1
|
Dao F, Niangaly A, Sogore F, Wague M, Dabitao D, Goita S, Hadara AS, Diakite O, Maiga M, Maiga FO, Cazevieille C, Cassan C, Talman AM, Djimde AA, Marin-Menendez A, Dembélé L. Malian field isolates provide insight into Plasmodium malariae intra-erythrocytic development and invasion. PLoS Negl Trop Dis 2025; 19:e0012790. [PMID: 39761327 PMCID: PMC11735006 DOI: 10.1371/journal.pntd.0012790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 01/15/2025] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Plasmodium malariae is the third most prevalent human malaria parasite species and contributes significantly to morbidity. Nevertheless, our comprehension of this parasite's biology remains limited, primarily due to its frequent co-infections with other species and the lack of a continuous in vitro culture system. To effectively combat and eliminate this overlooked parasite, it is imperative to acquire a better understanding of this species. In this study, we embarked on an investigation of P. malariae, including exploring its clinical disease characteristics, molecular aspects of red blood cell (RBC) invasion, and host-cell preferences. We conducted our research using parasites collected from infected individuals in Mali. Our findings revealed anaemia in most of P. malariae infected participants presented, in both symptomatic and asymptomatic cases. Regarding RBC invasion, quantified by an adapted flow cytometry based method, our study indicated that none of the seven antibodies tested, against receptors known for their role in P. falciparum invasion, had any impact on the ability of P. malariae to penetrate the host cells. However, when RBCs were pre-treated with various enzymes (neuraminidase, trypsin, and chymotrypsin), we observed a significant reduction in P. malariae invasion, albeit not a complete blockade. Furthermore, in a subset of P. malariae samples, we observed the parasite's capability to invade reticulocytes. These results suggest that P. malariae employs alternative pathways to enter RBCs of different maturities, which may differ from those used by P. falciparum.
Collapse
Affiliation(s)
- Francois Dao
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Amadou Niangaly
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Fanta Sogore
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Mamadou Wague
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Bamako, Mali
| | - Djeneba Dabitao
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Bamako, Mali
| | - Siaka Goita
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Aboubacrin S. Hadara
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Ousmaila Diakite
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Mohamed Maiga
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Fatoumata O. Maiga
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | | | - Cecile Cassan
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Arthur M. Talman
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | | | - Laurent Dembélé
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| |
Collapse
|
2
|
Kals E, Kals M, Lees RA, Introini V, Kemp A, Silvester E, Collins CR, Umrekar T, Kotar J, Cicuta P, Rayner JC. Application of optical tweezer technology reveals that PfEBA and PfRH ligands, not PfMSP1, play a central role in Plasmodium falciparum merozoite-erythrocyte attachment. PLoS Pathog 2024; 20:e1012041. [PMID: 39312588 PMCID: PMC11449297 DOI: 10.1371/journal.ppat.1012041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 10/03/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Malaria pathogenesis and parasite multiplication depend on the ability of Plasmodium merozoites to invade human erythrocytes. Invasion is a complex multi-step process involving multiple parasite proteins which can differ between species and has been most extensively studied in P. falciparum. However, dissecting the precise role of individual proteins has to date been limited by the availability of quantifiable phenotypic assays. In this study, we apply a new approach to assigning function to invasion proteins by using optical tweezers to directly manipulate recently egressed P. falciparum merozoites and erythrocytes and quantify the strength of attachment between them, as well as the frequency with which such attachments occur. Using a range of inhibitors, antibodies, and genetically modified strains including some generated specifically for this work, we quantitated the contribution of individual P. falciparum proteins to these merozoite-erythrocyte attachment interactions. Conditional deletion of the major P. falciparum merozoite surface protein PfMSP1, long thought to play a central role in initial attachment, had no impact on the force needed to pull merozoites and erythrocytes apart, whereas interventions that disrupted the function of several members of the EBA-175 like Antigen (PfEBA) family and Reticulocyte Binding Protein Homologue (PfRH) invasion ligand families did have a significant negative impact on attachment. Deletion of individual PfEBA and PfRH ligands reinforced the known redundancy within these families, with the deletion of some ligands impacting detachment force while others did not. By comparing over 4000 individual merozoite-erythrocyte interactions in a range of conditions and strains, we establish that the PfEBA/PfRH families play a central role in P. falciparum merozoite attachment, not the major merozoite surface protein PfMSP1.
Collapse
Affiliation(s)
- Emma Kals
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Morten Kals
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Rebecca A. Lees
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Viola Introini
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- EMBL Barcelona, Barcelona, Spain
| | - Alison Kemp
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Eleanor Silvester
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Christine R. Collins
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Trishant Umrekar
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Jurij Kotar
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Andradi-Brown C, Wichers-Misterek JS, von Thien H, Höppner YD, Scholz JAM, Hansson H, Filtenborg Hocke E, Gilberger TW, Duffy MF, Lavstsen T, Baum J, Otto TD, Cunnington AJ, Bachmann A. A novel computational pipeline for var gene expression augments the discovery of changes in the Plasmodium falciparum transcriptome during transition from in vivo to short-term in vitro culture. eLife 2024; 12:RP87726. [PMID: 38270586 PMCID: PMC10945709 DOI: 10.7554/elife.87726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The pathogenesis of severe Plasmodium falciparum malaria involves cytoadhesive microvascular sequestration of infected erythrocytes, mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 variants are encoded by the highly polymorphic family of var genes, the sequences of which are largely unknown in clinical samples. Previously, we published new approaches for var gene profiling and classification of predicted binding phenotypes in clinical P. falciparum isolates (Wichers et al., 2021), which represented a major technical advance. Building on this, we report here a novel method for var gene assembly and multidimensional quantification from RNA-sequencing that outperforms the earlier approach of Wichers et al., 2021, on both laboratory and clinical isolates across a combination of metrics. Importantly, the tool can interrogate the var transcriptome in context with the rest of the transcriptome and can be applied to enhance our understanding of the role of var genes in malaria pathogenesis. We applied this new method to investigate changes in var gene expression through early transition of parasite isolates to in vitro culture, using paired sets of ex vivo samples from our previous study, cultured for up to three generations. In parallel, changes in non-polymorphic core gene expression were investigated. Modest but unpredictable var gene switching and convergence towards var2csa were observed in culture, along with differential expression of 19% of the core transcriptome between paired ex vivo and generation 1 samples. Our results cast doubt on the validity of the common practice of using short-term cultured parasites to make inferences about in vivo phenotype and behaviour.
Collapse
Affiliation(s)
- Clare Andradi-Brown
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Department of Life Sciences, Imperial College London, South KensingtonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Jan Stephan Wichers-Misterek
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Heidrun von Thien
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Yannick D Höppner
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Judith AM Scholz
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
| | - Helle Hansson
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Diseases, Copenhagen University HospitalCopenhagenDenmark
| | - Emma Filtenborg Hocke
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Diseases, Copenhagen University HospitalCopenhagenDenmark
| | - Tim Wolf Gilberger
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Michael F Duffy
- Department of Microbiology and Immunology, University of MelbourneMelbourneAustralia
| | - Thomas Lavstsen
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Diseases, Copenhagen University HospitalCopenhagenDenmark
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South KensingtonLondonUnited Kingdom
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW, KensingtonSydneyUnited Kingdom
| | - Thomas D Otto
- School of Infection & Immunity, MVLS, University of GlasgowGlasgowUnited Kingdom
| | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-RiemsHamburgGermany
| |
Collapse
|
4
|
Nganyewo NN, Bojang F, Oriero EC, Drammeh NF, Ajibola O, Mbye H, Jawara AS, Corea S, Awandare GA, D'Alessandro U, Amenga-Etego LN, Amambua-Ngwa A. Recent increase in low complexity polygenomic infections and sialic acid-independent invasion pathways in Plasmodium falciparum from Western Gambia. Parasit Vectors 2023; 16:309. [PMID: 37653544 PMCID: PMC10472613 DOI: 10.1186/s13071-023-05929-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND The malaria parasite Plasmodium falciparum utilizes multiple alternative receptor-ligand interactions for the invasion of human erythrocytes. While some P. falciparum clones make use of sialic acid (SA) residues on the surface of the human glycophorin receptors to invade the erythrocyte, others use alternative receptors independent of sialic acid residues. We hypothesized that over the years, intensified malaria control interventions and declining prevalence in The Gambia have resulted in a selection of parasites with a dominant invasion pathways and ligand expression profiles. METHODS Blood samples were collected from 65 malaria-infected participants with uncomplicated malaria across 3 years (2015, 2016, and 2021). Genetic diversity was determined by genotyping the merozoite surface protein 2 (msp2) polymorphic gene of P. falciparum. Erythrocyte invasion phenotypes were determined using neuraminidase, trypsin, and chymotrypsin enzymes, known to cleave different receptors from the surface of the erythrocyte. Schizont-stage transcript levels were obtained for a panel of 6 P. falciparum invasion ligand genes (eba175, eba181, Rh2b, Rh4, Rh5, and clag2) using 48 successfully cultured isolates. RESULTS Though the allelic heterozygosity of msp2 repeat region decreased as expected with reduced transmission, there was an increase in infections with more than a single msp2 allelotype from 2015 to 2021. The invasion phenotypes of these isolates were mostly SA independent with a continuous increase from 2015 to 2021. Isolates from 2021 were highly inhibited by chymotrypsin treatment compared to isolates from 2015 and 2016. Higher invasion inhibition for 2021 isolates was further obtained following erythrocyte treatment with a combination of chymotrypsin and trypsin. The transcript levels of invasion ligand genes varied across years. However, levels of clag2, a rhoptry-associated protein, were higher in 2015 and 2016 isolates than in 2021 isolates, while Rh5 levels were higher in 2021 compared to other years. CONCLUSIONS Overall, these findings suggest increasing mixed infections with an increase in the use of sialic-acid independent invasion pathways by P. falciparum clinical isolates in the Western part of Gambia.
Collapse
Affiliation(s)
- Nora Nghochuzie Nganyewo
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Fatoumata Bojang
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Eniyou Cheryll Oriero
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Ndey Fatou Drammeh
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Olumide Ajibola
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Haddijatou Mbye
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Aminata Seedy Jawara
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Simon Corea
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Gordon Akanzuwine Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Lucas N Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, Banjul, The Gambia.
| |
Collapse
|
5
|
Epigenetic and Epitranscriptomic Gene Regulation in Plasmodium falciparum and How We Can Use It against Malaria. Genes (Basel) 2022; 13:genes13101734. [PMID: 36292619 PMCID: PMC9601349 DOI: 10.3390/genes13101734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Malaria, caused by Plasmodium parasites, is still one of the biggest global health challenges. P. falciparum is the deadliest species to humans. In this review, we discuss how this parasite develops and adapts to the complex and heterogenous environments of its two hosts thanks to varied chromatin-associated and epigenetic mechanisms. First, one small family of transcription factors, the ApiAP2 proteins, functions as master regulators of spatio-temporal patterns of gene expression through the parasite life cycle. In addition, chromatin plasticity determines variable parasite cell phenotypes that link to parasite growth, virulence and transmission, enabling parasite adaptation within host conditions. In recent years, epitranscriptomics is emerging as a new regulatory layer of gene expression. We present evidence of the variety of tRNA and mRNA modifications that are being characterized in Plasmodium spp., and the dynamic changes in their abundance during parasite development and cell fate. We end up outlining that new biological systems, like the mosquito model, to decipher the unknowns about epigenetic mechanisms in vivo; and novel methodologies, to study the function of RNA modifications; are needed to discover the Achilles heel of the parasite. With this new knowledge, future strategies manipulating the epigenetics and epitranscriptomic machinery of the parasite have the potential of providing new weapons against malaria.
Collapse
|
6
|
Green JL, Wu Y, Encheva V, Lasonder E, Prommaban A, Kunzelmann S, Christodoulou E, Grainger M, Truongvan N, Bothe S, Sharma V, Song W, Pinzuti I, Uthaipibull C, Srichairatanakool S, Birault V, Langsley G, Schindelin H, Stieglitz B, Snijders AP, Holder AA. Ubiquitin activation is essential for schizont maturation in Plasmodium falciparum blood-stage development. PLoS Pathog 2020; 16:e1008640. [PMID: 32569299 PMCID: PMC7332102 DOI: 10.1371/journal.ppat.1008640] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/02/2020] [Accepted: 05/17/2020] [Indexed: 11/19/2022] Open
Abstract
Ubiquitylation is a common post translational modification of eukaryotic proteins and in the human malaria parasite, Plasmodium falciparum (Pf) overall ubiquitylation increases in the transition from intracellular schizont to extracellular merozoite stages in the asexual blood stage cycle. Here, we identify specific ubiquitylation sites of protein substrates in three intraerythrocytic parasite stages and extracellular merozoites; a total of 1464 sites in 546 proteins were identified (data available via ProteomeXchange with identifier PXD014998). 469 ubiquitylated proteins were identified in merozoites compared with only 160 in the preceding intracellular schizont stage, suggesting a large increase in protein ubiquitylation associated with merozoite maturation. Following merozoite invasion of erythrocytes, few ubiquitylated proteins were detected in the first intracellular ring stage but as parasites matured through trophozoite to schizont stages the apparent extent of ubiquitylation increased. We identified commonly used ubiquitylation motifs and groups of ubiquitylated proteins in specific areas of cellular function, for example merozoite pellicle proteins involved in erythrocyte invasion, exported proteins, and histones. To investigate the importance of ubiquitylation we screened ubiquitin pathway inhibitors in a parasite growth assay and identified the ubiquitin activating enzyme (UBA1 or E1) inhibitor MLN7243 (TAK-243) to be particularly effective. This small molecule was shown to be a potent inhibitor of recombinant PfUBA1, and a structural homology model of MLN7243 bound to the parasite enzyme highlights avenues for the development of P. falciparum specific inhibitors. We created a genetically modified parasite with a rapamycin-inducible functional deletion of uba1; addition of either MLN7243 or rapamycin to the recombinant parasite line resulted in the same phenotype, with parasite development blocked at the schizont stage. Nuclear division and formation of intracellular structures was interrupted. These results indicate that the intracellular target of MLN7243 is UBA1, and this activity is essential for the final differentiation of schizonts to merozoites.
Collapse
Affiliation(s)
- Judith L. Green
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Yang Wu
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Vesela Encheva
- Mass Spectrometry Proteomics, The Francis Crick Institute, London, United Kingdom
| | - Edwin Lasonder
- School of Biomedical Science, University of Plymouth, Plymouth, United Kingdom
| | - Adchara Prommaban
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Biochemistry, Chiang Mai University, Chiang Mai, Thailand
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Evangelos Christodoulou
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Munira Grainger
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ngoc Truongvan
- Rudolf Virchow Center for Experimental Biomedicine, Universität Würzburg, Würzburg, Germany
| | - Sebastian Bothe
- Department of Chemistry and Pharmacy, University of Würzburg, Würzburg, Germany
| | - Vikram Sharma
- School of Biomedical Science, University of Plymouth, Plymouth, United Kingdom
| | - Wei Song
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Irene Pinzuti
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Chairat Uthaipibull
- National Center for Genetic Engineering and Biotechnology, Khlong Luang, Thailand
| | | | | | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Institut Cochin, Université Paris Descartes, Paris, France
| | - Hermann Schindelin
- Rudolf Virchow Center for Experimental Biomedicine, Universität Würzburg, Würzburg, Germany
| | - Benjamin Stieglitz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | | | - Anthony A. Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Diédhiou CK, Moussa RA, Bei AK, Daniels R, Papa Mze N, Ndiaye D, Faye N, Wirth D, Amambua-Ngwa A, Mboup S, Ahouidi AD. Temporal changes in Plasmodium falciparum reticulocyte binding protein homolog 2b (PfRh2b) in Senegal and The Gambia. Malar J 2019; 18:239. [PMID: 31311552 PMCID: PMC6636118 DOI: 10.1186/s12936-019-2868-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Plasmodium falciparum reticulocyte binding protein homolog 2b (PfRh2b) is an important P. falciparum merozoite ligand that mediates invasion of erythrocytes by interacting with a chymotrypsin-sensitive "receptor Z". A large deletion polymorphism is found in the c-terminal ectodomain of this protein in many countries around the world, resulting in a truncated, but expressed protein. The varying frequencies by region suggest that there could be region specific immune selection at this locus. Therefore, this study was designed to determine temporal changes in the PfRh2b deletion polymorphism in infected individuals from Thiès (Senegal) and Western Gambia (The Gambia). It was also sought to determine the selective pressures acting at this locus and whether prevalence of the deletion in isolates genotyped by a 24-SNP molecular barcode is linked to background genotype or whether there might be independent selection acting at this locus. METHODS Infected blood samples were sourced from archives of previous studies conducted between 2007 and 2013 at SLAP clinic in Thiès and from 1984 to 2013 in Western Gambia by MRC Unit at LSHTM, The Gambia. A total of 1380 samples were screened for the dimorphic alleles of the PfRh2b using semi-nested Polymerase Chain Reaction PCR. Samples from Thiès were previously barcoded. RESULTS In Thiès, a consistent trend of decreasing prevalence of the PfRh2b deletion over time was observed: from 66.54% in 2007 and to 38.1% in 2013. In contrast, in Western Gambia, the frequency of the deletion fluctuated over time; it increased between 1984 and 2005 from (58.04%) to (69.33%) and decreased to 47.47% in 2007. Between 2007 and 2012, the prevalence of this deletion increased significantly from 47.47 to 83.02% and finally declined significantly to 57.94% in 2013. Association between the presence of this deletion and age was found in Thiès, however, not in Western Gambia. For the majority of isolates, the PfRh2b alleles could be tracked with specific 24-SNP barcoded genotype, indicating a lack of independent selection at this locus. CONCLUSION PfRh2b deletion was found in the two countries with varying prevalence during the study period. However, these temporal and spatial variations could be an obstacle to the implementation of this protein as a potential vaccine candidate.
Collapse
Affiliation(s)
- Cyrille K Diédhiou
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal.,Laboratory of Bacteriology and Virology, Hospital Aristide Le Dantec, 7325, Dakar, Senegal
| | - Rahama A Moussa
- Laboratory of Bacteriology and Virology, Hospital Aristide Le Dantec, 7325, Dakar, Senegal
| | - Amy K Bei
- Laboratory of Bacteriology and Virology, Hospital Aristide Le Dantec, 7325, Dakar, Senegal.,Department of Immunology & Infectious Diseases, Harvard TH Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA.,Laboratory of Parasitology Mycology, Aristide Le Dantec Hospital, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, 5005, Dakar, Senegal
| | - Rachel Daniels
- Department of Immunology & Infectious Diseases, Harvard TH Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | - Nasserdine Papa Mze
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal.,Laboratory of Bacteriology and Virology, Hospital Aristide Le Dantec, 7325, Dakar, Senegal
| | - Daouda Ndiaye
- Laboratory of Parasitology Mycology, Aristide Le Dantec Hospital, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, 5005, Dakar, Senegal
| | - Ngor Faye
- Faculty of Sciences and Technologies, University Cheikh Anta Diop, Dakar, PO Box 5005, Dakar, Senegal
| | - Dyann Wirth
- Department of Immunology & Infectious Diseases, Harvard TH Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit, The Gambia at LSHTM, Fajara, Banjul, The Gambia
| | - Souleymane Mboup
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | - Ambroise D Ahouidi
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal. .,Laboratory of Bacteriology and Virology, Hospital Aristide Le Dantec, 7325, Dakar, Senegal.
| |
Collapse
|
8
|
An analysis of large structural variation in global Plasmodium falciparum isolates identifies a novel duplication of the chloroquine resistance associated gene. Sci Rep 2019; 9:8287. [PMID: 31164664 PMCID: PMC6547842 DOI: 10.1038/s41598-019-44599-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 05/16/2019] [Indexed: 12/13/2022] Open
Abstract
The evolution of genetic mechanisms for host immune evasion and anti-malarial resistance has enabled the Plasmodium falciparum malaria parasite to inflict high morbidity and mortality on human populations. Most studies of P. falciparum genetic diversity have focused on single-nucleotide polymorphisms (SNPs), assisting the identification of drug resistance-associated loci such as the chloroquine related crt and sulfadoxine-pyrimethamine related dhfr. Whilst larger structural variants are known to impact adaptation, for example, mdr1 duplications with anti-malarial resistance, no large-scale, genome-wide study on clinical isolates has been undertaken using whole genome sequencing data. By applying a structural variant detection pipeline across whole genome sequence data from 2,855 clinical isolates in 21 malaria-endemic countries, we identified >70,000 specific deletions and >600 duplications. Most structural variants are rare (48.5% of deletions and 94.7% of duplications are found in single isolates) with 2.4% of deletions and 0.2% of duplications found in >5% of global isolates. A subset of variants was present at high frequency in drug-resistance related genes including mdr1, the gch1 promoter region, and a putative novel duplication of crt. Regional-specific variants were identified, and a companion visualisation tool has been developed to assist web-based investigation of these polymorphisms by the wider scientific community.
Collapse
|
9
|
Tijani MK, Babalola OA, Odaibo AB, Anumudu CI, Asinobi AO, Morenikeji OA, Asuzu MC, Langer C, Reiling L, Beeson JG, Wahlgren M, Nwuba RI, Persson KEM. Acquisition, maintenance and adaptation of invasion inhibitory antibodies against Plasmodium falciparum invasion ligands involved in immune evasion. PLoS One 2017; 12:e0182187. [PMID: 28787025 PMCID: PMC5546579 DOI: 10.1371/journal.pone.0182187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 07/13/2017] [Indexed: 11/18/2022] Open
Abstract
Erythrocyte-binding antigens (EBAs) and P. falciparum reticulocyte-binding homologue proteins (PfRhs) are two important protein families that can vary in expression and utilization by P. falciparum to evade inhibitory antibodies. We evaluated antibodies at repeated time-points among individuals living in an endemic region in Nigeria over almost one year against these vaccine candidates. Antibody levels against EBA140, EBA175, EBA181, PfRh2, PfRh4, and MSP2, were measured by ELISA. We also used parasites with disrupted EBA140, EBA175 and EBA181 genes to show that all these were targets of invasion inhibitory antibodies. However, antigenic targets of inhibitory antibodies were not stable and changed substantially over time in most individuals, independent of age. Antibodies levels measured by ELISA also varied within and between individuals over time and the antibodies against EBA181, PfRh2 and MSP2 declined more rapidly in younger individuals (≤15 years) compared with older (>15). The breadth of high antibody responses over time was more influenced by age than by the frequency of infection. High antibody levels were associated with a more stable invasion inhibitory response, which could indicate that during the long process of formation of immunity, many changes not only in levels but also in functional responses are needed. This is an important finding in understanding natural immunity against malaria, which is essential for making an efficacious vaccine.
Collapse
Affiliation(s)
- Muyideen K. Tijani
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Oluwatoyin A. Babalola
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Alex B. Odaibo
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Chiaka I. Anumudu
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Adanze O. Asinobi
- Department of Paediatrics, University College Hospital, University of Ibadan, Ibadan, Nigeria
| | - Olajumoke A. Morenikeji
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Michael C. Asuzu
- Department of Preventive Medicine and Primary Care, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Christine Langer
- The Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Linda Reiling
- The Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - James G. Beeson
- The Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Roseangela I. Nwuba
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Kristina E. M. Persson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, University Hospital, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
10
|
Bei AK, Ahouidi AD, Dvorin JD, Miura K, Diouf A, Ndiaye D, Premji Z, Diakite M, Mboup S, Long CA, Duraisingh MT. Functional Analysis Reveals Geographical Variation in Inhibitory Immune Responses Against a Polymorphic Malaria Antigen. J Infect Dis 2017; 216:267-275. [PMID: 28605544 PMCID: PMC5853457 DOI: 10.1093/infdis/jix280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/08/2017] [Indexed: 12/28/2022] Open
Abstract
Background Plasmodium falciparum reticulocyte-binding protein homologue 2b (PfRh2b) is an invasion ligand that is a potential blood-stage vaccine candidate antigen; however, a naturally occurring deletion within an immunogenic domain is present at high frequencies in Africa and has been associated with alternative invasion pathway usage. Standardized tools that provide antigenic specificity in in vitro assays are needed to functionally assess the neutralizing potential of humoral responses against malaria vaccine candidate antigens. Methods Transgenic parasite lines were generated to express the PfRh2b deletion. Total immunoglobulin G (IgG) from individuals residing in malaria-endemic regions in Tanzania, Senegal, and Mali were used in growth inhibition assays with transgenic parasite lines. Results While the PfRh2b deletion transgenic line showed no change in invasion pathway utilization compared to the wild-type in the absence of specific antibodies, it outgrew wild-type controls in competitive growth experiments. Inhibition differences with total IgG were observed in the different endemic sites, ranging from allele-specific inhibition to allele-independent inhibitory immune responses. Conclusions The PfRh2b deletion may allow the parasite to escape neutralizing antibody responses in some regions. This difference in geographical inhibition was revealed using transgenic methodologies, which provide valuable tools for functionally assessing neutralizing antibodies against vaccine-candidate antigens in regions with varying malaria endemicity.
Collapse
Affiliation(s)
- Amy K Bei
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Laboratory of Bacteriology and Virology, Le Dantec Hospital, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
- Laboratory of Parasitology and Mycology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | - Ambroise D Ahouidi
- Laboratory of Bacteriology and Virology, Le Dantec Hospital, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | - Jeffrey D Dvorin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Division of Infectious Diseases, Boston Children's Hospital and Harvard Medical School, Massachusetts
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Daouda Ndiaye
- Laboratory of Parasitology and Mycology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | - Zul Premji
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania
- Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
| | - Mahamadou Diakite
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odontostomatology, University of Science, Techniques and Technologies of Bamako, Mali
| | - Souleymane Mboup
- Laboratory of Bacteriology and Virology, Le Dantec Hospital, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
- Institut de Recherche en Santé, de Surveillance Epidemiologique et de Formations, Dakar, Senegal
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
11
|
Abstract
Organisms with identical genome sequences can show substantial differences in their phenotypes owing to epigenetic changes that result in different use of their genes. Epigenetic regulation of gene expression plays a key role in the control of several fundamental processes in the biology of malaria parasites, including antigenic variation and sexual differentiation. Some of the histone modifications and chromatin-modifying enzymes that control the epigenetic states of malaria genes have been characterized, and their functions are beginning to be unraveled. The fundamental principles of epigenetic regulation of gene expression appear to be conserved between malaria parasites and model eukaryotes, but important peculiarities exist. Here, we review the current knowledge of malaria epigenetics and discuss how it can be exploited for the development of new molecular markers and new types of drugs that may contribute to malaria eradication efforts.
Collapse
Affiliation(s)
- Alfred Cortés
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia 08036, Spain.,ICREA, Barcelona, Catalonia 08010, Spain
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10065
| |
Collapse
|
12
|
Valmaseda A, Bassat Q, Aide P, Cisteró P, Jiménez A, Casellas A, Machevo S, Aguilar R, Sigaúque B, Chauhan VS, Langer C, Beeson J, Chitnis C, Alonso PL, Gaur D, Mayor A. Host age and expression of genes involved in red blood cell invasion in Plasmodium falciparum field isolates. Sci Rep 2017; 7:4717. [PMID: 28680086 PMCID: PMC5498679 DOI: 10.1038/s41598-017-05025-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/23/2017] [Indexed: 11/24/2022] Open
Abstract
Plasmodium falciparum proteins involved in erythrocyte invasion are main targets of acquired immunity and important vaccine candidates. We hypothesized that anti-parasite immunity acquired upon exposure would limit invasion-related gene (IRG) expression and affect the clinical impact of the infection. 11 IRG transcript levels were measured in P. falciparum isolates by RT-PCR, and IgG/IgM against invasion ligands by Luminex®, in 50 Mozambican adults, 25 children with severe malaria (SM) and 25 with uncomplicated malaria (UM). IRG expression differences among groups and associations between IRG expression and clinical/immunologic parameters were assessed. IRG expression diversity was higher in parasites infecting children than adults (p = 0.022). eba140 and ptramp expression decreased with age (p = 0.003 and 0.007, respectively) whereas p41 expression increased (p = 0.022). pfrh5 reduction in expression was abrupt early in life. Parasite density decreased with increasing pfrh5 expression (p < 0.001) and, only in children, parasite density increased with p41 expression (p = 0.007), and decreased with eba175 (p = 0.013). Antibody responses and IRG expression were not associated. In conclusion, IRG expression is associated with age and parasite density, but not with specific antibody responses in the acute phase of infection. Our results confirm the importance of multi-antigen vaccines development to avoid parasite immune escape when tested in malaria-exposed individuals.
Collapse
Affiliation(s)
- Aida Valmaseda
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
| | - Quique Bassat
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Pau Cisteró
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Alfons Jiménez
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBEREsp), Madrid, Spain
| | - Aina Casellas
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Sonia Machevo
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Ruth Aguilar
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Betuel Sigaúque
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Virander S Chauhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Christine Langer
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - James Beeson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Chetan Chitnis
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Pedro L Alonso
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Alfredo Mayor
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain. .,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique.
| |
Collapse
|
13
|
Ord RL, Rodriguez M, Lobo CA. Malaria invasion ligand RH5 and its prime candidacy in blood-stage malaria vaccine design. Hum Vaccin Immunother 2016; 11:1465-73. [PMID: 25844685 DOI: 10.1080/21645515.2015.1026496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
With drug resistance to available therapeutics continuing to develop against Plasmodium falciparum malaria, the development of an effective vaccine candidate remains a major research goal. Successful interruption of invasion of parasites into erythrocytes during the blood stage of infection will prevent the severe clinical symptoms and complications associated with malaria. Previously studied blood stage antigens have highlighted the hurdles that are inherent to this life-cycle stage, namely that highly immunogenic antigens are also globally diverse, resulting in protection only against the vaccine strain, or that naturally acquired immunity to blood stage antigens do not always correlate with actual protection. The blood stage antigen reticulocyte binding homolog RH5 is essential for parasite viability, has globally limited diversity, and is associated with protection from disease. Here we summarize available information on this invasion ligand and recent findings that highlight its candidacy for inclusion in a blood-stage malaria vaccine.
Collapse
Affiliation(s)
- Rosalynn L Ord
- a Blood-Borne Parasites; Lindsley Kimball Research Institute; New York Blood Center ; New York , NY , USA
| | | | | |
Collapse
|
14
|
Lasonder E, Green JL, Grainger M, Langsley G, Holder AA. Extensive differential protein phosphorylation as intraerythrocytic Plasmodium falciparum schizonts develop into extracellular invasive merozoites. Proteomics 2015; 15:2716-29. [PMID: 25886026 DOI: 10.1002/pmic.201400508] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/18/2015] [Accepted: 04/13/2015] [Indexed: 12/31/2022]
Abstract
Pathology of the most lethal form of malaria is caused by Plasmodium falciparum asexual blood stages and initiated by merozoite invasion of erythrocytes. We present a phosphoproteome analysis of extracellular merozoites revealing 1765 unique phosphorylation sites including 785 sites not previously detected in schizonts. All MS data have been deposited in the ProteomeXchange with identifier PXD001684 (http://proteomecentral.proteomexchange.org/dataset/PXD001684). The observed differential phosphorylation between extra and intraerythrocytic life-cycle stages was confirmed using both phospho-site and phospho-motif specific antibodies and is consistent with the core motif [K/R]xx[pS/pT] being highly represented in merozoite phosphoproteins. Comparative bioinformatic analyses highlighted protein sets and pathways with established roles in invasion. Within the merozoite phosphoprotein interaction network a subnetwork of 119 proteins with potential roles in cellular movement and invasion was identified and suggested that it is coregulated by a further small subnetwork of protein kinase A (PKA), two calcium-dependent protein kinases (CDPKs), a phosphatidyl inositol kinase (PI3K), and a GCN2-like elF2-kinase with a predicted role in translational arrest and associated changes in the ubquitinome. To test this notion experimentally, we examined the overall ubiquitination level in intracellular schizonts versus extracellular merozoites and found it highly upregulated in merozoites. We propose that alterations in the phosphoproteome and ubiquitinome reflect a starvation-induced translational arrest as intracellular schizonts transform into extracellular merozoites.
Collapse
Affiliation(s)
- Edwin Lasonder
- School of Biomedical and Healthcare Sciences, Plymouth University, Drake Circus, Plymouth, Devon, UK
| | - Judith L Green
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| | - Munira Grainger
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes - Sorbonne Paris Cité, France.,Inserm U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Anthony A Holder
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| |
Collapse
|
15
|
Shen Y, Wang J, Liu X, Liang J, Huang Y, Liu Z, Zhao YA, Li Y. Blockade of Plasmodium falciparum erythrocyte invasion: New assessment of anti- Plasmodium falciparum reticulocyte-binding protein homolog 5 antibodies. Exp Ther Med 2015; 9:1357-1362. [PMID: 25780435 PMCID: PMC4353742 DOI: 10.3892/etm.2015.2237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/18/2014] [Indexed: 11/06/2022] Open
Abstract
There is great interest in any new discoveries in malaria vaccine research. Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) shows promise in this area and may be used together with other merozoite antigens as a potential vaccine. In the present study, a bioinformatics prediction approach was applied to a PfRH5 B-cell epitope, and two B-cell epitope distributions were selected. Antibodies against the two PfRH5 distributions were obtained and the growth activity inhibition was measured. No inhibition of the P. falciparum CY strain was found, but the growth of the P. falciparum 3D7 strain was inhibited by all of the antibodies, in contrast to the results of other studies. It was additionally found that certain quantities of protein led to the inhibition of the parasitic invasion. Equally noteworthy was that the survival time of the group immunized with a portion of PfRH5 was significantly longer than that of the group immunized with the full-length protein, following infection by P. berghei ANKA. The present study produced conflicting results in in vitro and in vivo experiments, although the accuracy of the evaluation may be lessened due to the use of a murine malaria model. The findings of the present study may indicate that PfRH5 may not be suitable in malaria vaccine research.
Collapse
Affiliation(s)
- Yan Shen
- Department of Medical Microbiology and Parasitology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jun Wang
- Department of Medical Microbiology and Parasitology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xuewu Liu
- Department of Medical Microbiology and Parasitology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jiao Liang
- Department of Medical Microbiology and Parasitology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yuxiao Huang
- Department of Medical Microbiology and Parasitology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhongxiang Liu
- Department of Medical Microbiology and Parasitology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Y A Zhao
- Department of Medical Microbiology and Parasitology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yinghui Li
- Department of Medical Microbiology and Parasitology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
16
|
Persson KEM, Fowkes FJI, McCallum FJ, Gicheru N, Reiling L, Richards JS, Wilson DW, Lopaticki S, Cowman AF, Marsh K, Beeson JG. Erythrocyte-binding antigens of Plasmodium falciparum are targets of human inhibitory antibodies and function to evade naturally acquired immunity. THE JOURNAL OF IMMUNOLOGY 2013; 191:785-94. [PMID: 23776178 DOI: 10.4049/jimmunol.1300444] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abs that inhibit Plasmodium falciparum invasion of erythrocytes form an important component of human immunity against malaria, but key target Ags are largely unknown. Phenotypic variation by P. falciparum mediates the evasion of inhibitory Abs, contributing to the capacity of P. falciparum to cause repeat and chronic infections. However, Ags involved in mediating immune evasion have not been defined, and studies of the function of human Abs are limited. In this study, we used novel approaches to determine the importance of P. falciparum erythrocyte-binding Ags (EBAs), which are important invasion ligands, as targets of human invasion-inhibitory Abs and define their role in contributing to immune evasion through variation in function. We evaluated the invasion-inhibitory activity of acquired Abs from malaria-exposed children and adults from Kenya, using P. falciparum with disruption of genes encoding EBA140, EBA175, and EBA181, either individually or combined as EBA140/EBA175 or EBA175/EBA181 double knockouts. Our findings provide important new evidence that variation in the expression and function of the EBAs plays an important role in evasion of acquired Abs and that a substantial amount of phenotypic diversity results from variation in expression of different EBAs that contributes to immune evasion by P. falciparum. All three EBAs were identified as important targets of naturally acquired inhibitory Abs demonstrated by differential inhibition of parental parasites greater than EBA knockout lines. This knowledge will help to advance malaria vaccine development and suggests that multiple invasion ligands need to be targeted to overcome the capacity of P. falciparum for immune evasion.
Collapse
Affiliation(s)
- Kristina E M Persson
- Karolinska Institutet, Microbiology, Tumor and Cell Biology, 17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Identification of a potent combination of key Plasmodium falciparum merozoite antigens that elicit strain-transcending parasite-neutralizing antibodies. Infect Immun 2012. [PMID: 23184525 DOI: 10.1128/iai.01107-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Blood-stage malaria vaccines that target single Plasmodium falciparum antigens involved in erythrocyte invasion have not induced optimal protection in field trials. Blood-stage malaria vaccine development has faced two major hurdles, antigenic polymorphisms and molecular redundancy, which have led to an inability to demonstrate potent, strain-transcending, invasion-inhibitory antibodies. Vaccines that target multiple invasion-related parasite proteins may inhibit erythrocyte invasion more efficiently. Our approach is to develop a receptor-blocking blood-stage vaccine against P. falciparum that targets the erythrocyte binding domains of multiple parasite adhesins, blocking their interaction with their receptors and thus inhibiting erythrocyte invasion. However, with numerous invasion ligands, the challenge is to identify combinations that elicit potent strain-transcending invasion inhibition. We evaluated the invasion-inhibitory activities of 20 different triple combinations of antibodies mixed in vitro against a diverse set of six key merozoite ligands, including the novel ligands P. falciparum apical asparagine-rich protein (PfAARP), EBA-175 (PfF2), P. falciparum reticulocyte binding-like homologous protein 1 (PfRH1), PfRH2, PfRH4, and Plasmodium thrombospondin apical merozoite protein (PTRAMP), which are localized in different apical organelles and are translocated to the merozoite surface at different time points during invasion. They bind erythrocytes with different specificities and are thus involved in distinct invasion pathways. The antibody combination of EBA-175 (PfF2), PfRH2, and PfAARP produced the most efficacious strain-transcending inhibition of erythrocyte invasion against diverse P. falciparum clones. This potent antigen combination was selected for coimmunization as a mixture that induced balanced antibody responses against each antigen and inhibited erythrocyte invasion efficiently. We have thus demonstrated a novel two-step screening approach to identify a potent antigen combination that elicits strong strain-transcending invasion inhibition, supporting its development as a receptor-blocking malaria vaccine.
Collapse
|
18
|
Lopez-Perez M, Villasis E, Machado RLD, Póvoa MM, Vinetz JM, Blair S, Gamboa D, Lustigman S. Plasmodium falciparum field isolates from South America use an atypical red blood cell invasion pathway associated with invasion ligand polymorphisms. PLoS One 2012; 7:e47913. [PMID: 23118907 PMCID: PMC3485327 DOI: 10.1371/journal.pone.0047913] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/17/2012] [Indexed: 12/02/2022] Open
Abstract
Studies of Plasmodium falciparum invasion pathways in field isolates have been limited. Red blood cell (RBC) invasion is a complex process involving two invasion protein families; Erythrocyte Binding-Like (EBL) and the Reticulocyte Binding-Like (PfRh) proteins, which are polymorphic and not fully characterized in field isolates. To determine the various P. falciparum invasion pathways used by parasite isolates from South America, we studied the invasion phenotypes in three regions: Colombia, Peru and Brazil. Additionally, polymorphisms in three members of the EBL (EBA-181, EBA-175 and EBL-1) and five members of the PfRh (PfRh1, PfRh2a, PfRh2b, PfRh4, PfRh5) families were determined. We found that most P. falciparum field isolates from Colombia and Peru invade RBCs through an atypical invasion pathway phenotypically characterized as resistant to all enzyme treatments (NrTrCr). Moreover, the invasion pathways and the ligand polymorphisms differed substantially among the Colombian and Brazilian isolates while the Peruvian isolates represent an amalgam of those present in the Colombian and Brazilian field isolates. The NrTrCr invasion profile was associated with the presence of the PfRh2a pepC variant, the PfRh5 variant 1 and EBA-181 RVNKN variant. The ebl and Pfrh expression levels in a field isolate displaying the NrTrCr profile also pointed to PfRh2a, PfRh5 and EBA-181 as being possibly the major players in this invasion pathway. Notably, our studies demonstrate the uniqueness of the Peruvian P. falciparum field isolates in terms of their invasion profiles and ligand polymorphisms, and present a unique opportunity for studying the ability of P. falciparum parasites to expand their invasion repertoire after being reintroduced to human populations. The present study is directly relevant to asexual blood stage vaccine design focused on invasion pathway proteins, suggesting that regional invasion variants and global geographical variation are likely to preclude a simple one size fits all type of vaccine.
Collapse
Affiliation(s)
- Mary Lopez-Perez
- Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York City, New York, United States of America
| | - Elizabeth Villasis
- Malaria Laboratory, Instituto de Medicina Tropical “Alexander von Humboldt” Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ricardo L. D. Machado
- Center for Microorganism Investigations, Department of Dermatology, Parasitic and Infectious Diseases, Medicine School in São José do Rio Preto, São Paulo State, Brazil
| | - Marinete M. Póvoa
- Seção de Parasitologia, Instituto Evandro Chagas, Belém, Pará, Brazil
| | - Joseph M. Vinetz
- Malaria Laboratory, Instituto de Medicina Tropical “Alexander von Humboldt” Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Silvia Blair
- Malaria Group, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | - Dionicia Gamboa
- Malaria Laboratory, Instituto de Medicina Tropical “Alexander von Humboldt” Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Sara Lustigman
- Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York City, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Douse CH, Green JL, Salgado PS, Simpson PJ, Thomas JC, Langsley G, Holder AA, Tate EW, Cota E. Regulation of the Plasmodium motor complex: phosphorylation of myosin A tail-interacting protein (MTIP) loosens its grip on MyoA. J Biol Chem 2012; 287:36968-77. [PMID: 22932904 DOI: 10.1074/jbc.m112.379842] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction between the C-terminal tail of myosin A (MyoA) and its light chain, myosin A tail domain interacting protein (MTIP), is an essential feature of the conserved molecular machinery required for gliding motility and cell invasion by apicomplexan parasites. Recent data indicate that MTIP Ser-107 and/or Ser-108 are targeted for intracellular phosphorylation. Using an optimized MyoA tail peptide to reconstitute the complex, we show that this region of MTIP is an interaction hotspot using x-ray crystallography and NMR, and S107E and S108E mutants were generated to mimic the effect of phosphorylation. NMR relaxation experiments and other biophysical measurements indicate that the S108E mutation serves to break the tight clamp around the MyoA tail, whereas S107E has a smaller but measurable impact. These data are consistent with physical interactions observed between recombinant MTIP and native MyoA from Plasmodium falciparum lysates. Taken together these data support the notion that the conserved interactions between MTIP and MyoA may be specifically modulated by this post-translational modification.
Collapse
Affiliation(s)
- Christopher H Douse
- Institute of Chemical Biology, Imperial College London, SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Infection of erythrocytes with the human malaria parasite, Plasmodium falciparum, results in dramatic changes to the host cell structure and morphology. The predicted functional localization of the STEVOR proteins at the erythrocyte surface suggests that they may be involved in parasite-induced modifications of the erythrocyte membrane during parasite development. To address the biologic function of STEVOR proteins, we subjected a panel of stevor transgenic parasites and wild-type clonal lines exhibiting different expression levels for stevor genes to functional assays exploring parasite-induced modifications of the erythrocyte membrane. Using this approach, we show that stevor expression impacts deformability of the erythrocyte membrane. This process may facilitate parasite sequestration in deep tissue vasculature.
Collapse
|
21
|
A single amino acid change in the Plasmodium falciparum RH5 (PfRH5) human RBC binding sequence modifies its structure and determines species-specific binding activity. Vaccine 2012; 30:637-46. [DOI: 10.1016/j.vaccine.2011.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/27/2011] [Accepted: 11/03/2011] [Indexed: 11/23/2022]
|
22
|
Kuss C, Gan CS, Gunalan K, Bozdech Z, Sze SK, Preiser PR. Quantitative proteomics reveals new insights into erythrocyte invasion by Plasmodium falciparum. Mol Cell Proteomics 2011; 11:M111.010645. [PMID: 22023809 DOI: 10.1074/mcp.m111.010645] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Differential expression of ligands in the human malaria parasite Plasmodium falciparum enables it to recognize different receptors on the erythrocyte surface, thereby providing alternative invasion pathways. Switching of invasion from using sialated to nonsialated erythrocyte receptors has been linked to the transcriptional activation of a single parasite ligand. We have used quantitative proteomics to show that in addition to this single known change, there are a significant number of changes in the expression of merozoite proteins that are regulated independent of transcription during invasion pathway switching. These results demonstrate a so far unrecognized mechanism by which the malaria parasite is able to adapt to variations in the host cell environment by post-transcriptional regulation.
Collapse
Affiliation(s)
- Claudia Kuss
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | | | | | | | | |
Collapse
|
23
|
Functional analysis of the exported type IV HSP40 protein PfGECO in Plasmodium falciparum gametocytes. EUKARYOTIC CELL 2011; 10:1492-503. [PMID: 21965515 DOI: 10.1128/ec.05155-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During Plasmodium falciparum infection, host red blood cell (RBC) remodeling is required for the parasite's survival. Such modifications are mediated by the export of parasite proteins into the RBC that alter the architecture of the RBC membrane and enable cytoadherence. It is probable that some exported proteins also play a protective role against the host defense response. This may be of particular importance for the gametocyte stage of the life cycle that is responsible for malaria transmission, since the gametocyte remains in contact with blood as it proceeds through five morphological stages (I to V) during its 12-day maturation. Using microarray analysis, we identified several genes with encoded secretory or export sequences that were differentially expressed during early gametocytogenesis. One of these, PfGECO, encodes a predicted type IV heat shock protein 40 (HSP40) that we show is expressed in gametocyte stages I to IV and is exported to the RBC cytoplasm. HSPs are traditionally induced under stressful conditions to maintain homeostasis, but PfGECO expression was not increased upon heat shock, suggesting an alternate function. Targeted disruption of PfGECO indicated that the gene is not essential for gametocytogenesis in vitro, and quantitative reverse transcriptase PCR (RT-PCR) showed that there was no compensatory expression of the other type IV HSP40 genes. Although P. falciparum HSP40 members are implicated in the trafficking of proteins to the RBC surface, removal of PfGECO did not affect the targeting of other exported gametocyte proteins. This work has expanded the repertoire of known gametocyte-exported proteins to include a type IV HSP40, PfGECO.
Collapse
|
24
|
Grüber A, Gunalan K, Ramalingam JK, Manimekalai MSS, Grüber G, Preiser PR. Structural characterization of the erythrocyte binding domain of the reticulocyte binding protein homologue family of Plasmodium yoelii. Infect Immun 2011; 79:2880-8. [PMID: 21482683 PMCID: PMC3191949 DOI: 10.1128/iai.01326-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/28/2011] [Indexed: 11/20/2022] Open
Abstract
Invasion of the host cell by the malaria parasite is a key step for parasite survival and the only stage of its life cycle where the parasite is extracellular, and it is therefore a target for an antimalaria intervention strategy. Multiple members of the reticulocyte binding protein homologues (RH) family are found in all plasmodia and have been shown to bind to host red blood cells directly. In the study described here, we delineated the erythrocyte binding domain (EBD) of one member of the RH family, termed Py235, from Plasmodium yoelii. Moreover, we have obtained the low-resolution structure of the EBD using small-angle X-ray scattering. Comparison of the EDB structure to other characterized Plasmodium receptor binding domains suggests that there may be an overall structural conservation. These findings may help in developing new approaches to target receptor ligand interactions mediated by parasite proteins.
Collapse
Affiliation(s)
- Ardina Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Karthigayan Gunalan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Jeya Kumar Ramalingam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Peter R. Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
25
|
Plasmodium falciparum merozoite invasion is inhibited by antibodies that target the PfRh2a and b binding domains. PLoS Pathog 2011; 7:e1002075. [PMID: 21698217 PMCID: PMC3116812 DOI: 10.1371/journal.ppat.1002075] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 04/09/2011] [Indexed: 02/05/2023] Open
Abstract
Plasmodium falciparum, the causative agent of the most severe form of malaria in humans invades erythrocytes using multiple ligand-receptor interactions. The P. falciparum reticulocyte binding-like homologue proteins (PfRh or PfRBL) are important for entry of the invasive merozoite form of the parasite into red blood cells. We have analysed two members of this protein family, PfRh2a and PfRh2b, and show they undergo a complex series of proteolytic cleavage events before and during merozoite invasion. We show that PfRh2a undergoes a cleavage event in the transmembrane region during invasion consistent with activity of the membrane associated PfROM4 protease that would result in release of the ectodomain into the supernatant. We also show that PfRh2a and PfRh2b bind to red blood cells and have defined the erythrocyte-binding domain to a 15 kDa region at the N-terminus of each protein. Antibodies to this receptor-binding region block merozoite invasion demonstrating the important function of this domain. This region of PfRh2a and PfRh2b has potential in a combination vaccine with other erythrocyte binding ligands for induction of antibodies that would block a broad range of invasion pathways for P. falciparum into human erythrocytes. The causative agent of the most severe form of malaria in humans is the protozoan parasite Plasmodium falciparum. These parasites are carried by a mosquito that infects humans during feeding resulting in injection of sporozoite forms that infect and develop in the liver into the merozoite stage. The merozoites are released into the blood stream where they invade erythrocytes in which they can grow and divide. Invasion of the red blood cell by P. falciparum merozoites involves a cascade of protein-protein interactions. The P. falciparum reticulocyte binding-like homologue proteins (PfRh or PfRBL) are an important protein family involved in binding to specific receptors on the red blood cell. We have analysed two members of this protein family, PfRh2a and PfRh2b, and show that they undergo a complex series of cleavage events before and during merozoite invasion. We have defined the region of these ligands that bind red blood cells and show that antibodies to this receptor-binding region block merozoite invasion demonstrating the important function of this domain.
Collapse
|
26
|
Bapat D, Huang X, Gunalan K, Preiser PR. Changes in parasite virulence induced by the disruption of a single member of the 235 kDa rhoptry protein multigene family of Plasmodium yoelii. PLoS One 2011; 6:e20170. [PMID: 21625465 PMCID: PMC3098881 DOI: 10.1371/journal.pone.0020170] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 04/26/2011] [Indexed: 11/18/2022] Open
Abstract
Invasion of the erythrocyte by the merozoites of the malaria parasite is a
complex process involving a range of receptor-ligand interactions. Two protein
families termed Erythrocyte Binding Like (EBL) proteins and Reticulocyte Binding
Protein Homologues (RH) play an important role in host cell recognition by the
merozoite. In the rodent malaria parasite, Plasmodium yoelii,
the 235 kDa rhoptry proteins (Py235) are coded for by a multigene family and are
members of the RH. In P. yoelii Py235 as well as a single
member of EBL have been shown to be key mediators of virulence enabling the
parasite to invade a wider range of host erythrocytes. One member of Py235,
PY01365 is most abundantly transcribed in parasite
populations and the protein specifically binds to erythrocytes and is recognized
by the protective monoclonal antibody 25.77, suggesting a key role of this
particular member in virulence. Recent studies have indicated that overall
levels of Py235 expression are essential for parasite virulence. Here we show
that disruption of PY01365 in the virulent YM line directly
impacts parasite virulence. Furthermore the disruption of
PY01365 leads to a reduction in the number of schizonts
that express members of Py235 that react specifically with the mcAb 25.77.
Erythrocyte binding assays show reduced binding of Py235 to red blood cells in
the PY01365 knockout parasite as compared to YM. While our
results identify PY01365 as a mediator of parasite virulence,
they also confirm that other members of Py235 are able to substitute for
PY01365.
Collapse
Affiliation(s)
- Devaki Bapat
- School of Biological Sciences, Nanyang Technological University,
Singapore, Singapore
| | - Ximei Huang
- School of Biological Sciences, Nanyang Technological University,
Singapore, Singapore
| | - Karthigayan Gunalan
- School of Biological Sciences, Nanyang Technological University,
Singapore, Singapore
| | - Peter R. Preiser
- School of Biological Sciences, Nanyang Technological University,
Singapore, Singapore
- * E-mail:
| |
Collapse
|
27
|
Crowley VM, Rovira-Graells N, Ribas de Pouplana L, Cortés A. Heterochromatin formation in bistable chromatin domains controls the epigenetic repression of clonally variant Plasmodium falciparum genes linked to erythrocyte invasion. Mol Microbiol 2011; 80:391-406. [PMID: 21306446 DOI: 10.1111/j.1365-2958.2011.07574.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Clonally variant gene expression is a common survival strategy used by many pathogens, including the malaria parasite Plasmodium falciparum. Among the genes that show variant expression in this parasite are several members of small gene families linked to erythrocyte invasion, including the clag and eba families. The active or repressed state of these genes is clonally transmitted by epigenetic mechanisms. Here we characterized the promoters of clag3.1, clag3.2 and eba-140, and compared nuclease accessibility and post-translational histone modifications between their active and repressed states. Activity of these promoters in an episomal context is similar between parasite subclones characterized by different patterns of expression of the endogenous genes. Variant expression is controlled by the euchromatic or heterochromatic state of bistable chromatin domains. Repression is mediated by H3K9me3-based heterochromatin, whereas the active state is characterized by H3K9ac. These marks are maintained throughout the asexual blood cycle to transmit the epigenetic memory. Furthermore, eba-140 is organized in two distinct chromatin domains, probably separated by a barrier insulator located within its ORF. The 5' chromatin domain controls expression of the gene, whereas the 3' domain shares the chromatin conformation with the upstream region of the neighbouring phista family gene, which also shows variant expression.
Collapse
Affiliation(s)
- Valerie M Crowley
- Institute for Research in Biomedicine (IRB), 08028 Barcelona, Catalonia, Spain
| | | | | | | |
Collapse
|
28
|
Plasmodium falciparum reticulocyte binding-like homologue protein 2 (PfRH2) is a key adhesive molecule involved in erythrocyte invasion. PLoS One 2011; 6:e17102. [PMID: 21386888 PMCID: PMC3046117 DOI: 10.1371/journal.pone.0017102] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 01/20/2011] [Indexed: 11/19/2022] Open
Abstract
Erythrocyte invasion by Plasmodium merozoites is a complex, multistep process that is mediated by a number of parasite ligand-erythrocyte receptor interactions. One such family of parasite ligands includes the P. falciparum reticulocyte binding homologue (PfRH) proteins that are homologous with the P. vivax reticulocyte binding proteins and have been shown to play a role in erythrocyte invasion. There are five functional PfRH proteins of which only PfRH2a/2b have not yet been demonstrated to bind erythrocytes. In this study, we demonstrated that native PfRH2a/2b is processed near the N-terminus yielding fragments of 220 kDa and 80 kDa that exhibit differential erythrocyte binding specificities. The erythrocyte binding specificity of the 220 kDa processed fragment of native PfRH2a/2b was sialic acid-independent, trypsin resistant and chymotrypsin sensitive. This specific binding phenotype is consistent with previous studies that disrupted the PfRH2a/2b genes and demonstrated that PfRH2b is involved in a sialic acid independent, trypsin resistant, chymotrypsin sensitive invasion pathway. Interestingly, we found that the smaller 80 kDa PfRH2a/2b fragment is processed from the larger 220 kDa fragment and binds erythrocytes in a sialic acid dependent, trypsin resistant and chymotrypsin sensitive manner. Thus, the two processed fragments of PfRH2a/2b differed with respect to their dependence on sialic acids for erythrocyte binding. Further, we mapped the erythrocyte binding domain of PfRH2a/2b to a conserved 40 kDa N-terminal region (rPfRH240) in the ectodomain that is common to both PfRH2a and PfRH2b. We demonstrated that recombinant rPfRH240 bound human erythrocytes with the same specificity as the native 220 kDa processed protein. Moreover, antibodies generated against rPfRH240 blocked erythrocyte invasion by P. falciparum through a sialic acid independent pathway. PfRH2a/2b thus plays a key role in erythrocyte invasion and its conserved receptor-binding domain deserves attention as a promising candidate for inclusion in a blood-stage malaria vaccine.
Collapse
|
29
|
Targeted disruption of py235ebp-1: invasion of erythrocytes by Plasmodium yoelii using an alternative Py235 erythrocyte binding protein. PLoS Pathog 2011; 7:e1001288. [PMID: 21379566 PMCID: PMC3040676 DOI: 10.1371/journal.ppat.1001288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 01/10/2011] [Indexed: 11/19/2022] Open
Abstract
Plasmodium yoelii YM asexual blood stage parasites express multiple members of the py235 gene family, part of the super-family of genes including those coding for Plasmodium vivax reticulocyte binding proteins and Plasmodium falciparum RH proteins. We previously identified a Py235 erythrocyte binding protein (Py235EBP-1, encoded by the PY01365 gene) that is recognized by protective mAb 25.77. Proteins recognized by a second protective mAb 25.37 have been identified by mass spectrometry and are encoded by two genes, PY01185 and PY05995/PY03534. We deleted the PY01365 gene and examined the phenotype. The expression of the members of the py235 family in both the WT and gene deletion parasites was measured by quantitative RT-PCR and RNA-Seq. py235ebp-1 expression was undetectable in the knockout parasite, but transcription of other members of the family was essentially unaffected. The knockout parasites continued to react with mAb 25.77; and the 25.77-binding proteins in these parasites were the PY01185 and PY05995/PY03534 products. The PY01185 product was also identified as erythrocyte binding. There was no clear change in erythrocyte invasion profile suggesting that the PY01185 gene product (designated PY235EBP-2) is able to fulfill the role of EBP-1 by serving as an invasion ligand although the molecular details of its interaction with erythrocytes have not been examined. The PY01365, PY01185, and PY05995/PY03534 genes are part of a distinct subset of the py235 family. In P. falciparum, the RH protein genes are under epigenetic control and expression correlates with binding to distinct erythrocyte receptors and specific invasion pathways, whereas in P. yoelii YM all the genes are expressed and deletion of one does not result in upregulation of another. We propose that simultaneous expression of multiple Py235 ligands enables invasion of a wide range of host erythrocytes even in the presence of antibodies to one or more of the proteins and that this functional redundancy at the protein level gives the parasite phenotypic plasticity in the absence of differences in gene expression.
Collapse
|
30
|
DeSimone TM, Jennings CV, Bei AK, Comeaux C, Coleman BI, Refour P, Triglia T, Stubbs J, Cowman AF, Duraisingh MT. Cooperativity between Plasmodium falciparum adhesive proteins for invasion into erythrocytes. Mol Microbiol 2010; 72:578-89. [PMID: 19400777 DOI: 10.1111/j.1365-2958.2009.06667.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasmodium falciparum is the most virulent of the Plasmodium species infective to humans. Different P. falciparum strains vary in their dependence on erythrocyte receptors for invasion and their ability to switch in their utilization of different receptor repertoires. Members of the reticulocyte-binding protein-like (RBL) family of invasion ligands are postulated to play a central role in defining ligand-receptor interactions, known as invasion pathways. Here we report the targeted gene disruption of PfRh2b and PfRh2a in W2mef, a parasite strain that is heavily dependent on sialic-acid receptors for invasion, and show that the PfRh2b ligand is functional in this parasite background. Like the parental line, parasites lacking either PfRh2a or PfR2b can switch to a sialic acid-independent invasion pathway. However, both of the switched lines exhibit a reduced efficiency for invasion into sialic acid-depleted cells, suggesting a role for both PfRh2b and PfRh2a in invasion via sialic acid-independent receptors. We also find a strong selective pressure for the reconstitution of PfRh2b expression at the expense of PfRh2a. Our results reveal the importance of genetic background in ligand-receptor usage by P. falciparum parasites, and suggest that the co-ordinate expression of PfRh2a, PfRh2b together mediate efficient sialic acid-independent erythrocyte invasion.
Collapse
|
31
|
Reiling L, Richards JS, Fowkes FJI, Barry AE, Triglia T, Chokejindachai W, Michon P, Tavul L, Siba PM, Cowman AF, Mueller I, Beeson JG. Evidence that the erythrocyte invasion ligand PfRh2 is a target of protective immunity against Plasmodium falciparum malaria. THE JOURNAL OF IMMUNOLOGY 2010; 185:6157-67. [PMID: 20962255 DOI: 10.4049/jimmunol.1001555] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abs targeting blood-stage Ags of Plasmodium falciparum are important in acquired immunity to malaria, but major targets remain unclear. The P. falciparum reticulocyte-binding homologs (PfRh) are key ligands used by merozoites during invasion of erythrocytes. PfRh2a and PfRh2b are functionally important members of this family and may be targets of protective immunity, but their potential role in human immunity has not been examined. We expressed eight recombinant proteins covering the entire PfRh2 common region, as well as PfRh2a- and PfRh2b-specific regions. Abs were measured among a cohort of 206 Papua New Guinean children who were followed prospectively for 6 mo for reinfection and malaria. At baseline, Abs were associated with increasing age and active infection. High levels of IgG to all PfRh2 protein constructs were strongly associated with protection from symptomatic malaria and high-density parasitemia. The predominant IgG subclasses were IgG1 and IgG3, with little IgG2 and IgG4 detected. To further understand the significance of PfRh2 as an immune target, we analyzed PfRh2 sequences and found that polymorphisms are concentrated in an N-terminal region of the protein and seem to be under diversifying selection, suggesting immune pressure. Cluster analysis arranged the sequences into two main groups, suggesting that many of the haplotypes identified may be antigenically similar. These findings provide evidence suggesting that PfRh2 is an important target of protective immunity in humans and that Abs act by controlling blood-stage parasitemia and support its potential for vaccine development.
Collapse
Affiliation(s)
- Linda Reiling
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bowyer PW, Simon GM, Cravatt BF, Bogyo M. Global profiling of proteolysis during rupture of Plasmodium falciparum from the host erythrocyte. Mol Cell Proteomics 2010; 10:M110.001636. [PMID: 20943600 PMCID: PMC3098579 DOI: 10.1074/mcp.m110.001636] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The obligate intracellular parasite pathogen Plasmodium falciparum is the causative agent of malaria, a disease that results in nearly one million deaths per year. A key step in disease pathology in the human host is the parasite-mediated rupture of red blood cells, a process that requires extensive proteolysis of a number of host and parasite proteins. However, only a relatively small number of specific proteolytic processing events have been characterized. Here we describe the application of the Protein Topography and Migration Analysis Platform (PROTOMAP) (Dix, M. M., Simon, G. M., and Cravatt, B. F. (2008) Global mapping of the topography and magnitude of proteolytic events in apoptosis. Cell 134, 679-691; Simon, G. M., Dix, M. M., and Cravatt, B. F. (2009) Comparative assessment of large-scale proteomic studies of apoptotic proteolysis. ACS Chem. Biol. 4, 401-408) technology to globally profile proteolytic events occurring over the last 6-8 h of the intraerythrocytic cycle of P. falciparum. Using this method, we were able to generate peptographs for a large number of proteins at 6 h prior to rupture as well as at the point of rupture and in purified merozoites after exit from the host cell. These peptographs allowed assessment of proteolytic processing as well as changes in both protein localization and overall stage-specific expression of a large number of parasite proteins. Furthermore, by using a highly selective inhibitor of the cysteine protease dipeptidyl aminopeptidase 3 (DPAP3) that has been shown to be a key regulator of host cell rupture, we were able to identify specific substrates whose processing may be of particular importance to the process of host cell rupture. These results provide the first global map of the proteolytic processing events that take place as the human malarial parasite extracts itself from the host red blood cell. These data also provide insight into the biochemical events that take place during host cell rupture and are likely to be valuable for the study of proteases that could potentially be targeted for therapeutic gain.
Collapse
Affiliation(s)
- Paul W Bowyer
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
33
|
Dvorin JD, Bei AK, Coleman BI, Duraisingh MT. Functional diversification between two related Plasmodium falciparum merozoite invasion ligands is determined by changes in the cytoplasmic domain. Mol Microbiol 2010; 75:990-1006. [PMID: 20487292 DOI: 10.1111/j.1365-2958.2009.07040.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The pathogenesis of Plasmodium falciparum depends on efficient invasion into host erythrocytes. Parasite ligands encoded by multi-gene families interact with erythrocyte receptors. P. falciparum reticulocyte binding protein homologues (PfRhs) are expressed at the apical surface of invasive merozoites and have divergent ectodomains that are postulated to bind different erythrocyte receptors. Variant expression of these paralogues results in the use of alternative invasion pathways. Two PfRh proteins, PfRh2a and PfRh2b, are identical for 2700 N-terminal amino acids and differ only in a C-terminal 500 amino acid region, which includes a unique ectodomain, transmembrane domain and cytoplasmic domain. Despite their similarity, PfRh2b is required for a well-defined invasion pathway while PfRh2a is not required or sufficient for this pathway. Mapping the genomic region encoding these proteins revealed a recombinogenic locus with PfRh2a and PfRh2b in a head-to-head orientation. We have generated viable PfRh2a/2b chimeric parasites to identify the regions required for alternative invasion pathway utilization. We find that the differential ability to use these pathways is conferred by the cytoplasmic domains of PfRh2a and PfRh2b, not the ectodomain or transmembrane regions. Our results highlight the importance of the cytoplasmic domain for functional diversification of a major adhesive ligand family in malaria parasites.
Collapse
Affiliation(s)
- Jeffrey D Dvorin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
34
|
Systematic genetic analysis of the Plasmodium falciparum MSP7-like family reveals differences in protein expression, location, and importance in asexual growth of the blood-stage parasite. EUKARYOTIC CELL 2010; 9:1064-74. [PMID: 20472690 DOI: 10.1128/ec.00048-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proteins located on Plasmodium falciparum merozoites, the invasive form of the parasite's asexual blood stage, are of considerable interest in vaccine research. Merozoite surface protein 7 (MSP7) forms a complex with MSP1 and is encoded by a member of a multigene family located on chromosome 13. The family codes for MSP7 and five MSP7-related proteins (MSRPs). In the present study, we have investigated the expression and the effect of msrp gene deletion at the asexual blood stage. In addition to msp7, msrp2, msrp3, and msrp5 are transcribed, and mRNA was easily detected by hybridization analysis, whereas mRNA for msrp1 and msrp4 could be detected only by reverse transcription (RT)-PCR. Notwithstanding evidence of transcription, antibodies to recombinant MSRPs failed to detect specific proteins, except for antibodies to MSRP2. Sequential proteolytic cleavages of MSRP2 resulted in 28- and 25-kDa forms. However, MSRP2 was absent from merozoites; the 25-kDa MSRP2 protein (MSRP2(25)) was soluble and secreted upon merozoite egress. The msrp genes were deleted by targeted disruption in the 3D7 line, leading to ablation of full-length transcripts. MSRP deletion mutants had no detectable phenotype, with growth and invasion characteristics comparable to those of the parental parasite; only the deletion of MSP7 led to a detectable growth phenotype. Thus, within this family some of the genes are transcribed at a significant level in asexual blood stages, but the corresponding proteins may or may not be detectable. Interactions of the expressed proteins with the merozoite also differ. These results highlight the potential for unexpected differences of protein expression levels within gene families.
Collapse
|
35
|
García J, Curtidor H, Pinzón CG, Patarroyo MA, Vanegas M, Forero M, Patarroyo ME. Well-Defined Regions of the Plasmodium falciparum Reticulocyte Binding Protein Homologue 4 Mediate Interaction with Red Blood Cell Membrane. J Med Chem 2009; 53:811-21. [DOI: 10.1021/jm901540n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeison García
- Fundación Instituto de Inmunología de Colombia FIDIC, Carrera 50 No. 26-20, Bogotá, Colombia
- Universidad del Rosario, Calle 14 No. 6-25, Bogotá, Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia FIDIC, Carrera 50 No. 26-20, Bogotá, Colombia
- Universidad del Rosario, Calle 14 No. 6-25, Bogotá, Colombia
| | - Carlos G. Pinzón
- Fundación Instituto de Inmunología de Colombia FIDIC, Carrera 50 No. 26-20, Bogotá, Colombia
- Universidad del Rosario, Calle 14 No. 6-25, Bogotá, Colombia
| | - Manuel A. Patarroyo
- Fundación Instituto de Inmunología de Colombia FIDIC, Carrera 50 No. 26-20, Bogotá, Colombia
- Universidad del Rosario, Calle 14 No. 6-25, Bogotá, Colombia
| | - Magnolia Vanegas
- Fundación Instituto de Inmunología de Colombia FIDIC, Carrera 50 No. 26-20, Bogotá, Colombia
- Universidad del Rosario, Calle 14 No. 6-25, Bogotá, Colombia
| | - Martha Forero
- Fundación Instituto de Inmunología de Colombia FIDIC, Carrera 50 No. 26-20, Bogotá, Colombia
- Universidad del Rosario, Calle 14 No. 6-25, Bogotá, Colombia
| | - Manuel E. Patarroyo
- Fundación Instituto de Inmunología de Colombia FIDIC, Carrera 50 No. 26-20, Bogotá, Colombia
- Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá, Colombia
| |
Collapse
|
36
|
Population genetic analysis of large sequence polymorphisms in Plasmodium falciparum blood-stage antigens. INFECTION GENETICS AND EVOLUTION 2009; 10:200-6. [PMID: 19931645 DOI: 10.1016/j.meegid.2009.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 11/06/2009] [Accepted: 11/11/2009] [Indexed: 11/24/2022]
Abstract
Plasmodium falciparum, the causative agent of human malaria, invades host erythrocytes using several proteins on the surface of the invasive merozoite, which have been proposed as potential vaccine candidates. Members of the multi-gene PfRh family are surface antigens that have been shown to play a central role in directing merozoites to alternative erythrocyte receptors for invasion. Recently, we identified a large structural polymorphism, a 0.58Kb deletion, in the C-terminal region of the PfRh2b gene, present at a high frequency in parasite populations from Senegal. We hypothesize that this region is a target of humoral immunity. Here, by analyzing 371 P. falciparum isolates we show that this major allele is present at varying frequencies in different populations within Senegal, Africa, and throughout the world. For allelic dimorphisms in the asexual stage antigens, Msp-2 and EBA-175, we find minimal geographic differentiation among parasite populations from Senegal and other African localities, suggesting extensive gene flow among these populations and/or immune-mediated frequency-dependent balancing selection. In contrast, we observe a higher level of inter-population divergence (as measured by F(st)) for the PfRh2b deletion, similar to that observed for SNPs from the sexual stage Pfs45/48 loci, which is postulated to be under directional selection. We confirm that the region containing the PfRh2b polymorphism is a target of humoral immune responses by demonstrating antibody reactivity of endemic sera. Our analysis of inter-population divergence suggests that in contrast to the large allelic dimorphisms in EBA-175 and Msp-2, the presence or absence of the large PfRh2b deletion may not elicit frequency-dependent immune selection, but may be under positive immune selection, having important implications for the development of these proteins as vaccine candidates.
Collapse
|
37
|
The malaria parasite cyclic GMP-dependent protein kinase plays a central role in blood-stage schizogony. EUKARYOTIC CELL 2009; 9:37-45. [PMID: 19915077 DOI: 10.1128/ec.00186-09] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A role for the Plasmodium falciparum cyclic GMP (cGMP)-dependent protein kinase (PfPKG) in gametogenesis in the malaria parasite was elucidated previously. In the present study we examined the role of PfPKG in the asexual blood-stage of the parasite life cycle, the stage that causes malaria pathology. A specific PKG inhibitor (compound 1, a trisubstituted pyrrole) prevented the progression of P. falciparum schizonts through to ring stages in erythrocyte invasion assays. Addition of compound 1 to ring-stage parasites allowed normal development up to 30 h postinvasion, and segmented schizonts were able to form. However, synchronized schizonts treated with compound 1 for > or =6 h became large and dysmorphic and were unable to rupture or liberate merozoites. To conclusively demonstrate that the effect of compound 1 on schizogony was due to its selective action on PfPKG, we utilized genetically manipulated P. falciparum parasites expressing a compound 1-insensitive PfPKG. The mutant parasites were able to complete schizogony in the presence of compound 1 but not in the presence of the broad-spectrum protein kinase inhibitor staurosporine. This shows that PfPKG is the primary target of compound 1 during schizogony and provides direct evidence of a role for PfPKG in this process. Discovery of essential roles for the P. falciparum PKG in both asexual and sexual development demonstrates that cGMP signaling is a key regulator of both of these crucial life cycle phases and defines this molecule as an exciting potential drug target for both therapeutic and transmission blocking action against malaria.
Collapse
|
38
|
Novel putative glycosylphosphatidylinositol-anchored micronemal antigen of Plasmodium falciparum that binds to erythrocytes. EUKARYOTIC CELL 2009; 8:1869-79. [PMID: 19820120 DOI: 10.1128/ec.00218-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified a new Plasmodium falciparum erythrocyte binding protein that appears to be located in the micronemes of the merozoite stage of the parasite and membrane linked through a glycosylphosphatidylinositol (GPI) anchor. The protein is designated GPI-anchored micronemal antigen (GAMA) and was identified by applying a set of selection criteria to identify previously uncharacterized merozoite proteins that may have a role in cell invasion. The protein is also present in the proteomes of the sporozoite and ookinete micronemes and is conserved throughout the genus. GAMA contains a novel domain that may be constrained by disulfide bonds and a predicted C-terminal hydrophobic sequence that is presumably replaced by the GPI. The protein is synthesized late during schizogony, processed into two fragments that are linked by a disulfide bond, and translocated to an apical location, which is probably the micronemes. In a proportion of free merozoites GAMA can also be detected on the parasite surface. Following erythrocyte invasion the bulk of the protein is shed in a soluble form, although a short C-terminal fragment may be carried into the newly invaded red blood cell. The protein was shown to bind reversibly to erythrocytes and therefore represents a new example of a host cell binding protein.
Collapse
|
39
|
Triglia T, Tham WH, Hodder A, Cowman AF. Reticulocyte binding protein homologues are key adhesins during erythrocyte invasion by Plasmodium falciparum. Cell Microbiol 2009; 11:1671-87. [PMID: 19614665 PMCID: PMC2774477 DOI: 10.1111/j.1462-5822.2009.01358.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Apicomplexan parasite responsible for the most virulent form of malaria, Plasmodium falciparum, invades human erythrocytes through multiple ligand–receptor interactions. The P. falciparum reticulocyte-binding protein homologue (PfRh or PfRBL) family have been implicated in the invasion process but their exact role is unknown. PfRh1 and PfRh4, members of this protein family, bind to red blood cells and function in merozoite invasion during which they undergo a series of proteolytic cleavage events before and during entry into the host cell. The ectodomain of PfRh1 and PfRh4 are processed to produce fragments consistent with cleavage in the transmembrane domain and released into the supernatant, at about the time of invasion, in a manner consistent with rhomboid protease cleavage. Processing of both PfRh1 and PfRh4, and by extrapolation all membrane-bound members of this protein family, is important for function and release of these proteins on the merozoite surface and they along with EBA-175 are important components of the tight junction, the transient structure that links the erythrocyte via receptor–ligand interactions to the actin–myosin motor in the invading merozoite.
Collapse
Affiliation(s)
- Tony Triglia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Australia
| | | | | | | |
Collapse
|
40
|
Erythrocyte invasion profiles are associated with a common invasion ligand polymorphism in Senegalese isolates of Plasmodium falciparum. Parasitology 2009; 136:1-9. [PMID: 19126266 DOI: 10.1017/s0031182008005167] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plasmodium falciparum parasites use multiple ligand-receptor interactions to invade human erythrocytes. Variant expression levels of members of the PfRh and PfEBA ligand families are associated with the use of different erythrocyte receptors, defining invasion pathways. Here we analyse a major polymorphism, a large sequence deletion in the PfRh2b ligand, and erythrocyte invasion profiles in uncultured Senegalese isolates. Parasites vary considerably in their use of sialic acid-containing and protease-sensitive erythrocyte receptors for invasion. The erythrocyte selectivity index was not related to invasion pathway usage, while parasite multiplication rate was associated with enhanced use of a trypsin-resistant invasion pathway. PfRh2b protein was expressed in all parasite isolates, although the PfRh2b deletion was present in a subset (approximately 68%). Parasites with the PfRh2b deletion were found to preferentially utilize protease-resistant pathways for erythrocyte invasion. Sialic acid-independent invasion is reduced in parasites with the PfRh2b deletion, but only in isolates derived from blood group O patients. Our results suggest a significant role for PfRh2b sequence polymorphism in discriminating between alternative erythrocyte receptors for invasion and as a possible determinant of virulence.
Collapse
|
41
|
Ramalingam JK, Hunke C, Gao X, Grüber G, Preiser PR. ATP/ADP binding to a novel nucleotide binding domain of the reticulocyte-binding protein Py235 of Plasmodium yoelii. J Biol Chem 2008; 283:36386-96. [PMID: 18957411 DOI: 10.1074/jbc.m803102200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism by which a malaria merozoite recognizes a suitable host cell is mediated by a cascade of receptor-ligand interactions. In addition to the availability of the appropriate receptors, intracellular ATP plays an important role in determining whether erythrocytes are suitable for merozoite invasion. Recent work has shown that ATP secreted from erythrocytes signals a number of cellular processes. To determine whether ATP signaling might be involved in merozoite invasion, we investigated whether known plasmodium invasion proteins contain nucleotide binding motifs. Domain mapping identified a putative nucleotide binding region within all members of the reticulocyte-binding protein homologue (RBL) family analyzed. A representative domain, termed here nucleotide binding domain 94 (NBD94), was expressed and demonstrated to specifically bind to ATP. Nucleotide affinities of NBD94 were determined by fluorescence correlation spectroscopy, where an increase in the binding of ATP is observed compared with ADP analogues. ATP binding was reduced by the known F1F0-ATP synthase inhibitor 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Fluorescence quenching and circular dichroism spectroscopy of NBD94 after binding of different nucleotides provide evidence for structural changes in this protein. Our data suggest that different structural changes induced by ATP/ADP binding to RBL could play an important role during the invasion process.
Collapse
Affiliation(s)
- Jeya Kumar Ramalingam
- Division of Genomics and Genetics, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
42
|
Gilson PR, Crabb BS. Morphology and kinetics of the three distinct phases of red blood cell invasion by Plasmodium falciparum merozoites. Int J Parasitol 2008; 39:91-6. [PMID: 18952091 DOI: 10.1016/j.ijpara.2008.09.007] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 09/25/2008] [Accepted: 09/28/2008] [Indexed: 10/21/2022]
Abstract
The invasion of red blood cells (RBCs) is an essential event in the life cycle of all malaria-causing Plasmodium parasites; however, there are major gaps in our knowledge of this process. Here, we use video microscopy to address the kinetics of RBC invasion in the human malaria parasite Plasmodium falciparum. Under in vitro conditions merozoites generally recognise new target RBCs within 1 min of their release from their host RBC. Parasite entry ensues and is complete on average 27.6s after primary contact. This period can be divided into two distinct phases. The first is an approximately 11s 'pre-invasion' phase that involves an often dramatic RBC deformation and recovery process. The second is the classical 'invasion' phase where the merozoite becomes internalised within the RBC in a approximately 17s period. After invasion, a third 'echinocytosis' phase commences when about 36 s after every successful invasion a dramatic dehydration-type morphology was adopted by the infected RBC. During this phase, the echinocytotic effect reached a peak over the next 23.4s, after which the infected RBC recovered over a 5-11 min period. By then the merozoite had assumed an amoeboid-like state and was apparently free in the cytoplasm. A comparison of our data with that of an earlier study of the distantly related primate parasite Plasmodium knowlesi indicated remarkable similarities, suggesting that the kinetics of invasion are conserved across the Plasmodium genus. This study provides a morphological and kinetic framework onto which the invasion-associated physiological and molecular events can be overlaid.
Collapse
Affiliation(s)
- Paul R Gilson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic. 3050, Australia.
| | | |
Collapse
|
43
|
Rodriguez M, Lustigman S, Montero E, Oksov Y, Lobo CA. PfRH5: a novel reticulocyte-binding family homolog of plasmodium falciparum that binds to the erythrocyte, and an investigation of its receptor. PLoS One 2008; 3:e3300. [PMID: 18827878 PMCID: PMC2553180 DOI: 10.1371/journal.pone.0003300] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 09/08/2008] [Indexed: 11/18/2022] Open
Abstract
Multiple interactions between parasite ligands and their receptors on the human erythrocyte are a condition of successful Plasmodium falciparum invasion. The identification and characterization of these receptors presents a major challenge in the effort to understand the mechanism of invasion and to develop the means to prevent it. We describe here a novel member of the reticulocyte-binding family homolog (RH) of P. falciparum, PfRH5, and show that it binds to a previously unrecognized receptor on the RBC. PfRH5 is expressed as a 63 kDa protein and localized at the apical end of the invasive merozoite. We have expressed a fragment of PfRH5 which contains the RBC-binding domain and exhibits the same pattern of interactions with the RBC as the parent protein. Attachment is inhibited if the target cells are exposed to high concentrations of trypsin, but not to lower concentrations or to chymotrypsin or neuraminidase. We have determined the affinity, copy number and apparent molecular mass of the receptor protein. Thus, we have shown that PfRH5 is a novel erythrocyte-binding ligand and the identification and partial characterization of the new RBC receptor may indicate the existence of an unrecognized P. falciparum invasion pathway.
Collapse
Affiliation(s)
- Marilis Rodriguez
- Laboratory of Blood-Borne Parasites, Lindsley Kimball Research Institute, The New York Blood Center, New York, New York, United States of America
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley Kimball Research Institute, The New York Blood Center, New York, New York, United States of America
| | - Estrella Montero
- Laboratory of Blood-Borne Parasites, Lindsley Kimball Research Institute, The New York Blood Center, New York, New York, United States of America
| | - Yelena Oksov
- Electron Microscopy, Lindsley Kimball Research Institute, The New York Blood Center, New York, New York, United States of America
| | - Cheryl A. Lobo
- Laboratory of Blood-Borne Parasites, Lindsley Kimball Research Institute, The New York Blood Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
44
|
Deletion of the Plasmodium falciparum merozoite surface protein 7 gene impairs parasite invasion of erythrocytes. EUKARYOTIC CELL 2008; 7:2123-32. [PMID: 18820076 DOI: 10.1128/ec.00274-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Merozoite surface proteins have been implicated in the initial attachment to the host red blood cell membrane that begins the process of invasion, an important step in the life cycle of the malaria parasite. In Plasmodium falciparum, merozoite surface proteins include several glycosylphosphatidyl inositol-anchored proteins and peripheral proteins attached to the membrane through protein-protein interactions. The most abundant of these proteins is the merozoite surface protein 1 (MSP1) complex, encoded by at least three genes: msp1, msp6, and msp7. The msp7 gene is part of a six-member multigene family in Plasmodium falciparum. We have disrupted msp7 in the Plasmodium falciparum D10 parasite, as confirmed by Southern hybridization. Immunoblot and indirect immunofluorescence analyses confirmed the MSP7 null phenotype of D10DeltaMSP7 parasites. The synthesis, distribution, and processing of MSP1 were not affected in this parasite line. The level of expression and cellular distribution of the proteins MSP1, MSP3, MSP6, MSP9, and SERA5 remained comparable to those for the parental line. Furthermore, no significant change in the expression of MSP7-related proteins, except for that of MSRP5, was detected at the transcriptional level. The lack of MSP7 was not lethal at the asexual blood stage, but it did impair invasion of erythrocytes by merozoites to a significant degree. Despite this reduction in efficiency, D10DeltaMSP7 parasites did not show any obvious preference for alternate pathways of invasion.
Collapse
|
45
|
Cortés A. Switching Plasmodium falciparum genes on and off for erythrocyte invasion. Trends Parasitol 2008; 24:517-24. [PMID: 18805736 DOI: 10.1016/j.pt.2008.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/23/2008] [Accepted: 08/01/2008] [Indexed: 11/30/2022]
Abstract
Culture-adapted lines of the malaria parasite Plasmodium falciparum use alternative pathways for the invasion of erythrocytes. The expression of parasite ligands that are involved in the different pathways varies among parasite lines. Recently, several studies have attempted to characterize the use of different invasion pathways and the expression of specific invasion ligands in field isolates, opening the way to understand how invasion occurs in natural infections. In this review, these findings are discussed in the context of the most recent data on invasion by culture-adapted parasites to describe the current understanding of how wild parasites invade, how the variant expression of invasion ligands relates to switching between alternative invasion pathways and why so many different pathways are needed.
Collapse
Affiliation(s)
- Alfred Cortés
- ICREA and Institute for Research in Biomedicine, Barcelona Science Park, Barcelona 08028, Catalonia, Spain.
| |
Collapse
|
46
|
DeSimone TM, Bei AK, Jennings CV, Duraisingh MT. Genetic analysis of the cytoplasmic domain of the PfRh2b merozoite invasion protein of Plasmodium falciparum. Int J Parasitol 2008; 39:399-405. [PMID: 18831976 DOI: 10.1016/j.ijpara.2008.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 08/19/2008] [Accepted: 08/31/2008] [Indexed: 11/15/2022]
Abstract
Apicomplexan parasites employ multiple adhesive ligands for recognition and entry into host cells. The Duffy binding-like (DBL) and the reticulocyte binding protein-like (RBL) families are central to the invasion of erythrocytes by the malaria parasite. These type-1 transmembrane proteins are composed of large ectodomains and small conserved cytoplasmic tail domains. The cytoplasmic tail domain of the micronemal DBL protein EBA-175 is required for a functional ligand-receptor interaction, but not for correct trafficking and localisation. Here we focus on the cytoplasmic tail domain of the rhoptry-localised Plasmodium falciparum RBL PfRh2b. We have identified a conserved sequence of six amino acids, enriched in acidic residues, in the cytoplasmic tail domains of RBL proteins from Plasmodium spp. Genetic analyses reveal that the entire cytoplasmic tail and the conserved motif within the cytoplasmic tail are indispensable for invasion P. falciparum. Site-directed mutagenesis of the conserved moiety reveals that changes in the order of the amino acids of the conserved moiety, but not the charge of the sequence, can be tolerated. Shuffling of the motif has no effect on either invasion phenotype or PfRh2b expression and trafficking. Although the PfRh2b gene can be readily disrupted, our results suggest that modification of the PfRh2b cytoplasmic tail results in strong dominant negative activity, highlighting important differences between the PfRh2b and EBA-175 invasion ligands.
Collapse
|
47
|
Dluzewski AR, Ling IT, Hopkins JM, Grainger M, Margos G, Mitchell GH, Holder AA, Bannister LH. Formation of the food vacuole in Plasmodium falciparum: a potential role for the 19 kDa fragment of merozoite surface protein 1 (MSP1(19)). PLoS One 2008; 3:e3085. [PMID: 18769730 PMCID: PMC2518119 DOI: 10.1371/journal.pone.0003085] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 07/18/2008] [Indexed: 01/11/2023] Open
Abstract
Plasmodium falciparum Merozoite Surface Protein 1 (MSP1) is synthesized during schizogony as a 195-kDa precursor that is processed into four fragments on the parasite surface. Following a second proteolytic cleavage during merozoite invasion of the red blood cell, most of the protein is shed from the surface except for the C-terminal 19-kDa fragment (MSP119), which is still attached to the merozoite via its GPI-anchor. We have examined the fate of MSP119 during the parasite's subsequent intracellular development using immunochemical analysis of metabolically labeled MSP119, fluorescence imaging, and immuno-electronmicroscopy. Our data show that MSP119 remains intact and persists to the end of the intracellular cycle. This protein is the first marker for the biogenesis of the food vacuole; it is rapidly endocytosed into small vacuoles in the ring stage, which coalesce to form the single food vacuole containing hemozoin, and persists into the discarded residual body. The food vacuole is marked by the presence of both MSP119 and the chloroquine resistance transporter (CRT) as components of the vacuolar membrane. Newly synthesized MSP1 is excluded from the vacuole. This behavior indicates that MSP119 does not simply follow a classical lysosome-like clearance pathway, instead, it may play a significant role in the biogenesis and function of the food vacuole throughout the intra-erythrocytic phase.
Collapse
Affiliation(s)
- Anton R Dluzewski
- Department of Immunobiology, Guy's, King's and St. Thomas' School of Medicine, Guy's Hospital, London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME. Intimate Molecular Interactions of P. falciparum Merozoite Proteins Involved in Invasion of Red Blood Cells and Their Implications for Vaccine Design. Chem Rev 2008; 108:3656-705. [DOI: 10.1021/cr068407v] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Mauricio Urquiza
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Gladys Cifuentes
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Claudia Reyes
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | | |
Collapse
|
49
|
Gao X, Yeo KP, Aw SS, Kuss C, Iyer JK, Genesan S, Rajamanonmani R, Lescar J, Bozdech Z, Preiser PR. Antibodies targeting the PfRH1 binding domain inhibit invasion of Plasmodium falciparum merozoites. PLoS Pathog 2008; 4:e1000104. [PMID: 18617995 PMCID: PMC2438614 DOI: 10.1371/journal.ppat.1000104] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 06/13/2008] [Indexed: 11/18/2022] Open
Abstract
Invasion by the malaria merozoite depends on recognition of specific erythrocyte surface receptors by parasite ligands. Plasmodium falciparum uses multiple ligands, including at least two gene families, reticulocyte binding protein homologues (RBLs) and erythrocyte binding proteins/ligands (EBLs). The combination of different RBLs and EBLs expressed in a merozoite defines the invasion pathway utilized and could also play a role in parasite virulence. The binding regions of EBLs lie in a conserved cysteine-rich domain while the binding domain of RBL is still not well characterized. Here, we identify the erythrocyte binding region of the P. falciparum reticulocyte binding protein homologue 1 (PfRH1) and show that antibodies raised against the functional binding region efficiently inhibit invasion. In addition, we directly demonstrate that changes in the expression of RBLs can constitute an immune evasion mechanism of the malaria merozoite.
Collapse
Affiliation(s)
- Xiaohong Gao
- Division of Genomics & Genetics, School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Coleman BI, Duraisingh MT. Transcriptional control and gene silencing in Plasmodium falciparum. Cell Microbiol 2008; 10:1935-46. [PMID: 18637022 DOI: 10.1111/j.1462-5822.2008.01203.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Infection with the apicomplexan parasite Plasmodium falciparum is associated with a high burden of morbidity and mortality across the developing world, yet the mechanisms of transcriptional control in this organism are poorly understood. While P. falciparum possesses many of the characteristics common to eukaryotic transcription, including much of the canonical machinery, it also demonstrates unique patterns of gene expression and possesses unusually AT-rich intergenic sequences. Importantly, several biological processes that are critical to parasite virulence involve highly regulated patterns of gene expression and silencing. The relative scarcity of transcription-associated proteins and specific cis-regulatory motifs recognized in the P. falciparum genome have been thought to reflect a reduced role for transcription factors in transcriptional control in these parasites. New approaches and technologies, however, have led to the discovery of many more of these elements, including an expanded family of DNA-binding proteins, and a re-assessment of this hypothesis is required. We review the current understanding of transcriptional control in P. falciparum, specifically highlighting promoter-driven and epigenetic mechanisms involved in the control of transcription initiation.
Collapse
Affiliation(s)
- Bradley I Coleman
- Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | |
Collapse
|