strain lacking the 4th to the 645th nucleotides of the open reading frame (ORF) of the acfA gene, and the complementary strain acfA+ were constructed to decipher the function of AcfA in V. parahaemolyticus. The deletion of acfA had no effect on bacterial growth but resulted in a significant reduction in biofilm formation, hemolytic activity, mucus adhesion, and the accumulated mortality of zebrafish, compared to the wild-type strain and the complementary strain acfA+. Additionally, AcfA was involved in adapting to stressors, such as H2O2, EDTA, and acid, in V. parahaemolyticus. Furthermore, RNA-Seq transcriptome analysis was conducted to identify global gene transcription alterations resulting from deletion of the acfA gene. A total of 416 differentially expressed genes were identified in the ΔacfA vs. wild-type comparison, with 238 up-regulated genes and 178 down-regulated genes. The expression of genes associated with the type III secretion system, type VI secretion system, and oligopeptide permeases system were significantly reduced, and yet the expression of genes associated with cell envelope biosynthesis and response regulation system were enhanced dramatically in the absence of the acfA gene compared to the wild-type strain. These findings suggest that AcfA may play a role in the overall success of pathogenesis and the cell envelope stress response of V. parahaemolyticus.
Collapse
Affiliation(s)
- Huan Liu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
- Shaanxi Research Institute of Agriculture Products Processing Technology, No. 6 Xuefu Road, Xi’an 710021, China
| | - Huayu Lei
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
| | - Juanjuan Cao
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
| | - Zhaobang Xie
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
| | - Yile Shi
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
| | - Yanni Zhao
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
- Shaanxi Research Institute of Agriculture Products Processing Technology, No. 6 Xuefu Road, Xi’an 710021, China
| |
Collapse
|
3
|
Bacon EE, Myers KS, Iruegas-López R, Banta AB, Place M, Ebersberger I, Peters JM. Physiological Roles of an Acinetobacter-specific σ Factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602572. [PMID: 39026751 PMCID: PMC11257525 DOI: 10.1101/2024.07.08.602572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The Gram-negative pathogen Acinetobacter baumannii is considered an "urgent threat" to human health due to its propensity to become antibiotic resistant. Understanding the distinct regulatory paradigms used by A. baumannii to mitigate cellular stresses may uncover new therapeutic targets. Many γ-proteobacteria use the extracytoplasmic function (ECF) σ factor, RpoE, to invoke envelope homeostasis networks in response to stress. Acinetobacter species contain the poorly characterized ECF "SigAb;" however, it is unclear if SigAb has the same physiological role as RpoE. Here, we show that SigAb is a metal stress-responsive ECF that appears unique to Acinetobacter species and distinct from RpoE. We combine promoter mutagenesis, motif scanning, and ChIP-seq to define the direct SigAb regulon, which consists of sigAb itself, the stringent response mediator, relA, and the uncharacterized small RNA, "sabS." However, RNA-seq of strains overexpressing SigAb revealed a large, indirect regulon containing hundreds of genes. Metal resistance genes are key elements of the indirect regulon, as CRISPRi knockdown of sigAb or sabS resulted in increased copper sensitivity and excess copper induced SigAb-dependent transcription. Further, we found that two uncharacterized genes in the sigAb operon, "aabA" and "aabB", have anti-SigAb activity. Finally, employing a targeted Tn-seq approach that uses CRISPR-associated transposons, we show that sigAb, aabA, and aabB are important for fitness even during optimal growth conditions. Our work reveals new physiological roles for SigAb and SabS, provides a novel approach for assessing gene fitness, and highlights the distinct regulatory architecture of A. baumannii.
Collapse
Affiliation(s)
- Emily E. Bacon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin S. Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Rubén Iruegas-López
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Germany
| | - Amy B. Banta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ingo Ebersberger
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIKF), Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt, Germany
| | - Jason M. Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Cellular and physiological roles of sigma factors in Vibrio spp.: A comprehensive review. Int J Biol Macromol 2024; 254:127833. [PMID: 37918595 DOI: 10.1016/j.ijbiomac.2023.127833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Vibrio species are motile gram-negative bacteria commonly found in aquatic environments. Vibrio species include pathogenic as well as non-pathogenic strains. Pathogenic Vibrio species have been reported in invertebrates and humans, whereas non-pathogenic strains are involved in symbiotic relationships with their eukaryotic hosts. These bacteria are also able to adapt to fluctuations in temperature, salinity, and pH, in addition to oxidative stress, and osmotic pressure in aquatic ecosystems. Moreover, they have also developed protective mechanisms against the immune systems of their hosts. Vibrio species accomplish adaptation to changing environments outside or inside the host by altering their gene expression profiles. To this end, several sigma factors specifically regulate gene expression, particularly under stressful environmental conditions. Moreover, other sigma factors are associated with biofilm formation and virulence as well. This review discusses different types of sigma and anti-sigma factors of Vibrio species involved in virulence and regulation of gene expression upon changes in environmental conditions. The evolutionary relationships between sigma factors with various physiological roles in Vibrio species are also discussed extensively.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
5
|
Wang K, Lu H, Zou M, Wang G, Zhao J, Huang X, Ren F, Hu H, Huang J, Min X. DegS protease regulates antioxidant capacity and adaptability to oxidative stress environment in Vibrio cholerae. Front Cell Infect Microbiol 2023; 13:1290508. [PMID: 38053530 PMCID: PMC10694293 DOI: 10.3389/fcimb.2023.1290508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Adaptation to oxidative stress is critical for survival of Vibrio cholerae in aquatic ecosystems and hosts. DegS activates the σE envelope stress response. We have previously revealed that DegS may be involved in regulating the oxidative stress response. In this study, we demonstrated that deletion of the degS gene attenuates the antioxidant capacity of V. cholerae. In addition, our results further revealed that the regulation of antioxidant capacity by DegS in V. cholerae could involve the cAMP-CRP complex, which regulates rpoS. XthA is an exonuclease that repairs oxidatively damaged cells and affects the bacterial antioxidant capacity. qRT-PCR showed that DegS, σE, cAMP, CRP, and RpoS positively regulate xthA gene transcription. XthA overexpression partially compensates for antioxidant deficiency in the degS mutant. These results suggest that DegS affects the antioxidant capacity of V.cholerae by regulating xthA expression via the cAMP-CRP-RpoS pathway. In a mouse intestinal colonization experiment, our data showed that V.cholerae degS, rpoE, and rpoS gene deletions were associated with significantly reduced resistance to oxidative stress and the ability to colonize the mouse intestine. In conclusion, these findings provide new insights into the regulation of antioxidant activity by V.cholerae DegS.
Collapse
Affiliation(s)
- Kaiying Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huifang Lu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Mei Zou
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guangli Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiajun Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaoyu Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fangyu Ren
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huaqin Hu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
6
|
Ghandour R, Papenfort K. Small regulatory RNAs in Vibrio cholerae. MICROLIFE 2023; 4:uqad030. [PMID: 37441523 PMCID: PMC10335731 DOI: 10.1093/femsml/uqad030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Vibrio cholerae is a major human pathogen causing the diarrheal disease, cholera. Regulation of virulence in V. cholerae is a multifaceted process involving gene expression changes at the transcriptional and post-transcriptional level. Whereas various transcription factors have been reported to modulate virulence in V. cholerae, small regulatory RNAs (sRNAs) have now been established to also participate in virulence control and the regulation of virulence-associated processes, such as biofilm formation, quorum sensing, stress response, and metabolism. In most cases, these sRNAs act by base-pairing with multiple target transcripts and this process typically requires the aid of an RNA-binding protein, such as the widely conserved Hfq protein. This review article summarizes the functional roles of sRNAs in V. cholerae, their underlying mechanisms of gene expression control, and how sRNAs partner with transcription factors to modulate complex regulatory programs. In addition, we will discuss regulatory principles discovered in V. cholerae that not only apply to other Vibrio species, but further extend into the large field of RNA-mediated gene expression control in bacteria.
Collapse
Affiliation(s)
- Rabea Ghandour
- Friedrich Schiller University Jena, Institute of Microbiology, 07745 Jena, Germany
| | - Kai Papenfort
- Corresponding author. Institute of Microbiology, General Microbiology, Friedrich Schiller University Jena, Winzerlaer Straße 2, 07745 Jena, Germany. Tel: +49-3641-949-311; E-mail:
| |
Collapse
|
7
|
Ayibieke A, Nishiyama A, Senoh M, Hamabata T. Gene expression analysis during the conversion from a viable but nonculturable to culturable state in Vibrio cholerae. Gene 2023; 863:147289. [PMID: 36804851 DOI: 10.1016/j.gene.2023.147289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
We previously reported that Vibrio cholerae in a viable but non-culturable (VBNC) state can be converted to a culturable state by treatment with catalase. This finding enabled us to develop an assay system to observe the time course of the conversion from VBNC to culturable in V. cholerae. VBNC cells began to convert to culturable cells as early as 2 h after catalase supplementation. Gene expression in VBNC cells during catalase treatment was analyzed using RNA microarray. Many ribosomal DNA genes were stimulated 6 h post catalase exposure, suggesting that the conversion-driving signal started prior to 6 h. Focusing on the period prior to cell proliferation, we found that 16 genes might be involved in the conversion mechanism in V. cholerae, and they showed enhanced expression at 2 h and 4 h after catalase addition. These upregulated genes included phage shock proteins (pspA, B, and C), alternative sigma factor (rpoE) and its negative regulator (rseA), cobW C terminal domain-containing protein, damage-inducible helicase (dinG), cholerae toxin secretion protein epsM, HTH-type transcription regulator (iscR), mechanosensitive ion channel family protein, anthranilate synthase component I, fructose-specific IIBC component, molybdenum import ATP-binding protein (modC), LysE family translocator, putative organic hydroperoxide resistance protein, and a hypothetical protein. This study identified genes involved in the catalase-induced conversion of V. cholerae VBNC cells to a culturable state and provided valuable insights into the mechanisms involved in the conversion process.
Collapse
Affiliation(s)
- Alafate Ayibieke
- Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, 162-8655 Tokyo, Japan
| | - Ayae Nishiyama
- Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, 162-8655 Tokyo, Japan
| | - Mitsutoshi Senoh
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, 208-0011 Tokyo, Japan
| | - Takashi Hamabata
- Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, 162-8655 Tokyo, Japan.
| |
Collapse
|
8
|
Cho THS, Pick K, Raivio TL. Bacterial envelope stress responses: Essential adaptors and attractive targets. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119387. [PMID: 36336206 DOI: 10.1016/j.bbamcr.2022.119387] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Millions of deaths a year across the globe are linked to antimicrobial resistant infections. The need to develop new treatments and repurpose of existing antibiotics grows more pressing as the growing antimicrobial resistance pandemic advances. In this review article, we propose that envelope stress responses, the signaling pathways bacteria use to recognize and adapt to damage to the most vulnerable outer compartments of the microbial cell, are attractive targets. Envelope stress responses (ESRs) support colonization and infection by responding to a plethora of toxic envelope stresses encountered throughout the body; they have been co-opted into virulence networks where they work like global positioning systems to coordinate adhesion, invasion, microbial warfare, and biofilm formation. We highlight progress in the development of therapeutic strategies that target ESR signaling proteins and adaptive networks and posit that further characterization of the molecular mechanisms governing these essential niche adaptation machineries will be important for sparking new therapeutic approaches aimed at short-circuiting bacterial adaptation.
Collapse
Affiliation(s)
- Timothy H S Cho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kat Pick
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Tracy L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
9
|
Zou M, Wang K, Zhao J, Lu H, Yang H, Huang M, Wang L, Wang G, Huang J, Min X. DegS protease regulates the motility, chemotaxis, and colonization of Vibrio cholerae. Front Microbiol 2023; 14:1159986. [PMID: 37089576 PMCID: PMC10113495 DOI: 10.3389/fmicb.2023.1159986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/14/2023] [Indexed: 04/25/2023] Open
Abstract
In bacteria, DegS protease functions as an activating factor of the σE envelope stress response system, which ultimately activates the transcription of stress response genes in the cytoplasm. On the basis of high-throughput RNA sequencing, we have previously found that degS knockout inhibits the expression of flagellum synthesis- and chemotaxis-related genes, thereby indicating that DegS may be involved in the regulation of V. cholerae motility. In this study, we examined the relationships between DegS and motility in V. cholerae. Swimming motility and chemotaxis assays revealed that degS or rpoE deletion promotes a substantial reduction in the motility and chemotaxis of V. cholerae, whereas these activities were restored in ΔdegS::degS and ΔdegSΔrseA strains, indicating that DegS is partially dependent on σE to positively regulate V. cholerae activity. Gene-act network analysis revealed that the cAMP-CRP-RpoS signaling pathway, which plays an important role in flagellar synthesis, is significantly inhibited in ΔdegS mutants, whereas in response to the overexpression of cyaA/crp and rpoS in the ΔdegS strain, the motility and chemotaxis of the ΔdegS + cyaA/crp and ΔdegS + rpoS strains were partially restored compared with the ΔdegS strain. We further demonstrated that transcription levels of the flagellar regulatory gene flhF are regulated by DegS via the cAMP-CRP-RpoS signaling pathway. Overexpression of the flhF gene in the ΔdegS strain partially restored motility and chemotaxis. In addition, suckling mouse intestinal colonization experiments indicated that the ΔdegS and ΔrpoE strains were characterized by the poor colonization of mouse intestines, whereas colonization efficacy was restored in the ΔdegSΔrseA, ΔdegS + cyaA/crp, ΔdegS + rpoS, and ΔdegS + flhF strains. Collectively, our findings indicate that DegS regulates the motility and chemotaxis of V. cholerae via the cAMP-CRP-RpoS-FlhF pathway, thereby influencing the colonization of suckling mouse intestines.
Collapse
Affiliation(s)
- Mei Zou
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Kaiying Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiajun Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huifang Lu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hui Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Meirong Huang
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Blood Transfusion, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lu Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guangli Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
10
|
Fan Y, Bai J, Xi D, Yang B. RpoE Facilitates Stress-Resistance, Invasion, and Pathogenicity of Escherichia coli K1. Microorganisms 2022; 10:microorganisms10050879. [PMID: 35630325 PMCID: PMC9147696 DOI: 10.3390/microorganisms10050879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Escherichia coli K1 is the most common Gram-negative bacterium that causes neonatal meningitis; thus, a better understanding of its pathogenic molecular mechanisms is critical. However, the mechanisms by which E. coli K1 senses the signals of the host and expresses toxins for survival are poorly understood. As an extracytoplasmic function sigma factor, RpoE controls a wide range of pathogenesis-associated pathways in response to environmental stress. We found that the ΔrpoE mutant strain reduced the binding and invasion rate in human brain microvascular endothelial cells (HBMECs) in vitro, level of bacteremia, and percentage of meningitis in vivo. To confirm the direct targets of RpoE in vivo, we performed qRT-PCR and ChIP-qPCR on known toxic genes. RpoE was found to regulate pathogenic target genes, namely, ompA, cnf1, fimB, ibeA, kpsM, and kpsF directly and fimA, aslA, and traJ indirectly. The expression of these genes was upregulated when E. coli K1 was cultured with antibacterial peptides, whereas remained unchanged in the presence of the ΔrpoE mutant strain. Moreover, RpoE reduced IL-6 and IL-8 levels in E. coli K1-infected HBMECs. Altogether, these findings demonstrate that RpoE mediates the host adaptation capacity of E. coli K1 via a regulatory mechanism on virulence factors.
Collapse
Affiliation(s)
- Yu Fan
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Y.F.); (J.B.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Jing Bai
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Y.F.); (J.B.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Daoyi Xi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Bin Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Y.F.); (J.B.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Correspondence:
| |
Collapse
|
11
|
Kim H, Burkinshaw BJ, Lam LG, Manera K, Dong TG. Identification of Small Molecule Inhibitors of the Pathogen Box against Vibrio cholerae. Microbiol Spectr 2021; 9:e0073921. [PMID: 34937180 PMCID: PMC8694189 DOI: 10.1128/spectrum.00739-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance (AMR) has become a serious public and economic threat. The rate of bacteria acquiring AMR surpasses the rate of new antibiotics discovery, projecting more deadly AMR infections in the future. The Pathogen Box is an open-source library of drug-like compounds that can be screened for antibiotic activity. We have screened molecules of the Pathogen Box against Vibrio cholerae, the cholera-causing pathogen, and successfully identified two compounds, MMV687807 and MMV675968, that inhibit growth. RNA-seq analyses of V. cholerae after incubation with each compound revealed that both compounds affect cellular functions on multiple levels including carbon metabolism, iron homeostasis, and biofilm formation. In addition, whole-genome sequencing analysis of spontaneous resistance mutants identified an efflux system that confers resistance to MMV687807. We also identified that the dihydrofolate reductase is the likely target of MMV675968 suggesting it acts as an analog of trimethoprim but with a MIC 14-fold lower than trimethoprim in molar concentration. In summary, these two compounds that effectively inhibit V. cholerae and other bacteria may lead to the development of new antibiotics for better treatment of the cholera disease. IMPORTANCE Cholera is a serious infectious disease in tropical regions causing millions of infections annually. Vibrio cholerae, the causative agent of cholera, has gained multi-antibiotic resistance over the years, posing greater threat to public health and current treatment strategies. Here we report two compounds that effectively target the growth of V. cholerae and have the potential to control cholera infection.
Collapse
Affiliation(s)
- Haeun Kim
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Brianne J. Burkinshaw
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Linh G. Lam
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kevin Manera
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Tao G. Dong
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Fujita A, Oogai Y, Kawada-Matsuo M, Nakata M, Noguchi K, Komatsuzawa H. Expression of virulence factors under different environmental conditions in Aggregatibacter actinomycetemcomitans. Microbiol Immunol 2021; 65:101-114. [PMID: 33591576 DOI: 10.1111/1348-0421.12864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 11/28/2022]
Abstract
Aggregatibacter actinomycetemcomitans is a facultative anaerobic Gram-negative bacterium associated with periodontal diseases, especially aggressive periodontitis. The virulence factors of this pathogen, including adhesins, exotoxins, and endotoxin, have been extensively studied. However, little is known about their gene expression mode in the host. Herein, we investigated whether culture conditions reflecting in vivo environments, including serum and saliva, alter expression levels of virulence genes in the strain HK1651, a JP2 clone. Under aerobic conditions, addition of calf serum (CS) into a general medium induced high expression of two outer membrane proteins (omp100 and omp64). The high expression of omp100 and omp64 was also induced by an iron-limited medium. RNA-seq analysis showed that the gene expressions of several factors involved in iron acquisition were increased in the CS-containing medium. When HK1651 was grown on agar plates, genes encoding many virulence factors, including the Omps, cytolethal distending toxin, and leukotoxin, were differentially expressed. Then, we investigated their expression in five other A. actinomycetemcomitans strains grown in general and CS-containing media. The expression pattern of virulence factors varied among strains. Compared with the other five strains, HK1561 showed high expression of omp29 regardless of the CS addition, while the gene expression of leukotoxin in HK1651 was higher only in the medium without CS. HK1651 showed reduced biofilm in both CS- and saliva-containing media. Coaggregation with Fusobacterium nucleatum was remarkably enhanced using HK1651 grown in the CS-containing medium. Our results indicate that the expression of virulence factors is altered by adaptation to different conditions during infection.
Collapse
Affiliation(s)
- Ayumi Fujita
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuichi Oogai
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuyuki Noguchi
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
13
|
Pennetzdorfer N, Höfler T, Wölflingseder M, Tutz S, Schild S, Reidl J. σ E controlled regulation of porin OmpU in Vibrio cholerae. Mol Microbiol 2021; 115:1244-1261. [PMID: 33330989 PMCID: PMC8359247 DOI: 10.1111/mmi.14669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 01/19/2023]
Abstract
Bile resistance is essential for enteric pathogens, as exemplified by Vibrio cholerae, the causative agent of cholera. The outer membrane porin OmpU confers bacterial survival and colonization advantages in the presence of host‐derived antimicrobial peptides as well as bile. Expression of ompU is controlled by the virulence regulator ToxR. rpoE knockouts are accompanied by suppressor mutations causing ompU downregulation. Therefore, OmpU constitutes an intersection of the ToxR regulon and the σE‐pathway in V. cholerae. To understand the mechanism by which the sigma factor σE regulates OmpU synthesis, we performed transcription studies using ompU reporter fusions and immunoblot analysis. Our data revealed an increase in ompU promoter activity in ΔrpoE strains, as well as in a ΔompU background, indicating a negative feedback regulation circuit of ompU expression. This regulation seems necessary, since elevated lethality rates of ΔrpoE strains occur upon ompU overexpression. Manipulation of OmpU’s C‐terminal portion revealed its relevance for protein stability and potency of σE release. Furthermore, ΔrpoE strains are still capable of elevating OmpU levels under membrane stress conditions triggered by the bile salt sodium deoxycholate. This study provides new details about the impact of σE on ompU regulation, which is critical to the pathogen’s intestinal survival.
Collapse
Affiliation(s)
| | - Thomas Höfler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Sarah Tutz
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria.,Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Joachim Reidl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria.,Field of Excellence BioHealth, University of Graz, Graz, Austria
| |
Collapse
|
14
|
Jaswal K, Shrivastava M, Roy D, Agrawal S, Chaba R. Metabolism of long-chain fatty acids affects disulfide bond formation in Escherichia coli and activates envelope stress response pathways as a combat strategy. PLoS Genet 2020; 16:e1009081. [PMID: 33079953 PMCID: PMC7598926 DOI: 10.1371/journal.pgen.1009081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 10/30/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
The envelope of gram-negative bacteria serves as the first line of defense against environmental insults. Therefore, its integrity is continuously monitored and maintained by several envelope stress response (ESR) systems. Due to its oxidizing environment, the envelope represents an important site for disulfide bond formation. In Escherichia coli, the periplasmic oxidoreductase, DsbA introduces disulfide bonds in substrate proteins and transfers electrons to the inner membrane oxidoreductase, DsbB. Under aerobic conditions, the reduced form of DsbB is re-oxidized by ubiquinone, an electron carrier in the electron transport chain (ETC). Given the critical role of ubiquinone in transferring electrons derived from the oxidation of reduced cofactors, we were intrigued whether metabolic conditions that generate a large number of reduced cofactors render ubiquinone unavailable for disulfide bond formation. To test this, here we investigated the influence of metabolism of long-chain fatty acid (LCFA), an energy-rich carbon source, on the redox state of the envelope. We show that LCFA degradation increases electron flow in the ETC. Further, whereas cells metabolizing LCFAs exhibit characteristics of insufficient disulfide bond formation, these hallmarks are averted in cells exogenously provided with ubiquinone. Importantly, the ESR pathways, Cpx and σE, are activated by envelope signals generated during LCFA metabolism. Our results argue that Cpx is the primary ESR that senses and maintains envelope redox homeostasis. Amongst the two ESRs, Cpx is induced to a greater extent by LCFAs and senses redox-dependent signal. Further, ubiquinone accumulation during LCFA metabolism is prevented in cells lacking Cpx response, suggesting that Cpx activation helps maintain redox homeostasis by increasing the oxidizing power for disulfide bond formation. Taken together, our results demonstrate an intricate relationship between cellular metabolism and disulfide bond formation dictated by ETC and ESR, and provide the basis for examining whether similar mechanisms control envelope redox status in other gram-negative bacteria.
Collapse
Affiliation(s)
- Kanchan Jaswal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Megha Shrivastava
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Deeptodeep Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Shashank Agrawal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
15
|
Hews CL, Cho T, Rowley G, Raivio TL. Maintaining Integrity Under Stress: Envelope Stress Response Regulation of Pathogenesis in Gram-Negative Bacteria. Front Cell Infect Microbiol 2019; 9:313. [PMID: 31552196 PMCID: PMC6737893 DOI: 10.3389/fcimb.2019.00313] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
The Gram-negative bacterial envelope is an essential interface between the intracellular and harsh extracellular environment. Envelope stress responses (ESRs) are crucial to the maintenance of this barrier and function to detect and respond to perturbations in the envelope, caused by environmental stresses. Pathogenic bacteria are exposed to an array of challenging and stressful conditions during their lifecycle and, in particular, during infection of a host. As such, maintenance of envelope homeostasis is essential to their ability to successfully cause infection. This review will discuss our current understanding of the σE- and Cpx-regulated ESRs, with a specific focus on their role in the virulence of a number of model pathogens.
Collapse
Affiliation(s)
- Claire L Hews
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Timothy Cho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Gary Rowley
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Tracy L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Giacomucci S, Cros CDN, Perron X, Mathieu-Denoncourt A, Duperthuy M. Flagella-dependent inhibition of biofilm formation by sub-inhibitory concentration of polymyxin B in Vibrio cholerae. PLoS One 2019; 14:e0221431. [PMID: 31430343 PMCID: PMC6701800 DOI: 10.1371/journal.pone.0221431] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/06/2019] [Indexed: 01/02/2023] Open
Abstract
Biofilm formation is a common strategy used by bacteria in order to survive and persist in the environment. In Vibrio cholerae (V. cholerae), a Gram-negative pathogen responsible for the cholera disease, biofilm-like aggregates are important for the pathogenesis and disease transmission. Biofilm formation is initiated by the attachment of the bacteria to a surface, followed by maturation stages involving the formation of a biofilm matrix. In V. cholerae, flagella are essential for the initial step of biofilm formation, allowing the bacteria to swim and to detect a surface. In this study, we explored the effect of polymyxin B (PmB), a cationic bacterial antimicrobial peptide, on biofilm formation in pathogenic V. cholerae strains belonging to the O1 and O139 serotypes. We found that sub-inhibitory concentration of PmB induces a reduction of the biofilm formation by V. cholerae O1 and O139. Experiment on preformed biofilm demonstrated that the biofilm formation inhibition occurs at the initial step of biofilm formation, where the flagella are essential. We further characterize the effect of PmB on V. cholerae flagellation. Our results demonstrate that the flagellin expression is not reduced in presence of sub-inhibitory concentration of PmB. However, a decrease of the abundance of flagellin associated with the bacterial cells together with an increase in the secretome was observed. Electron microscopy observations also suggest that the abundance of aflagellated bacteria increases upon PmB supplementation. Finally, in agreement with the effect on the flagellation, a reduction of the bacterial motility is observed. Altogether, our results suggest that the PmB affect V. cholerae flagella resulting in a decrease of the motility and a compromised ability to form biofilm.
Collapse
Affiliation(s)
- Sean Giacomucci
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Succ. Centre-ville, Montréal, Québec, Canada
| | - Candice Danabé-Nieto Cros
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Succ. Centre-ville, Montréal, Québec, Canada
| | - Xavier Perron
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Succ. Centre-ville, Montréal, Québec, Canada
| | - Annabelle Mathieu-Denoncourt
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Succ. Centre-ville, Montréal, Québec, Canada
| | - Marylise Duperthuy
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Succ. Centre-ville, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
17
|
Peschek N, Hoyos M, Herzog R, Förstner KU, Papenfort K. A conserved RNA seed-pairing domain directs small RNA-mediated stress resistance in enterobacteria. EMBO J 2019; 38:e101650. [PMID: 31313835 PMCID: PMC6694218 DOI: 10.15252/embj.2019101650] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/31/2019] [Accepted: 06/09/2019] [Indexed: 12/20/2022] Open
Abstract
Small regulatory RNAs (sRNAs) are crucial components of many stress response systems. The envelope stress response (ESR) of Gram‐negative bacteria is a paradigm for sRNA‐mediated stress management and involves, among other factors, the alternative sigma factor E (σE) and one or more sRNAs. In this study, we identified the MicV sRNA as a new member of the σE regulon in Vibrio cholerae. We show that MicV acts redundantly with another sRNA, VrrA, and that both sRNAs share a conserved seed‐pairing domain allowing them to regulate multiple target mRNAs. V. cholerae lacking σE displayed increased sensitivity toward antimicrobials, and over‐expression of either of the sRNAs suppressed this phenotype. Laboratory selection experiments using a library of synthetic sRNA regulators revealed that the seed‐pairing domain of σE‐dependent sRNAs is strongly enriched among sRNAs identified under membrane‐damaging conditions and that repression of OmpA is crucial for sRNA‐mediated stress relief. Together, our work shows that MicV and VrrA act as global regulators in the ESR of V. cholerae and provides evidence that bacterial sRNAs can be functionally annotated by their seed‐pairing sequences.
Collapse
Affiliation(s)
- Nikolai Peschek
- Faculty of Biology I, Department of Microbiology, Ludwig-Maximilians-University of Munich, Martinsried, Germany.,Munich Center for Integrated Protein Science (CIPSM), Munich, Germany
| | - Mona Hoyos
- Faculty of Biology I, Department of Microbiology, Ludwig-Maximilians-University of Munich, Martinsried, Germany
| | - Roman Herzog
- Faculty of Biology I, Department of Microbiology, Ludwig-Maximilians-University of Munich, Martinsried, Germany
| | - Konrad U Förstner
- Institute of Information Science, TH Köln - University of Applied Sciences, Cologne, Germany.,ZB MED - Information Centre for Life Sciences, Cologne, Germany
| | - Kai Papenfort
- Faculty of Biology I, Department of Microbiology, Ludwig-Maximilians-University of Munich, Martinsried, Germany.,Munich Center for Integrated Protein Science (CIPSM), Munich, Germany
| |
Collapse
|
18
|
Alternative Sigma Factor RpoX Is a Part of the RpoE Regulon and Plays Distinct Roles in Stress Responses, Motility, Biofilm Formation, and Hemolytic Activities in the Marine Pathogen Vibrio alginolyticus. Appl Environ Microbiol 2019; 85:AEM.00234-19. [PMID: 31053580 DOI: 10.1128/aem.00234-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/20/2019] [Indexed: 12/13/2022] Open
Abstract
Vibrio alginolyticus is one of the most abundant microorganisms in marine environments and is also an opportunistic pathogen mediating high-mortality vibriosis in marine animals. Alternative sigma factors play essential roles in bacterial pathogens in the adaptation to environmental changes during infection and the adaptation to various niches, but little is known about them for V. alginolyticus Our previous investigation indicated that the transcript level of the gene rpoX significantly decreased in an RpoE mutant. Here, we found that rpoX was highly expressed in response to high temperature and low osmotic stress and was under the direct control of the alternative sigma factor RpoE and its own product RpoX. Moreover, transcriptome sequencing (RNA-seq) results showed that RpoE and RpoX had different regulons, although they coregulated 105 genes at high temperature (42°C), including genes associated with biofilm formation, motility, virulence, regulatory factors, and the stress response. RNA-seq and chromatin immunoprecipitation sequencing (ChIP-seq) analyses as well as electrophoretic mobility shift assays (EMSAs) revealed the distinct binding motifs of RpoE and RpoX proteins. Furthermore, quantitative real-time reverse transcription-PCR (qRT-PCR) analysis also confirmed that RpoX can upregulate genes associated with flagella, biofilm formation, and hemolytic activities at higher temperatures. rpoX abrogation does not appear to attenuate virulence toward model fish at normal temperature. Collectively, data from this study demonstrated the regulatory cascades of RpoE and an alternative sigma factor, RpoX, in response to heat and osmotic stresses and their distinct and overlapping roles in pathogenesis and stress responses in the marine bacterium V. alginolyticus IMPORTANCE The alternative sigma factor RpoE is essential for the virulence of Vibrio alginolyticus toward marine fish, coral, and other animals in response to sea surface temperature increases. In this study, we characterized another alternative sigma factor, RpoX, which is induced at high temperatures and under low-osmotic-stress conditions. The expression of rpoX is under the tight control of RpoE and RpoX. Although RpoE and RpoX coregulate 105 genes, they are programming different regulatory functions in stress responses and virulence in V. alginolyticus These findings illuminated the RpoE-RpoX-centered regulatory cascades and their distinct and overlapping regulatory roles in V. alginolyticus, which facilitates unraveling of the mechanisms by which the bacterium causes diseases in various sea animals in response to temperature fluctuations as well as the development of appropriate strategies to tackle infections by this bacterium.
Collapse
|
19
|
Pennetzdorfer N, Lembke M, Pressler K, Matson JS, Reidl J, Schild S. Regulated Proteolysis in Vibrio cholerae Allowing Rapid Adaptation to Stress Conditions. Front Cell Infect Microbiol 2019; 9:214. [PMID: 31293982 PMCID: PMC6598108 DOI: 10.3389/fcimb.2019.00214] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/03/2019] [Indexed: 12/30/2022] Open
Abstract
The lifecycle of the causative agent of the severe secretory diarrheal disease cholera, Vibrio cholerae, is characterized by the transition between two dissimilar habitats, i.e., as a natural inhabitant of aquatic ecosystems and as a pathogen in the human gastrointestinal tract. Vibrio cholerae faces diverse stressors along its lifecycle, which require effective adaptation mechanisms to facilitate the survival fitness. Not surprisingly, the pathogen's transcriptome undergoes global changes during the different stages of the lifecycle. Moreover, recent evidence indicates that several of the transcription factors (i.e., ToxR, TcpP, and ToxT) and alternative sigma factors (i.e., FliA, RpoS, and RpoE) involved in transcriptional regulations along the lifecycle are controlled by regulated proteolysis. This post-translational control ensures a fast strategy by the pathogen to control cellular checkpoints and thereby rapidly respond to changing conditions. In this review, we discuss selected targets for regulated proteolysis activated by various stressors, which represent a key feature for fast adaptation of V. cholerae.
Collapse
Affiliation(s)
| | - Mareike Lembke
- Institute of Molecular Microbiology, University of Graz, Graz, Austria
| | | | - Jyl S Matson
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Joachim Reidl
- Institute of Molecular Microbiology, University of Graz, Graz, Austria.,BioTechMed Graz, Graz, Austria
| | - Stefan Schild
- Institute of Molecular Microbiology, University of Graz, Graz, Austria.,BioTechMed Graz, Graz, Austria
| |
Collapse
|
20
|
Ethanol Stimulates Trehalose Production through a SpoT-DksA-AlgU-Dependent Pathway in Pseudomonas aeruginosa. J Bacteriol 2019; 201:JB.00794-18. [PMID: 30936375 DOI: 10.1128/jb.00794-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/26/2019] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa frequently resides among ethanol-producing microbes, making its response to the microbially produced concentrations of ethanol relevant to understanding its biology. Our transcriptome analysis found that genes involved in trehalose metabolism were induced by low concentrations of ethanol, and biochemical assays showed that levels of intracellular trehalose increased significantly upon growth with ethanol. The increase in trehalose was dependent on the TreYZ pathway but not other trehalose-metabolic enzymes (TreS or TreA). The sigma factor AlgU (AlgT), a homolog of RpoE in other species, was required for increased expression of the treZ gene and trehalose levels, but induction was not controlled by the well-characterized proteolysis of its anti-sigma factor, MucA. Growth with ethanol led to increased SpoT-dependent (p)ppGpp accumulation, which stimulates AlgU-dependent transcription of treZ and other AlgU-regulated genes through DksA, a (p)ppGpp and RNA polymerase binding protein. Ethanol stimulation of trehalose also required acylhomoserine lactone (AHL)-mediated quorum sensing (QS), as induction was not observed in a ΔlasR ΔrhlR strain. A network analysis using a model, eADAGE, built from publicly available P. aeruginosa transcriptome data sets (J. Tan, G. Doing, K. A. Lewis, C. E. Price, et al., Cell Syst 5:63-71, 2017, https://doi.org/10.1016/j.cels.2017.06.003) provided strong support for our model in which treZ and coregulated genes are controlled by both AlgU- and AHL-mediated QS. Consistent with (p)ppGpp- and AHL-mediated quorum-sensing regulation, ethanol, even when added at the time of culture inoculation, stimulated treZ transcript levels and trehalose production in cells from post-exponential-phase cultures but not in cells from exponential-phase cultures. These data highlight the integration of growth and cell density cues in the P. aeruginosa transcriptional response to ethanol.IMPORTANCE Pseudomonas aeruginosa is often found with bacteria and fungi that produce fermentation products, including ethanol. At concentrations similar to those produced by environmental microbes, we found that ethanol stimulated expression of trehalose-biosynthetic genes and cellular levels of trehalose, a disaccharide that protects against environmental stresses. The induction of trehalose by ethanol required the alternative sigma factor AlgU through DksA- and SpoT-dependent (p)ppGpp. Trehalose accumulation also required AHL quorum sensing and occurred only in post-exponential-phase cultures. This work highlights how cells integrate cell density and growth cues in their responses to products made by other microbes and reveals a new role for (p)ppGpp in the regulation of AlgU activity.
Collapse
|
21
|
Lembke M, Pennetzdorfer N, Tutz S, Koller M, Vorkapic D, Zhu J, Schild S, Reidl J. Proteolysis of ToxR is controlled by cysteine-thiol redox state and bile salts in Vibrio cholerae. Mol Microbiol 2018; 110:796-810. [PMID: 30218472 PMCID: PMC6242745 DOI: 10.1111/mmi.14125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 01/25/2023]
Abstract
In Vibrio cholerae, virulence gene expression is regulated by a transmembrane-localized transcription factor complex designated as ToxRS. ToxR harbours two cysteines in the periplasmic domain that can form inter- and intramolecular disulfide bonds. In this study, we investigated the σE -dependent inner membrane proteolysis of ToxR, which occurs via the periplasmic-localized proteases DegS and DegP. Both proteases respond to the redox state of the two cysteine thiol groups of ToxR. Interestingly, in the presence of sodium deoxycholate, ToxR proteolysis is blocked independently of ToxS, whereas ToxR activation by bile salts requires ToxS function. From these data, we identified at least two levels of control for ToxR activation by sodiumdeoxycholate. First, bile inhibits ToxR degradation under starvation and alkaline pH or under conditions in which DegPS responds to the reduced disulfide bonds of ToxR. The second level links bile to ToxRS complex formation and further activation of its transcription factor activity. Overall, our data suggest a comprehensive bile sensory function for the ToxRS complex during host colonization.
Collapse
Affiliation(s)
- Mareike Lembke
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 50GrazA‐8010Austria
| | - Nina Pennetzdorfer
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 50GrazA‐8010Austria
| | - Sarah Tutz
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 50GrazA‐8010Austria
| | - Michael Koller
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 50GrazA‐8010Austria
| | - Dina Vorkapic
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 50GrazA‐8010Austria
| | - Jun Zhu
- Department of MicrobiologyUniversity of PennsylvaniaPhiladelphiaPA19104‐6076USA
| | - Stefan Schild
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 50GrazA‐8010Austria
- BioTechMed‐GrazGrazA‐8010Austria
| | - Joachim Reidl
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 50GrazA‐8010Austria
- BioTechMed‐GrazGrazA‐8010Austria
| |
Collapse
|
22
|
DeAngelis CM, Saul-McBeth J, Matson JS. Vibrio responses to extracytoplasmic stress. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:511-521. [PMID: 30246498 DOI: 10.1111/1758-2229.12693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
A critical factor for bacterial survival in any environment is the ability to sense and respond appropriately to any stresses encountered. This is especially important for bacteria that inhabit environments that are constantly changing, or for those that inhabit more than one biological niche. Vibrio species are unique in that they are aquatic organisms, and must adapt to ever-changing temperatures, salinity levels and nutrient concentrations. In addition, many species of Vibrio colonize other organisms, and must also deal with components of the host immune response. Vibrio infections of humans and other organisms have become more common in recent years, due to increasing water temperatures in many parts of the world. Therefore, understanding how these ubiquitous marine bacteria adapt to their changing environments is of importance. In this review, we discuss some of the ways that Vibrios sense and respond to the variety of stresses that negatively affect the bacterial cell envelope. Specifically, we will focus on what is currently known about the σE response, the Cpx response and the contributions of OmpU to extracytoplasmic stress relief.
Collapse
Affiliation(s)
- Cara M DeAngelis
- Department of Medical Microbiology and Immunology, University of Toledo Medical School, Toledo, OH, USA
| | - Jessica Saul-McBeth
- Department of Medical Microbiology and Immunology, University of Toledo Medical School, Toledo, OH, USA
| | - Jyl S Matson
- Department of Medical Microbiology and Immunology, University of Toledo Medical School, Toledo, OH, USA
| |
Collapse
|
23
|
Russell R, Wang H, Benitez JA, Silva AJ. Deletion of gene encoding the nucleoid-associated protein H-NS unmasks hidden regulatory connections in El Tor biotype Vibrio cholerae. MICROBIOLOGY-SGM 2018; 164:998-1003. [PMID: 29813015 DOI: 10.1099/mic.0.000672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypervirulent atypical El Tor biotype Vibrio cholerae O1 isolates harbour mutations in the DNA-binding domain of the nucleoid-associated protein H-NS and the receiver domain of the response regulator VieA. Here, we provide two examples in which inactivation of H-NS in El Tor biotype vibrios unmasks hidden regulatory connections. First, deletion of the helix-turn-helix domain of VieA in an hns mutant background diminished biofilm formation and exopolysaccharide gene expression, a function that phenotypically opposes its phosphodiesterase activity. Second, deletion of vieA in an hns mutant diminished the expression of σE, a virulence determinant that mediates the envelope stress response. hns mutants were highly sensitive to envelope stressors compared to wild-type. However, deletion of vieA in the hns mutant restored or exceeded wild-type resistance. These findings suggest an evolutionary path for the emergence of hypervirulent strains starting from nucleotide sequence diversification affecting the interaction of H-NS with DNA.
Collapse
Affiliation(s)
- Raedeen Russell
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Hongxia Wang
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA.,Present address: Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jorge A Benitez
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Anisia J Silva
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
24
|
Li H, Liu F, Peng W, Yan K, Zhao H, Liu T, Cheng H, Chang P, Yuan F, Chen H, Bei W. The CpxA/CpxR Two-Component System Affects Biofilm Formation and Virulence in Actinobacillus pleuropneumoniae. Front Cell Infect Microbiol 2018; 8:72. [PMID: 29662838 PMCID: PMC5890194 DOI: 10.3389/fcimb.2018.00072] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
Gram-negative bacteria have evolved numerous two-component systems (TCSs) to cope with external environmental changes. The CpxA/CpxR TCS consisting of the kinase CpxA and the regulator CpxR, is known to be involved in the biofilm formation and virulence of Escherichia coli. However, the role of CpxA/CpxR remained unclear in Actinobacillus pleuropneumoniae, a bacterial pathogen that can cause porcine contagious pleuropneumonia (PCP). In this report, we show that CpxA/CpxR contributes to the biofilm formation ability of A. pleuropneumoniae. Furthermore, we demonstrate that CpxA/CpxR plays an important role in the expression of several biofilm-related genes in A. pleuropneumoniae, such as rpoE and pgaC. Furthermore, The results of electrophoretic mobility shift assays (EMSAs) and DNase I footprinting analysis demonstrate that CpxR-P can regulate the expression of the pgaABCD operon through rpoE. In an experimental infection of mice, the animals infected with a cpxA/cpxR mutant exhibited delayed mortality and lower bacterial loads in the lung than those infected with the wildtype bacteria. In conclusion, these results indicate that the CpxA/CpxR TCS plays a contributing role in the biofilm formation and virulence of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Feng Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Wei Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Kang Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Haixu Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Ting Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Hui Cheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Peixi Chang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Fangyan Yuan
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Hudson J, Gardiner M, Deshpande N, Egan S. Transcriptional response of Nautella italica R11 towards its macroalgal host uncovers new mechanisms of host-pathogen interaction. Mol Ecol 2017; 27:1820-1832. [PMID: 29215165 DOI: 10.1111/mec.14448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 12/14/2022]
Abstract
Macroalgae (seaweeds) are essential for the functioning of temperate marine ecosystems, but there is increasing evidence to suggest that their survival is under threat from anthropogenic stressors and disease. Nautella italica R11 is recognized as an aetiological agent of bleaching disease in the red alga, Delisea pulchra. Yet, there is a lack of knowledge surrounding the molecular mechanisms involved in this model host-pathogen interaction. Here we report that mutations in the gene encoding for a LuxR-type quorum sensing transcriptional regulator, RaiR, render N. italica R11 avirulent, suggesting this gene is important for regulating the expression of virulence phenotypes. Using an RNA sequencing approach, we observed a strong transcriptional response of N. italica R11 towards the presence of D. pulchra. In particular, genes involved in oxidative stress resistance, carbohydrate and central metabolism were upregulated in the presence of the host, suggesting a role for these functions in the opportunistic pathogenicity of N. italica R11. Furthermore, we show that RaiR regulates a subset of genes in N. italica R11, including those involved in metabolism and the expression of phage-related proteins. The outcome of this research reveals new functions important for virulence of N. italica R11 and contributes to our greater understanding of the complex factors mitigating microbial diseases in macroalgae.
Collapse
Affiliation(s)
- Jennifer Hudson
- School of Biological, Earth and Environmental Sciences, Centre for Marine Bio-Innovation, UNSW Sydney, Sydney, NSW, Australia
| | - Melissa Gardiner
- School of Biological, Earth and Environmental Sciences, Centre for Marine Bio-Innovation, UNSW Sydney, Sydney, NSW, Australia
| | - Nandan Deshpande
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Suhelen Egan
- School of Biological, Earth and Environmental Sciences, Centre for Marine Bio-Innovation, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
26
|
Stanbery L, Matson JS. Assay development and high-throughput screening for small molecule inhibitors of a Vibrio cholerae stress response pathway. Drug Des Devel Ther 2017; 11:2777-2785. [PMID: 29033540 PMCID: PMC5614740 DOI: 10.2147/dddt.s144391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Antibiotics are important adjuncts to oral rehydration therapy in cholera disease management. However, due to the rapid emergence of resistance to the antibiotics used to treat cholera, therapeutic options are becoming limited. Therefore, there is a critical need to develop additional therapeutics to aid in the treatment of cholera. Previous studies showed that the extracytoplasmic stress response (σE) pathway of Vibrio cholerae is required for full virulence of the organism. The pathway is also required for bacterial growth in the presence of ethanol. Therefore, we exploited this ethanol sensitivity phenotype in order to develop a screen for inhibitors of the pathway, with the aim of also inhibiting virulence of the pathogen. Here we describe the optimization and implementation of our high-throughput screening strategy. From a primary screen of over 100,000 compounds, we have identified seven compounds that validated the growth phenotypes from the primary and counterscreens. These compounds have the potential to be developed into therapeutic agents for cholera and will also be valuable probes for uncovering basic molecular mechanisms of an important cause of diarrheal disease.
Collapse
Affiliation(s)
- Laura Stanbery
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| | - Jyl S Matson
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| |
Collapse
|
27
|
The Fatty Acid Regulator FadR Influences the Expression of the Virulence Cascade in the El Tor Biotype of Vibrio cholerae by Modulating the Levels of ToxT via Two Different Mechanisms. J Bacteriol 2017; 199:JB.00762-16. [PMID: 28115548 DOI: 10.1128/jb.00762-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/17/2017] [Indexed: 01/16/2023] Open
Abstract
FadR is a master regulator of fatty acid (FA) metabolism that coordinates the pathways of FA degradation and biosynthesis in enteric bacteria. We show here that a ΔfadR mutation in the El Tor biotype of Vibrio cholerae prevents the expression of the virulence cascade by influencing both the transcription and the posttranslational regulation of the master virulence regulator ToxT. FadR is a transcriptional regulator that represses the expression of genes involved in FA degradation, activates the expression of genes involved in unsaturated FA (UFA) biosynthesis, and also activates the expression of two operons involved in saturated FA (SFA) biosynthesis. Since FadR does not bind directly to the toxT promoter, we determined whether the regulation of any of its target genes indirectly influenced ToxT. This was accomplished by individually inserting a double point mutation into the FadR-binding site in the promoter of each target gene, thereby preventing their activation or repression. Although preventing FadR-mediated activation of fabA, which encodes the enzyme that carries out the first step in UFA biosynthesis, did not significantly influence either the transcription or the translation of ToxT, it reduced its levels and prevented virulence gene expression. In the mutant strain unable to carry out FadR-mediated activation of fabA, expressing fabA ectopically restored the levels of ToxT and virulence gene expression. Taken together, the results presented here indicate that V. cholerae FadR influences the virulence cascade in the El Tor biotype by modulating the levels of ToxT via two different mechanisms.IMPORTANCE Fatty acids (FAs) play important roles in membrane lipid homeostasis and energy metabolism in all organisms. In Vibrio cholerae, the causative agent of the acute intestinal disease cholera, they also influence virulence by binding into an N-terminal pocket of the master virulence regulator, ToxT, and modulating its activity. FadR is a transcription factor that coordinately controls the pathways of FA degradation and biosynthesis in enteric bacteria. This study identifies a new link between FA metabolism and virulence in the El Tor biotype by showing that FadR influences both the transcription and posttranslational regulation of the master virulence regulator ToxT by two distinct mechanisms.
Collapse
|
28
|
Abstract
Similar to other genera and species of bacteria, whole genomic sequencing has revolutionized how we think about and address questions of basic Vibrio biology. In this review we examined 36 completely sequenced and annotated members of the Vibrionaceae family, encompassing 12 different species of the genera Vibrio, Aliivibrio, and Photobacterium. We reconstructed the phylogenetic relationships among representatives of this group of bacteria by using three housekeeping genes and 16S rRNA sequences. With an evolutionary framework in place, we describe the occurrence and distribution of primary and alternative sigma factors, global regulators present in all bacteria. Among Vibrio we show that the number and function of many of these sigma factors differs from species to species. We also describe the role of the Vibrio-specific regulator ToxRS in fitness and survival. Examination of the biochemical capabilities was and still is the foundation of classifying and identifying new Vibrio species. Using comparative genomics, we examine the distribution of carbon utilization patterns among Vibrio species as a possible marker for understanding bacteria-host interactions. Finally, we discuss the significant role that horizontal gene transfer, specifically, the distribution and structure of integrons, has played in Vibrio evolution.
Collapse
|
29
|
Tang-Siegel G, Bumgarner R, Ruiz T, Kittichotirat W, Chen W, Chen C. Human Serum-Specific Activation of Alternative Sigma Factors, the Stress Responders in Aggregatibacter actinomycetemcomitans. PLoS One 2016; 11:e0160018. [PMID: 27490177 PMCID: PMC4973924 DOI: 10.1371/journal.pone.0160018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/12/2016] [Indexed: 01/08/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans, a known pathogen causing periodontal disease and infective endocarditis, is a survivor in the periodontal pocket and blood stream; both environments contain serum as a nutrient source. To screen for unknown virulence factors associated with this microorganism, A. actinomycetemcomitans was grown in serum-based media to simulate its in vivo environment. Different strains of A. actinomycetemcomitans showed distinct growth phenotypes only in the presence of human serum, and they were grouped into high- and low-responder groups. High-responders comprised mainly serotype c strains, and showed an unusual growth phenomenon, featuring a second, rapid increase in turbidity after 9-h incubation that reached a final optical density 2- to 7-fold higher than low-responders. Upon further investigation, the second increase in turbidity was not caused by cell multiplication, but by cell death. Whole transcriptomic analysis via RNA-seq identified 35 genes that were up-regulated by human serum, but not horse serum, in high-responders but not in low-responders, including prominently an alternative sigma factor rpoE (σE). A lacZ reporter construct driven by the 132-bp rpoE promoter sequence of A. actinomycetemcomitans responded dramatically to human serum within 90 min of incubation only when the construct was carried by a high responder strain. The rpoE promoter is 100% identical among high- and low-responder strains. Proteomic investigation showed potential interactions between human serum protein, e.g. apolipoprotein A1 (ApoA1) and A. actinomycetemcomitans. The data clearly indicated a different activation process for rpoE in high- versus low-responder strains. This differential human serum-specific activation of rpoE, a putative extra-cytoplasmic stress responder and global regulator, suggests distinct in vivo adaptations among different strains of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Gaoyan Tang-Siegel
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Roger Bumgarner
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Teresa Ruiz
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Weerayuth Kittichotirat
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Weizhen Chen
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States of America
| | - Casey Chen
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
30
|
Abstract
Vibrio cholerae can switch between motile and biofilm lifestyles. The last decades have been marked by a remarkable increase in our knowledge of the structure, regulation, and function of biofilms formed under laboratory conditions. Evidence has grown suggesting that V. cholerae can form biofilm-like aggregates during infection that could play a critical role in pathogenesis and disease transmission. However, the structure and regulation of biofilms formed during infection, as well as their role in intestinal colonization and virulence, remains poorly understood. Here, we review (i) the evidence for biofilm formation during infection, (ii) the coordinate regulation of biofilm and virulence gene expression, and (iii) the host signals that favor V. cholerae transitions between alternative lifestyles during intestinal colonization, and (iv) we discuss a model for the role of V. cholerae biofilms in pathogenicity.
Collapse
|
31
|
Dou Y, Aruni W, Muthiah A, Roy F, Wang C, Fletcher HM. Studies of the extracytoplasmic function sigma factor PG0162 in Porphyromonas gingivalis. Mol Oral Microbiol 2015. [PMID: 26216199 DOI: 10.1111/omi.12122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PG0162, annotated as an extracytoplasmic function (ECF) sigma factor in Porphyromonas gingivalis, is composed of 193 amino acids. As previously reported, the PG0162-deficient mutant, P. gingivalis FLL350 showed significant reduction in gingipain activity compared with the parental strain. Because this ECF sigma factor could be involved in the virulence regulation in P. gingivalis, its genetic properties were further characterized. A 5'-RACE analysis showed that the start of transcription of the PG0162 gene occurred from a guanine (G) residue 69 nucleotides upstream of the ATG translation initiation codon. The function of PG0162 as a sigma factor was confirmed in a run-off in vitro transcription assay using the purified rPG0162 and RNAP core enzyme from Escherichia coli with the PG0162 promoter as template. As an appropriate PG0162 inducing environmental signal is unknown, a strain overexpressing the PG0162 gene designated P. gingivalis FLL391 was created. Compared with the wild-type strain, transcriptome analysis of P. gingivalis FLL391 showed that approximately 24% of the genome displayed altered gene expression (260 upregulated genes; 286 downregulated genes). Two other ECF sigma factors (PG0985 and PG1660) were upregulated more than two-fold. The autoregulation of PG0162 was confirmed with the binding of the rPG0162 protein to the PG0162 promoter in electrophoretic mobility shift assay. In addition, the rPG0162 protein also showed the ability to bind to the promoter region of two genes (PG0521 and PG1167) that were most upregulated in P. gingivalis FLL391. Taken together, our data suggest that PG0162 is a sigma factor that may play an important role in the virulence regulatory network in P. gingivalis.
Collapse
Affiliation(s)
- Y Dou
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - W Aruni
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - A Muthiah
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - F Roy
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - C Wang
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - H M Fletcher
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Almagro-Moreno S, Kim TK, Skorupski K, Taylor RK. Proteolysis of virulence regulator ToxR is associated with entry of Vibrio cholerae into a dormant state. PLoS Genet 2015; 11:e1005145. [PMID: 25849031 PMCID: PMC4388833 DOI: 10.1371/journal.pgen.1005145] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 03/16/2015] [Indexed: 12/20/2022] Open
Abstract
Vibrio cholerae O1 is a natural inhabitant of aquatic environments and causes the diarrheal disease, cholera. Two of its primary virulence regulators, TcpP and ToxR, are localized in the inner membrane. TcpP is encoded on the Vibrio Pathogenicity Island (VPI), a horizontally acquired mobile genetic element, and functions primarily in virulence gene regulation. TcpP has been shown to undergo regulated intramembrane proteolysis (RIP) in response to environmental conditions that are unfavorable for virulence gene expression. ToxR is encoded in the ancestral genome and is present in non-pathogenic strains of V. cholerae, indicating it has roles outside of the human host. In this study, we show that ToxR undergoes RIP in V. cholerae in response to nutrient limitation at alkaline pH, a condition that occurs during the stationary phase of growth. This process involves the site-2 protease RseP (YaeL), and is dependent upon the RpoE-mediated periplasmic stress response, as deletion mutants for the genes encoding these two proteins cannot proteolyze ToxR under nutrient limitation at alkaline pH. We determined that the loss of ToxR, genetically or by proteolysis, is associated with entry of V. cholerae into a dormant state in which the bacterium is normally found in the aquatic environment called viable but nonculturable (VBNC). Strains that can proteolyze ToxR, or do not encode it, lose culturability, experience a change in morphology associated with cells in VBNC, yet remain viable under nutrient limitation at alkaline pH. On the other hand, mutant strains that cannot proteolyze ToxR remain culturable and maintain the morphology of cells in an active state of growth. Overall, our findings provide a link between the proteolysis of a virulence regulator and the entry of a pathogen into an environmentally persistent state.
Collapse
Affiliation(s)
- Salvador Almagro-Moreno
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| | - Tae K. Kim
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Karen Skorupski
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Ronald K. Taylor
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
33
|
Wang H, Ayala JC, Benitez JA, Silva AJ. RNA-seq analysis identifies new genes regulated by the histone-like nucleoid structuring protein (H-NS) affecting Vibrio cholerae virulence, stress response and chemotaxis. PLoS One 2015; 10:e0118295. [PMID: 25679988 PMCID: PMC4332508 DOI: 10.1371/journal.pone.0118295] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/13/2015] [Indexed: 12/20/2022] Open
Abstract
The histone-like nucleoid structuring protein (H-NS) functions as a transcriptional silencer by binding to AT-rich sequences at bacterial promoters. However, H-NS repression can be counteracted by other transcription factors in response to environmental changes. The identification of potential toxic factors, the expression of which is prevented by H-NS could facilitate the discovery of new regulatory proteins that may contribute to the emergence of new pathogenic variants by anti-silencing. Vibrio cholerae hns mutants of the El Tor biotype exhibit altered virulence, motility and environmental stress response phenotypes compared to wild type. We used an RNA-seq analysis approach to determine the basis of the above hns phenotypes and identify new targets of H-NS transcriptional silencing. H-NS affected the expression of 18% of all predicted genes in a growth phase-dependent manner. Loss of H-NS resulted in diminished expression of numerous genes encoding methyl-accepting chemotaxis proteins as well as chemotaxis toward the attractants glycine and serine. Deletion of hns also induced an endogenous envelope stress response resulting in elevated expression of rpoE encoding the extracytoplamic sigma factor E (σE). The RNA-seq analysis identified new genes directly repressed by H-NS that can affect virulence and biofilm development in the El Tor biotype cholera bacterium. We show that H-NS and the quorum sensing regulator HapR silence the transcription of the vieSAB three-component regulatory system in El Tor biotype V. cholerae. We also demonstrate that H-NS directly represses the transcription of hlyA (hemolysin), rtxCA (the repeat in toxin or RTX), rtxBDE (RTX transport) and the biosynthesis of indole. Of these genes, H-NS occupancy at the hlyA promoter was diminished by overexpression of the transcription activator HlyU. We discuss the role of H-NS transcriptional silencing in phenotypic differences exhibited by V. cholerae biotypes.
Collapse
Affiliation(s)
- Hongxia Wang
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia, United States of America
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Julio C. Ayala
- University of Alabama at Birmingham Department of Microbiology, Birmingham, Alabama, United States of America
| | - Jorge A. Benitez
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia, United States of America
| | - Anisia J. Silva
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
34
|
Zielke RA, Simmons RS, Park BR, Nonogaki M, Emerson S, Sikora AE. The type II secretion pathway in Vibrio cholerae is characterized by growth phase-dependent expression of exoprotein genes and is positively regulated by σE. Infect Immun 2014; 82:2788-801. [PMID: 24733097 PMCID: PMC4097608 DOI: 10.1128/iai.01292-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 04/10/2014] [Indexed: 01/08/2023] Open
Abstract
Vibrio cholerae, an etiological agent of cholera, circulates between aquatic reservoirs and the human gastrointestinal tract. The type II secretion (T2S) system plays a pivotal role in both stages of the lifestyle by exporting multiple proteins, including cholera toxin. Here, we studied the kinetics of expression of genes encoding the T2S system and its cargo proteins. We have found that under laboratory growth conditions, the T2S complex was continuously expressed throughout V. cholerae growth, whereas there was growth phase-dependent transcriptional activity of genes encoding different cargo proteins. Moreover, exposure of V. cholerae to different environmental cues encountered by the bacterium in its life cycle induced transcriptional expression of T2S. Subsequent screening of a V. cholerae genomic library suggested that σ(E) stress response, phosphate metabolism, and the second messenger 3',5'-cyclic diguanylic acid (c-di-GMP) are involved in regulating transcriptional expression of T2S. Focusing on σ(E), we discovered that the upstream region of the T2S operon possesses both the consensus σ(E) and σ(70) signatures, and deletion of the σ(E) binding sequence prevented transcriptional activation of T2S by RpoE. Ectopic overexpression of σ(E) stimulated transcription of T2S in wild-type and isogenic ΔrpoE strains of V. cholerae, providing additional support for the idea that the T2S complex belongs to the σ(E) regulon. Together, our results suggest that the T2S pathway is characterized by the growth phase-dependent expression of genes encoding cargo proteins and requires a multifactorial regulatory network to ensure appropriate kinetics of the secretory traffic and the fitness of V. cholerae in different ecological niches.
Collapse
Affiliation(s)
- Ryszard A Zielke
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Ryan S Simmons
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Bo R Park
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Mariko Nonogaki
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Sarah Emerson
- Department of Statistics, Oregon State University, Corvallis, Oregon, USA
| | - Aleksandra E Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
35
|
Alternative sigma factor RpoE is important for Vibrio parahaemolyticus cell envelope stress response and intestinal colonization. Infect Immun 2014; 82:3667-77. [PMID: 24935982 DOI: 10.1128/iai.01854-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vibrio parahaemolyticus is a halophile that inhabits brackish waters and a wide range of hosts, including crustaceans, fish, mollusks, and humans. In humans, it is the leading cause of bacterial seafood-borne gastroenteritis. The focus of this work was to determine the role of alternative sigma factors in the stress response of V. parahaemolyticus RIMD2210633, an O3:K6 pandemic isolate. Bioinformatics identified five putative extracytoplasmic function (ECF) family of alternative sigma factors: VP0055, VP2210, VP2358, VP2578, and VPA1690. ECF factors typically respond to cell wall/cell envelope stress, iron levels, and the oxidation state of the cell. We have demonstrated here that one such sigma factor, VP2578, a homologue of RpoE from Escherichia coli, is important for survival under a number of cell envelope stress conditions and in gastrointestinal colonization of a streptomycin-treated adult mouse. In this study, we determined that an rpoE deletion mutant strain BHM2578 compared to the wild type (WT) was significantly more sensitive to polymyxin B, ethanol, and high-temperature stresses. We demonstrated that in in vivo competition assays between the rpoE mutant and the WT marked with the β-galactosidase gene lacZ (WBWlacZ), the mutant strain was defective in colonization compared to the WT. In contrast, deletion of the rpoS stress response regulator did not affect in vivo survival. In addition, we examined the role of the outer membrane protein, OmpU, which in V. cholerae is proposed to be the sole activator of RpoE. We found that an ompU deletion mutant was sensitive to bile salt stress but resistant to polymyxin B stress, indicating OmpU is not essential for the cell envelope stress responses or RpoE function. Overall, these data demonstrate that RpoE is a key cell envelope stress response regulator and, similar to E. coli, RpoE may have several factors that stimulate its function.
Collapse
|
36
|
Reciprocal regulation of resistance-nodulation-division efflux systems and the Cpx two-component system in Vibrio cholerae. Infect Immun 2014; 82:2980-91. [PMID: 24799626 DOI: 10.1128/iai.00025-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Cpx two-component regulatory system has been shown in Escherichia coli to alleviate stress caused by misfolded cell envelope proteins. The Vibrio cholerae Cpx system was previously found to respond to cues distinct from those in the E. coli system, suggesting that this system fulfills a different physiological role in the cholera pathogen. Here, we used microarrays to identify genes that were regulated by the V. cholerae Cpx system. Our observations suggest that the activation of the V. cholerae Cpx system does not induce expression of genes involved in the mitigation of stress generated by misfolded cell envelope proteins but promotes expression of genes involved in antimicrobial resistance. In particular, activation of the Cpx system induced expression of the genes encoding the VexAB and VexGH resistance-nodulation-division (RND) efflux systems and their cognate outer membrane pore protein TolC. The promoters for these loci contained putative CpxR consensus binding sites, and ectopic cpxR expression activated transcription from the promoters for the RND efflux systems. CpxR was not required for intrinsic antimicrobial resistance, but CpxR activation enhanced resistance to antimicrobial substrates of VexAB and VexGH. Mutations that inactivated VexAB or VexGH efflux activity resulted in the activation of the Cpx response, suggesting that vexAB and vexGH and the cpxP-cpxRA system are reciprocally regulated. We speculate that the reciprocal regulation of the V. cholerae RND efflux systems and the Cpx two-component system is mediated by the intracellular accumulation of an endogenously produced metabolic by-product that is normally extruded from the cell by the RND efflux systems.
Collapse
|
37
|
Pinto AC, de Sá PHCG, Ramos RTJ, Barbosa S, Barbosa HPM, Ribeiro AC, Silva WM, Rocha FS, Santana MP, de Paula Castro TL, Miyoshi A, Schneider MPC, Silva A, Azevedo V. Differential transcriptional profile of Corynebacterium pseudotuberculosis in response to abiotic stresses. BMC Genomics 2014; 15:14. [PMID: 24405787 PMCID: PMC3890534 DOI: 10.1186/1471-2164-15-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 12/13/2013] [Indexed: 11/12/2022] Open
Abstract
Background The completion of whole-genome sequencing for Corynebacterium pseudotuberculosis strain 1002 has contributed to major advances in research aimed at understanding the biology of this microorganism. This bacterium causes significant loss to goat and sheep farmers because it is the causal agent of the infectious disease caseous lymphadenitis, which may lead to outcomes ranging from skin injury to animal death. In the current study, we simulated the conditions experienced by the bacteria during host infection. By sequencing transcripts using the SOLiDTM 3 Plus platform, we identified new targets expected to potentiate the survival and replication of the pathogen in adverse environments. These results may also identify possible candidates useful for the development of vaccines, diagnostic kits or therapies aimed at the reduction of losses in agribusiness. Results Under the 3 simulated conditions (acid, osmotic and thermal shock stresses), 474 differentially expressed genes exhibiting at least a 2-fold change in expression levels were identified. Important genes to the infection process were induced, such as those involved in virulence, defence against oxidative stress, adhesion and regulation, and many genes encoded hypothetical proteins, indicating that further investigation of the bacterium is necessary. The data will contribute to a better understanding of the biology of C. pseudotuberculosis and to studies investigating strategies to control the disease. Conclusions Despite the veterinary importance of C. pseudotuberculosis, the bacterium is poorly characterised; therefore, effective treatments for caseous lymphadenitis have been difficult to establish. Through the use of RNAseq, these results provide a better biological understanding of this bacterium, shed light on the most likely survival mechanisms used by this microorganism in adverse environments and identify candidates that may help reduce or even eradicate the problems caused by this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Vasco Azevedo
- Department of General Biology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av, Antônio Carlos, Belo Horizonte 31,270-901, Brazil.
| |
Collapse
|
38
|
Hanawa T, Yonezawa H, Kawakami H, Kamiya S, Armstrong SK. Role of Bordetella pertussis RseA in the cell envelope stress response and adenylate cyclase toxin release. Pathog Dis 2013; 69:7-20. [PMID: 23821542 DOI: 10.1111/2049-632x.12061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 11/28/2022] Open
Abstract
Bordetella pertussis is the bacterial agent of the human disease such as whooping cough. In many bacteria, the extracellular function sigma factor σE is central to the response to envelope stress, and its activity is negatively controlled by the RseA anti-sigma factor. In this study, the role of RseA in B. pertussis envelope stress responses was investigated. Compared with the wild-type strain, an rseA mutant showed elevated resistance to envelope stress and enhanced growth at 25 °C. rpoH and other predicted σE target genes demonstrated increased transcription in the rseA mutant compared with the wild-type parent. Transcription of those genes was also increased in wild-type B. pertussis and Escherichia coli under envelope stress, whereas no stress-induced increase in transcription was observed in the rseA mutant. rseA inactivation was also associated with altered levels of certain proteins in culture supernatant fluids, which showed increased adenylate cyclase toxin (CyaA) levels. The increased CyaA in the mutant was correlated with an apparent increased stability of the extracellular toxin and increased production of CyaA-containing outer membrane vesicles. Consistent with this, compared with the wild-type strain, rseA mutant cells produced increased numbers of large surface-associated vesicles.
Collapse
Affiliation(s)
- Tomoko Hanawa
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Hideo Yonezawa
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Hayato Kawakami
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Sandra K Armstrong
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
39
|
Lai WB, Wong HC. Influence of combinations of sublethal stresses on the control of Vibrio parahaemolyticus and its cellular oxidative response. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.02.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
A quinazoline-2,4-diamino analog suppresses Vibrio cholerae flagellar motility by interacting with motor protein PomB and induces envelope stress. Antimicrob Agents Chemother 2013; 57:3950-9. [PMID: 23733460 DOI: 10.1128/aac.00473-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Vibrio cholerae strains of serogroups O1 and O139, the causative agents of the diarrheal illness cholera, express a single polar flagellum powered by sodium motive force and require motility to colonize and spread along the small intestine. In a previous study, we described a high-throughput assay for screening for small molecules that selectively inhibit bacterial motility and identified a family of quinazoline-2,4-diamino analogs (Q24DAs) that (i) paralyzed the sodium-driven polar flagellum of Vibrios and (ii) diminished cholera toxin secreted by El Tor biotype V. cholerae. In this study, we provide evidence that a Q24DA paralyzes the polar flagellum by interacting with the motor protein PomB. Inhibition of motility with the Q24DA enhanced the transcription of the cholera toxin genes in both biotypes. We also show that the Q24DA interacts with outer membrane protein OmpU and other porins to induce envelope stress and expression of the extracellular RNA polymerase sigma factor σ(E). We suggest that Q24DA-induced envelope stress could affect the correct folding, assembly, and secretion of pentameric cholera toxin in El Tor biotype V. cholerae independently of its effect on motility.
Collapse
|
41
|
Giacani L, Denisenko O, Tompa M, Centurion-Lara A. Identification of the Treponema pallidum subsp. pallidum TP0092 (RpoE) regulon and its implications for pathogen persistence in the host and syphilis pathogenesis. J Bacteriol 2013; 195:896-907. [PMID: 23243302 PMCID: PMC3562100 DOI: 10.1128/jb.01973-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/06/2012] [Indexed: 12/16/2022] Open
Abstract
Bacteria often respond to harmful environmental stimuli with the induction of extracytoplasmic function (ECF) sigma (σ) factors that in turn direct RNA polymerase to transcribe specific groups of response genes (or regulons) to minimize cellular damage and favor adaptation to the changed extracellular milieu. In Treponema pallidum subsp. pallidum, the agent of syphilis, the TP0092 gene is predicted to code for the pathogen's only annotated ECF σ factor, homologous to RpoE, known in Escherichia coli to control a key transduction pathway for maintenance of envelope homeostasis in response to external stress and cell growth. Here we have shown that TP0092 is highly transcribed during experimental syphilis. Furthermore, TP0092 transcription levels significantly increase as infection progresses toward immune clearance of the pathogen, suggesting a role for TP0092 in helping T. pallidum respond to harmful stimuli in the host environment. To investigate this hypothesis, we determined the TP0092 regulon at two different time points during infection using chromatin immunoprecipitation followed by high-throughput sequencing. A total of 22 chromosomal regions, all containing putative TP0092-binding sites and corresponding to as many T. pallidum genes, were identified. Noteworthy among them are the genes encoding desulfoferrodoxin and thioredoxin, involved in detoxification of reactive oxygen species (ROS). Because T. pallidum does not possess other enzymes for ROS detoxification, such as superoxide dismutase, catalase, or glutathione peroxidase, our results suggest that the TP0092 regulon is important in protecting the syphilis spirochete from damage caused by ROS produced at the site of infection during the inflammatory response.
Collapse
Affiliation(s)
- Lorenzo Giacani
- Departments of Medicine, University of Washington, Seattle, WA, USA.
| | | | | | | |
Collapse
|
42
|
Barchinger SE, Ades SE. Regulated proteolysis: control of the Escherichia coli σ(E)-dependent cell envelope stress response. Subcell Biochem 2013; 66:129-60. [PMID: 23479440 DOI: 10.1007/978-94-007-5940-4_6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, regulatory proteolysis has emerged as a paradigm for transmembrane signal transduction in all organisms, from bacteria to humans. These conserved proteolytic pathways share a common design that involves the sequential proteolysis of a membrane-bound regulatory protein by two proteases. Proteolysis releases the regulator, which is inactive in its membrane-bound form, into the cytoplasm where it performs its cellular function. One of the best-characterized examples of signal transduction via regulatory proteolysis is the pathway governing the σ(E)-dependent cell envelope stress response in Escherichia coli. In unstressed cells, σ(E) is sequestered at the membrane by the transmembrane anti-sigma factor, RseA. Stresses that compromise the cell envelope and interfere with the proper folding of outer membrane proteins (OMPs) activate the proteolytic pathway. The C-terminal residues of unfolded OMPs bind to the inner membrane protease, DegS, to initiate the proteolytic cascade. DegS removes the periplasmic domain of RseA creating a substrate for the next protease in the pathway, RseP. RseP cleaves RseA in the periplasmic region in a process called regulated intramembrane proteolysis (RIP). The remaining fragment of RseA is released into the cytoplasm and fully degraded by the ATP-dependent protease, ClpXP, with the assistance of the adaptor protein, SspB, thereby freeing σ(E) to reprogram gene expression. A growing body of evidence indicates that the overall proteolytic framework that governs the σ(E) response is used to regulate similar anti-sigma factor/sigma factor pairs throughout the bacterial world and has been adapted to recognize a wide variety of signals and control systems as diverse as envelope stress responses, sporulation, virulence, and iron-siderophore uptake. In this chapter, we review the extensive physiological, biochemical, and structural studies on the σ(E) system that provide remarkable insights into the mechanistic underpinnings of this regulated proteolytic signal transduction pathway. These studies reveal design principles that are applicable to related proteases and regulatory proteolytic pathways in all domains of life.
Collapse
Affiliation(s)
- Sarah E Barchinger
- Graduate Program in BMMB, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | | |
Collapse
|
43
|
The σE pathway is involved in biofilm formation by Crohn's disease-associated adherent-invasive Escherichia coli. J Bacteriol 2012; 195:76-84. [PMID: 23104802 DOI: 10.1128/jb.01079-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ileal lesions of patients with Crohn's disease are colonized by adherent-invasive Escherichia coli (AIEC) bacteria that are able to adhere to and invade intestinal epithelial cells (IEC), to replicate within macrophages, and to form biofilm. Clinical observations showed that bacterial biofilms were associated with the mucosa of inflammatory bowel disease patients. In the present study, we analyzed the relationship between AIEC colonization of the gut and the formation of biofilm, focusing on the involvement of the σ(E) pathway in the AIEC-IEC interaction. We observed that σ(E) pathway inhibition in AIEC reference strain LF82 led to an impaired ability to adhere to and invade IEC but also induced a large decrease in the abilities to colonize the intestinal mucosa and form biofilm. This indicates that targeting of the σ(E) pathway could be a very potent therapeutic strategy by which to interfere with the ability of AIEC to form biofilm on the gut mucosa of Crohn's disease patients.
Collapse
|
44
|
Flores-Kim J, Darwin AJ. Links between type III secretion and extracytoplasmic stress responses in Yersinia. Front Cell Infect Microbiol 2012; 2:125. [PMID: 23087910 PMCID: PMC3467454 DOI: 10.3389/fcimb.2012.00125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/24/2012] [Indexed: 11/13/2022] Open
Abstract
The cell envelope of pathogenic bacteria is a barrier against host environmental conditions and immunity molecules, as well as the site where many virulence factors are assembled. Extracytoplasmic stress responses (ESRs) have evolved to help maintain its integrity in conditions where it might be compromised. These ESRs also have important links to the production of envelope-associated virulence systems by the bacteria themselves. One such virulence factor is the type III secretion system (T3SS), the first example of which was provided by the pathogenic Yersinia. This article reviews the reported links between four different ESRs and T3SS function in Yersinia. Components of three of these ESRs affect the function and/or regulation of two different T3SSs. The response regulator of the Rcs ESR is involved in positive regulation of the Ysa-Ysp T3SS found in the highly pathogenic 1B biogroup of Y. enterocolitica. Conversely, the response regulator of the Y. pseudotuberculosis Cpx ESR can down-regulate production of the Ysc-Yop T3SS, and at least one other envelope virulence factor (invasin), by direct repression. Also in Y. pseudotuberculosis, there is some evidence suggesting that an intact RpoE ESR might be important for normal Yersinia outer proteins (Yop) production and secretion. Besides these regulatory links between ESRs and T3SSs, perhaps the most striking connection between T3SS function and an ESR is that between the phage shock protein (Psp) and Ysc-Yop systems of Y. enterocolitica. The Psp response does not affect the regulation or function of the Ysc-Yop system. Instead, Ysc-Yop T3SS production induces the Psp system, which then mitigates T3SS-induced envelope stress. Consequently, the Y. enterocolitica Psp system is essential when the Ysc-Yop T3SS is produced.
Collapse
Affiliation(s)
- Josué Flores-Kim
- Department of Microbiology, New York University School of Medicine New York, NY, USA
| | | |
Collapse
|
45
|
Barchinger SE, Zhang X, Hester SE, Rodriguez ME, Harvill ET, Ades SE. sigE facilitates the adaptation of Bordetella bronchiseptica to stress conditions and lethal infection in immunocompromised mice. BMC Microbiol 2012; 12:179. [PMID: 22897969 PMCID: PMC3490749 DOI: 10.1186/1471-2180-12-179] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 06/25/2012] [Indexed: 11/28/2022] Open
Abstract
Background The cell envelope of a bacterial pathogen can be damaged by harsh conditions in the environment outside a host and by immune factors during infection. Cell envelope stress responses preserve the integrity of this essential compartment and are often required for virulence. Bordetella species are important respiratory pathogens that possess a large number of putative transcription factors. However, no cell envelope stress responses have been described in these species. Among the putative Bordetella transcription factors are a number of genes belonging to the extracytoplasmic function (ECF) group of alternative sigma factors, some of which are known to mediate cell envelope stress responses in other bacteria. Here we investigate the role of one such gene, sigE, in stress survival and pathogenesis of Bordetella bronchiseptica. Results We demonstrate that sigE encodes a functional sigma factor that mediates a cell envelope stress response. Mutants of B. bronchiseptica strain RB50 lacking sigE are more sensitive to high temperature, ethanol, and perturbation of the envelope by SDS-EDTA and certain β-lactam antibiotics. Using a series of immunocompromised mice deficient in different components of the innate and adaptive immune responses, we show that SigE plays an important role in evading the innate immune response during lethal infections of mice lacking B cells and T cells. SigE is not required, however, for colonization of the respiratory tract of immunocompetent mice. The sigE mutant is more efficiently phagocytosed and killed by peripheral blood polymorphonuclear leukocytes (PMNs) than RB50, and exhibits decreased cytotoxicity toward macrophages. These altered interactions with phagocytes could contribute to the defects observed during lethal infection. Conclusions Much of the work on transcriptional regulation during infection in B. bronchiseptica has focused on the BvgAS two-component system. This study reveals that the SigE regulon also mediates a discrete subset of functions associated with virulence. SigE is the first cell envelope stress-sensing system to be described in the bordetellae. In addition to its role during lethal infection of mice deficient in adaptive immunity, our results indicate that SigE is likely to be important for survival in the face of stresses encountered in the environment between hosts.
Collapse
Affiliation(s)
- Sarah E Barchinger
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, USA
| | | | | | | | | | | |
Collapse
|
46
|
Bomar L, Graf J. Investigation into the physiologies of Aeromonas veronii in vitro and inside the digestive tract of the medicinal leech using RNA-seq. THE BIOLOGICAL BULLETIN 2012; 223:155-166. [PMID: 22983040 PMCID: PMC3732745 DOI: 10.1086/bblv223n1p155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Host-associated microbial communities are widespread in nature and vital to the health and fitness of the host. Deciphering the physiology of the microbiome in vivo is critical to understanding the molecular basis of the symbiosis. Recently, the development and application of high-throughput sequencing techniques, particularly RNA-seq, for studying microbial communities has enabled researchers to address not only which microbes are present in a given community but also how the community functions. For microbes that can also be cultivated in the laboratory, RNA-seq provides the opportunity to identify genes that are differentially expressed during symbiosis by comparing in vitro to in vivo transcriptomes. In the current study, we used RNA-seq to identify genes expressed by the digestive-tract microbiome of the medicinal leech, Hirudo verbana, and by one of the two dominant symbionts, Aeromonas veronii, in a rich medium. We used a comparative approach to identify genes differentially expressed during symbiosis and gain insight into the symbiont's physiology in vivo. Notable findings include evidence for the symbionts experiencing environmental stress, performing arginine catabolism, and expressing noncoding RNAs that are implicated in stationary phase survival, a state in which A. veronii persists for months within the host.
Collapse
Affiliation(s)
| | - Joerg Graf
- To whom correspondence should be addressed.
| |
Collapse
|
47
|
Ho TD, Ellermeier CD. Extra cytoplasmic function σ factor activation. Curr Opin Microbiol 2012; 15:182-8. [PMID: 22381678 DOI: 10.1016/j.mib.2012.01.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 01/12/2012] [Accepted: 01/31/2012] [Indexed: 10/28/2022]
Abstract
The bacterial cell envelope is essential for cell viability and is a target for numerous antibiotics and host immune defenses. Thus bacteria must sense and respond to damage to the cell envelope. Many bacteria utilize alternative σ factors such as extracytoplasmic function (ECF) σ factors to respond to cell envelope stress. Although ECF σ factors are utilized by both Gram negative and Gram positive bacteria to respond to cell envelope stress, the mechanisms of sensing differ. In this review, we examine the events and proteins that are required for activation of two model extracytoplasmic function σ factors, σ(E) in E. coli and σ(W) in B. subtilis.
Collapse
Affiliation(s)
- Theresa D Ho
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, United States
| | | |
Collapse
|
48
|
Novel inducers of the envelope stress response BaeSR in Salmonella Typhimurium: BaeR is critically required for tungstate waste disposal. PLoS One 2011; 6:e23713. [PMID: 21886814 PMCID: PMC3160322 DOI: 10.1371/journal.pone.0023713] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 07/22/2011] [Indexed: 11/21/2022] Open
Abstract
The RpoE and CpxR regulated envelope stress responses are extremely important for SalmonellaTyphimurium to cause infection in a range of hosts. Until now the role for BaeSR in both the Salmonella Typhimurium response to stress and its contribution to infection have not been fully elucidated. Here we demonstrate stationary phase growth, iron and sodium tungstate as novel inducers of the BaeRregulon, with BaeR critically required for Salmonella resistance to sodium tungstate. We show that functional overlap between the resistance nodulation-cell division (RND) multidrug transporters, MdtA, AcrD and AcrB exists for the waste disposal of tungstate from the cell. We also point to a role for enterobactinsiderophores in the protection of enteric organisms from tungstate, akin to the scenario in nitrogen fixing bacteria. Surprisingly, BaeR is the first envelope stress response pathway investigated in S. Typhimurium that is not required for murine typhoid in either ityS or ityR mouse backgrounds. BaeR is therefore either required for survival in larger mammals such as pigs or calves, an avian host such as chickens, or survival out with the host altogether where Salmonella and related enterics must survive in soil and water.
Collapse
|
49
|
Ho TD, Ellermeier CD. PrsW is required for colonization, resistance to antimicrobial peptides, and expression of extracytoplasmic function σ factors in Clostridium difficile. Infect Immun 2011; 79:3229-38. [PMID: 21628514 PMCID: PMC3147581 DOI: 10.1128/iai.00019-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 05/25/2011] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is an anaerobic, Gram-positive, spore-forming, opportunistic pathogen that is the most common cause of hospital-acquired infectious diarrhea. In numerous pathogens, stress response mechanisms are required for survival within the host. Extracytoplasmic function (ECF) σ factors are a major family of signal transduction systems, which sense and respond to extracellular stresses. We have identified three C. difficile ECF σ factors. These ECF σ factors, CsfT, CsfU, and CsfV, induce their own expressions and are negatively regulated by their cognate anti-σ factors, RsiT, RsiU, and RsiV, respectively. The levels of expression of these ECF σ factors increase following exposure to the antimicrobial peptides bacitracin and/or lysozyme. The expressions of many ECF σ factors are controlled by site 1 and site 2 proteases, which cleave anti-σ factors. Using a retargeted group II intron, we generated a C. difficile mutation in prsW, a putative site 1 protease. The C. difficile prsW mutant exhibited decreased levels of expression of CsfT and CsfU but not of CsfV. When expressed in a heterologous host, C. difficile PrsW was able to induce the degradation of RsiT but not of RsiU. When the prsW mutant was tested in competition assays against its isogenic parent in the hamster model of C. difficile infection, we found that the prsW mutant was 30-fold less virulent than the wild type. The prsW mutant was also significantly more sensitive to bacitracin and lysozyme than the wild type in in vitro competition assays. Taken together, these data suggest that PrsW likely regulates the activation of the ECF σ factor CsfT in C. difficile and controls the resistance of C. difficile to antimicrobial peptides that are important for survival in the host.
Collapse
Affiliation(s)
- Theresa D. Ho
- Department of Microbiology, University of Iowa, 51 Newton Rd., Iowa City, Iowa 52242
| | - Craig D. Ellermeier
- Department of Microbiology, University of Iowa, 51 Newton Rd., Iowa City, Iowa 52242
| |
Collapse
|
50
|
Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Doré J, MetaHIT Consortium, Weissenbach J, Ehrlich SD, Bork P. Enterotypes of the human gut microbiome. Nature 2011; 473:174-80. [PMID: 21508958 PMCID: PMC3728647 DOI: 10.1038/nature09944] [Citation(s) in RCA: 4977] [Impact Index Per Article: 355.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 12/18/2010] [Indexed: 02/06/2023]
Abstract
Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous. This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a functional analysis to understand microbial communities. Although individual host properties such as body mass index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can be identified for each of these host properties. For example, twelve genes significantly correlate with age and three functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.
Collapse
Affiliation(s)
| | - Jeroen Raes
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- VIB—Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Eric Pelletier
- Commissariat à l’Energie Atomique, Genoscope, 91000 Evry, France
- Centre National de la Recherche Scientifique, UMR8030, 91000 Evry, France
- Université d’Evry Val d’Essone 91000 Evry, France
| | - Denis Le Paslier
- Commissariat à l’Energie Atomique, Genoscope, 91000 Evry, France
- Centre National de la Recherche Scientifique, UMR8030, 91000 Evry, France
- Université d’Evry Val d’Essone 91000 Evry, France
| | - Takuji Yamada
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Daniel R. Mende
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Gabriel R. Fernandes
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Julien Tap
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | - Thomas Bruls
- Commissariat à l’Energie Atomique, Genoscope, 91000 Evry, France
- Centre National de la Recherche Scientifique, UMR8030, 91000 Evry, France
- Université d’Evry Val d’Essone 91000 Evry, France
| | - Jean-Michel Batto
- Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | - Marcelo Bertalan
- Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Natalia Borruel
- Digestive System Research Unit, University Hospital Vall d’Hebron, Ciberehd, 08035 Barcelona, Spain
| | - Francesc Casellas
- Digestive System Research Unit, University Hospital Vall d’Hebron, Ciberehd, 08035 Barcelona, Spain
| | - Leyden Fernandez
- Barcelona Supercomputing Center, Jordi Girona 31, 08034 Barcelona, Spain
| | - Laurent Gautier
- Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | - Masahira Hattori
- Computational Biology Laboratory Bld, The University of Tokyo Kashiwa Campus, Kashiwa-no-ha 5-1-5, Kashiwa, Chiba, 277-8561, Japan
| | - Tetsuya Hayashi
- Division of Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, 5200 Kiyotake, Miyazaki 889-1692, Japan
| | - Michiel Kleerebezem
- Laboratory of Microbiology, Wageningen University, 6710BA Ede, The Netherlands
| | - Ken Kurokawa
- Tokyo Institute of Technology, Graduate School of Bioscience and Biotechnology, Department of Biological Information, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa Pref. 226-8501, Japan
| | - Marion Leclerc
- Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | - Florence Levenez
- Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | - Chaysavanh Manichanh
- Digestive System Research Unit, University Hospital Vall d’Hebron, Ciberehd, 08035 Barcelona, Spain
| | - H. Bjørn Nielsen
- Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | - Nicolas Pons
- Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | - Julie Poulain
- Commissariat à l’Energie Atomique, Genoscope, 91000 Evry, France
| | | | - Thomas Sicheritz-Ponten
- Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Sebastian Tims
- Laboratory of Microbiology, Wageningen University, 6710BA Ede, The Netherlands
| | - David Torrents
- Barcelona Supercomputing Center, Jordi Girona 31, 08034 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Edgardo Ugarte
- Commissariat à l’Energie Atomique, Genoscope, 91000 Evry, France
| | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University, 6710BA Ede, The Netherlands
| | - Jun Wang
- BGI-Shenzhen, Shenzhen 518083, China
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Francisco Guarner
- Digestive System Research Unit, University Hospital Vall d’Hebron, Ciberehd, 08035 Barcelona, Spain
| | - Oluf Pedersen
- Hagedorn Research Institute, 2820 Gentofte, Denmark
- Institute of Biomedical Sciences, University of Copenhagen, Denmark
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, 6710BA Ede, The Netherlands
- University of Helsinki, FI-00014 Helsinki, Finland
| | - Søren Brunak
- Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Joel Doré
- Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | | | - Jean Weissenbach
- Commissariat à l’Energie Atomique, Genoscope, 91000 Evry, France
- Centre National de la Recherche Scientifique, UMR8030, 91000 Evry, France
- Université d’Evry Val d’Essone 91000 Evry, France
| | - S. Dusko Ehrlich
- Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | - Peer Bork
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, D-13092 Berlin, Germany
| |
Collapse
|