1
|
Takahara Y, Sumitomo T, Kono M, Takemura M, Akamatsu Y, Hirose Y, Yamaguchi M, Nakata M, Hotomi M, Kawabata S. Pneumolysin contributes to dysfunction of nasal epithelial barrier for promotion of pneumococcal dissemination into brain tissue. mSphere 2024; 9:e0065524. [PMID: 39345124 PMCID: PMC11520308 DOI: 10.1128/msphere.00655-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Streptococcus pneumoniae is one of the major pathogens responsible for bacterial meningitis and neurological sequelae. The present study was conducted to identify a non-hematogenous route used by S. pneumoniae to gain access to brain tissue without causing bacteremia or pneumonia, as well as bacterial and host factors involved in this process. To investigate the molecular mechanisms and dissemination pathways of pneumococcal infection in brain tissue, mice were intranasally inoculated with S. pneumoniae strain EF3030, a clinical isolate from a patient with otitis media. Pneumococci were isolated from the frontal olfactory bulb, caudal cerebrum, and cerebellum, with neither bacteremia nor pneumonia observed in the present model. Immunostaining imaging revealed the presence of S. pneumoniae organisms in olfactory nerve fibers. Knockout of the ply gene encoding pneumolysin (PLY) markedly compromised the ability of the bacterial organisms to disseminate into brain tissue, whereas the dissemination efficiency of the complemented strain was restored to nearly the same level as the wild type. Notably, distinct upregulation of Gli1 and Snail1, which are involved in the transcriptional repression of junctional proteins, along with downregulation of E-cadherin, was detected in nasal lavage samples from mice infected with the wild-type or complemented strain, but not in those from mice infected with the ply mutant. Taken together, the present findings indicate that PLY induces Gli1-Snail1-dependent dysfunction of the nasal epithelial barrier, thus allowing pneumococcal dissemination to brain tissue that occurs in a non-hematogenous manner.IMPORTANCEBacterial meningitis, considered to be caused by bacteremia, can lead to blood-brain barrier disruption and bacterial dissemination into the central nervous system. Despite the availability of intravenously administered antibiotics with cerebrospinal fluid transferability, bacterial meningitis remains associated with high rates of morbidity and mortality. Here, we utilized Streptococcus pneumoniae strain EF3030, clinically isolated from otitis media, for the construction of a murine infection model to investigate the molecular mechanisms by which nasally colonized pneumococci disseminate into brain tissue. The obtained findings indicate that pneumolysin (PLY) induces Gli1-Snail1-dependent dysfunction of the nasal epithelial barrier, which facilitates pneumococcal dissemination to brain tissue in a non-hematogenous manner. Our results support the existence of an alternative route by which S. pneumoniae can reach the central nervous system and indicate the need for the development of novel therapeutic strategies, which would be an important contribution to the clinical management of bacterial meningitis.
Collapse
Affiliation(s)
- Yuki Takahara
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Fixed Prosthodontics and Orofacial Function, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Tomoko Sumitomo
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Oral Microbiology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Masamitsu Kono
- Department of Otorhinolaryngology—Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Moe Takemura
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Oral Surgery, Rinku General Medical Center, Izumisano, Osaka, Japan
| | - Yukako Akamatsu
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
- Division of Special Care Dentistry, Osaka University Dental Hospital, Osaka, Japan
| | - Yujiro Hirose
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masaya Yamaguchi
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
- Bioinformatics Research Unit, Osaka University Graduate School of Dentistry, Osaka, Japan
- Bioinformatics Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Muneki Hotomi
- Department of Otorhinolaryngology—Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Shigetada Kawabata
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
- Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Jennert F, Schaaf D, Nau R, Kohler TP, Hammerschmidt S, Häusler D, Valentin-Weigand P, Seele J. Hydrogen peroxide is responsible for the cytotoxic effects of Streptococcus pneumoniae on primary microglia in the absence of pneumolysin. J Innate Immun 2024; 16:000536514. [PMID: 38569474 PMCID: PMC11060703 DOI: 10.1159/000536514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/25/2024] [Indexed: 04/05/2024] Open
Abstract
INTRODUCTION Streptococcus pneumoniae is the most common cause of bacterial meningitis and meningoencephalitis in humans. The bacterium produces numerous virulence determinants, among them hydrogen peroxide (H2O2) and pneumolysin (Ply), which contribute to bacterial cytotoxicity. Microglia, the resident phagocytes in the brain, are distinct from other macrophages, and we thus compared their susceptibility to pneumococcal toxicity and their ability to phagocytose pneumococci with those of bone marrow-derived macrophages (BMDM). METHODS Microglia and BMDM were co-incubated with S. pneumoniae D39 to analyze survival of phagocytes by fluorescence microscopy, bacterial growth by quantitative plating, and phagocytosis by an antibiotic protection assay. Ply was detected by hemolysis assay and Western blot analysis. RESULTS We found that microglia were killed during pneumococcal infection with a wild-type and an isogenic ply-deficient mutant, whereas viability of BMDM was not affected by pneumococci. Treatment with recombinant Ply showed a dose-dependent cytotoxic effect on microglia and BMDM. However, high concentrations of recombinant Ply were required and under the chosen experimental conditions, Ply was not detectable in the supernatant during infection of microglia. Inactivation of H2O2 by exogenously added catalase abolished its cytotoxic effect. Consequently, infection of microglia with pneumococci deficient for the pyruvate oxidase SpxB, primarily producing H2O2, resulted in reduced killing of microglia. CONCLUSION Taken together, in the absence of Ply, H2O2 caused cell death in primary phagocytes in concentrations produced by pneumococci.
Collapse
Affiliation(s)
- Franziska Jennert
- University of Veterinary Medicine Hannover, Institute for Microbiology, Center for Infection Medicine, Hannover, Germany
| | - Désirée Schaaf
- University of Veterinary Medicine Hannover, Institute for Microbiology, Center for Infection Medicine, Hannover, Germany
| | - Roland Nau
- University Medical Center Göttingen, Department of Neuropathology, Göttingen, Germany
- Evangelisches Krankenhaus Göttingen-Weende, Department of Geriatrics, Göttingen, Germany
| | - Thomas P. Kohler
- Greifswald University, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Sven Hammerschmidt
- Greifswald University, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Darius Häusler
- University Medical Center Göttingen, Department of Neuropathology, Göttingen, Germany
- Fraunhofer-Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany
| | - Peter Valentin-Weigand
- University of Veterinary Medicine Hannover, Institute for Microbiology, Center for Infection Medicine, Hannover, Germany
| | - Jana Seele
- University Medical Center Göttingen, Department of Neuropathology, Göttingen, Germany
- Evangelisches Krankenhaus Göttingen-Weende, Department of Geriatrics, Göttingen, Germany
| |
Collapse
|
3
|
Pinho-Ribeiro FA, Deng L, Neel DV, Erdogan O, Basu H, Yang D, Choi S, Walker AJ, Carneiro-Nascimento S, He K, Wu G, Stevens B, Doran KS, Levy D, Chiu IM. Bacteria hijack a meningeal neuroimmune axis to facilitate brain invasion. Nature 2023; 615:472-481. [PMID: 36859544 PMCID: PMC10593113 DOI: 10.1038/s41586-023-05753-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 01/23/2023] [Indexed: 03/03/2023]
Abstract
The meninges are densely innervated by nociceptive sensory neurons that mediate pain and headache1,2. Bacterial meningitis causes life-threatening infections of the meninges and central nervous system, affecting more than 2.5 million people a year3-5. How pain and neuroimmune interactions impact meningeal antibacterial host defences are unclear. Here we show that Nav1.8+ nociceptors signal to immune cells in the meninges through the neuropeptide calcitonin gene-related peptide (CGRP) during infection. This neuroimmune axis inhibits host defences and exacerbates bacterial meningitis. Nociceptor neuron ablation reduced meningeal and brain invasion by two bacterial pathogens: Streptococcus pneumoniae and Streptococcus agalactiae. S. pneumoniae activated nociceptors through its pore-forming toxin pneumolysin to release CGRP from nerve terminals. CGRP acted through receptor activity modifying protein 1 (RAMP1) on meningeal macrophages to polarize their transcriptional responses, suppressing macrophage chemokine expression, neutrophil recruitment and dural antimicrobial defences. Macrophage-specific RAMP1 deficiency or pharmacological blockade of RAMP1 enhanced immune responses and bacterial clearance in the meninges and brain. Therefore, bacteria hijack CGRP-RAMP1 signalling in meningeal macrophages to facilitate brain invasion. Targeting this neuroimmune axis in the meninges can enhance host defences and potentially produce treatments for bacterial meningitis.
Collapse
Affiliation(s)
- Felipe A Pinho-Ribeiro
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Division of Dermatology, John T. Milliken Department of Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Liwen Deng
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Dylan V Neel
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Ozge Erdogan
- Department of Restorative Dentistry and Biomaterial Sciences, Harvard School of Dental Medicine, Boston, MA, USA
| | - Himanish Basu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Daping Yang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Samantha Choi
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Alec J Walker
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Simone Carneiro-Nascimento
- Departments of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kathleen He
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Glendon Wu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Kelly S Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dan Levy
- Harvard Medical School, Boston, MA, USA
- Departments of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Müller A, Lekhuleni C, Hupp S, du Plessis M, Holivololona L, Babiychuk E, Leib SL, Grandgirard D, Iliev AI, von Gottberg A, Hathaway LJ. Meningitis-associated pneumococcal serotype 8, ST 53, strain is hypervirulent in a rat model and has non-haemolytic pneumolysin which can be attenuated by liposomes. Front Cell Infect Microbiol 2023; 12:1106063. [PMID: 36683678 PMCID: PMC9852819 DOI: 10.3389/fcimb.2022.1106063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction Streptococcus pneumoniae bacteria cause life-threatening invasive pneumococcal disease (IPD), including meningitis. Pneumococci are classified into serotypes, determined by differences in capsular polysaccharide and both serotype and pneumolysin toxin are associated with disease severity. Strains of serotype 8, ST 53, are increasing in prevalence in IPD in several countries. Methods Here we tested the virulence of such an isolate in a rat model of meningitis in comparison with a serotype 15B and a serotype 14 isolate. All three were isolated from meningitis patients in South Africa in 2019, where serotype 8 is currently the most common serotype in IPD. Results and Discussion Only the serotype 8 isolate was hypervirulent causing brain injury and a high mortality rate. It induced a greater inflammatory cytokine response than either the serotype 15B or 14 strain in the rat model and from primary mixed-glia cells isolated from mouse brains. It had the thickest capsule of the three strains and produced non-haemolytic pneumolysin. Pneumolysin-sequestering liposomes reduced the neuroinflammatory cytokine response in vitro indicating that liposomes have the potential to be an effective adjuvant therapy even for hypervirulent pneumococcal strains with non-haemolytic pneumolysin.
Collapse
Affiliation(s)
- Annelies Müller
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Cebile Lekhuleni
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sabrina Hupp
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Mignon du Plessis
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lalaina Holivololona
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| | | | - Stephen L. Leib
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| | | | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lucy J. Hathaway
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Gil E, Wall E, Noursadeghi M, Brown JS. Streptococcus pneumoniae meningitis and the CNS barriers. Front Cell Infect Microbiol 2023; 12:1106596. [PMID: 36683708 PMCID: PMC9845635 DOI: 10.3389/fcimb.2022.1106596] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Streptococcus pneumoniae (SPN) is a globally significant cause of meningitis, the pathophysiology of which involves damage to the brain by both bacterial virulence factors and the host inflammatory response. In most cases of SPN meningitis bacteria translocate from the blood into the central nervous system (CNS). The principal site of SPN translocation into the CNS is not known, with possible portals of entry proposed to be the cerebral or meningeal blood vessels or the choroid plexus. All require SPN to bind to and translocate across the vascular endothelial barrier, and subsequently the basement membrane and perivascular structures, including an additional epithelial barrier in the case of the blood-CSF barrier. The presence of SPN in the CNS is highly inflammatory resulting in marked neutrophilic infiltration. The secretion of toxic inflammatory mediators by activated neutrophils within the CNS damages pathogen and host alike, including the non-replicative neurons which drives morbidity and mortality. As with the translocation of SPN, the recruitment of neutrophils into the CNS in SPN meningitis necessitates the translocation of neutrophils from the circulation across the vascular barrier, a process that is tightly regulated under basal conditions - a feature of the 'immune specialization' of the CNS. The brain barriers are therefore central to SPN meningitis, both through a failure to exclude bacteria and maintain CNS sterility, and subsequently through the active recruitment and/or failure to exclude circulating leukocytes. The interactions of SPN with these barriers, barrier inflammatory responses, along with their therapeutic implications, are explored in this review.
Collapse
Affiliation(s)
- Eliza Gil
- Division of Infection and Immunity, University College London, London, United Kingdom,*Correspondence: Eliza Gil,
| | - Emma Wall
- Francis Crick Institute, London, United Kingdom,UCLH Biomedical Research Centre, London, United Kingdom
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Jeremy S. Brown
- Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
6
|
Jim KK, Aprianto R, Koning R, Domenech A, Kurushima J, van de Beek D, Vandenbroucke-Grauls CMJE, Bitter W, Veening JW. Pneumolysin promotes host cell necroptosis and bacterial competence during pneumococcal meningitis as shown by whole-animal dual RNA-seq. Cell Rep 2022; 41:111851. [PMID: 36543127 PMCID: PMC9794515 DOI: 10.1016/j.celrep.2022.111851] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/16/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Pneumolysin is a major virulence factor of Streptococcus pneumoniae that plays a key role in interaction with the host during invasive disease. How pneumolysin influences these dynamics between host and pathogen interaction during early phase of central nervous system infection in pneumococcal meningitis remains unclear. Using a whole-animal in vivo dual RNA sequencing (RNA-seq) approach, we identify pneumolysin-specific transcriptional responses in both S. pneumoniae and zebrafish (Danio rerio) during early pneumococcal meningitis. By functional enrichment analysis, we identify host pathways known to be activated by pneumolysin and discover the importance of necroptosis for host survival. Inhibition of this pathway using the drug GSK'872 increases host mortality during pneumococcal meningitis. On the pathogen's side, we show that pneumolysin-dependent competence activation is crucial for intra-host replication and virulence. Altogether, this study provides new insights into pneumolysin-specific transcriptional responses and identifies key pathways involved in pneumococcal meningitis.
Collapse
Affiliation(s)
- Kin Ki Jim
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Microbiology and Infection Prevention, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Neurology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Rieza Aprianto
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Rutger Koning
- Amsterdam UMC Location University of Amsterdam, Department of Neurology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Arnau Domenech
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Jun Kurushima
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Diederik van de Beek
- Amsterdam UMC Location University of Amsterdam, Department of Neurology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Christina M J E Vandenbroucke-Grauls
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Microbiology and Infection Prevention, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Wilbert Bitter
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Microbiology and Infection Prevention, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam, 1081 Amsterdam, the Netherlands
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland.
| |
Collapse
|
7
|
Farmen K, Tofiño-Vian M, Iovino F. Neuronal Damage and Neuroinflammation, a Bridge Between Bacterial Meningitis and Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:680858. [PMID: 34149363 PMCID: PMC8209290 DOI: 10.3389/fncel.2021.680858] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial meningitis is an inflammation of the meninges which covers and protects the brain and the spinal cord. Such inflammation is mostly caused by blood-borne bacteria that cross the blood-brain barrier (BBB) and finally invade the brain parenchyma. Pathogens such as Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae are the main etiological causes of bacterial meningitis. After trafficking across the BBB, bacterial pathogens in the brain interact with neurons, the fundamental units of Central Nervous System, and other types of glial cells. Although the specific molecular mechanism behind the interaction between such pathogens with neurons is still under investigation, it is clear that bacterial interaction with neurons and neuroinflammatory responses within the brain leads to neuronal cell death. Furthermore, clinical studies have shown indications of meningitis-caused dementia; and a variety of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease are characterized by the loss of neurons, which, unlike many other eukaryotic cells, once dead or damaged, they are seldom replaced. The aim of this review article is to provide an overview of the knowledge on how bacterial pathogens in the brain damage neurons through direct and indirect interactions, and how the neuronal damage caused by bacterial pathogen can, in the long-term, influence the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet Biomedicum, Stockholm, Sweden
| |
Collapse
|
8
|
Nishimoto AT, Rosch JW, Tuomanen EI. Pneumolysin: Pathogenesis and Therapeutic Target. Front Microbiol 2020; 11:1543. [PMID: 32714314 PMCID: PMC7343714 DOI: 10.3389/fmicb.2020.01543] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023] Open
Abstract
Streptococcus pneumoniae is an opportunistic pathogen responsible for widespread illness and is a major global health issue for children, the elderly, and the immunocompromised population. Pneumolysin (PLY) is a cholesterol-dependent cytolysin (CDC) and key pneumococcal virulence factor involved in all phases of pneumococcal disease, including transmission, colonization, and infection. In this review we cover the biology and cytolytic function of PLY, its contribution to S. pneumoniae pathogenesis, and its known interactions and effects on the host with regard to tissue damage and immune response. Additionally, we review statins as a therapeutic option for CDC toxicity and PLY toxoid as a vaccine candidate in protein-based vaccines.
Collapse
Affiliation(s)
- Andrew T Nishimoto
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Jason W Rosch
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Elaine I Tuomanen
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
9
|
Iwahashi J, Kamei K, Watanabe H. Disruption of Aspergillus fumigatus biofilm by Streptococcus pneumoniae: Mycelial fragmentation by hydrogen peroxide. J Infect Chemother 2020; 26:831-837. [PMID: 32414689 DOI: 10.1016/j.jiac.2020.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/07/2020] [Accepted: 03/24/2020] [Indexed: 01/06/2023]
Abstract
Biofilm is a complex structure consisting of microorganisms such as bacteria, fungi and an extracellular matrix (ECM). Biofilms are involved in most microbial infections and show persistent resistance to antibiotic treatment and immune response. Both Aspergillus fumigatus and Streptococcus pneumoniae are colonizers that can form biofilms in the respiratory tract. These pathogens have been simultaneously isolated from the same patient, but their interaction is poorly understood. We observed morphological changes in single- and mixed-species biofilms prepared for confocal laser scanning microscopy and scanning electron microscopy (SEM). Pneumococci suppressed the development of a fungal biofilm, and it even disrupted a preformed fungal biofilm. When a preformed fungal biofilm was treated with pneumococci, the mycelial network was fragmented, and only bacteria could develop. SEM revealed that the fragmented mycelium was further disrupted into fine filaments as treatment time progressed, and that the ECM of the preformed fungal biofilm had disappeared. The pneumococcal culture supernatant contained mycelial fragmentation activity that was heat-sensitive. The culture supernatant of a mutant pneumococcal strain deficient in pneumolysin (Δply) also exhibited the mycelial fragmentation activity. Enolase and lactate oxidase, which are involved in glycolysis and hydrogen peroxide production, were identified in the culture supernatant of the Δply mutant. Neither the wild type nor the mutant strain could fragment the mycelium in the presence of catalase. These data suggest that hydrogen peroxide could fragment the mycelium and would terminate the co-existence of A. fumigatus and S. pneumoniae in biofilm.
Collapse
Affiliation(s)
- Jun Iwahashi
- Department of Infection Control and Prevention, Kurume University School of Medicine, 67 Asahi-machi, Kurume City, Fukuoka 830-0011, Japan.
| | - Katsuhiko Kamei
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8673, Japan
| | - Hiroshi Watanabe
- Department of Infection Control and Prevention, Kurume University School of Medicine, 67 Asahi-machi, Kurume City, Fukuoka 830-0011, Japan
| |
Collapse
|
10
|
Domain 4 of pneumolysin from Streptococcus pneumoniae is a multifunctional domain contributing TLR4 activating and hemolytic activity. Biochem Biophys Res Commun 2019; 517:596-602. [PMID: 31395343 DOI: 10.1016/j.bbrc.2019.07.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022]
Abstract
The pneumolysin (Ply) protein of Streptococcus pneumoniae is composed of four domains and possesses several different but related activities. In this study, recombinant Ply and two truncated forms, Ply domain 1-3 and Ply domain 4 (rPly4), were expressed and characterized regarding their participation in apoptosis, the stimulation of cytokine production, hemolytic activity and virulence. rPly4 activated murine bone marrow-derived dendritic cells in a Toll-like receptor (TLR) 4-dependent manner. The rPly4 alone was able to produce hemolytic activity at high concertation and penetrate the lipid bilayer. We further demonstrated that domain 4 of Ply involved in the virulence of the bacteria in mouse model. In the absence of apoptotic activity, the virulence level caused by rPly4 was similar to that of full length Ply. Our data suggested that domain 4 of Ply alone with TLR4 agonist and hemolytic activity may play roles in virulence of Streptococcus pneumoniae.
Collapse
|
11
|
Hupp S, Grandgirard D, Mitchell TJ, Leib SL, Hathaway LJ, Iliev AI. Pneumolysin and the bacterial capsule of Streptococcus pneumoniae cooperatively inhibit taxis and motility of microglia. J Neuroinflammation 2019; 16:105. [PMID: 31103037 PMCID: PMC6525981 DOI: 10.1186/s12974-019-1491-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/30/2019] [Indexed: 01/11/2023] Open
Abstract
Background Streptococcus pneumoniae is the cause of a highly lethal form of meningitis in humans. Microglial cells in the brain represent the first line of defense against pathogens, and they participate in the inflammatory response. The cholesterol-dependent cytolysin pneumolysin and the bacterial capsule are key pathogenic factors, known to exacerbate the course of pneumococcal meningitis. Methods We utilized live imaging and immunostaining of glial cells in dissociated and acute brain slice cultures to study the effect of pneumococcal factors, including the cholesterol-dependent cytolysin pneumolysin and the pneumococcal capsule, on microglial motility and taxis. Results In brain tissue, primary microglia cells showed an enhanced response towards lysates from bacteria lacking capsules and pneumolysin as they moved rapidly to areas with an abundance of bacterial factors. The presence of bacterial capsules and pneumolysin cumulatively inhibited microglial taxis. In mixed cultures of astrocytes and microglia, the motility of microglia was inhibited by capsular components within minutes after exposure. The reduced motility was partially reversed by mannan, a mannose receptor inhibitor. The effects on microglia were not mediated by astrocytes because pure microglial cells responded to various pneumococcal lysates similarly with distinct cell shape changes as seen in mixed cultures. Conclusions Our data indicate that microglia possess the capacity for a very agile response towards bacterial pathogens, but key pathogenic factors, such as pneumococcal capsules and pneumolysin, inhibited this response shortly after a bacterial challenge. Furthermore, we demonstrate for the first time that the bacterial capsule affects cellular behaviors such as motility and taxis. Electronic supplementary material The online version of this article (10.1186/s12974-019-1491-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabrina Hupp
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012, Bern, Switzerland
| | - Denis Grandgirard
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland
| | - Timothy J Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, Biosciences Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland
| | - Lucy J Hathaway
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland
| | - Asparouh I Iliev
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012, Bern, Switzerland.
| |
Collapse
|
12
|
Genome-wide association analyses of invasive pneumococcal isolates identify a missense bacterial mutation associated with meningitis. Nat Commun 2019; 10:178. [PMID: 30643125 PMCID: PMC6331587 DOI: 10.1038/s41467-018-07997-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 12/11/2018] [Indexed: 11/10/2022] Open
Abstract
Bacterial mutations predisposing pneumococcus to causing meningitis, a more severe form of invasive pneumococcal disease (IPD), are largely unknown. Knowledge of such mutations may improve our understanding of pathogenesis and inform preventive strategies. Here we report a pneumococcal pbp1b gene mutation (pbp1bA641C causing N214T change in PBP1b transglycosylase domain) that is associated with meningitis in an exploratory cohort of IPD patients (n = 2054, p = 6.8 × 10−6), in an independent confirmatory cohort (n = 2518, p = 2.3 × 10−6), and in a combined analysis (n = 4572, p = 3.0 × 10−10). Patients infected by the pbp1b641C genotype pneumococci show 2.8-fold odds (95% CI 1.7 to 4.8) of meningitis compared to those infected by non-pbp1b641C pneumococci, after controlling for pneumococcal serotype, antibiotic resistance, and patient age. The pbp1bA641C change results in longer time needed for bacterial killing by antibiotic treatment and shows evidence of being under positive selection. Thus, a pneumococcal mutation conferring increased antibiotic tolerance is associated with meningitis among IPD patients. Meningitis is a severe form of invasive pneumococcal disease (IPD). To study the contribution of bacterial genomic variation, here Li et al. perform whole genome sequencing of pneumococcal isolates from IPD patients and identify an association for higher risk of meningitis with a pbp1bA641C variant
Collapse
|
13
|
Al-Obaidi MMJ, Desa MNM. Mechanisms of Blood Brain Barrier Disruption by Different Types of Bacteria, and Bacterial-Host Interactions Facilitate the Bacterial Pathogen Invading the Brain. Cell Mol Neurobiol 2018; 38:1349-1368. [PMID: 30117097 PMCID: PMC11481977 DOI: 10.1007/s10571-018-0609-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022]
Abstract
This review aims to elucidate the different mechanisms of blood brain barrier (BBB) disruption that may occur due to invasion by different types of bacteria, as well as to show the bacteria-host interactions that assist the bacterial pathogen in invading the brain. For example, platelet-activating factor receptor (PAFR) is responsible for brain invasion during the adhesion of pneumococci to brain endothelial cells, which might lead to brain invasion. Additionally, the major adhesin of the pneumococcal pilus-1, RrgA is able to bind the BBB endothelial receptors: polymeric immunoglobulin receptor (pIgR) and platelet endothelial cell adhesion molecule (PECAM-1), thus leading to invasion of the brain. Moreover, Streptococcus pneumoniae choline binding protein A (CbpA) targets the common carboxy-terminal domain of the laminin receptor (LR) establishing initial contact with brain endothelium that might result in BBB invasion. Furthermore, BBB disruption may occur by S. pneumoniae penetration through increasing in pro-inflammatory markers and endothelial permeability. In contrast, adhesion, invasion, and translocation through or between endothelial cells can be done by S. pneumoniae without any disruption to the vascular endothelium, upon BBB penetration. Internalins (InlA and InlB) of Listeria monocytogenes interact with its cellular receptors E-cadherin and mesenchymal-epithelial transition (MET) to facilitate invading the brain. L. monocytogenes species activate NF-κB in endothelial cells, encouraging the expression of P- and E-selectin, intercellular adhesion molecule 1 (ICAM-1), and Vascular cell adhesion protein 1 (VCAM-1), as well as IL-6 and IL-8 and monocyte chemoattractant protein-1 (MCP-1), all these markers assist in BBB disruption. Bacillus anthracis species interrupt both adherens junctions (AJs) and tight junctions (TJs), leading to BBB disruption. Brain microvascular endothelial cells (BMECs) permeability and BBB disruption are induced via interendothelial junction proteins reduction as well as up-regulation of IL-1α, IL-1β, IL-6, TNF-α, MCP-1, macrophage inflammatory proteins-1 alpha (MIP1α) markers in Staphylococcus aureus species. Streptococcus agalactiae or Group B Streptococcus toxins (GBS) enhance IL-8 and ICAM-1 as well as nitric oxide (NO) production from endothelial cells via the expression of inducible nitric oxide synthase (iNOS) enhancement, resulting in BBB disruption. While Gram-negative bacteria, Haemophilus influenza OmpP2 is able to target the common carboxy-terminal domain of LR to start initial interaction with brain endothelium, then invade the brain. H. influenza type b (HiB), can induce BBB permeability through TJ disruption. LR and PAFR binding sites have been recognized as common routes of CNS entrance by Neisseria meningitidis. N. meningitidis species also initiate binding to BMECs and induces AJs deformation, as well as inducing specific cleavage of the TJ component occludin through the release of host MMP-8. Escherichia coli bind to BMECs through LR, resulting in IL-6 and IL-8 release and iNOS production, as well as resulting in disassembly of TJs between endothelial cells, facilitating BBB disruption. Therefore, obtaining knowledge of BBB disruption by different types of bacterial species will provide a picture of how the bacteria enter the central nervous system (CNS) which might support the discovery of therapeutic strategies for each bacteria to control and manage infection.
Collapse
Affiliation(s)
- Mazen M Jamil Al-Obaidi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Mohd Nasir Mohd Desa
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
14
|
Surve MV, Bhutda S, Datey A, Anil A, Rawat S, Pushpakaran A, Singh D, Kim KS, Chakravortty D, Banerjee A. Heterogeneity in pneumolysin expression governs the fate of Streptococcus pneumoniae during blood-brain barrier trafficking. PLoS Pathog 2018; 14:e1007168. [PMID: 30011336 PMCID: PMC6062133 DOI: 10.1371/journal.ppat.1007168] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/26/2018] [Accepted: 06/19/2018] [Indexed: 01/11/2023] Open
Abstract
Outcome of host-pathogen encounter is determined by the complex interplay between protective bacterial and host defense strategies. This complexity further amplifies with the existence of cell-to-cell phenotypic heterogeneity in pathogens which remains largely unexplored. In this study, we illustrated that heterogeneous expression of pneumolysin (Ply), a pore-forming toxin of the meningeal pathogen, S. pneumoniae (SPN) gives rise to stochastically different bacterial subpopulations with variable fate during passage across blood-brain barrier (BBB). We demonstrate that Ply mediated damage to pneumococcus containing vacuolar (PCV) membrane leads to recruitment of cytosolic "eat-me" signals, galectin-8 and ubiquitin, targeting SPN for autophagic clearance. However, a majority of high Ply producing subset extensively damages autophagosomes leading to pneumococcal escape into cytosol and efficient clearance by host ubiquitination machinery. Interestingly, a low Ply producing subset halts autophagosomal maturation and evades all intracellular defense mechanisms, promoting its prolonged survival and successful transcytosis across BBB, both in vitro and in vivo. Ply therefore acts as both, sword and shield implying that its smart regulation ensures optimal disease manifestation. Our elucidation of heterogeneity in Ply expression leading to disparate infection outcomes attempts to resolve the dubious role of Ply in pneumococcal pathogenesis.
Collapse
Affiliation(s)
- Manalee Vishnu Surve
- Bacterial Pathogenesis Lab, Dept. of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, INDIA
| | - Smita Bhutda
- Bacterial Pathogenesis Lab, Dept. of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, INDIA
| | - Akshay Datey
- Dept. of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, INDIA
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, INDIA
| | - Anjali Anil
- Bacterial Pathogenesis Lab, Dept. of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, INDIA
| | - Shalini Rawat
- Bacterial Pathogenesis Lab, Dept. of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, INDIA
| | - Athira Pushpakaran
- Bacterial Pathogenesis Lab, Dept. of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, INDIA
| | - Dipty Singh
- National Centre for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health (ICMR), J. M. Street, Parel, Mumbai, INDIA
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | | | - Anirban Banerjee
- Bacterial Pathogenesis Lab, Dept. of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, INDIA
| |
Collapse
|
15
|
Hobbs JK, Pluvinage B, Boraston AB. Glycan-metabolizing enzymes in microbe-host interactions: the Streptococcus pneumoniae paradigm. FEBS Lett 2018; 592:3865-3897. [PMID: 29608212 DOI: 10.1002/1873-3468.13045] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/31/2022]
Abstract
Streptococcus pneumoniae is a frequent colonizer of the upper airways; however, it is also an accomplished pathogen capable of causing life-threatening diseases. To colonize and cause invasive disease, this bacterium relies on a complex array of factors to mediate the host-bacterium interaction. The respiratory tract is rich in functionally important glycoconjugates that display a vast range of glycans, and, thus, a key component of the pneumococcus-host interaction involves an arsenal of bacterial carbohydrate-active enzymes to depolymerize these glycans and carbohydrate transporters to import the products. Through the destruction of host glycans, the glycan-specific metabolic machinery deployed by S. pneumoniae plays a variety of roles in the host-pathogen interaction. Here, we review the processing and metabolism of the major host-derived glycans, including N- and O-linked glycans, Lewis and blood group antigens, proteoglycans, and glycogen, as well as some dietary glycans. We discuss the role of these metabolic pathways in the S. pneumoniae-host interaction, speculate on the potential of key enzymes within these pathways as therapeutic targets, and relate S. pneumoniae as a model system to glycan processing in other microbial pathogens.
Collapse
Affiliation(s)
- Joanne K Hobbs
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | - Benjamin Pluvinage
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | - Alisdair B Boraston
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| |
Collapse
|
16
|
Hupp S, Ribes S, Seele J, Bischoff C, Förtsch C, Maier E, Benz R, Mitchell TJ, Nau R, Iliev AI. Magnesium therapy improves outcome in Streptococcus pneumoniae meningitis by altering pneumolysin pore formation. Br J Pharmacol 2017; 174:4295-4307. [PMID: 28888095 DOI: 10.1111/bph.14027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/26/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Streptococcus pneumoniae is the most common cause of bacterial meningitis in adults and is characterized by high lethality and substantial cognitive disabilities in survivors. Here, we have studied the capacity of an established therapeutic agent, magnesium, to improve survival in pneumococcal meningitis by modulating the neurological effects of the major pneumococcal pathogenic factor, pneumolysin. EXPERIMENTAL APPROACH We used mixed primary glial and acute brain slice cultures, pneumolysin injection in infant rats, a mouse meningitis model and complementary approaches such as Western blot, a black lipid bilayer conductance assay and live imaging of primary glial cells. KEY RESULTS Treatment with therapeutic concentrations of magnesium chloride (500 mg·kg-1 in animals and 2 mM in cultures) prevented pneumolysin-induced brain swelling and tissue remodelling both in brain slices and in animal models. In contrast to other divalent ions, which diminish the membrane binding of pneumolysin in non-therapeutic concentrations, magnesium delayed toxin-driven pore formation without affecting its membrane binding or the conductance profile of its pores. Finally, magnesium prolonged the survival and improved clinical condition of mice with pneumococcal meningitis, in the absence of antibiotic treatment. CONCLUSIONS AND IMPLICATIONS Magnesium is a well-established and safe therapeutic agent that has demonstrated capacity for attenuating pneumolysin-triggered pathogenic effects on the brain. The improved animal survival and clinical condition in the meningitis model identifies magnesium as a promising candidate for adjunctive treatment of pneumococcal meningitis, together with antibiotic therapy.
Collapse
Affiliation(s)
- Sabrina Hupp
- Institute of Anatomy, University of Bern, Bern, Switzerland.,DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| | - Sandra Ribes
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.,Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| | - Jana Seele
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.,Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| | - Carolin Bischoff
- DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| | - Christina Förtsch
- DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| | - Elke Maier
- Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| | - Roland Benz
- Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| | - Timothy J Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Roland Nau
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.,Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| | - Asparouh I Iliev
- Institute of Anatomy, University of Bern, Bern, Switzerland.,DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Rabes A, Suttorp N, Opitz B. Inflammasomes in Pneumococcal Infection: Innate Immune Sensing and Bacterial Evasion Strategies. Curr Top Microbiol Immunol 2017; 397:215-27. [PMID: 27460812 DOI: 10.1007/978-3-319-41171-2_11] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Streptococcus pneumoniae frequently colonizes the upper respiratory tract of healthy individuals, but also commonly causes severe invasive infections such as community-acquired pneumonia and meningitis. One of the key virulence factors of pneumococci is the pore-forming toxin pneumolysin which stimulates cell death and is involved in the evasion of some defense mechanisms. The immune system, however, employs different inflammasomes to sense pneumolysin-induced pore formation, cellular membrane damage, and/or subsequent leakage of bacterial nucleic acid into the host cell cytosol. Canonical inflammasomes are cytosolic multiprotein complexes consisting of a receptor molecule such as NLRP3 or AIM2, the adapter ASC, and caspase-1. NLRP3 and AIM2 inflammasomes mediate cell death and production of important IL-1 family cytokines to recruit leukocytes and defend against S. pneumoniae. Here, we review recent evidence that highlights inflammasomes as critical sensors of S. pneumoniae-induced cellular perturbations, summarize their role in pneumococcal infections, and discuss potential evasion strategies of some emerging pneumococcal strains.
Collapse
Affiliation(s)
- Anne Rabes
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Bastian Opitz
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
18
|
Knockdown of the MAPK p38 pathway increases the susceptibility of Chilo suppressalis larvae to Bacillus thuringiensis Cry1Ca toxin. Sci Rep 2017; 7:43964. [PMID: 28262736 PMCID: PMC5338291 DOI: 10.1038/srep43964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/31/2017] [Indexed: 12/21/2022] Open
Abstract
The bacterium Bacillus thuringiensis (Bt) produces a wide range of toxins that are effective against a number of insect pests. Identifying the mechanisms responsible for resistance to Bt toxin will improve both our ability to control important insect pests and our understanding of bacterial toxicology. In this study, we investigated the role of MAPK pathways in resistance against Cry1Ca toxin in Chilo suppressalis, an important lepidopteran pest of rice crops. We first cloned the full-length of C. suppressalis mitogen-activated protein kinase (MAPK) p38, ERK1, and ERK2, and a partial sequence of JNK (hereafter Csp38, CsERK1, CsERK2 and CsJNK). We could then measure the up-regulation of these MAPK genes in larvae at different times after ingestion of Cry1Ca toxin. Using RNA interference to knockdown Csp38, CsJNK, CsERK1 and CsERK2 showed that only knockdown of Csp38 significantly increased the mortality of larvae to Cry1Ca toxin ingested in either an artificial diet, or after feeding on transgenic rice expressed Cry1Ca. These results suggest that MAPK p38 is responsible for the resistance of C. suppressalis larvae to Bt Cry1Ca toxin.
Collapse
|
19
|
Jusot JF, Neill DR, Waters EM, Bangert M, Collins M, Bricio Moreno L, Lawan KG, Moussa MM, Dearing E, Everett DB, Collard JM, Kadioglu A. Airborne dust and high temperatures are risk factors for invasive bacterial disease. J Allergy Clin Immunol 2016; 139:977-986.e2. [PMID: 27523432 PMCID: PMC5338876 DOI: 10.1016/j.jaci.2016.04.062] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/21/2016] [Accepted: 04/30/2016] [Indexed: 11/24/2022]
Abstract
Background The Sahel region of West Africa has the highest bacterial meningitis attack and case fatality rate in the world. The effect of climatic factors on patterns of invasive respiratory bacterial disease is not well documented. Objective We aimed to assess the link between climatic factors and occurrence of invasive respiratory bacterial disease in a Sahel region of Niger. Methods We conducted daily disease surveillance and climatic monitoring over an 8-year period between January 1, 2003, and December 31, 2010, in Niamey, Niger, to determine risk factors for bacterial meningitis and invasive bacterial disease. We investigated the mechanistic effects of these factors on Streptococcus pneumoniae infection in mice. Results High temperatures and low visibility (resulting from high concentrations of airborne dust) were identified as significant risk factors for bacterial meningitis. Dust inhalation or exposure to high temperatures promoted progression of stable asymptomatic pneumococcal nasopharyngeal carriage to pneumonia and invasive disease. Dust exposure significantly reduced phagocyte-mediated bacterial killing, and exposure to high temperatures increased release of the key pneumococcal toxin pneumolysin through increased bacterial autolysis. Conclusion Our findings show that climatic factors can have a substantial influence on infectious disease patterns, altering density of pneumococcal nasopharyngeal carriage, reducing phagocytic killing, and resulting in increased inflammation and tissue damage and consequent invasiveness. Climatic surveillance should be used to forecast invasive bacterial disease epidemics, and simple control measures to reduce particulate inhalation might reduce the incidence of invasive bacterial disease in regions of the world exposed to high temperatures and increased airborne dust.
Collapse
Affiliation(s)
| | - Daniel R Neill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom.
| | - Elaine M Waters
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Mathieu Bangert
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom; European Public Health Microbiology Training Programme (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Marisol Collins
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Laura Bricio Moreno
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Emma Dearing
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Dean B Everett
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom; Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | | | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
20
|
Saralahti A, Piippo H, Parikka M, Henriques-Normark B, Rämet M, Rounioja S. Adult zebrafish model for pneumococcal pathogenesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:345-353. [PMID: 24076065 DOI: 10.1016/j.dci.2013.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 06/02/2023]
Abstract
Streptococcus pneumoniae (pneumococcus) is a leading cause of community acquired pneumonia, septicemia, and meningitis. Due to incomplete understanding of the host and bacterial factors contributing to these diseases optimal treatment and prevention methods are lacking. In the present study we examined whether the adult zebrafish (Danio rerio) can be used to investigate the pathophysiology of pneumococcal diseases. Here we show that both intraperitoneal and intramuscular injections of the pneumococcal strain TIGR4 cause a fulminant, dose-dependent infection in adult zebrafish, while isogenic mutant bacteria lacking the polysaccharide capsule, autolysin, or pneumolysin are attenuated in the model. Infection through the intraperitoneal route is characterized by rapid expansion of pneumococci in the bloodstream, followed by penetration of the blood-brain barrier and progression to meningitis. Using Rag1 mutant zebrafish, which are devoid of somatic recombination and thus lack adaptive immune responses, we show that clearance of pneumococci in adult zebrafish depends mainly on innate immune responses. In conclusion, this study provides evidence that the adult zebrafish can be used as a model for a pneumococcal infection, and that it can be used to study both host and bacterial factors involved in the pathogenesis. However, our results do not support the use of the zebrafish in studies on the role of adaptive immunity in pneumococcal disease or in the development of new pneumococcal vaccines.
Collapse
Affiliation(s)
- Anni Saralahti
- Institute of Biomedical Technology, BioMediTech, University of Tampere, FI-33014 Tampere, Finland
| | | | | | | | | | | |
Collapse
|
21
|
Sukeno A, Nagamune H, Whiley RA, Jafar SI, Aduse-Opoku J, Ohkura K, Maeda T, Hirota K, Miyake Y, Kourai H. Intermedilysin Is Essential for the Invasion of Hepatoma HepG2 Cells byStreptococcus intermedius. Microbiol Immunol 2013; 49:681-94. [PMID: 16034212 DOI: 10.1111/j.1348-0421.2005.tb03647.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Streptococcus intermedius causes endogenous infections leading to abscesses. This species produces intermedilysin (ILY), a human-specific cytolysin. Because of the significant correlation between higher ILY production levels by S. intermedius and deep-seated abscesses, we constructed ily knockout mutant UNS38 B3 and complementation strain UNS38 B3R1 in order to investigate the role of ILY in deep-seated infections. Strain UNS38 reduced the viability of human liver cell line HepG2 at infection but not of rat liver cell line BRL3A. Isogenic mutant strain UNS38 B3 was not cytotoxic in either cell line. Quantification of S. intermedius revealed that in infected HepG2 cells UNS38 but not UNS38 B3 increased intracellularly concomitantly with increasing cell damage. This difference between UNS38 and UNS38 B3 was not observed with UNS38 B3R1. Invasion and proliferation in BRL3A cells was not observed. Masking UNS38 or UNS38 B3R1 with ILY antibody drastically decreased adherence and invasion of HepG2. Moreover, coating strain UNS38 B3 with ILY partially restored adherence to HepG2 but without subsequent bacterial growth. At 1 day post-infection, many intact UNS38 were detected in the damaged phagosomes of HepG2 with bacterial proliferation observed in the cytoplasm of dead HepG2 after an additional 2 day incubation. These results indicate that surface-bound ILY on S. intermedius is an important factor for invasion of human cells by this bacterium and that secretion of ILY within host cells is essential for subsequent host cell death. These data strongly implicate ILY as an important factor in the pathogenesis of abscesses in vivo by this streptococcus.
Collapse
Affiliation(s)
- Akiko Sukeno
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ricci S, Gerlini A, Pammolli A, Chiavolini D, Braione V, Tripodi SA, Colombari B, Blasi E, Oggioni MR, Peppoloni S, Pozzi G. Contribution of different pneumococcal virulence factors to experimental meningitis in mice. BMC Infect Dis 2013; 13:444. [PMID: 24059458 PMCID: PMC3848944 DOI: 10.1186/1471-2334-13-444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/13/2013] [Indexed: 11/28/2022] Open
Abstract
Background Pneumococcal meningitis (PM) is a life-threatening disease with a high case-fatality rate and elevated risk for serious neurological sequelae. In this study, we investigated the contribution of three major virulence factors of Streptococcus pneumoniae, the capsule, pneumococcal surface protein A (PspA) and C (PspC), to the pathogenesis of experimental PM. Methods Mice were challenged by the intracranial route with the serotype 4 TIGR4 strain (wt) and three isogenic mutants devoid of PspA, PspC, and the capsule. Survival, bacterial counts, and brain histology were carried out. To study the interaction between S. pneumoniae mutants and microglia, phagocytosis and survival experiments were performed using the BV2 mouse microglial cell line. Results Virulence of the PspC mutant was comparable to that of TIGR4. In contrast, survival of animals challenged with the PspA mutant was significantly increased compared with the wt, and the mutant was also impaired at replicating in the brain and blood of infected mice. Brain histology indicated that all strains, except for the unencapsulated mutant, caused PM. Analysis of inflammation and damage in the brain of mice infected with TIGR4 or its unencapsulated mutant demonstrated that the rough strain was unable to induce inflammation and neuronal injury, even at high challenge doses. Results with BV2 cells showed no differences in phagocytic uptake between wt and mutants. In survival assays, however, the PspA mutant showed significantly reduced survival in microglia compared with the wt. Conclusions PspA contributed to PM pathogenesis possibly by interacting with microglia at early infection stages, while PspC had limited importance in the disease. The rough mutant did not cause brain inflammation, neuronal damage or mouse death, strengthening the key role of the capsule in PM.
Collapse
Affiliation(s)
- Susanna Ricci
- Department of Medical Biotechnologies, Laboratory of Molecular Microbiology and Biotechnology (LA,M,M,B,), University of Siena and Siena University Hospital, Siena 53100, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wippel C, Maurer J, Förtsch C, Hupp S, Bohl A, Ma J, Mitchell TJ, Bunkowski S, Brück W, Nau R, Iliev AI. Bacterial cytolysin during meningitis disrupts the regulation of glutamate in the brain, leading to synaptic damage. PLoS Pathog 2013; 9:e1003380. [PMID: 23785278 PMCID: PMC3681734 DOI: 10.1371/journal.ppat.1003380] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 04/08/2013] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcal) meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage.
Collapse
Affiliation(s)
- Carolin Wippel
- DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| | - Jana Maurer
- DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| | - Christina Förtsch
- DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| | - Sabrina Hupp
- DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| | - Alexandra Bohl
- DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| | - Jiangtao Ma
- Division of Infection and Immunity, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Timothy J. Mitchell
- Division of Infection and Immunity, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
- Chair of Microbial Infection and Immunity, School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Stephanie Bunkowski
- Department of Neuropathology, Georg-August-University of Göttingen, Göttingen, Germany
| | - Wolfgang Brück
- Department of Neuropathology, Georg-August-University of Göttingen, Göttingen, Germany
| | - Roland Nau
- Department of Neuropathology, Georg-August-University of Göttingen, Göttingen, Germany
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| | - Asparouh I. Iliev
- DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
24
|
Los FCO, Randis TM, Aroian RV, Ratner AJ. Role of pore-forming toxins in bacterial infectious diseases. Microbiol Mol Biol Rev 2013; 77:173-207. [PMID: 23699254 PMCID: PMC3668673 DOI: 10.1128/mmbr.00052-12] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pore-forming toxins (PFTs) are the most common bacterial cytotoxic proteins and are required for virulence in a large number of important pathogens, including Streptococcus pneumoniae, group A and B streptococci, Staphylococcus aureus, Escherichia coli, and Mycobacterium tuberculosis. PFTs generally disrupt host cell membranes, but they can have additional effects independent of pore formation. Substantial effort has been devoted to understanding the molecular mechanisms underlying the functions of certain model PFTs. Likewise, specific host pathways mediating survival and immune responses in the face of toxin-mediated cellular damage have been delineated. However, less is known about the overall functions of PFTs during infection in vivo. This review focuses on common themes in the area of PFT biology, with an emphasis on studies addressing the roles of PFTs in in vivo and ex vivo models of colonization or infection. Common functions of PFTs include disruption of epithelial barrier function and evasion of host immune responses, which contribute to bacterial growth and spreading. The widespread nature of PFTs make this group of toxins an attractive target for the development of new virulence-targeted therapies that may have broad activity against human pathogens.
Collapse
Affiliation(s)
| | - Tara M. Randis
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Raffi V. Aroian
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Adam J. Ratner
- Department of Pediatrics, Columbia University, New York, New York, USA
| |
Collapse
|
25
|
van Sorge NM, Doran KS. Defense at the border: the blood-brain barrier versus bacterial foreigners. Future Microbiol 2012; 7:383-94. [PMID: 22393891 DOI: 10.2217/fmb.12.1] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bacterial meningitis is among the top ten causes of infectious disease-related deaths worldwide, with up to half of the survivors left with permanent neurological sequelae. The blood-brain barrier (BBB), composed mainly of specialized brain microvascular endothelial cells, maintains biochemical homeostasis in the CNS by regulating the passage of nutrients, molecules and cells from the blood to the brain. Despite its highly restrictive nature, certain bacterial pathogens are able to gain entry into the CNS resulting in serious disease. In recent years, important advances have been made in understanding the molecular and cellular events that are involved in the development of bacterial meningitis. In this review, we summarize the progress made in elucidating the molecular mechanisms of bacterial BBB-crossing, highlighting common themes of host-pathogen interaction, and the potential role of the BBB in innate defense during infection.
Collapse
Affiliation(s)
- Nina M van Sorge
- University Medical Center Utrecht, Medical Microbiology, Heidelberglaan 100, G04.614, 3584 GX Utrecht, The Netherlands
| | | |
Collapse
|
26
|
Koppe U, Suttorp N, Opitz B. Recognition of Streptococcus pneumoniae by the innate immune system. Cell Microbiol 2012; 14:460-6. [DOI: 10.1111/j.1462-5822.2011.01746.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Wall EC, Gordon SB, Hussain S, Goonetilleke URS, Gritzfeld J, Scarborough M, Kadioglu A. Persistence of pneumolysin in the cerebrospinal fluid of patients with pneumococcal meningitis is associated with mortality. Clin Infect Dis 2012; 54:701-5. [PMID: 22238165 PMCID: PMC3275762 DOI: 10.1093/cid/cir926] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Poor prognosis in Pneumococcal meningitis may be associated with high pneumolysin levels in cerebrospinal fluid (CSF). In patient samples we showed that pneumolysin levels in CSF remained high after 48 hours in nonsurvivors of meningitis compared with survivors. Selective antipneumolysin treatment may present a novel therapeutic option.
Collapse
Affiliation(s)
- Emma C Wall
- Clinical Research Group, Liverpool School of Tropical Medicine, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Pneumococcal meningitis continues to be associated with high rates of mortality and long-term neurological sequelae. The most common route of infection starts by nasopharyngeal colonization by Streptococcus pneumoniae, which must avoid mucosal entrapment and evade the host immune system after local activation. During invasive disease, pneumococcal epithelial adhesion is followed by bloodstream invasion and activation of the complement and coagulation systems. The release of inflammatory mediators facilitates pneumococcal crossing of the blood-brain barrier into the brain, where the bacteria multiply freely and trigger activation of circulating antigen-presenting cells and resident microglial cells. The resulting massive inflammation leads to further neutrophil recruitment and inflammation, resulting in the well-known features of bacterial meningitis, including cerebrospinal fluid pleocytosis, cochlear damage, cerebral edema, hydrocephalus, and cerebrovascular complications. Experimental animal models continue to further our understanding of the pathophysiology of pneumococcal meningitis and provide the platform for the development of new adjuvant treatments and antimicrobial therapy. This review discusses the most recent views on the pathophysiology of pneumococcal meningitis, as well as potential targets for (adjunctive) therapy.
Collapse
|
29
|
Hoegen T, Tremel N, Klein M, Angele B, Wagner H, Kirschning C, Pfister HW, Fontana A, Hammerschmidt S, Koedel U. The NLRP3 inflammasome contributes to brain injury in pneumococcal meningitis and is activated through ATP-dependent lysosomal cathepsin B release. THE JOURNAL OF IMMUNOLOGY 2011; 187:5440-51. [PMID: 22003197 DOI: 10.4049/jimmunol.1100790] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Streptococcus pneumoniae meningitis causes brain damage through inflammation-related pathways whose identity and mechanisms of action are yet unclear. We previously identified caspase-1, which activates precursor IL-1 type cytokines, as a central mediator of inflammation in pneumococcal meningitis. In this study, we demonstrate that lack of the inflammasome components ASC or NLRP3 that are centrally involved in caspase-1 activation decreases scores of clinical and histological disease severity as well as brain inflammation in murine pneumococcal meningitis. Using specific inhibitors (anakinra and rIL-18-binding protein), we further show that ASC- and NLRP3-dependent pathologic alterations are solely related to secretion of both IL-1β and IL-18. Moreover, using differentiated human THP-1 cells, we demonstrate that the pneumococcal pore-forming toxin pneumolysin is a key inducer of IL-1β expression and inflammasome activation upon pneumococcal challenge. The latter depends on the release of ATP, lysosomal destabilization (but not disruption), and cathepsin B activation. The in vivo importance of this pathway is supported by our observation that the lack of pneumolysin and cathepsin B inhibition is associated with a better clinical course and less brain inflammation in murine pneumococcal meningitis. Collectively, our study indicates a central role of the NLRP3 inflammasome in the pathology of pneumococcal meningitis. Thus, interference with inflammasome activation might be a promising target for adjunctive therapy of this disease.
Collapse
Affiliation(s)
- Tobias Hoegen
- Department of Neurology, Clinic of the University of Munich, D-81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wippel C, Förtsch C, Hupp S, Maier E, Benz R, Ma J, Mitchell TJ, Iliev AI. Extracellular calcium reduction strongly increases the lytic capacity of pneumolysin from streptococcus pneumoniae in brain tissue. J Infect Dis 2011; 204:930-6. [PMID: 21849290 PMCID: PMC3156923 DOI: 10.1093/infdis/jir434] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae causes serious diseases such as pneumonia and meningitis. Its major pathogenic factor is the cholesterol-dependent cytolysin pneumolysin, which produces lytic pores at high concentrations. At low concentrations, it has other effects, including induction of apoptosis. Many cellular effects of pneumolysin appear to be calcium dependent. METHODS Live imaging of primary mouse astroglia exposed to sublytic amounts of pneumolysin at various concentrations of extracellular calcium was used to measure changes in cellular permeability (as judged by lactate dehydrogenase release and propidium iodide chromatin staining). Individual pore properties were analyzed by conductance across artificial lipid bilayer. Tissue toxicity was studied in continuously oxygenated acute brain slices. RESULTS The reduction of extracellular calcium increased the lytic capacity of the toxin due to increased membrane binding. Reduction of calcium did not influence the conductance properties of individual toxin pores. In acute cortical brain slices, the reduction of extracellular calcium from 2 to 1 mM conferred lytic activity to pathophysiologically relevant nonlytic concentrations of pneumolysin. CONCLUSIONS Reduction of extracellular calcium strongly enhanced the lytic capacity of pneumolysin due to increased membrane binding. Thus, extracellular calcium concentration should be considered as a factor of primary importance for the course of pneumococcal meningitis.
Collapse
Affiliation(s)
- Carolin Wippel
- DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Hupp S, Heimeroth V, Wippel C, Förtsch C, Ma J, Mitchell TJ, Iliev AI. Astrocytic tissue remodeling by the meningitis neurotoxin pneumolysin facilitates pathogen tissue penetration and produces interstitial brain edema. Glia 2011; 60:137-46. [PMID: 21989652 DOI: 10.1002/glia.21256] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/21/2011] [Indexed: 11/06/2022]
Abstract
Astrocytes represent a major component of brain tissue and play a critical role in the proper functioning and protection of the brain. Streptococcus pneumoniae, the most common cause of bacterial meningitis, has a high lethality and causes serious disabilities in survivors. Pneumolysin (PLY), a member of the cholesterol-dependent cytolysin group and a major S. pneumoniae neurotoxin, causes deterioration over the course of experimental S. pneumoniae meningitis. At disease-relevant sub-lytic concentrations, PLY produces actin and tubulin reorganization and astrocyte cell shape changes in vitro. In this article, we show that sub-lytic amounts of PLY remodel brain tissue and produce astrocytic process retraction, cortical astroglial reorganization and increased interstitial fluid retention, which is manifested as tissue edema. These changes caused increased tissue permeability to macromolecules and bacteria. The pore-forming capacity of PLY remained necessary for these changes because none of the nonpore-forming mutants were capable of producing similar effects. We suggest that PLY can increase the permeability of brain tissue toward pathogenic factors and bacteria in the course of meningitis, thus contributing to the deterioration caused by the disease.
Collapse
Affiliation(s)
- Sabrina Hupp
- DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Factors affecting the development of systemic inflammatory response syndrome in pneumococcal infections. Curr Opin Infect Dis 2011; 24:241-7. [DOI: 10.1097/qco.0b013e3283463e45] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Kao CY, Los FCO, Huffman DL, Wachi S, Kloft N, Husmann M, Karabrahimi V, Schwartz JL, Bellier A, Ha C, Sagong Y, Fan H, Ghosh P, Hsieh M, Hsu CS, Chen L, Aroian RV. Global functional analyses of cellular responses to pore-forming toxins. PLoS Pathog 2011; 7:e1001314. [PMID: 21408619 PMCID: PMC3048360 DOI: 10.1371/journal.ppat.1001314] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 02/04/2011] [Indexed: 01/12/2023] Open
Abstract
Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs). PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi) screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome) in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK) pathways, one (p38) studied in detail and the other (JNK) not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos) is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs. The plasma membrane surrounds cells and protects their interior from the environment and from attack by disease-causing agents like bacteria and viruses. Bacteria that cause disease have discovered that an effective way to attack cells is to secrete proteins (pore-forming toxins) that breach, i.e., form holes in, the plasma membrane. How cells deal with and survive this kind of attack is poorly understood. Here, we report on the first large-scale study of the genes and mRNA transcripts that respond to pore-forming toxin attack in cells. We find that a remarkable portion, >0.5%, of the cell's genome protects it against pore-forming toxins. These data led us to look more closely at mitogen-activated protein kinase pathways as regulators of pore-forming toxin defenses. We find that half of the PFT-induced protective response is controlled by a single, conserved signaling pathway in cells, which controls a complex array of downstream targets and which protects against both large pore and small pore toxins. Our results indicate that defense against pore-forming toxins is a very ancient defense that utilizes a much more complex and extensive response in cells than previously demonstrated.
Collapse
Affiliation(s)
- Cheng-Yuan Kao
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Ferdinand C. O. Los
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Danielle L. Huffman
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Shinichiro Wachi
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Nicole Kloft
- Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg-University Mainz, Hochhaus am Augustusplatz, Mainz, Germany
| | - Matthias Husmann
- Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg-University Mainz, Hochhaus am Augustusplatz, Mainz, Germany
| | - Valbona Karabrahimi
- Groupe d'étude des protéines membranaires, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Louis Schwartz
- Groupe d'étude des protéines membranaires, Université de Montréal, Montreal, Quebec, Canada
| | - Audrey Bellier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Christine Ha
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Youn Sagong
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Hui Fan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Partho Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Mindy Hsieh
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Chih-Shen Hsu
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Li Chen
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Raffi V. Aroian
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Allicin from garlic neutralizes the hemolytic activity of intra- and extra-cellular pneumolysin O in vitro. Toxicon 2011; 57:540-5. [DOI: 10.1016/j.toxicon.2010.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/13/2010] [Accepted: 12/14/2010] [Indexed: 11/17/2022]
|
35
|
Förtsch C, Hupp S, Ma J, Mitchell TJ, Maier E, Benz R, Iliev AI. Changes in astrocyte shape induced by sublytic concentrations of the cholesterol-dependent cytolysin pneumolysin still require pore-forming capacity. Toxins (Basel) 2011; 3:43-62. [PMID: 22069689 PMCID: PMC3210454 DOI: 10.3390/toxins3010043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/30/2010] [Accepted: 01/04/2011] [Indexed: 11/21/2022] Open
Abstract
Streptococcus pneumoniae is a common pathogen that causes various infections, such as sepsis and meningitis. A major pathogenic factor of S. pneumoniae is the cholesterol-dependent cytolysin, pneumolysin. It produces cell lysis at high concentrations and apoptosis at lower concentrations. We have shown that sublytic amounts of pneumolysin induce small GTPase-dependent actin cytoskeleton reorganization and microtubule stabilization in human neuroblastoma cells that are manifested by cell retraction and changes in cell shape. In this study, we utilized a live imaging approach to analyze the role of pneumolysin’s pore-forming capacity in the actin-dependent cell shape changes in primary astrocytes. After the initial challenge with the wild-type toxin, a permeabilized cell population was rapidly established within 20-40 minutes. After the initial rapid permeabilization, the size of the permeabilized population remained unchanged and reached a plateau. Thus, we analyzed the non-permeabilized (non-lytic) population, which demonstrated retraction and shape changes that were inhibited by actin depolymerization. Despite the non-lytic nature of pneumolysin treatment, the toxin’s lytic capacity remained critical for the initiation of cell shape changes. The non-lytic pneumolysin mutants W433F-pneumolysin and delta6-pneumolysin, which bind the cell membrane with affinities similar to that of the wild-type toxin, were not able to induce shape changes. The initiation of cell shape changes and cell retraction by the wild-type toxin were independent of calcium and sodium influx and membrane depolarization, which are known to occur following cellular challenge and suggested to result from the ion channel-like properties of the pneumolysin pores. Excluding the major pore-related phenomena as the initiation mechanism of cell shape changes, the existence of a more complex relationship between the pore-forming capacity of pneumolysin and the actin cytoskeleton reorganization is suggested.
Collapse
Affiliation(s)
- Christina Förtsch
- DFG Membrane, Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (C.F.); (S.H.)
| | - Sabrina Hupp
- DFG Membrane, Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (C.F.); (S.H.)
| | - Jiangtao Ma
- Division of Infection and Immunity, Level 2, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK; (J.M.); (T.J.M.)
| | - Timothy J. Mitchell
- Division of Infection and Immunity, Level 2, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK; (J.M.); (T.J.M.)
| | - Elke Maier
- Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (E.M.); (R.B.)
| | - Roland Benz
- Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (E.M.); (R.B.)
| | - Asparouh I. Iliev
- DFG Membrane, Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (C.F.); (S.H.)
- Author to whom correspondence should be addressed; ; Tel.: +49-931-20148997; Fax: +49-931-20148539
| |
Collapse
|
36
|
Reiss A, Braun JS, Jäger K, Freyer D, Laube G, Bührer C, Felderhoff-Müser U, Stadelmann C, Nizet V, Weber JR. Bacterial pore-forming cytolysins induce neuronal damage in a rat model of neonatal meningitis. J Infect Dis 2010; 203:393-400. [PMID: 21186256 DOI: 10.1093/infdis/jiq047] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Group B Streptococcus (GBS) and Streptococcus pneumoniae (SP) are leading causes of bacterial meningitis in neonates and children. Each pathogen produces a pore-forming cytolytic toxin, β-hemolysin/cytolysin (β-h/c) by GBS and pneumolysin by SP. The aim of this study was to understand the role of these pore-forming cytotoxins, in particular of the GBS β-h/c, as potential neurotoxins in experimental neonatal meningitis. METHODS Meningitis was induced in 7- and 11-day-old rats by intracisternal injection of wild type (WT) GBS or SP and compared with isogenic β-h/c- or pneumolysin-deficient mutants, or a double mutant of SP deficient in pneumolysin and hydrogen peroxide production. RESULTS GBS β-h/c and SP pneumolysin contributed to neuronal damage, worsened clinical outcome and weight loss, but had no influence on the early kinetics of leukocyte influx and bacterial growth in the cerebrospinal fluid. In vitro, β-h/c-induced neuronal apoptosis occurred independently of caspase-activation and was not preventable by the broad spectrum caspase-inhibitor z-VAD-fmk. CONCLUSIONS These data suggest that both cytolytic toxins, the GBS β-h/c and SP pneumolysin, contribute to neuronal damage in meningitis and extend the concept of a key role for bacterial pore-forming cytolysins in the pathogenesis and sequelae of neonatal meningitis.
Collapse
Affiliation(s)
- Anja Reiss
- Department of Neonatology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Detection of large numbers of pneumococcal virulence genes in streptococci of the mitis group. J Clin Microbiol 2010; 48:2762-9. [PMID: 20519466 DOI: 10.1128/jcm.01746-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seven streptococcal isolates from the mitis group were analyzed for the presence of pneumococcal gene homologues by comparative genomic hybridization studies with microarrays based on open reading frames from the genomes of Streptococcus pneumoniae TIGR4 and R6. The diversity of pneumolysin (ply) and neuraminidase A (nanA) gene sequences was explored in more detail in a collection of 14 S. pseudopneumoniae and 29 mitis group isolates, respectively. The mitis group isolates used in the microarray experiments included a type strain (NCTC 12261), two S. mitis isolates from the nasopharynxes of children, one S. mitis isolate from a case of infective endocarditis, one S. mitis isolate from a dental abscess, and one S. oralis isolate and one S. pseudopneumoniae isolate from the nasopharynxes of children. The results of the microarray study showed that the 5 S. mitis isolates had homologues to between 67 and 82% of pneumococcal virulence genes, S. oralis hybridized to 83% of pneumococcal virulence genes, and S. pseudopneumoniae hybridized to 92% of identified pneumococcal virulence genes. Comparison of the pneumolysin, mitilysin (mly), and newly identified pseudopneumolysin (pply) gene sequences revealed that mly and pply genes are more closely related to each other than either is to ply. In contrast, the nanA gene sequences in the pneumococcus and streptococci from the mitis group are closely clustered together, sharing 99.4 to 99.7% sequence identity with pneumococcal nanA alleles.
Collapse
|
38
|
|
39
|
Jensch I, Gámez G, Rothe M, Ebert S, Fulde M, Somplatzki D, Bergmann S, Petruschka L, Rohde M, Nau R, Hammerschmidt S. PavB is a surface-exposed adhesin of Streptococcus pneumoniae contributing to nasopharyngeal colonization and airways infections. Mol Microbiol 2010; 77:22-43. [PMID: 20444103 DOI: 10.1111/j.1365-2958.2010.07189.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The genomic analysis of Streptococcus pneumoniae strains identified the Pneumococcal adherence and virulence factor B (PavB), whose repetitive sequences, designated Streptococcal Surface REpeats (SSURE), interact with human fibronectin. Here, we showed the gene in all tested pneumococci and identified that the observed differences in the molecular mass of PavB rely on the number of repeats, ranging from five to nine SSURE. PavB interacted with fibronectin and plasminogen in a dose-dependent manner as shown by using various SSURE peptides. In addition, we identified PavB as colonization factor. Mice infected intranasally with DeltapavB pneumococci showed significantly increased survival times compared with wild-type bacteria. Importantly, the pavB-mutant showed a delay in transmigration to the lungs as observed in real-time using bioluminescent pneumococci and decreased colonization rates in a nasopharyngeal carriage model. In co-infection experiments the wild-type out-competed the pavB-mutant and infections of epithelial cells demonstrated that PavB contributes to adherence to host cell. Blocking experiments suggested a function of PavB as adhesin, which was confirmed by direct binding of SSURE peptides to host cells. Finally, PavB may represent a new vaccine candidate as SSURE peptides reacted with human sera. Taken together, PavB is a surface-exposed adhesin, which contributes to pneumococcal colonization and infections of the respiratory airways.
Collapse
Affiliation(s)
- Inga Jensch
- Department Genetics of Microorganisms, Institute for Genetics and Functional Genomics, University of Greifswald, D-17487 Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Uchiyama S, Carlin AF, Khosravi A, Weiman S, Banerjee A, Quach D, Hightower G, Mitchell TJ, Doran KS, Nizet V. The surface-anchored NanA protein promotes pneumococcal brain endothelial cell invasion. ACTA ACUST UNITED AC 2009; 206:1845-52. [PMID: 19687228 PMCID: PMC2737157 DOI: 10.1084/jem.20090386] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In humans, Streptococcus pneumoniae (SPN) is the leading cause of bacterial meningitis, a disease with high attributable mortality and frequent permanent neurological sequelae. The molecular mechanisms underlying the central nervous system tropism of SPN are incompletely understood, but include a primary interaction of the pathogen with the blood–brain barrier (BBB) endothelium. All SPN strains possess a gene encoding the surface-anchored sialidase (neuraminidase) NanA, which cleaves sialic acid on host cells and proteins. Here, we use an isogenic SPN NanA-deficient mutant and heterologous expression of the protein to show that NanA is both necessary and sufficient to promote SPN adherence to and invasion of human brain microvascular endothelial cells (hBMECs). NanA-mediated hBMEC invasion depends only partially on sialidase activity, whereas the N-terminal lectinlike domain of the protein plays a critical role. NanA promotes SPN–BBB interaction in a murine infection model, identifying the protein as proximal mediator of CNS entry by the pathogen.
Collapse
Affiliation(s)
- Satoshi Uchiyama
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Holden MTG, Hauser H, Sanders M, Ngo TH, Cherevach I, Cronin A, Goodhead I, Mungall K, Quail MA, Price C, Rabbinowitsch E, Sharp S, Croucher NJ, Chieu TB, Mai NTH, Diep TS, Chinh NT, Kehoe M, Leigh JA, Ward PN, Dowson CG, Whatmore AM, Chanter N, Iversen P, Gottschalk M, Slater JD, Smith HE, Spratt BG, Xu J, Ye C, Bentley S, Barrell BG, Schultsz C, Maskell DJ, Parkhill J. Rapid evolution of virulence and drug resistance in the emerging zoonotic pathogen Streptococcus suis. PLoS One 2009; 4:e6072. [PMID: 19603075 PMCID: PMC2705793 DOI: 10.1371/journal.pone.0006072] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 04/22/2009] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Streptococcus suis is a zoonotic pathogen that infects pigs and can occasionally cause serious infections in humans. S. suis infections occur sporadically in human Europe and North America, but a recent major outbreak has been described in China with high levels of mortality. The mechanisms of S. suis pathogenesis in humans and pigs are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS The sequencing of whole genomes of S. suis isolates provides opportunities to investigate the genetic basis of infection. Here we describe whole genome sequences of three S. suis strains from the same lineage: one from European pigs, and two from human cases from China and Vietnam. Comparative genomic analysis was used to investigate the variability of these strains. S. suis is phylogenetically distinct from other Streptococcus species for which genome sequences are currently available. Accordingly, approximately 40% of the approximately 2 Mb genome is unique in comparison to other Streptococcus species. Finer genomic comparisons within the species showed a high level of sequence conservation; virtually all of the genome is common to the S. suis strains. The only exceptions are three approximately 90 kb regions, present in the two isolates from humans, composed of integrative conjugative elements and transposons. Carried in these regions are coding sequences associated with drug resistance. In addition, small-scale sequence variation has generated pseudogenes in putative virulence and colonization factors. CONCLUSIONS/SIGNIFICANCE The genomic inventories of genetically related S. suis strains, isolated from distinct hosts and diseases, exhibit high levels of conservation. However, the genomes provide evidence that horizontal gene transfer has contributed to the evolution of drug resistance.
Collapse
Affiliation(s)
- Matthew T G Holden
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Iliev AI, Djannatian JR, Opazo F, Gerber J, Nau R, Mitchell TJ, Wouters FS. Rapid microtubule bundling and stabilization by the Streptococcus pneumoniae neurotoxin pneumolysin in a cholesterol-dependent, non-lytic and Src-kinase dependent manner inhibits intracellular trafficking. Mol Microbiol 2008; 71:461-77. [PMID: 19040644 DOI: 10.1111/j.1365-2958.2008.06538.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Streptococcus pneumoniae is the most frequent cause of bacterial meningitis, leading to permanent neurological damage in 30% and lethal outcome in 25% of patients. The cholesterol-dependent cytolysin pneumolysin is a major virulence factor of S. pneumoniae. It produces rapid cell lysis at higher concentrations or apoptosis at lower concentrations. Here, we show that sublytic amounts of pneumolysin produce rapid bundling and increased acetylation of microtubules (signs of excessive microtubule stabilization) in various types of cells--neuroblastoma cells, fibroblasts and primary astrocytes. The bundling started perinuclearly and extended peripherally towards the membrane. The effect was not connected to pneumolysin's capacity to mediate calcium influx, macropore formation, apoptosis, or RhoA and Rac1 activation. Cellular cholesterol depletion and neutralization of the toxin by pre-incubation with cholesterol completely inhibited the microtubule phenotype. Pharmacological inhibition of Src-family kinases diminished microtubule bundling, suggesting their involvement in the process. The relevance of microtubule stabilization to meningitis was confirmed in an experimental pneumococcal meningitis animal model, where increased acetylation was observed. Live imaging experiments demonstrated a decrease in organelle motility after toxin challenge in a manner comparable to the microtubule-stabilizing agent taxol, thus proposing a possible pathogenic mechanism that might contribute to the CNS damage in pneumococcal meningitis.
Collapse
Affiliation(s)
- Asparouh I Iliev
- Laboratory for Molecular and Cellular Systems, Department of Neuro- and Sensory Physiology, Instutute for Physiology and Pathophysiology, University Medicine Göttingen, 37073 Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
SUMMARY Streptococcus pneumoniae is a colonizer of human nasopharynx, but it is also an important pathogen responsible for high morbidity, high mortality, numerous disabilities, and high health costs throughout the world. Major diseases caused by S. pneumoniae are otitis media, pneumonia, sepsis, and meningitis. Despite the availability of antibiotics and vaccines, pneumococcal infections still have high mortality rates, especially in risk groups. For this reason, there is an exceptionally extensive research effort worldwide to better understand the diseases caused by the pneumococcus, with the aim of developing improved therapeutics and vaccines. Animal experimentation is an essential tool to study the pathogenesis of infectious diseases and test novel drugs and vaccines. This article reviews both historical and innovative laboratory pneumococcal animal models that have vastly added to knowledge of (i) mechanisms of infection, pathogenesis, and immunity; (ii) efficacies of antimicrobials; and (iii) screening of vaccine candidates. A comprehensive description of the techniques applied to induce disease is provided, the advantages and limitations of mouse, rat, and rabbit models used to mimic pneumonia, sepsis, and meningitis are discussed, and a section on otitis media models is also included. The choice of appropriate animal models for in vivo studies is a key element for improved understanding of pneumococcal disease.
Collapse
|
44
|
Klein M, Obermaier B, Angele B, Pfister HW, Wagner H, Koedel U, Kirschning CJ. Innate immunity to pneumococcal infection of the central nervous system depends on toll-like receptor (TLR) 2 and TLR4. J Infect Dis 2008; 198:1028-36. [PMID: 18700834 DOI: 10.1086/591626] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Recent studies have suggested that, in addition to Toll-like receptor (TLR) 2, other pattern recognition receptors mediate activation of the immune response after infection of the central nervous system (CNS) with Streptococcus pneumoniae (SP). METHODS Using a mouse meningitis model, we investigated the influence of TLR4 single deficiency (TLR4(-/-)), TLR2/TLR4 double deficiency (TLR2/4(-/-)), and TLR2/TLR4/TLR9 triple deficiency (TLR2/4/9(-/-)) on the immune response of the CNS to SP infection. To identify the cell populations that mediate the responses to SP, we generated TLR2/4(-/-)-wild-type (wt) bone marrow (BM) chimeras. RESULTS Compared with infected wt mice, infected TLR2/4(-/-) and TLR2/4/9(-/-) mice had similar reductions in brain cytokine levels, pleocytosis, and cerebral pathologic findings, whereas no such effect was noted in infected TLR4(-/-) mice. The attenuated immune response was paralleled by an impaired host defense that resulted in worsening of disease. Analysis of the chimeric mice after infection showed that mere TLR2/4 deficiency, either of radioresistant cells or of transplanted BM-derived cells, was sufficient to mount a substantial cerebral immune response, such as that noted in wt mice. CONCLUSION In murine SP meningitis, TLR2 and TLR4 expressed on radioresistant and transplanted BM-derived cells were major cellular sensors of invading SP inducing inflammatory responses.
Collapse
Affiliation(s)
- Matthias Klein
- Department of Neurology, Klinikum Grosshadern, Ludwig-Maximilians University, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Mogensen TH, Berg RS, Ostergaard L, Paludan SR. Streptococcus pneumoniae stabilizes tumor necrosis factor alpha mRNA through a pathway dependent on p38 MAPK but independent of Toll-like receptors. BMC Immunol 2008; 9:52. [PMID: 18796140 PMCID: PMC2551578 DOI: 10.1186/1471-2172-9-52] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 09/16/2008] [Indexed: 11/19/2022] Open
Abstract
Background Streptococcus pneumoniae is a human pathogenic bacteria and a major cause of severe invasive diseases, including pneumonia, bacteremia, and meningitis. Infections with S. pneumoniae evoke a strong inflammatory response, which plays a major role in the pathogenesis of pneumococcal disease. Results In this study, we have examined how S. pneumoniae affects expression of the inflammatory cytokine tumor necrosis factor (TNF) α, and the molecular mechanisms involved. Secretion of TNF-α was strongly induced by S. pneumoniae, which was able to stabilize TNF-α mRNA through a mechanism dependent on the viability of the bacteria as well as the adenylate uridylate-rich elements in the 3'untranslated region of TNF-α mRNA. The ability of S. pneumoniae to stabilize TNF-α mRNA was dependent on the mitogen-activated protein kinase (MAPK) p38 whereas inhibition of Toll-like receptor signaling via MyD88 did not affect S. pneumoniae-induced mRNA stabilization. P38 was activated through a pathway involving the upstream kinase transforming growth factor-activated kinase 1 and MAPK kinase 3. Conclusion Thus, S. pneumoniae stabilizes TNF-α mRNA through a pathway dependent on p38 but independent of Toll-like receptors. Production of TNF-α may contribute significantly to the inflammatory response raised during pneumococcal infection.
Collapse
Affiliation(s)
- Trine H Mogensen
- Department of Infectious Diseases, Skejby Hospital - Aarhus University Hospital, DK-8200, Aarhus N, Denmark.
| | | | | | | |
Collapse
|
46
|
Kadioglu A, Weiser JN, Paton JC, Andrew PW. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 2008; 6:288-301. [PMID: 18340341 DOI: 10.1038/nrmicro1871] [Citation(s) in RCA: 834] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Streptococcus pneumoniae is a Gram-positive bacterial pathogen that colonizes the mucosal surfaces of the host nasopharynx and upper airway. Through a combination of virulence-factor activity and an ability to evade the early components of the host immune response, this organism can spread from the upper respiratory tract to the sterile regions of the lower respiratory tract, which leads to pneumonia. In this Review, we describe how S. pneumoniae uses its armamentarium of virulence factors to colonize the upper and lower respiratory tracts of the host and cause disease.
Collapse
Affiliation(s)
- Aras Kadioglu
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom.
| | | | | | | |
Collapse
|
47
|
Hirst R, Gosai B, Rutman A, Guerin C, Nicotera P, Andrew P, O’Callaghan C. Streptococcus pneumoniaeDeficient in Pneumolysin or Autolysin Has Reduced Virulence in Meningitis. J Infect Dis 2008; 197:744-51. [DOI: 10.1086/527322] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
48
|
Manco S, Hernon F, Yesilkaya H, Paton JC, Andrew PW, Kadioglu A. Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis. Infect Immun 2006; 74:4014-20. [PMID: 16790774 PMCID: PMC1489734 DOI: 10.1128/iai.01237-05] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 11/11/2005] [Accepted: 03/08/2006] [Indexed: 11/20/2022] Open
Abstract
We examined the role of the neuraminidases NanA and NanB in colonization and infection in the upper and lower respiratory tract by Streptococcus pneumoniae, as well as the role of these neuraminidases in the onset and development of septicemia following both intranasal and intravenous infection. We demonstrated for the first time using outbred MF1 mouse models of infection that both NanA and NanB were essential for the successful colonization and infection of the upper and lower respiratory tract, respectively, as well as pneumococcal survival in nonmucosal sites, such as the blood. Our studies have shown that in vivo a neuraminidase A mutant is cleared from the nasopharynx, trachea, and lungs within 12 h postinfection, while a neuraminidase B mutant persists but does not increase in either the nasopharynx, trachea, or lungs. We also demonstrated both neuraminidase mutants were unable to cause sepsis following intranasal infections. When administered intravenously, however, both mutants survived initially but were unable to persist in the blood beyond 48 h postinfection and were progressively cleared. The work presented here demonstrates the importance of pneumococcal neuraminidase A and for the first time neuraminidase B in the development of upper and lower respiratory tract infection and sepsis.
Collapse
Affiliation(s)
- Sonia Manco
- Department of Infection, Immunity and Inflammation, University of Leicester, P.O. Box 138, University Rd., Leicester LE1 9HN, United Kingdom
| | | | | | | | | | | |
Collapse
|
49
|
Kirkham LAS, Jefferies JMC, Kerr AR, Jing Y, Clarke SC, Smith A, Mitchell TJ. Identification of invasive serotype 1 pneumococcal isolates that express nonhemolytic pneumolysin. J Clin Microbiol 2006; 44:151-9. [PMID: 16390963 PMCID: PMC1351962 DOI: 10.1128/jcm.44.1.151-159.2006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 09/19/2005] [Accepted: 10/31/2005] [Indexed: 11/20/2022] Open
Abstract
Recently, there has been an increase in invasive pneumococcal disease (IPD) caused by serotype 1 Streptococcus pneumoniae throughout Europe. Serotype 1 IPD is associated with bacteremia and pneumonia in Europe and North America, especially in neonates, and is ranked among the top five most prevalent pneumococcal serotypes in at least 10 countries. The currently licensed pediatric pneumococcal vaccine does not afford protection to this serotype. Upon screening of 252 clinical isolates of S. pneumoniae, we discovered mutations in the pneumolysin gene of two out of the four serotype 1 strains present in the study group. Analysis of an additional 28 serotype 1 isolates from patients with IPD from various Scottish Health Boards, revealed that >50% had mutations in their pneumolysin genes. This resulted in the expression of nonhemolytic forms of pneumolysin. All of the strains producing nonhemolytic pneumolysin were sequence type 306 (ST306), whereas those producing "wild-type" pneumolysin were ST227. The mutations were in a region of pneumolysin involved in pore formation. These mutations can be made in vitro to give the nonhemolytic phenotype. Pneumolysin is generally conserved throughout all serotypes of S. pneumoniae and is essential for full invasive disease; however, it appears that serotype 1 ST306 does not require hemolytically active pneumolysin to cause IPD.
Collapse
Affiliation(s)
- Lea-Ann S Kirkham
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Scotland
| | | | | | | | | | | | | |
Collapse
|
50
|
Pracht D, Elm C, Gerber J, Bergmann S, Rohde M, Seiler M, Kim KS, Jenkinson HF, Nau R, Hammerschmidt S. PavA of Streptococcus pneumoniae modulates adherence, invasion, and meningeal inflammation. Infect Immun 2005; 73:2680-9. [PMID: 15845469 PMCID: PMC1087317 DOI: 10.1128/iai.73.5.2680-2689.2005] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumococcal adherence and virulence factor A (PavA) is displayed to the cell outer surface of Streptococcus pneumoniae and mediates pneumococcal binding to immobilized fibronectin. PavA, which lacks a typical gram-positive signal sequence and cell surface anchorage motif, is essential for pneumococcal virulence in a mouse infection model of septicemia. In this report the impact of PavA on pneumococcal adhesion to and invasion of eukaryotic cells and on experimental pneumococcal meningitis was investigated. In the experimental mouse meningitis model, the virulence of the pavA knockout mutant of S. pneumoniae D39, which did not show alterations of subcellular structures as indicated by electron microscopic studies, was strongly decreased. Pneumococcal strains deficient in PavA showed substantially reduced adherence to and internalization of epithelial cell lines A549 and HEp-2. Similar results were obtained with human brain-derived microvascular endothelial cells and human umbilical vein-derived endothelial cells. Attachment and internalization of pneumococci were not significantly affected by preincubation or cocultivations of pneumococci with anti-PavA antisera. Pneumococcal adherence was also not significantly affected by the addition of PavA protein. Complementation of the pavA knockout strain with exogenously added PavA polypeptide did not restore adherence of the mutant. These data suggest that PavA affects pneumococcal colonization by modulating expression or function of important virulence determinants of S. pneumoniae.
Collapse
Affiliation(s)
- Daniela Pracht
- Research Center for Infectious Diseases, University of Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|