1
|
Rauch J, Barton J, Kwiatkowski M, Wunderlich M, Steffen P, Moderzynski K, Papp S, Höhn K, Schwanke H, Witt S, Richardt U, Mehlhoop U, Schlüter H, Pianka V, Fleischer B, Tappe D, Osterloh A. GroEL is an immunodominant surface-exposed antigen of Rickettsia typhi. PLoS One 2021; 16:e0253084. [PMID: 34111210 PMCID: PMC8191997 DOI: 10.1371/journal.pone.0253084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/28/2021] [Indexed: 11/26/2022] Open
Abstract
Rickettsioses are neglected and emerging potentially fatal febrile diseases that are caused by obligate intracellular bacteria, rickettsiae. Rickettsia (R.) typhi and R. prowazekii constitute the typhus group (TG) of rickettsiae and are the causative agents of endemic and epidemic typhus, respectively. We recently generated a monoclonal antibody (BNI52) against R. typhi. Characterization of BNI52 revealed that it specifically recognizes TG rickettsiae but not the members of the spotted fever group (SFG) rickettsiae. We further show that BNI52 binds to protein fragments of ±30 kDa that are exposed on the bacterial surface and also present in the periplasmic space. These protein fragments apparently derive from the cytosolic GroEL protein of R. typhi and are also recognized by antibodies in the sera from patients and infected mice. Furthermore, BNI52 opsonizes the bacteria for the uptake by antigen presenting cells (APC), indicating a contribution of GroEL-specific antibodies to protective immunity. Finally, it is interesting that the GroEL protein belongs to 32 proteins that are differentially downregulated by R. typhi after passage through immunodeficient BALB/c CB17 SCID mice. This could be a hint that the rickettsia GroEL protein may have immunomodulatory properties as shown for the homologous protein from several other bacteria, too. Overall, the results of this study provide evidence that GroEL represents an immunodominant antigen of TG rickettsiae that is recognized by the humoral immune response against these pathogens and that may be interesting as a vaccine candidate. Apart from that, the BNI52 antibody represents a new tool for specific detection of TG rickettsiae in various diagnostic and experimental setups.
Collapse
Affiliation(s)
- Jessica Rauch
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Barton
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Malte Wunderlich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Pascal Steffen
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Stefanie Papp
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Katharina Höhn
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hella Schwanke
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Susanne Witt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ulricke Richardt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ute Mehlhoop
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Verena Pianka
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Anke Osterloh
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
2
|
Abstract
Over the last decades, rickettsioses are emerging worldwide. These diseases are caused by intracellular bacteria. Although rickettsioses can be treated with antibiotics, a vaccine against rickettsiae is highly desired for several reasons. Rickettsioses are highly prevalent, especially in poor countries, and there are indications of the development of antibiotic resistance. In addition, some rickettsiae can persist and cause recurrent disease. The development of a vaccine requires the understanding of the immune mechanisms that are involved in protection as well as in immunopathology. Knowledge about these immune responses is accumulating, and efforts have been undertaken to identify antigenic components of rickettsiae that may be useful as a vaccine. This review provides an overview on current knowledge of adaptive immunity against rickettsiae, which is essential for defense, rickettsial antigens that have been identified so far, and on vaccination strategies that have been used in animal models of rickettsial infections.
Collapse
|
3
|
Gao A, Vasilyev N, Kaushik A, Duan W, Serganov A. Principles of RNA and nucleotide discrimination by the RNA processing enzyme RppH. Nucleic Acids Res 2020; 48:3776-3788. [PMID: 31960065 PMCID: PMC7144940 DOI: 10.1093/nar/gkaa024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/06/2020] [Accepted: 01/18/2020] [Indexed: 12/23/2022] Open
Abstract
All enzymes face a challenge of discriminating cognate substrates from similar cellular compounds. Finding a correct substrate is especially difficult for the Escherichia coli Nudix hydrolase RppH, which triggers 5'-end-dependent RNA degradation by removing orthophosphate from the 5'-diphosphorylated transcripts. Here we show that RppH binds and slowly hydrolyzes NTPs, NDPs and (p)ppGpp, which each resemble the 5'-end of RNA. A series of X-ray crystal structures of RppH-nucleotide complexes, trapped in conformations either compatible or incompatible with hydrolysis, explain the low reaction rates of mononucleotides and suggest two distinct mechanisms for their hydrolysis. While RppH adopts the same catalytic arrangement with 5'-diphosphorylated nucleotides as with RNA, the enzyme hydrolyzes 5'-triphosphorylated nucleotides by extending the active site with an additional Mg2+ cation, which coordinates another reactive nucleophile. Although the average intracellular pH minimizes the hydrolysis of nucleotides by slowing their reaction with RppH, they nevertheless compete with RNA for binding and differentially inhibit the reactivity of RppH with triphosphorylated and diphosphorylated RNAs. Thus, E. coli RppH integrates various signals, such as competing non-cognate substrates and a stimulatory protein factor DapF, to achieve the differential degradation of transcripts involved in cellular processes important for the adaptation of bacteria to different growth conditions.
Collapse
Affiliation(s)
- Ang Gao
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Abhishek Kaushik
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Wenqian Duan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
4
|
Gao A, Vasilyev N, Luciano DJ, Levenson-Palmer R, Richards J, Marsiglia WM, Traaseth NJ, Belasco JG, Serganov A. Structural and kinetic insights into stimulation of RppH-dependent RNA degradation by the metabolic enzyme DapF. Nucleic Acids Res 2019; 46:6841-6856. [PMID: 29733359 PMCID: PMC6061855 DOI: 10.1093/nar/gky327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/17/2018] [Indexed: 01/07/2023] Open
Abstract
Vitally important for controlling gene expression in eukaryotes and prokaryotes, the deprotection of mRNA 5′ termini is governed by enzymes whose activity is modulated by interactions with ancillary factors. In Escherichia coli, 5′-end-dependent mRNA degradation begins with the generation of monophosphorylated 5′ termini by the RNA pyrophosphohydrolase RppH, which can be stimulated by DapF, a diaminopimelate epimerase involved in amino acid and cell wall biosynthesis. We have determined crystal structures of RppH–DapF complexes and measured rates of RNA deprotection. These studies show that DapF potentiates RppH activity in two ways, depending on the nature of the substrate. Its stimulatory effect on the reactivity of diphosphorylated RNAs, the predominant natural substrates of RppH, requires a substrate long enough to reach DapF in the complex, while the enhanced reactivity of triphosphorylated RNAs appears to involve DapF-induced changes in RppH itself and likewise increases with substrate length. This study provides a basis for understanding the intricate relationship between cellular metabolism and mRNA decay and reveals striking parallels with the stimulation of decapping activity in eukaryotes.
Collapse
Affiliation(s)
- Ang Gao
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Daniel J Luciano
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.,Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Rose Levenson-Palmer
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.,Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jamie Richards
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.,Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - William M Marsiglia
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Nathaniel J Traaseth
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Joel G Belasco
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.,Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
5
|
Quiroz-Castañeda RE, Cobaxin-Cárdenas M, Cuervo-Soto LI. Exploring the diversity, infectivity and metabolomic landscape of Rickettsial infections for developing novel therapeutic intervention strategies. Cytokine 2018; 112:63-74. [PMID: 30072088 DOI: 10.1016/j.cyto.2018.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
Rickettsioses are zoonotic infections caused by obligate intracellular bacteria of the genera Rickettsia that affect human health; sometimes humans being considered as accidental hosts. At a molecular level, the rickettsiae infection triggers molecular signaling leading to the secretion of proinflammatory cytokines. These cytokines direct the immune response to the host cell damage and pathogen removal. In this review, we present metabolic aspects of the host cell in the presence of rickettsiae and how this presence triggers an inflammatory response to cope with the pathogen. We also reviewed the secretion of cytokines that modulates host cell response at immune and metabolic levels.
Collapse
Affiliation(s)
- Rosa Estela Quiroz-Castañeda
- Unidad de Anaplasmosis, Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, (CENID-PAVET, INIFAP), Carretera Federal Cuernavaca Cuautla 8534, Progreso, 62574 Jiutepec, Morelos, Mexico.
| | - Mayra Cobaxin-Cárdenas
- Unidad de Anaplasmosis, Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, (CENID-PAVET, INIFAP), Carretera Federal Cuernavaca Cuautla 8534, Progreso, 62574 Jiutepec, Morelos, Mexico.
| | - Laura Inés Cuervo-Soto
- Facultad de Ciencias, Departamento de Biología, Universidad Antonio Nariño, Sede Circunvalar Carrera 3 Este, No. 47 A15, Bogotá, Colombia
| |
Collapse
|
6
|
Integrated proteomics, genomics, metabolomics approaches reveal oxalic acid as pathogenicity factor in Tilletia indica inciting Karnal bunt disease of wheat. Sci Rep 2018; 8:7826. [PMID: 29777151 PMCID: PMC5959904 DOI: 10.1038/s41598-018-26257-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/03/2018] [Indexed: 01/21/2023] Open
Abstract
Tilletia indica incites Karnal bunt (KB) disease in wheat. To date, no KB resistant wheat cultivar could be developed due to non-availability of potential biomarkers related to pathogenicity/virulence for screening of resistant wheat genotypes. The present study was carried out to compare the proteomes of T. indica highly (TiK) and low (TiP) virulent isolates. Twenty one protein spots consistently observed as up-regulated/differential in the TiK proteome were selected for identification by MALDI-TOF/TOF. Identified sequences showed homology with fungal proteins playing essential role in plant infection and pathogen survival, including stress response, adhesion, fungal penetration, invasion, colonization, degradation of host cell wall, signal transduction pathway. These results were integrated with T. indica genome sequence for identification of homologs of candidate pathogenicity/virulence related proteins. Protein identified in TiK isolate as malate dehydrogenase that converts malate to oxaloacetate which is precursor of oxalic acid. Oxalic acid is key pathogenicity factor in phytopathogenic fungi. These results were validated by GC-MS based metabolic profiling of T. indica isolates indicating that oxalic acid was exclusively identified in TiK isolate. Thus, integrated omics approaches leads to identification of pathogenicity/virulence factor(s) that would provide insights into pathogenic mechanisms of fungi and aid in devising effective disease management strategies.
Collapse
|
7
|
Heu CC, Kurtti TJ, Nelson CM, Munderloh UG. Transcriptional Analysis of the Conjugal Transfer Genes of Rickettsia bellii RML 369-C. PLoS One 2015; 10:e0137214. [PMID: 26352829 PMCID: PMC4564193 DOI: 10.1371/journal.pone.0137214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/13/2015] [Indexed: 11/19/2022] Open
Abstract
Rickettsia bellii is an obligate intracellular bacterium that is one of the few rickettsiae that encode a complete set of conjugative transfer (tra) genes involved in bacterial conjugation and has been shown to exhibit pili-like structures. The reductive genomes of rickettsiae beg the question whether the tra genes are nonfunctional or functioning to enhance the genetic plasticity and biology of rickettsiae. We characterized the transcriptional dynamics of R. bellii tra genes in comparison to genes transcribed stably and above the background level to understand when and at what levels the tra genes are active or whether the tra genes are degenerative. We determined that the best reference genes, out of 10 tested, were methionyl tRNA ligase (metG) or a combination of metG and ribonucleoside diphosphate reductase 2 subunit beta (nrdF), using statistical algorithms from two different programs: Normfinder and BestKeeper. To validate the use of metG with other rickettsial genes exhibiting variable transcriptional patterns we examined its use with sca2 and rickA, genes involved in actin based motility. Both were shown to be up-regulated at different times of replication in Vero cells, showing variable and stable transcription levels of rickA and sca2, respectively. traATi was up-regulated at 72 hours post inoculation in the tick cell line ISE6, but showed no apparent changes in the monkey cell line Vero and mouse cell line L929. The transcription of tra genes was positively correlated with one another and up-regulated from 12 to 72 hours post inoculation (HPI) when compared to RBE_0422 (an inactivated transposase-derivative found within the tra cluster). Thus, the up-regulation of the tra genes indicated that the integrity and activity of each gene were intact and may facilitate the search for the optimal conditions necessary to demonstrate conjugation in rickettsiae.
Collapse
Affiliation(s)
- Chan C. Heu
- Department of Entomology, University of Minnesota, 219 Hodson Hall, 1980 Folwell Ave, St. Paul, Minnesota, United States of America
- * E-mail:
| | - Timothy J. Kurtti
- Department of Entomology, University of Minnesota, 219 Hodson Hall, 1980 Folwell Ave, St. Paul, Minnesota, United States of America
| | - Curtis M. Nelson
- Department of Entomology, University of Minnesota, 219 Hodson Hall, 1980 Folwell Ave, St. Paul, Minnesota, United States of America
| | - Ulrike G. Munderloh
- Department of Entomology, University of Minnesota, 219 Hodson Hall, 1980 Folwell Ave, St. Paul, Minnesota, United States of America
| |
Collapse
|
8
|
Ghosh A. Small heat shock proteins (HSP12, HSP20 and HSP30) play a role inUstilago maydispathogenesis. FEMS Microbiol Lett 2014; 361:17-24. [DOI: 10.1111/1574-6968.12605] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/28/2014] [Accepted: 09/18/2014] [Indexed: 01/10/2023] Open
Affiliation(s)
- Anupama Ghosh
- Division of Plant Biology; Bose Institute, Centenary campus; Kolkata West Bengal India
| |
Collapse
|
9
|
Abstract
Bartonella spp. are facultative intracellular pathogens that employ a unique stealth infection strategy comprising immune evasion and modulation, intimate interaction with nucleated cells, and intraerythrocytic persistence. Infections with Bartonella are ubiquitous among mammals, and many species can infect humans either as their natural host or incidentally as zoonotic pathogens. Upon inoculation into a naive host, the bartonellae first colonize a primary niche that is widely accepted to involve the manipulation of nucleated host cells, e.g., in the microvasculature. Consistently, in vitro research showed that Bartonella harbors an ample arsenal of virulence factors to modulate the response of such cells, gain entrance, and establish an intracellular niche. Subsequently, the bacteria are seeded into the bloodstream where they invade erythrocytes and give rise to a typically asymptomatic intraerythrocytic bacteremia. While this course of infection is characteristic for natural hosts, zoonotic infections or the infection of immunocompromised patients may alter the path of Bartonella and result in considerable morbidity. In this review we compile current knowledge on the molecular processes underlying both the infection strategy and pathogenesis of Bartonella and discuss their connection to the clinical presentation of human patients, which ranges from minor complaints to life-threatening disease.
Collapse
Affiliation(s)
- Alexander Harms
- Focal Area Infection Biology, Biozentrum, University of Basel, Switzerland
| | | |
Collapse
|
10
|
Luo Y, Liu Y, Sun D, Ojcius DM, Zhao J, Lin X, Wu D, Zhang R, Chen M, Li L, Yan J. InvA protein is a Nudix hydrolase required for infection by pathogenic Leptospira in cell lines and animals. J Biol Chem 2011; 286:36852-63. [PMID: 21862592 PMCID: PMC3196074 DOI: 10.1074/jbc.m111.219931] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 08/01/2011] [Indexed: 12/11/2022] Open
Abstract
Leptospirosis caused by pathogenic species of the genus Leptospira is a re-emerging zoonotic disease, which affects a wide variety of host species and is transmitted by contaminated water. The genomes of several pathogenic Leptospira species contain a gene named invA, which contains a Nudix domain. However, the function of this gene has never been characterized. Here, we demonstrated that the invA gene was highly conserved in protein sequence and present in all tested pathogenic Leptospira species. The recombinant InvA protein of pathogenic L. interrogans strain Lai hydrolyzed several specific dinucleoside oligophosphate substrates, reflecting the enzymatic activity of Nudix in Leptospira species. Pathogenic leptospires did not express this protein in media but temporarily expressed it at early stages (within 60 min) of infection of macrophages and nephric epithelial cells. Comparing with the wild type, the invA-deficient mutant displayed much lower infectivity and a significantly reduced survival rate in macrophages and nephric epithelial cells. Moreover, the invA-deficient leptospires presented an attenuated virulence in hamsters, caused mild histopathological damage, and were transmitted in lower numbers in the urine, compared with the wild-type strain. The invA revertant, made by complementing the invA-deficient mutant with the invA gene, reacquired virulence similar to the wild type in vitro and in vivo. The LD(50) in hamsters was 1000-fold higher for the invA-deficient mutant than for the invA revertant and wild type. These results demonstrate that the InvA protein is a Nudix hydrolase, and the invA gene is essential for virulence in pathogenic Leptospira species.
Collapse
Affiliation(s)
- Yihui Luo
- From the Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical College, Hangzhou, Zhejiang 310003, China
- the Department of Medical Microbiology and Parasitology, College of Medicine, and
| | - Yan Liu
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dexter Sun
- the New York Presbyterian Hospital and Hospital for Special Surgery, Weill Medical College, Cornell University SinoUnited Health, New York, New York 10021, and
| | - David M. Ojcius
- the Health Sciences Research Institute and School of Natural Sciences, University of California, Merced, California 95343
| | - Jinfang Zhao
- From the Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical College, Hangzhou, Zhejiang 310003, China
- the Department of Medical Microbiology and Parasitology, College of Medicine, and
| | - Xuai Lin
- From the Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical College, Hangzhou, Zhejiang 310003, China
- the Department of Medical Microbiology and Parasitology, College of Medicine, and
| | - Dong Wu
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongguang Zhang
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Chen
- the Department of Bioinformatics, College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lanjuan Li
- From the Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical College, Hangzhou, Zhejiang 310003, China
| | - Jie Yan
- From the Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical College, Hangzhou, Zhejiang 310003, China
- the Department of Medical Microbiology and Parasitology, College of Medicine, and
| |
Collapse
|
11
|
Leroy Q, Raoult D. Review of microarray studies for host-intracellular pathogen interactions. J Microbiol Methods 2010; 81:81-95. [PMID: 20188126 DOI: 10.1016/j.mimet.2010.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 02/12/2010] [Accepted: 02/16/2010] [Indexed: 12/17/2022]
Abstract
Obligate intracellular bacteria are privileged soldiers on the battlefield that represent host-pathogen interactions. Microarrays are a powerful technology that can increase our knowledge about how bacteria respond to and interact with their hosts. This review summarizes the limitations inherent to host-pathogen interaction studies and essential strategies to improve microarray investigations of intracellular bacteria. We have compiled the comparative genomic and gene expression analyses of obligate intracellular bacteria currently available from microarrays. In this review we explore ways in which microarrays can be used to identify polymorphisms in different obligate intracellular bacteria such as Coxiella burnetii, Chlamydia trachomatis, Ehrlichia chaffeensis, Rickettsia prowazekii and Tropheryma whipplei. These microarray studies reveal that, while genomic content is highly conserved in obligate intracellular bacteria, genetic polymorphisms can potentially occur to increase bacterial pathogenesis. Additionally, changes in the gene expression of C. trachomatis throughout its life cycle, as well as changes in the gene expression profile of the pathogens R. prowazekii, Rickettsia rickettsii, Rickettsia typhi, T. whipplei and C. trachomatis following environmental changes, are discussed. Finally, an in vivo model of Rickettsia conorii within the skin is discussed. The gene expression analyses highlight the capacity of obligate intracellular bacteria to adapt to environmental changes and potentially to thwart the host response.
Collapse
Affiliation(s)
- Quentin Leroy
- Université de la Méditerranée, URMITE IRD-CNRS 6236, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille cedex 05, France
| | | |
Collapse
|
12
|
Paris DH, Aukkanit N, Jenjaroen K, Blacksell SD, Day NPJ. A highly sensitive quantitative real-time PCR assay based on the groEL gene of contemporary Thai strains of Orientia tsutsugamushi. Clin Microbiol Infect 2009; 15:488-95. [PMID: 19416296 PMCID: PMC3429864 DOI: 10.1111/j.1469-0691.2008.02671.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Partial nucleotide sequences (459 bp) of the groEL gene (encoding the 60-kDa heat shock protein, HSP60) from 23 contemporary isolates of Orientia tsutsugamushi isolated from patients with acute scrub typhus in Thailand were compared with 16 reference strain sequences to evaluate the potential of groEL as a conserved and representative target for molecular diagnostics.. Overall nucleotide identity within all available O. tsutsugamushi isolates (n = 39) was 98.8% (range: 95.0-100), reflecting a high degree of conservation; nucleotide identities were 67.5% and 65.6%, respectively, when typhus and spotted fever group rickettsiae were included.. A highly sensitive and quantitative real-time PCR assay was designed and evaluated using 61 samples, including buffy coats from patients in Thailand and Laos. Reliable and accurate quantitation of bacterial loads allows further investigation of other diagnostic methods and may lead to an improved understanding of the pathophysiology of acute scrub typhus, an important but under-recognized disease.
Collapse
Affiliation(s)
- D H Paris
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | | | | | | | | |
Collapse
|
13
|
McShan WM, Ferretti JJ, Karasawa T, Suvorov AN, Lin S, Qin B, Jia H, Kenton S, Najar F, Wu H, Scott J, Roe BA, Savic DJ. Genome sequence of a nephritogenic and highly transformable M49 strain of Streptococcus pyogenes. J Bacteriol 2008; 190:7773-85. [PMID: 18820018 PMCID: PMC2583620 DOI: 10.1128/jb.00672-08] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 09/17/2008] [Indexed: 11/20/2022] Open
Abstract
The 1,815,783-bp genome of a serotype M49 strain of Streptococcus pyogenes (group A streptococcus [GAS]), strain NZ131, has been determined. This GAS strain (FCT type 3; emm pattern E), originally isolated from a case of acute post-streptococcal glomerulonephritis, is unusually competent for electrotransformation and has been used extensively as a model organism for both basic genetic and pathogenesis investigations. As with the previously sequenced S. pyogenes genomes, three unique prophages are a major source of genetic diversity. Two clustered regularly interspaced short palindromic repeat (CRISPR) regions were present in the genome, providing genetic information on previous prophage encounters. A unique cluster of genes was found in the pathogenicity island-like emm region that included a novel Nudix hydrolase, and, further, this cluster appears to be specific for serotype M49 and M82 strains. Nudix hydrolases eliminate potentially hazardous materials or prevent the unbalanced accumulation of normal metabolites; in bacteria, these enzymes may play a role in host cell invasion. Since M49 S. pyogenes strains have been known to be associated with skin infections, the Nudix hydrolase and its associated genes may have a role in facilitating survival in an environment that is more variable and unpredictable than the uniform warmth and moisture of the throat. The genome of NZ131 continues to shed light upon the evolutionary history of this human pathogen. Apparent horizontal transfer of genetic material has led to the existence of highly variable virulence-associated regions that are marked by multiple rearrangements and genetic diversification while other regions, even those associated with virulence, vary little between genomes. The genome regions that encode surface gene products that will interact with host targets or aid in immune avoidance are the ones that display the most sequence diversity. Thus, while natural selection favors stability in much of the genome, it favors diversity in these regions.
Collapse
Affiliation(s)
- W Michael McShan
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, P.O. Box 26901, CPB307, Oklahoma City, OK, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Emerging and re-emerging rickettsioses: endothelial cell infection and early disease events. Nat Rev Microbiol 2008; 6:375-86. [PMID: 18414502 DOI: 10.1038/nrmicro1866] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
La MV, Raoult D, Renesto P. Regulation of whole bacterial pathogen transcription within infected hosts. FEMS Microbiol Rev 2008; 32:440-60. [PMID: 18266740 DOI: 10.1111/j.1574-6976.2008.00103.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
DNA microarrays are a powerful and promising approach to gain a detailed understanding of the bacterial response and the molecular cross-talk that can occur as a consequence of host-pathogen interactions. However, published studies mainly describe the host response to infection. Analysis of bacterial gene regulation in the course of infection has confronted many challenges. This review summarizes the different strategies used over the last few years to investigate, at the genomic scale, and using microarrays, the alterations in the bacterial transcriptome in response to interactions with host cells. Thirty-seven studies involving 19 different bacterial pathogens were compiled and analyzed. Our in silico comparison of the transcription profiles of bacteria grown in broth or in contact with eukaryotic cells revealed some features commonly observed when bacteria interact with host cells, including stringent response and cell surface remodeling.
Collapse
Affiliation(s)
- My-Van La
- Unité des Rickettsies, Faculté de Médecine, 27 Boulevard Jean Moulin, Marseille, France
| | | | | |
Collapse
|
16
|
Rahman MS, Ceraul SM, Dreher-Lesnick SM, Beier MS, Azad AF. The lspA gene, encoding the type II signal peptidase of Rickettsia typhi: transcriptional and functional analysis. J Bacteriol 2006; 189:336-41. [PMID: 17098907 PMCID: PMC1797390 DOI: 10.1128/jb.01397-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipoprotein processing by the type II signal peptidase (SPase II) is known to be critical for intracellular growth and virulence for many bacteria, but its role in rickettsiae is unknown. Here, we describe the analysis of lspA, encoding a putative SPase II, an essential component of lipoprotein processing in gram-negative bacteria, from Rickettsia typhi. Alignment of deduced amino acid sequences shows the presence of highly conserved residues and domains that are essential for SPase II activity in lipoprotein processing. The transcription of lspA, lgt (encoding prolipoprotein transferase), and lepB (encoding type I signal peptidase), monitored by real-time quantitative reverse transcription-PCR, reveals a differential expression pattern during various stages of rickettsial intracellular growth. The higher transcriptional level of all three genes at the preinfection time point indicates that only live and metabolically active rickettsiae are capable of infection and inducing host cell phagocytosis. lspA and lgt, which are involved in lipoprotein processing, show similar levels of expression. However, lepB, which is involved in nonlipoprotein secretion, shows a higher level of expression, suggesting that LepB is the major signal peptidase for protein secretion and supporting our in silico prediction that out of 89 secretory proteins, only 14 are lipoproteins. Overexpression of R. typhi lspA in Escherichia coli confers increased globomycin resistance, indicating its function as SPase II. In genetic complementation, recombinant lspA from R. typhi significantly restores the growth of temperature-sensitive E. coli Y815 at the nonpermissive temperature, supporting its biological activity as SPase II in prolipoprotein processing.
Collapse
Affiliation(s)
- M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
17
|
Abstract
Rickettsiae are obligate intracellular alpha-proteobacteria that primarily target the microvascular endothelium. In the last two decades, new rickettsial pathogens have been associated with human illness around the world. Clinically, the common denominator in all rickettsioses is the development of increased microvascular permeability, leading to cerebral and non-cardiogenic pulmonary edema. With the development of powerful research tools, advances in the understanding of rickettsial pathogenesis have been dramatic. Entry into the host cell is followed by rapid escape into the cytoplasm to avoid phagolysosomal fusion. Spotted fever group rickettsiae induce actin polymerization via a group of proteins called RickA, which promote nucleation of actin monomers via the Arp2/3 complex at one rickettsial pole, propelling the bacteria across the cytoplasm and into neighboring cells. Damage to the host cell is most likely multifactorial. The most extensively studied mechanism is the generation of reactive oxygen species (ROS) and downregulation of enzymes involved in protection against oxidative injury. The significance of ROS-mediated cellular damage in vivo is beginning to be elucidated. The main pathogenic mechanism is increased microvascular permeability leading to profound metabolic disturbances in the extravascular compartment. The underlying factors responsible for those changes are beginning to be elucidated in vitro and include direct effects of intracellular rickettsiae, cytokines, and possibly activated coagulation factors--all of which most likely modify interendothelial junctions. Our knowledge on rickettsial pathogenesis will continue to expand in the near future as new research tools become available.
Collapse
Affiliation(s)
- Juan P Olano
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA.
| |
Collapse
|
18
|
Urick T, I-Chang C, Arena E, Xu W, Bessman MJ, Ruffolo CG. The pnhA gene of Pasteurella multocida encodes a dinucleoside oligophosphate pyrophosphatase member of the Nudix hydrolase superfamily. J Bacteriol 2005; 187:5809-17. [PMID: 16077129 PMCID: PMC1196092 DOI: 10.1128/jb.187.16.5809-5817.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 03/31/2005] [Indexed: 11/20/2022] Open
Abstract
The pnhA gene of Pasteurella multocida encodes PnhA, which is a member of the Nudix hydrolase subfamily of dinucleoside oligophosphate pyrophosphatases. PnhA hydrolyzes diadenosine tetra-, penta-, and hexaphosphates with a preference for diadenosine pentaphosphate, from which it forms ATP and ADP. PnhA requires a divalent metal cation, Mg(2+) or Mn(2+), and prefers an alkaline pH of 8 for optimal activity. A P. multocida strain that lacked a functional pnhA gene, ACP13, was constructed to further characterize the function of PnhA. The cellular size of ACP13 was found to be 60% less than that of wild-type P. multocida, but the growth rate of ACP13 and its sensitivity to heat shock conditions were similar to those of the wild type, and the wild-type cell size was restored in the presence of a functional pnhA gene. Wild-type and ACP13 strains were tested for virulence by using the chicken embryo lethality model, and ACP13 was found to be up to 1,000-fold less virulent than the wild-type strain. This is the first study to use an animal model in assessing the virulence of a bacterial strain that lacked a dinucleoside oligophosphate pyrophosphatase and suggests that the pyrophosphatase PnhA, catalyzing the hydrolysis of diadenosine pentaphosphates, may also play a role in facilitating P. multocida pathogenicity in the host.
Collapse
Affiliation(s)
- Tonia Urick
- Department of Biological Sciences, University of Wisconsin-Parkside, P.O. Box 2000, Kenosha, WI 53144, USA
| | | | | | | | | | | |
Collapse
|
19
|
Joly B, Béatrice J, Pierre M, Maud P, Auvin S, Stéphane A, Colin F, Franc Cois C, Gottrand F, Frédéric G, Guery B, Benoit G, Husson MO. Relative expression of Pseudomonas aeruginosa virulence genes analyzed by a real time RT-PCR method during lung infection in rats. FEMS Microbiol Lett 2005; 243:271-8. [PMID: 15668029 DOI: 10.1016/j.femsle.2004.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 11/30/2004] [Accepted: 12/12/2004] [Indexed: 11/26/2022] Open
Abstract
The bacterial aspects of the events occurring during the first days of lung colonization by Pseudomonas aeruginosa are still unknown. The aim of this study was to develop a real time RT-PCR method for the direct quantification of the transcripts of three P. aeruginosa virulence genes: exoS, lasI and algD, during the first seven days of a rat lung infection. Our results document differences in bacterial gene expression throughout P. aeruginosa infection. ExoS transcripts levels were very high in the first days of infection, but a significant decrease was then progressively observed. Transcription of algD occurred on the 4th day and increased regularly over time suggesting a balance in the transcription of exoS and algD. The strong expression of exoS during the first 3 days was correlated to 29% of mortality among infected rats. On the contrary, the increase of algD expression after this period was associated to the development of a chronic infection with no further mortality. LasI transcription remained more constant throughout the infection.
Collapse
Affiliation(s)
- Béatrice Joly
- EA 3925, Laboratoire de Bactériologie-Hygiène, Hôpital Calmette, Unité de Gastroentérologie, Hépatologie et Nutrition, Clinique de Pédiatrie, Hôpital Jeanne de Flandre, CHRU, 59037 Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Stewart GR, Young DB. Heat-shock proteins and the host-pathogen interaction during bacterial infection. Curr Opin Immunol 2005; 16:506-10. [PMID: 15245747 DOI: 10.1016/j.coi.2004.05.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Heat-shock proteins (HSPs) are expressed at high levels by bacterial pathogens during adaptation to intracellular survival. Both host and pathogen heat-shock proteins contribute to immunity by receptor-mediated activation of the innate immune response and by participation in the presentation of antigens for the adaptive immune response. Manipulation of these interactions presents a potential route to improved control of infection by vaccination or immunotherapy.
Collapse
Affiliation(s)
- Graham R Stewart
- Department of Infectious Diseases and Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | | |
Collapse
|
21
|
McLeod MP, Qin X, Karpathy SE, Gioia J, Highlander SK, Fox GE, McNeill TZ, Jiang H, Muzny D, Jacob LS, Hawes AC, Sodergren E, Gill R, Hume J, Morgan M, Fan G, Amin AG, Gibbs RA, Hong C, Yu XJ, Walker DH, Weinstock GM. Complete genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae. J Bacteriol 2004; 186:5842-55. [PMID: 15317790 PMCID: PMC516817 DOI: 10.1128/jb.186.17.5842-5855.2004] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 05/17/2004] [Indexed: 11/20/2022] Open
Abstract
Rickettsia typhi, the causative agent of murine typhus, is an obligate intracellular bacterium with a life cycle involving both vertebrate and invertebrate hosts. Here we present the complete genome sequence of R. typhi (1,111,496 bp) and compare it to the two published rickettsial genome sequences: R. prowazekii and R. conorii. We identified 877 genes in R. typhi encoding 3 rRNAs, 33 tRNAs, 3 noncoding RNAs, and 838 proteins, 3 of which are frameshifts. In addition, we discovered more than 40 pseudogenes, including the entire cytochrome c oxidase system. The three rickettsial genomes share 775 genes: 23 are found only in R. prowazekii and R. typhi, 15 are found only in R. conorii and R. typhi, and 24 are unique to R. typhi. Although most of the genes are colinear, there is a 35-kb inversion in gene order, which is close to the replication terminus, in R. typhi, compared to R. prowazekii and R. conorii. In addition, we found a 124-kb R. typhi-specific inversion, starting 19 kb from the origin of replication, compared to R. prowazekii and R. conorii. Inversions in this region are also seen in the unpublished genome sequences of R. sibirica and R. rickettsii, indicating that this region is a hot spot for rearrangements. Genome comparisons also revealed a 12-kb insertion in the R. prowazekii genome, relative to R. typhi and R. conorii, which appears to have occurred after the typhus (R. prowazekii and R. typhi) and spotted fever (R. conorii) groups diverged. The three-way comparison allowed further in silico analysis of the SpoT split genes, leading us to propose that the stringent response system is still functional in these rickettsiae.
Collapse
MESH Headings
- Chromosome Inversion
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- Electron Transport Complex IV/genetics
- Frameshifting, Ribosomal
- Gene Expression Regulation, Bacterial
- Gene Rearrangement
- Genes, Bacterial
- Genes, rRNA
- Genome, Bacterial
- Genomics
- Molecular Sequence Data
- Pseudogenes
- RNA, Transfer/genetics
- RNA, Untranslated/genetics
- Rickettsia/genetics
- Rickettsia conorii/genetics
- Rickettsia typhi/genetics
- Sequence Analysis, DNA
- Sequence Homology
- Synteny
Collapse
Affiliation(s)
- Michael P McLeod
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Alkek N1519, Houston, TX 77030-7783, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Drevets DA, Leenen PJM, Greenfield RA. Invasion of the central nervous system by intracellular bacteria. Clin Microbiol Rev 2004; 17:323-47. [PMID: 15084504 PMCID: PMC387409 DOI: 10.1128/cmr.17.2.323-347.2004] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Infection of the central nervous system (CNS) is a severe and frequently fatal event during the course of many diseases caused by microbes with predominantly intracellular life cycles. Examples of these include the facultative intracellular bacteria Listeria monocytogenes, Mycobacterium tuberculosis, and Brucella and Salmonella spp. and obligate intracellular microbes of the Rickettsiaceae family and Tropheryma whipplei. Unfortunately, the mechanisms used by intracellular bacterial pathogens to enter the CNS are less well known than those used by bacterial pathogens with an extracellular life cycle. The goal of this review is to elaborate on the means by which intracellular bacterial pathogens establish infection within the CNS. This review encompasses the clinical and pathological findings that pertain to the CNS infection in humans and includes experimental data from animal models that illuminate how these microbes enter the CNS. Recent experimental data showing that L. monocytogenes can invade the CNS by more than one mechanism make it a useful model for discussing the various routes for neuroinvasion used by intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Douglas A Drevets
- Department of Medicine, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | | | |
Collapse
|
23
|
Ge H, Chuang YYE, Zhao S, Tong M, Tsai MH, Temenak JJ, Richards AL, Ching WM. Comparative genomics of Rickettsia prowazekii Madrid E and Breinl strains. J Bacteriol 2004; 186:556-65. [PMID: 14702324 PMCID: PMC305770 DOI: 10.1128/jb.186.2.556-565.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rickettsia prowazekii, the causative agent of epidemic typhus, has been responsible for millions of human deaths. Madrid E is an attenuated strain of R. prowazekii, while Breinl is a virulent strain. The genomic DNA sequence of Madrid E has recently been published. To study the genomic variations between Madrid E (reference) and Breinl (test) DNAs, cohybridization experiments were performed on a DNA microarray containing all 834 protein-coding genes of Madrid E. Of the 834 genes assessed, 24 genes showed 1.5- to 2.0-fold increases in hybridization signals in Breinl DNA compared to Madrid E DNA, indicating the presence of genomic variations in approximately 3% of the total genes. Eighteen of these 24 genes are predicted to be involved in different functions. Southern blot analysis of five genes, virB4, ftsK, rfbE, lpxA, and rpoH, suggested the presence of an additional paralog(s) in Breinl, which might be related to the observed increase in hybridization signals. Studies by real-time reverse transcription-PCR revealed an increase in expression of the above-mentioned five genes and five other genes. In addition to the elevated hybridization signals of 24 genes observed in the Breinl strain, one gene (rp084) showed only 1/10 the hybridization signal of Madrid E. Further analysis of this gene by PCR and sequencing revealed a large deletion flanking the whole rp084 gene and part of the rp083 gene in the virulent Breinl strain. The results of this first rickettsial DNA microarray may provide some important information for the elucidation of pathogenic mechanisms of R. prowazekii.
Collapse
Affiliation(s)
- Hong Ge
- Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland 20910, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ismail TM, Hart CA, McLennan AG. Regulation of dinucleoside polyphosphate pools by the YgdP and ApaH hydrolases is essential for the ability of Salmonella enterica serovar typhimurium to invade cultured mammalian cells. J Biol Chem 2003; 278:32602-7. [PMID: 12824172 DOI: 10.1074/jbc.m305994200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ygdP and apaH genes of Salmonella enterica serovar Typhimurium (S. Typhimurium) encode two unrelated dinucleoside polyphosphate (NpnN) hydrolases. For example, YgdP cleaves diadenosine tetraphosphate (Ap4A) producing AMP and ATP, while ApaH cleaves Ap4A producing 2ADP. Disruption of ygdP, apaH individually, and disruption of both genes together reduced intracellular invasion of human HEp-2 epithelial cells by S. Typhimurium by 9-, 250-, and 3000-fold, respectively. Adhesion of the mutants was also greatly reduced compared with the wild type. Invasive capacity of both single mutants was restored by transcomplementation with the ygdP gene, suggesting that loss of invasion was due to increased intracellular NpnN. The normal level of 3 microM adenylated NpnN (ApnN) was increased 1.5-, 3.5-, and 10-fold in the ygdP, apaH and double mutants, respectively. Expression of the putative ptsP virulence gene downstream of ygdP was not affected in the ygdP mutant. Analysis of 19 metabolic enzyme activities and the ability to use a range of carbohydrate carbon sources revealed a number of differences between the mutants and wild type. The increase in intracellular NpnN in the mutants appears to cause changes in gene expression that limit the ability of S. Typhimurium to adhere to and invade mammalian cells.
Collapse
Affiliation(s)
- Thamir M Ismail
- School of Biological Sciences and Department of Medical Microbiology and Genito-urinary Medicine, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | | | | |
Collapse
|
25
|
Semino-Mora C, Doi SQ, Marty A, Simko V, Carlstedt I, Dubois A. Intracellular and interstitial expression of Helicobacter pylori virulence genes in gastric precancerous intestinal metaplasia and adenocarcinoma. J Infect Dis 2003; 187:1165-77. [PMID: 12695995 PMCID: PMC2569196 DOI: 10.1086/368133] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2002] [Accepted: 12/06/2002] [Indexed: 12/11/2022] Open
Abstract
Gastric intestinal metaplasia (IM) and gastric cancer are associated with Helicobacter pylori, but the bacterium often is undetectable in these lesions. To unravel this apparent paradox, IM, H. pylori presence, and the expression of H. pylori virulence genes were quantified concurrently using histologic testing, in situ hybridization, and immunohistochemistry. H. pylori was detected inside metaplastic, dysplastic, and neoplastic epithelial cells, and cagA and babA2 expression was colocalized. Importantly, expression of cagA was significantly higher in patients with IM and adenocarcinoma than in control subjects. The preneoplastic "acidic" MUC2 mucin was detected only in the presence of H. pylori, and MUC2 expression was higher in patients with IM, dysplasia, and cancer. These novel findings are compatible with the hypothesis that all stages of gastric carcinogenesis are fostered by persistent intracellular expression of H. pylori virulence genes, especially cagA inside MUC2-producing precancerous gastric cells and pleomorphic cancer cells.
Collapse
Affiliation(s)
- Cristina Semino-Mora
- Laboratory of Gastrointestinal and Liver Studies, Digestive Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sonia Q. Doi
- Nephrology Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Aileen Marty
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Vlado Simko
- Veterans Administration New York Harbor Health Care System, Brooklyn
| | - Ingemar Carlstedt
- Department of Cell and Molecular Biology, Mucosal Biology Group, Lund University, Lund, Sweden
| | - Andre Dubois
- Laboratory of Gastrointestinal and Liver Studies, Digestive Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
26
|
Lundin A, Nilsson C, Gerhard M, Andersson DI, Krabbe M, Engstrand L. The NudA protein in the gastric pathogen Helicobacter pylori is an ubiquitous and constitutively expressed dinucleoside polyphosphate hydrolase. J Biol Chem 2003; 278:12574-8. [PMID: 12551907 DOI: 10.1074/jbc.m212542200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The gastric pathogen Helicobacter pylori harbors one Nudix hydrolase, NudA, that belongs to the nucleoside polyphosphate hydrolase subgroup. In this work, the enzymatic activity of purified recombinant NudA protein was analyzed on a number of nucleoside polyphosphates. This predicted 18.6-kDa protein preferably hydrolyzes diadenosine tetraphosphate, Ap(4)A at a k(cat) of 0.15 s(-1) and a K(m) of 80 microm, resulting in an asymmetrical cleavage of the molecule into ATP and AMP. To study the biological role of this enzyme in H. pylori, an insertion mutant was constructed. There was a 2-7-fold decrease in survival of the mutant as compared with the wild type after hydrogen peroxide exposure but no difference in survival after heat shock or in spontaneous mutation frequency. Western blot analyses revealed that NudA is constitutively expressed in H. pylori at different growth stages and during stress, which would indicate that this protein has a housekeeping function. Given that H. pylori is a diverse species and that all the H. pylori strains tested in this study harbor the nudA gene and show protein expression, we consider NudA to be an important enzyme in this bacterium.
Collapse
Affiliation(s)
- Annelie Lundin
- Department of Bacteriology, Swedish Institute for Infectious Disease Control, 171 82 Solna, Sweden
| | | | | | | | | | | |
Collapse
|