1
|
Windgassen T, Kruse N, Ferrer B, Du F, Kumar H, Silverman AP. Identification of bacterial protease domains that cleave human IgM. Enzyme Microb Technol 2024; 173:110366. [PMID: 38061198 DOI: 10.1016/j.enzmictec.2023.110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Immunoglobulin-degrading proteases are secreted by pathogenic bacteria to weaken the host immune response, contributing to immune evasion mechanisms during an infection. Proteases specific to IgG and IgA immunoglobulin classes have previously been identified and characterized, and only a single report exists on a porcine specific IgM-degrading enzyme. It is unclear whether human pathogens also produce enzymes that can break down human IgM. Here, we have identified four novel IgM-degrading proteases from different genera of human-infecting bacterial pathogens. All four protease domains cleave human IgM at a conserved and unique site in the constant region of IgM. These human IgM proteases may be a useful biochemical tool for the study of early immune responses and have therapeutic potential in IgM-mediated disease.
Collapse
Affiliation(s)
| | - Nikki Kruse
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Brian Ferrer
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Faye Du
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Hirdesh Kumar
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | |
Collapse
|
2
|
Happonen L, Collin M. Immunomodulating Enzymes from Streptococcus pyogenes-In Pathogenesis, as Biotechnological Tools, and as Biological Drugs. Microorganisms 2024; 12:200. [PMID: 38258026 PMCID: PMC10818452 DOI: 10.3390/microorganisms12010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Streptococcus pyogenes, or Group A Streptococcus, is an exclusively human pathogen that causes a wide variety of diseases ranging from mild throat and skin infections to severe invasive disease. The pathogenesis of S. pyogenes infection has been extensively studied, but the pathophysiology, especially of the more severe infections, is still somewhat elusive. One key feature of S. pyogenes is the expression of secreted, surface-associated, and intracellular enzymes that directly or indirectly affect both the innate and adaptive host immune systems. Undoubtedly, S. pyogenes is one of the major bacterial sources for immunomodulating enzymes. Major targets for these enzymes are immunoglobulins that are destroyed or modified through proteolysis or glycan hydrolysis. Furthermore, several enzymes degrade components of the complement system and a group of DNAses degrade host DNA in neutrophil extracellular traps. Additional types of enzymes interfere with cellular inflammatory and innate immunity responses. In this review, we attempt to give a broad overview of the functions of these enzymes and their roles in pathogenesis. For those enzymes where experimentally determined structures exist, the structural aspects of the enzymatic activity are further discussed. Lastly, we also discuss the emerging use of some of the enzymes as biotechnological tools as well as biological drugs and vaccines.
Collapse
Affiliation(s)
- Lotta Happonen
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden
| | - Mattias Collin
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
3
|
Ozhelvaci F, Steczkiewicz K. Identification and Classification of Papain-like Cysteine Proteinases. J Biol Chem 2023:104801. [PMID: 37164157 DOI: 10.1016/j.jbc.2023.104801] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Papain-like cysteine peptidases form a big and highly diverse superfamily of proteins involved in many important biological functions, such as protein turnover, deubiquitination, tissue remodeling, blood clotting, virulence, defense, and cell wall remodeling. High sequence and structure diversity observed within these proteins hinders their comprehensive classification as well as the identification of new representatives. Moreover, in general protein databases, many families already classified as papain-like lack details regarding their mechanism of action or biological function. Here, we use transitive remote homology searches and 3D modeling to newly classify 21 families to the papain-like cysteine peptidase superfamily. We attempt to predict their biological function, and provide structural chacterization of 89 protein clusters defined based on sequence similarity altogether spanning 106 papain-like families. Moreover, we systematically discuss observed diversity in sequences, structures, and catalytic sites. Eventually, we expand the list of human papain-related proteins by seven representatives, including dopamine receptor-interacting protein (DRIP1) as potential deubiquitinase, and centriole duplication regulating CEP76 as retaining catalytically active peptidase-like domain. The presented results not only provide structure-based rationales to already existing peptidase databases but also may inspire further experimental research focused on peptidase-related biological processes.
Collapse
Affiliation(s)
- Fatih Ozhelvaci
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Sudol ASL, Butler J, Ivory DP, Tews I, Crispin M. Extensive substrate recognition by the streptococcal antibody-degrading enzymes IdeS and EndoS. Nat Commun 2022; 13:7801. [PMID: 36528711 PMCID: PMC9759587 DOI: 10.1038/s41467-022-35340-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Enzymatic cleavage of IgG antibodies is a common strategy used by pathogenic bacteria to ablate immune effector function. The Streptococcus pyogenes bacterium secretes the protease IdeS and the glycosidase EndoS, which specifically catalyse cleavage and deglycosylation of human IgG, respectively. IdeS has received clinical approval for kidney transplantation in hypersensitised individuals, while EndoS has found application in engineering antibody glycosylation. We present crystal structures of both enzymes in complex with their IgG1 Fc substrate, which was achieved using Fc engineering to disfavour preferential Fc crystallisation. The IdeS protease displays extensive Fc recognition and encases the antibody hinge. Conversely, the glycan hydrolase domain in EndoS traps the Fc glycan in a "flipped-out" conformation, while additional recognition of the Fc peptide is driven by the so-called carbohydrate binding module. In this work, we reveal the molecular basis of antibody recognition by bacterial enzymes, providing a template for the development of next-generation enzymes.
Collapse
Affiliation(s)
- Abigail S. L. Sudol
- grid.5491.90000 0004 1936 9297School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ UK
| | - John Butler
- grid.5491.90000 0004 1936 9297School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ UK
| | - Dylan P. Ivory
- grid.5491.90000 0004 1936 9297School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ UK
| | - Ivo Tews
- grid.5491.90000 0004 1936 9297School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ UK
| | - Max Crispin
- grid.5491.90000 0004 1936 9297School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ UK
| |
Collapse
|
5
|
Multicomponent Vaccines against Group A Streptococcus Can Effectively Target Broad Disease Presentations. Vaccines (Basel) 2021; 9:vaccines9091025. [PMID: 34579262 PMCID: PMC8473114 DOI: 10.3390/vaccines9091025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
Group A Streptococcus (GAS) is an important global human pathogen, with a wide range of disease presentations, from mild mucosal infections like pharyngitis to invasive diseases such as toxic shock syndrome. The effect on health and mortality from GAS infections is substantial worldwide, particularly from autoimmune sequelae-like rheumatic heart disease (RHD), and there is currently no licenced vaccine. We investigated protein antigens targeting a broad range of GAS disease presentations as vaccine components in individual and combination formulations. The potency and functional immunity generated were evaluated and compared between groups. Antibodies against all components were found in pooled human IgG (IVIG) and an immune response generated following the subcutaneous immunisation of mice. A combination immunisation showed a reduction in IgG response for SpyCEP but an increase for Cpa and Mac-1 (IdeS). An opsonophagocytosis assay (OPA) showed the killing of GAS with immune sera against M protein and combination groups, with a lower killing activity observed for immune sera against other individual antigens. Specific antigen assays showed functional immunity against SpyCEP and Mac-1 from both individual and combination immunisations, with the activity correlating with antibody titres. However, efficient blocking of the binding activity of Cpa to collagen I and fibronectin could not be demonstrated with immune sera or purified IgG. Our data indicate that combination immunisations, while effective at covering a broader range of virulence factors, can also affect the immune response generated. Further, our results showed that an OPA alone is inadequate for understanding protection from vaccination, particularly when considering protection from immune evasion factors and evaluation of the colonisation leading to pharyngitis.
Collapse
|
6
|
Bernard PE, Kachroo P, Eraso JM, Zhu L, Madry JE, Linson SE, Ojeda Saavedra M, Cantu C, Musser JM, Olsen RJ. Polymorphisms in Regulator of Cov Contribute to the Molecular Pathogenesis of Serotype M28 Group A Streptococcus. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2002-2018. [PMID: 31369755 PMCID: PMC6892226 DOI: 10.1016/j.ajpath.2019.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022]
Abstract
Two-component systems (TCSs) are signal transduction proteins that enable bacteria to respond to external stimuli by altering the global transcriptome. Accessory proteins interact with TCSs to fine-tune their activity. In group A Streptococcus (GAS), regulator of Cov (RocA) is an accessory protein that functions with the control of virulence regulator/sensor TCS, which regulates approximately 15% of the GAS transcriptome. Whole-genome sequencing analysis of serotype M28 GAS strains collected from invasive infections in humans identified a higher number of missense (amino acid-altering) and nonsense (protein-truncating) polymorphisms in rocA than expected. We hypothesized that polymorphisms in RocA alter the global transcriptome and virulence of serotype M28 GAS. We used naturally occurring clinical isolates with rocA polymorphisms (n = 48), an isogenic rocA deletion mutant strain, and five isogenic rocA polymorphism mutant strains to perform genome-wide transcript analysis (RNA sequencing), in vitro virulence factor assays, and mouse and nonhuman primate pathogenesis studies to test this hypothesis. Results demonstrated that polymorphisms in rocA result in either a subtle transcriptome change, causing a wild-type-like virulence phenotype, or a substantial transcriptome change, leading to a significantly increased virulence phenotype. Each polymorphism had a unique effect on the global GAS transcriptome. Taken together, our data show that naturally occurring polymorphisms in one gene encoding an accessory protein can significantly alter the global transcriptome and virulence phenotype of GAS, an important human pathogen.
Collapse
Affiliation(s)
- Paul E Bernard
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Texas A&M Health Science Center College of Medicine, Bryan, Texas
| | - Priyanka Kachroo
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Jesus M Eraso
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Jessica E Madry
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Sarah E Linson
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Concepcion Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Texas A&M Health Science Center College of Medicine, Bryan, Texas; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
7
|
Gergova R, Muhtarova A, Mitov I, Setchanova L, Mihova K, Kaneva R, Markovska R. Relation between emm types and virulence gene profiles among Bulgarian Streptococcus pyogenes clinical isolates. Infect Dis (Lond) 2019; 51:668-675. [DOI: 10.1080/23744235.2019.1638964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Raina Gergova
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Adile Muhtarova
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Ivan Mitov
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Lena Setchanova
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Kalina Mihova
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Radka Kaneva
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Rumyana Markovska
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
8
|
RocA Has Serotype-Specific Gene Regulatory and Pathogenesis Activities in Serotype M28 Group A Streptococcus. Infect Immun 2018; 86:IAI.00467-18. [PMID: 30126898 DOI: 10.1128/iai.00467-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
Serotype M28 group A streptococcus (GAS) is a common cause of infections such as pharyngitis ("strep throat") and necrotizing fasciitis ("flesh-eating" disease). Relatively little is known about the molecular mechanisms underpinning M28 GAS pathogenesis. Whole-genome sequencing studies of M28 GAS strains recovered from patients with invasive infections found an unexpectedly high number of missense (amino acid-changing) and nonsense (protein-truncating) polymorphisms in rocA (regulator of Cov), leading us to hypothesize that altered RocA activity contributes to M28 GAS molecular pathogenesis. To test this hypothesis, an isogenic rocA deletion mutant strain was created. Transcriptome sequencing (RNA-seq) analysis revealed that RocA inactivation significantly alters the level of transcripts for 427 and 323 genes at mid-exponential and early stationary growth phases, respectively, including genes for 41 transcription regulators and 21 virulence factors. In contrast, RocA transcriptomes from other GAS M protein serotypes are much smaller and include fewer transcription regulators. The rocA mutant strain had significantly increased secreted activity of multiple virulence factors and grew to significantly higher colony counts under acid stress in vitro RocA inactivation also significantly increased GAS virulence in a mouse model of necrotizing myositis. Our results demonstrate that RocA is an important regulator of transcription regulators and virulence factors in M28 GAS and raise the possibility that naturally occurring polymorphisms in rocA in some fashion contribute to human invasive infections caused by M28 GAS strains.
Collapse
|
9
|
Persson H, Söderberg JJ, Vindebro R, Johansson BP, von Pawel-Rammingen U. Proteolytic processing of the streptococcal IgG endopeptidase IdeS modulates the functional properties of the enzyme and results in reduced immunorecognition. Mol Immunol 2015; 68:176-84. [DOI: 10.1016/j.molimm.2015.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 01/01/2023]
|
10
|
Henningham A, Döhrmann S, Nizet V, Cole JN. Mechanisms of group A Streptococcus resistance to reactive oxygen species. FEMS Microbiol Rev 2015; 39:488-508. [PMID: 25670736 PMCID: PMC4487405 DOI: 10.1093/femsre/fuu009] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/19/2014] [Indexed: 12/16/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. This review discusses the mechanisms utilized by the bacterial pathogen group A Streptococcus to detoxify reactive oxygen species and survive in the human host under conditions of oxidative stress.
Collapse
Affiliation(s)
- Anna Henningham
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Simon Döhrmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA Rady Children's Hospital, San Diego, CA 92123, USA
| | - Jason N Cole
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
11
|
IgG protease Mac/IdeS is not essential for phagocyte resistance or mouse virulence of M1T1 group A Streptococcus. mBio 2013; 4:mBio.00499-13. [PMID: 23900173 PMCID: PMC3735186 DOI: 10.1128/mbio.00499-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Mac/IdeS protein of group A Streptococcus (GAS) is a secreted cysteine protease with cleavage specificity for IgG and is highly expressed in the GAS serotype M1T1 clone, which is the serotype most frequently isolated from patients with life-threatening invasive infections. While studies of Mac/IdeS with recombinant protein have shown that the protein can potentially prevent opsonophagocytosis of GAS by neutrophils, the role of the protein in immune evasion as physiologically produced by the living organism has not been studied. Here we examined the contribution of Mac/IdeS to invasive GAS disease by generating a mutant lacking Mac/IdeS in the hyperinvasive M1T1 background. While Mac/IdeS was highly expressed and proteolytically active in the hyperinvasive strain, elimination of the bacterial protease did not significantly influence GAS phagocytic uptake, oxidative-burst induction, cathelicidin sensitivity, resistance to neutrophil or macrophage killing, or pathogenicity in pre- or postimmune mouse infectious challenges. We conclude that in the highly virulent M1T1 background, Mac/IdeS is not essential for either phagocyte resistance or virulence. Given the conservation of Mac/IdeS and homologues across GAS strains, it is possible that Mac/IdeS serves another important function in GAS ecology or contributes to virulence in other strain backgrounds. Group A Streptococcus (GAS) causes human infections ranging from strep throat to life-threatening conditions such as flesh-eating disease and toxic shock syndrome. Common disease-associated clones of GAS can cause both mild and severe infections because of a characteristic mutation and subsequent change in the expression of several genes that develops under host immune selection. One of these genes encodes Mac/IdeS, a protease that has been shown to cleave antibodies important to the immune defense system. In this study, we found that while Mac/IdeS is highly expressed in hypervirulent GAS, it does not significantly contribute to the ability of the bacteria to survive white blood cell killing or produce invasive infection in the mouse. These data underscore the importance of correlating studies on virulence factor function with physiologic expression levels and the complexity of streptococcal pathogenesis and contribute to our overall understanding of how GAS causes disease.
Collapse
|
12
|
Vindebro R, Spoerry C, von Pawel-Rammingen U. Rapid IgG heavy chain cleavage by the streptococcal IgG endopeptidase IdeS is mediated by IdeS monomers and is not due to enzyme dimerization. FEBS Lett 2013; 587:1818-22. [PMID: 23665032 DOI: 10.1016/j.febslet.2013.04.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 04/19/2013] [Accepted: 04/23/2013] [Indexed: 10/26/2022]
Abstract
Streptococcus pyogenes employs an IgG specific endopeptidase, IdeS, to counteract the effector functions of specific IgG. The physiological significant step in disarming specific IgG is the cleavage of one IgG heavy chain. So far, characterizations of IdeS enzymatic activity have employed techniques that failed to differentiate between the first and the second cleavage step. The present data demonstrate that IdeS is active as a monomer and that IdeS activity follows classical Michaelis-Menten kinetics arguing against the previously proposed formation of a functional IdeS dimer. Our results show that IdeS inactivates IgG 100-fold faster than previously reported.
Collapse
Affiliation(s)
- Reine Vindebro
- Department of Molecular Biology and Umeå Centre for Microbial Research, Umeå University, 90187 Umeå, Sweden
| | | | | |
Collapse
|
13
|
von Pawel-Rammingen U. Streptococcal IdeS and its impact on immune response and inflammation. J Innate Immun 2012; 4:132-40. [PMID: 22248585 DOI: 10.1159/000332940] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 09/01/2011] [Indexed: 11/19/2022] Open
Abstract
Survival of the important bacterial pathogen Streptococcus pyogenes relies on its ability to circumvent the antimicrobial actions of innate and specific immune responses and to modulate the inflammatory responses induced during the course of an infection. Inflammatory processes play key roles during streptococcal pathogenesis and streptococcal infections are accompanied by an intense inflammatory state. As an exclusively human pathogen, S. pyogenes has adapted to the various countermeasures employed by its host to fight bacterial infections, in particular to interfere with the effector functions of immunoglobulin G (IgG). For this purpose, S. pyogenes has evolved an IgG-specific endopeptidase, IdeS, which is highly specific for the lower hinge region of IgG. This review summarizes the current knowledge about this intriguing enzyme as well as its role in inflammation and in the attenuation of human immune responses towards streptococcal infection.
Collapse
|
14
|
The deficient cleavage of M protein-bound IgG by IdeS: insight into the escape of Streptococcus pyogenes from antibody-mediated immunity. Mol Immunol 2011; 49:134-42. [PMID: 21925735 DOI: 10.1016/j.molimm.2011.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 08/02/2011] [Accepted: 08/06/2011] [Indexed: 11/23/2022]
Abstract
IdeS (IgG-degrading enzyme of Streptococcus pyogenes) is a virulence factor for S. pyogenes, group A Streptococcus (GAS). IdeS is believed to allow GAS to evade antibody-mediated phagocytosis by cleaving IgG at the lower hinge region. Human immunoglobulins bind to the GAS surface by two mechanisms: Specific antibodies attach at the Fab region to their specific antigens on the bacterial surface. Immunoglobulins can also attach nonspecifically at the Fc region to streptococcal M and M-like proteins. This phenomenon is believed to form the host-like coat and to block the recognition of Fc region by Fc receptor on phagocytes and antibody-dependent cell-mediated cytotoxicity. It is not known whether IdeS preferentially cleaves IgG attached at the Fab or Fc regions. To explore this issue, we used Sepharose beads coated with protein A or L or M protein as surrogate markers for specific (Fab) and nonspecific (Fc) binding sites. We found that IdeS cleaved Fab-bound IgG as rapidly as soluble IgG. In contrast, Fc-bound IgG was cleaved about 4 fold less than soluble IgG. In a competitive binding assay, we found that M protein had a greater affinity than IdeS to attach to the Fc region of human IgG. Thus, IdeS exhibited preferential IgG endopeptidase activity for Fab-bound IgG while allowing the non-specific binding of IgG to remain attached to M protein. We propose that this preferential enzymatic activity accounts for the ability of GAS to resist immunoglobulin-mediated phagocytosis and cytotoxicity.
Collapse
|
15
|
Ishihara K, Wawrzonek K, Shaw LN, Inagaki S, Miyamoto M, Potempa J. Dentipain, a Streptococcus pyogenes IdeS protease homolog, is a novel virulence factor of Treponema denticola. Biol Chem 2011; 391:1047-55. [PMID: 20635859 DOI: 10.1515/bc.2010.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Treponema denticola is a major pathogen of chronic periodontitis. Analysis of the T. denticola genome revealed a gene orthologous with a cysteine protease-encoding gene from Streptococcus pyogenes (IdeS). IdeS interferes with IgG-dependent opsonophagocytosis by specific cleavage of IgG molecules. Analysis of this gene (termed ideT) revealed it to encode a two-domain protein whose N-terminus is composed of tandem immunoglobulin-like domains followed by a C-terminal IdeS-like protease domain. In this study we show that during secretion the IdeT protein is processed into an N-terminal fragment which remains associated with the cell, and a C-terminal part released into the medium. Although the secreted domain of IdeT, termed dentipain, shows only 25% identity to the IdeS protease, the putative catalytic cysteine and histidine residues are strongly conserved. Recombinant dentipain cleaves the insulin β-chain, an activity which is inhibited by E-64, a diagnostic inhibitor of cysteine proteases. Apart from insulin no cleavage of other protein substrates was detected, suggesting that dentipain has oligopeptidase activity. A mutant strain was constructed expressing a modified IdeT variant, the dentipain domain of which was deleted. This strain was found to be significantly reduced in its abscess-forming activity compared with the parental strain in a murine abscess model, suggesting that dentipain contributes to the virulence of T. denticola.
Collapse
Affiliation(s)
- Kazuyuki Ishihara
- Oral Health Science Center, Tokyo Dental College, Chiba 261-8502, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Lei B. Benfang Lei’s research on heme acquisition in Gram-positive pathogens and bacterial pathogenesis. World J Biol Chem 2010; 1:286-90. [PMID: 21537486 PMCID: PMC3083973 DOI: 10.4331/wjbc.v1.i9.286] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/20/2010] [Accepted: 08/27/2010] [Indexed: 02/05/2023] Open
Abstract
Benfang Lei’s laboratory conducts research on pathogenesis of human pathogen Group A Streptococcus (GAS) and horse pathogen Streptococcus equi (S. equi). His current research focuses on heme acquisition in Gram-positive pathogens and molecular mechanism of GAS and S. equi pathogenesis. Heme is an important source of essential iron for bacterial pathogens. Benfang Lei and colleagues identified the first cell surface heme-binding protein in Gram-positive pathogens and the heme acquisition system in GAS, demonstrated direct heme transfer from one protein to another, demonstrated an experimental pathway of heme acquisition by the Staphylococcus aureus Isd system, elucidated the activated heme transfer mechanism, and obtained evidence for a chemical mechanism of direct axial ligand displacement during the Shp-to-HtsA heme transfer reaction. These findings have considerably contributed to the progress that has been made over recent years in understanding the heme acquisition process in Gram-positive pathogens. Pathogenesis of GAS is mediated by an abundance of extracellular proteins, and pathogenic role and functional mechanism are not known for many of these virulence factors. Lei laboratory identified a secreted protein of GAS as a CovRS-regulated virulence factor that is a protective antigen and is critical for GAS spreading in the skin and systemic dissemination. These studies may lead to development of novel strategies to prevent and treat GAS infections.
Collapse
Affiliation(s)
- Benfang Lei
- Benfang Lei, Department of Veterinary Molecular Biology, Montana State University, 960 Technology Blvd, Bozeman, MT 59717, United States
| |
Collapse
|
17
|
Brown CN, Pollard TCB, Iyer S, Andrade AJMD. Invasive group A streptococcal infection: an update on the epidemiology and orthopaedic management. ACTA ACUST UNITED AC 2010; 92:763-9. [PMID: 20513870 DOI: 10.1302/0301-620x.92b6.23447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Invasive group A streptococcus (iGAS) is the most common cause of monomicrobial necrotising fasciitis. Necrotising infections of the extremities may present directly to orthopaedic surgeons or by reference from another admitting specialty. Recent epidemiological data from the Health Protection Agency suggest an increasing incidence of iGAS infection in England. Almost 40% of those affected had no predisposing illnesses or risk factors, and the proportion of children presenting with infections has risen. These observations have prompted the Chief Medical Officer for the Central Alerting System in England to write to general practitioners and hospitals, highlighting the need for clinical vigilance, early diagnosis and rapid initiation of treatment in suspected cases. The purpose of this annotation is to summarise the recent epidemiological trends, describe the presenting features and outline the current investigations and treatment of this rare but life-threatening condition.
Collapse
Affiliation(s)
- C N Brown
- Royal Berkshire NHS Foundation Trust, Reading RG1 5AN, UK
| | | | | | | |
Collapse
|
18
|
Liu M, Lei B. IgG Endopeptidase SeMac does not Inhibit Opsonophagocytosis of Streptococcus equi Subspecies equi by Horse Polymorphonuclear Leukocytes. Open Microbiol J 2010; 4:20-5. [PMID: 20556207 PMCID: PMC2885601 DOI: 10.2174/1874285801004010020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/12/2010] [Accepted: 03/15/2010] [Indexed: 11/23/2022] Open
Abstract
The secreted Mac protein made by group A Streptococcus (GAS) inhibits opsonophagocytosis of GAS by human polymorphonuclear leukocytes (PMNs). This protein also has the endopeptidase activity against human immunoglobulin G (IgG), and the Cys94, His262 and Asp284 are critical for the enzymatic activity. The horse pathogen Streptococcus equi subspecies equi produces a homologue of Mac (SeMac). SeMac was characterized to determine whether SeMac has IgG endopeptidase activity and inhibits opsonophagocytosis of S. equi by horse PMNs. The gene was cloned and recombinant SeMac was overexpressed in Escherichia coli and purified to homogeneity. Mice with experimental S. equi infection and horses with strangles caused by S. equi seroconverted to SeMac, indicating that SeMac is produced in vivo during infection. SeMac has endopeptidase activity against human IgG. However, the protein just cleaves a small fraction, which may be IgG1 only, of horse IgG. Replacement of Cys102 with Ser or His272 with Ala abolishes the enzymatic activity of SeMac, and the Asp294Ala mutation greatly decreases the enzymatic activity. SeMac does not inhibit opsonophagocytosis of S. equi by horse PMNs but opsonophagocytosis of GAS by human PMNs. Thus, SeMac is a cysteine endopeptidase with a limited activity against horse IgG and must have other function.
Collapse
Affiliation(s)
- Mengyao Liu
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717, USA
| | | |
Collapse
|
19
|
Radaev S, Agniswamy J, Sun PD. A case of structure determination using pseudosymmetry. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:1334-40. [PMID: 19966420 PMCID: PMC2789005 DOI: 10.1107/s0907444909039912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/30/2009] [Indexed: 11/10/2022]
Abstract
Here, a case is presented of an unusual structure determination which was facilitated by the use of pseudosymmetry. Group A streptococcus uses cysteine protease Mac-1 (also known as IdeS) to evade the host immune system. Native Mac-1 was crystallized in the orthorhombic space group P2(1)2(1)2. Surprisingly, crystals of the inactive C94A mutant of Mac-1 displayed monoclinic symmetry with space group P2(1), despite the use of native orthorhombic Mac-1 microcrystals for seeding. Attempts to solve the structure of the C94A mutant by MAD phasing in the monoclinic space group did not produce an interpretable map. The native Patterson map of the C94A mutant showed two strong peaks along the (1 0 1) diagonal, indicating possible translational pseudosymmetry in space group P2(1). Interestingly, one-third of the monoclinic reflections obeyed pseudo-orthorhombic P2(1)2(1)2 symmetry similar to that of the wild-type crystals and could be indexed and processed in this space group. The pseudo-orthorhombic and monoclinic unit cells were related by the following vector operations: a(m) = b(o) - c(o), b(m) = a(o) and c(m) = -2c(o) - b(o). The pseudo-orthorhombic subset of data produced good SAD phases, leading to structure determination with one monomer in the asymmetric unit. Subsequently, the structure of the Mac-1 mutant in the monoclinic form was determined by molecular replacement, which showed six molecules forming three translationally related dimers aligned along the (1 0 1) diagonal. Knowing the geometric relationship between the pseudo-orthorhombic and the monoclinic unit cells, all six molecules can be generated in the monoclinic unit cell directly without the use of molecular replacement. The current case provides a successful example of the use of pseudosymmetry as a powerful phase-averaging method for structure determination by anomalous diffraction techniques. In particular, a structure can be solved in a higher pseudosymmetry subcell in which an NCS operator becomes a crystallographic operator. The geometrical relationships between the subcell and parental cell can be used to generate a complete molecular representation of the parental asymmetric unit for refinement.
Collapse
Affiliation(s)
- Sergei Radaev
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, Maryland 20852, USA
| | - Johnson Agniswamy
- Department of Biology, Georgia State University, PO Box 4010, Atlanta, GA 30302, USA
| | - Peter D. Sun
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, Maryland 20852, USA
| |
Collapse
|
20
|
Musser JM, Shelburne SA. A decade of molecular pathogenomic analysis of group A Streptococcus. J Clin Invest 2009; 119:2455-63. [PMID: 19729843 DOI: 10.1172/jci38095] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Molecular pathogenomic analysis of the human bacterial pathogen group A Streptococcus has been conducted for a decade. Much has been learned as a consequence of the confluence of low-cost DNA sequencing, microarray technology, high-throughput proteomics, and enhanced bioinformatics. These technical advances, coupled with the availability of unique bacterial strain collections, have facilitated a systems biology investigative strategy designed to enhance and accelerate our understanding of disease processes. Here, we provide examples of the progress made by exploiting an integrated genome-wide research platform to gain new insight into molecular pathogenesis. The studies have provided many new avenues for basic and translational research.
Collapse
Affiliation(s)
- James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, Texas 77030, USA.
| | | |
Collapse
|
21
|
Hulting G, Flock M, Frykberg L, Lannergård J, Flock JI, Guss B. Two novel IgG endopeptidases ofStreptococcus equi. FEMS Microbiol Lett 2009; 298:44-50. [DOI: 10.1111/j.1574-6968.2009.01698.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
22
|
Holden MTG, Hauser H, Sanders M, Ngo TH, Cherevach I, Cronin A, Goodhead I, Mungall K, Quail MA, Price C, Rabbinowitsch E, Sharp S, Croucher NJ, Chieu TB, Mai NTH, Diep TS, Chinh NT, Kehoe M, Leigh JA, Ward PN, Dowson CG, Whatmore AM, Chanter N, Iversen P, Gottschalk M, Slater JD, Smith HE, Spratt BG, Xu J, Ye C, Bentley S, Barrell BG, Schultsz C, Maskell DJ, Parkhill J. Rapid evolution of virulence and drug resistance in the emerging zoonotic pathogen Streptococcus suis. PLoS One 2009; 4:e6072. [PMID: 19603075 PMCID: PMC2705793 DOI: 10.1371/journal.pone.0006072] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 04/22/2009] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Streptococcus suis is a zoonotic pathogen that infects pigs and can occasionally cause serious infections in humans. S. suis infections occur sporadically in human Europe and North America, but a recent major outbreak has been described in China with high levels of mortality. The mechanisms of S. suis pathogenesis in humans and pigs are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS The sequencing of whole genomes of S. suis isolates provides opportunities to investigate the genetic basis of infection. Here we describe whole genome sequences of three S. suis strains from the same lineage: one from European pigs, and two from human cases from China and Vietnam. Comparative genomic analysis was used to investigate the variability of these strains. S. suis is phylogenetically distinct from other Streptococcus species for which genome sequences are currently available. Accordingly, approximately 40% of the approximately 2 Mb genome is unique in comparison to other Streptococcus species. Finer genomic comparisons within the species showed a high level of sequence conservation; virtually all of the genome is common to the S. suis strains. The only exceptions are three approximately 90 kb regions, present in the two isolates from humans, composed of integrative conjugative elements and transposons. Carried in these regions are coding sequences associated with drug resistance. In addition, small-scale sequence variation has generated pseudogenes in putative virulence and colonization factors. CONCLUSIONS/SIGNIFICANCE The genomic inventories of genetically related S. suis strains, isolated from distinct hosts and diseases, exhibit high levels of conservation. However, the genomes provide evidence that horizontal gene transfer has contributed to the evolution of drug resistance.
Collapse
Affiliation(s)
- Matthew T G Holden
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Induction of group A Streptococcus virulence by a human antimicrobial peptide. Proc Natl Acad Sci U S A 2008; 105:16755-60. [PMID: 18936485 DOI: 10.1073/pnas.0803815105] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Group A streptococci (Streptococcus pyogenes or GAS) freshly isolated from individuals with streptococcal sore throat or invasive ("flesh-eating") infection often grow as mucoid colonies on primary culture but lose this colony appearance after laboratory passage. The mucoid phenotype is due to abundant production of the hyaluronic acid capsular polysaccharide, a key virulence determinant associated with severe GAS infections. These observations suggest that signal(s) from the human host trigger increased production of capsule and perhaps other virulence factors during infection. Here we show that subinhibitory concentrations of the human antimicrobial cathelicidin peptide LL-37 stimulate expression of the GAS capsule synthesis operon (hasABC). Up-regulation is mediated by the CsrRS 2-component regulatory system: it requires a functional CsrS sensor protein and can be antagonized by increased extracellular Mg(2+), the other identified environmental signal for CsrS. Up-regulation was also evident for other CsrRS-regulated virulence genes, including the IL-8 protease PrtS/ScpC and the integrin-like/IgG protease Mac/IdeS, findings that suggest a coordinated GAS virulence response elicited by this antimicrobial immune effector peptide. LL-37 signaling through CsrRS led to a marked increase in GAS resistance to opsonophagocytic killing by human leukocytes, an in vitro measure of enhanced GAS virulence, consistent with increased expression of the antiphagocytic capsular polysaccharide and Mac/IdeS. We propose that the human cathelicidin LL-37 has the paradoxical effect of stimulating CsrRS-regulated virulence gene expression, thereby enhancing GAS pathogenicity during infection. The ability of GAS to sense and respond to LL-37 may explain, at least in part, the unique susceptibility of the human species to streptococcal infection.
Collapse
|
24
|
Olsen RJ, Shelburne SA, Musser JM. Molecular mechanisms underlying group A streptococcal pathogenesis. Cell Microbiol 2008; 11:1-12. [PMID: 18710460 DOI: 10.1111/j.1462-5822.2008.01225.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Group A Streptococcus (GAS) is a versatile human pathogen causing diseases ranging from uncomplicated mucosal infections to life-threatening invasive disease. The development of human-relevant animal models of GAS infection and introduction of new technologies have markedly accelerated the pace of discoveries related to GAS host-pathogen interactions. For example, recently investigators have identified pili on the GAS cell surface and learned that they are key components for adherence to eukaryotic cell surfaces. Similarly, the recent development of a transgenic mouse expressing human plasminogen has resulted in new understanding of the molecular processes contributing to invasive infection. Improved understanding of the molecular mechanisms underlying the pathogenesis of GAS pharyngeal, invasive and other infections holds the promise of assisting with the development of novel preventive or therapeutic agents for this prevalent human pathogen.
Collapse
Affiliation(s)
- Randall J Olsen
- Center for Molecular and Translational Human Infectious Disease Research, The Methodist Hospital Research Institute, Houston, TX 77030, USA
| | | | | |
Collapse
|
25
|
The intrinsic immunoglobulin g endopeptidase activity of streptococcal Mac-2 proteins implies a unique role for the enzymatically impaired Mac-2 protein of M28 serotype strains. Infect Immun 2008; 76:2183-8. [PMID: 18332209 DOI: 10.1128/iai.01422-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IdeS, a secreted cysteine protease of the important human pathogen Streptococcus pyogenes, interferes with phagocytic killing by specifically cleaving the heavy chain of immunoglobulin G (IgG). Two allelic variants of the enzyme have been described, the IgG-specific endopeptidase, IdeS (or Mac-1) and Mac-2, a protein with only weak IgG endopeptidase activity, which has been suggested to interfere with opsonophagocytosis by blocking Fcgamma receptors of phagocytic cells. However, despite the fact that Mac-2 proteins interact with Fcgamma receptors, no inhibition of reactive oxygen species (ROS) production, opsonophagocytosis, or streptococcal killing by Mac-2 has been reported. In the present study, Mac-2 proteins are shown to contain IgG endopeptidase activity indistinguishable from the enzymatic activity exhibited by IdeS/Mac-1 proteins. The earlier reported weak IgG endopeptidase activity appears to be unique to Mac-2 of M28 serotype strains (Mac-2(M28)) and is most likely due to the formation of a disulfide bond between the catalytic site cysteine and a cysteine residue in position 257 of Mac-2(M28). Furthermore, Mac-2 proteins are shown to inhibit ROS production ex vivo, independently of the IgG endopeptidase activity of the proteins. Inhibition of ROS generation per se, however, was not sufficient to mediate streptococcal survival in bactericidal assays. Thus, in contrast to earlier studies, implicating separate functions for IdeS and Mac-2 protein variants, the current study suggests that Mac-2 and IdeS are bifunctional proteins, combining Fcgamma receptor binding and IgG endopeptidase activity. This finding implies a unique role for Mac-2 proteins of the M28 serotype, since this serotype has evolved and retained a Mac-2 protein lacking IgG endopeptidase activity.
Collapse
|
26
|
Nandakumar KS, Johansson BP, Björck L, Holmdahl R. Blocking of experimental arthritis by cleavage of IgG antibodies in vivo. ACTA ACUST UNITED AC 2007; 56:3253-60. [PMID: 17907170 DOI: 10.1002/art.22930] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To investigate whether IgG-degrading enzyme of Streptococcus pyogenes (IdeS), a bacterial cysteine endopeptidase that cleaves human IgG in the hinge region, can be used for blocking the development of arthritis. METHODS Recombinant IdeS was purified and tested for specificity against mouse IgG. IdeS was injected intravenously into mice with collagen antibody-induced arthritis (CAIA), collagen-induced arthritis (CIA), or relapsing CIA, and its effects on arthritis development and severity were assessed. RESULTS IdeS efficiently cleaved mouse IgG2a/c and IgG3 in vitro. Even at low dosage (10 microg), IdeS specifically cleaved IgG2a in vivo without any apparent side effects. IdeS treatment efficiently blocked CAIA induced by IgG2a antibodies. No effect was observed when arthritis was induced with IgG2b anti-type II collagen antibodies; since IdeS does not cleave IgG2b, this indicated that IgG cleavage was the mechanism of action. IdeS treatment reduced the severity of arthritis if administered within 24 hours after the onset of clinical arthritis, but did not block ongoing severe arthritis. IdeS treatment also significantly prevented an antibody-induced relapse in mice that had chronic arthritis, and delayed the onset and reduced the severity of arthritis in classic CIA. CONCLUSION IdeS has therapeutic potential in IgG antibody-mediated autoimmune arthritis, representing a new and unique means of blocking pathogenic antibodies.
Collapse
|
27
|
Abstract
Group A Streptococcus (GAS) is a Gram-positive bacterium associated with a variety of mucosal and invasive human infections. GAS systemic disease reflects the diverse abilities of this pathogen to avoid eradication by phagocytic defenses of the innate immune system. Here we review how GAS can avoid phagocyte engagement, inhibit complement and antibody functions required for opsonization, impair phagocytotic uptake mechanisms, promote phagocyte lysis or apoptosis, and resist specific effectors of phagocyte killing such as antimicrobial peptides and reactive oxygen species. Understanding the molecular basis of GAS phagocyte resistance may reveal novel therapeutic targets for treatment and prevention of invasive human infections.
Collapse
Affiliation(s)
- Laura A Kwinn
- Division of Pediatric Pharmacology & Drug Discovery, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA.
| | | |
Collapse
|
28
|
Timoney JF, Yang J, Liu J, Merant C. IdeE reduces the bactericidal activity of equine neutrophils for Streptococcus equi. Vet Immunol Immunopathol 2007; 122:76-82. [PMID: 18077002 DOI: 10.1016/j.vetimm.2007.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 09/28/2007] [Accepted: 10/31/2007] [Indexed: 11/18/2022]
Abstract
Streptococcus equi (S. equi) causes equine strangles, a highly contagious and widespread purulent lymphadenitis of the head and neck. Highly resistant to phagocytosis, it produces long extracellular chains in affected lymph nodes. In a screen of clones reactive with convalescent serum from a gene library of S. equi CF32 we identified IdeE, an IgG-endopeptidase and homologue of the leucocyte receptor Mac-1 (CD11b). IdeE is expressed during S. equi infection eliciting both serum and mucosal antibody responses which persisted at significant levels in serum for over 200 days. Release from S. equi into culture medium was detected during the exponential phase of growth. The closely related Streptococcus zooepidemicus appeared to store the protein but not to release it. Antiphagocytic activity for equine neutrophils was dose-dependent and neutralized by IdeE-specific antiserum. Biotinylated IdeE bound weakly to about 77% of purified equine neutrophils and strongly to the remainder.
Collapse
Affiliation(s)
- John F Timoney
- Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA.
| | | | | | | |
Collapse
|
29
|
Hess JL, Porsch EA, Shertz CA, Boyle MDP. Immunoglobulin cleavage by the streptococcal cysteine protease IdeS can be detected using protein G capture and mass spectrometry. J Microbiol Methods 2007; 70:284-91. [PMID: 17543400 PMCID: PMC1986777 DOI: 10.1016/j.mimet.2007.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 04/03/2007] [Accepted: 04/26/2007] [Indexed: 11/29/2022]
Abstract
The immunoglobulin degrading enzyme of Streptococcus pyogenes, IdeS, is an unusual cysteine protease produced by group A streptococci for which the only known substrate is immunoglobulin G (IgG). To date, IdeS has not been found to cleave any of the known synthetic substrates that other cysteine proteases hydrolyse, thus making the development of an IdeS detection assay difficult. Furthermore, at high doses of substrate, product generation is inhibited potentially due to the need for a dimeric enzyme complex with IgG. In this study we have developed a mass spectral assay for IdeS activity based on the detection of an Mr approximately 25,300 Fc fragment that retains the ability to bind streptococcal protein G. Using this assay procedure, evidence for a multimeric enzyme-substrate complex was obtained as well as identifying isolated heavy chains as a non-substrate inhibitor of IdeS activity. Under appropriate experimental conditions the assay could be used to detect IdeS activity in bacterial culture media or in human plasma without a requirement for purified reactants. The availability of a rapid and sensitive assay for IdeS should facilitate the detailed biochemical characterization of this unusual bacterial cysteine protease.
Collapse
Affiliation(s)
- Jennifer L Hess
- Department of Biology, Juniata College, 1700 Moore St, Huntingdon, Pennsylvania 16652, USA
| | | | | | | |
Collapse
|
30
|
Timoney JF, Qin A, Muthupalani S, Artiushin S. Vaccine potential of novel surface exposed and secreted proteins of Streptococcus equi. Vaccine 2007; 25:5583-90. [PMID: 17360081 DOI: 10.1016/j.vaccine.2007.02.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 01/09/2007] [Accepted: 02/07/2007] [Indexed: 11/18/2022]
Abstract
Streptococcus equi, a clonal descendent of an ancestral S. zooepidemicus, causes equine strangles, a highly contagious purulent lymphadenitis of the head and neck. The aim of this study was to evaluate as vaccine components novel surface exposed or secreted S. equi proteins identified in an expression gene library with sera from resistant horses. Six proteins expressed by S. equi CF32 but not by S. zooepidemicus 631 were used to vaccinate one group of eight ponies. A second pony group was immunized with five adhesin and other proteins encoded by genes of Linkage Gr 1. All ponies made strong serum antibody responses to each protein as measured by ELISA but none were resistant to subsequent comingling challenge with S. equi CF32. These results in combination with evidence that recovered horses rapidly clear intranasally inoculated S. equi and do not make detectable serum antibody responses to its surface proteins suggest that acquired immune-mediated tonsillar clearance and not serum antibody must be stimulated by an effective strangles vaccine.
Collapse
Affiliation(s)
- John F Timoney
- Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, United States.
| | | | | | | |
Collapse
|
31
|
Abstract
Streptococcus equi ssp. equi is the causative agent of strangles, a highly contagious and serious disease in the upper respiratory tract of horses. The present study describes the characterization of IdeE, a homolog of the secreted IgG-specific protease IdeS/Mac of Streptococcus pyogenes. The activity of IdeE is compared with the activity of IdeZ, the corresponding enzyme of the closely related S. equi ssp. zooepidemicus. A study of the proteolytic activity of recombinant IdeE and IdeZ on IgG from a selection of mammals shows that only antibodies containing the substrate site of IdeS/Mac are cleaved, indicating that the specificities of these enzymes are similar. Interestingly, IgG from horse is less effectively cleaved than IgG from e.g. dog or humans, as the dominating IgG isotype in horse sera (IgG4) lacks a distinct substrate site for IdeE/IdeZ. IgG-degradation is observed when S. equi ssp. equi is grown in the presence of horse serum, but not when grown with purified IgG. As the fraction of degraded IgG contains IgG4, the observed activity might be due to the expression of an unknown enzyme rather than IdeE. In a similar assay, no proteolysis of IgG was detected in the growth media of S. equi ssp. zooepidemicus.
Collapse
Affiliation(s)
- Jonas Lannergård
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | |
Collapse
|
32
|
Agniswamy J, Nagiec MJ, Liu M, Schuck P, Musser JM, Sun PD. Crystal structure of group A streptococcus Mac-1: insight into dimer-mediated specificity for recognition of human IgG. Structure 2006; 14:225-35. [PMID: 16472742 DOI: 10.1016/j.str.2005.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 10/03/2005] [Accepted: 10/05/2005] [Indexed: 01/07/2023]
Abstract
Group A Streptococcus secretes cysteine proteases named Mac-1 and Mac-2 that mediate host immune evasion by targeting both IgG and Fc receptors. Here, we report the crystal structures of Mac-1 and its catalytically inactive C94A mutant in two different crystal forms. Despite the lack of sequence homology, Mac-1 adopts the canonical papain fold. Alanine mutations at the active site confirmed the critical residues involved in a papain-like catalytic mechanism. Mac-1 forms a symmetric dimer in both crystal forms and displays the unique dimer interface among papain superfamily members. Mutations at the dimer interface resulted in a significant reduction in IgG binding and catalysis, suggesting that the dimer contributes to both IgG specificity and enzyme cooperativity. A tunnel observed at the dimer interface constitutes a target for designing potential Mac-1-specific antimicrobial agents. The structures also offer insight into the functional difference between Mac-1 and Mac-2.
Collapse
Affiliation(s)
- Johnson Agniswamy
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, Maryland 20852, USA
| | | | | | | | | | | |
Collapse
|
33
|
Akesson P, Moritz L, Truedsson M, Christensson B, von Pawel-Rammingen U. IdeS, a highly specific immunoglobulin G (IgG)-cleaving enzyme from Streptococcus pyogenes, is inhibited by specific IgG antibodies generated during infection. Infect Immun 2006; 74:497-503. [PMID: 16369006 PMCID: PMC1346671 DOI: 10.1128/iai.74.1.497-503.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IdeS, a recently discovered cysteine proteinase secreted by the important human pathogen Streptococcus pyogenes, interferes with phagocytic killing by specifically cleaving the heavy chain of immunoglobulin G. The fact that the enzyme targets one of the key molecules of the adapted immune response raised the question of whether an antibody response against IdeS could inhibit, i.e., neutralize, enzyme activity. Paired acute- and convalescent-phase serum samples from patients with pharyngotonsillitis (n = 10), bacteremia (n = 7), and erysipelas (n = 4) were analyzed. Antibodies with the ability to neutralize IdeS enzymatic activity were already found in two-thirds of acute-phase sera. However, patients who seroconverted to IdeS, in particular patients with pharyngotonsillitis and erysipelas, developed specific antibodies during convalescence with an increased capability to efficiently neutralize the enzymatic activity of IdeS. Also, the presence of neutralizing antibodies decreased the ability of IdeS to mediate bacterial survival in human immune blood. In patients with bacteremia, several acute-phase sera contained neutralizing antibodies, but no correlation was found to severity or outcome of invasive infections. Still, the fact that the human immune response targets the enzymatic activity of IdeS supports the view that the enzyme plays an important role during streptococcal infection.
Collapse
Affiliation(s)
- Per Akesson
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| | | | | | | | | |
Collapse
|
34
|
Chiang-Ni C, Wang CH, Tsai PJ, Chuang WJ, Lin YS, Lin MT, Liu CC, Wu JJ. Streptococcal pyrogenic exotoxin B causes mitochondria damage to polymorphonuclear cells preventing phagocytosis of group A streptococcus. Med Microbiol Immunol 2005; 195:55-63. [PMID: 16059700 DOI: 10.1007/s00430-005-0001-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Indexed: 11/30/2022]
Abstract
The streptococcal pyrogenic exotoxin B (SpeB) is known to be involved in group A streptococcus (GAS) survival in blood, but the detailed mechanism is not clear. For clarification of this issue, speB isogenic mutants of strains M6 and M49 were constructed by using an integrational plasmid and confirmed by Southern blot analysis. The resistance to phagocytosis of wild-type strains and their speB isogenic mutants was analyzed. The results demonstrated a five-fold increase in phagocytosis of speB mutants compared to that of wild-type strains in whole blood, but no significant difference in plasma. To further clarify whether this effect is due to a functional SpeB protein, recombinant SpeB (r-SpeB) and a SpeB mutant protein lacking proteinase activity (r-C192S) were purified and incubated with a speB mutant in whole blood. The results showed a two- to threefold increase in resistance to phagocytosis when the M6 speB mutant was incubated with r-SpeB, but not with r-C192S. Incubation with the wild-type strain, speB mutant, or the r-SpeB protein did not affect the total cell number of polymorphonuclear (PMN) cells in whole blood under laboratory conditions. However, the PMN cells' mitochondria showed decreasing dehydrogenase activity and loss of membrane potential after r-SpeB treatment. These data indicate that SpeB could cause the mitochondria damage to the PMN cells, preventing immune clearance at an early infectious stage.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Graham MR, Virtaneva K, Porcella SF, Barry WT, Gowen BB, Johnson CR, Wright FA, Musser JM. Group A Streptococcus transcriptome dynamics during growth in human blood reveals bacterial adaptive and survival strategies. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:455-65. [PMID: 15681829 PMCID: PMC1602339 DOI: 10.1016/s0002-9440(10)62268-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The molecular basis for bacterial responses to host signals during natural infections is poorly understood. The gram-positive bacterial pathogen group A Streptococcus (GAS) causes human mucosal, skin, and life-threatening systemic infections. During the transition from a throat or skin infection to an invasive infection, GAS must adapt to changing environments and host factors. To better understand how GAS adapts, we used transcript profiling and functional analysis to investigate the transcriptome of a wild-type serotype M1 GAS strain in human blood. Global changes in GAS gene expression occur rapidly in response to human blood exposure. Increased transcription was observed for many genes that likely enhance bacterial survival, including those encoding superantigens and host-evasion proteins regulated by a multiple gene activator called Mga. GAS also coordinately expressed genes involved in proteolysis, transport, and catabolism of oligopeptides to obtain amino acids in this protein-rich host environment. Comparison of the transcriptome of the wild-type strain to that of an isogenic deletion mutant (DeltacovR) mutated in the two-component regulatory system designated CovR-CovS reinforced the hypothesis that CovR-CovS has an important role linking key biosynthetic, catabolic, and virulence functions during transcriptome restructuring. Taken together, the data provide crucial insights into strategies used by pathogenic bacteria for thwarting host defenses and surviving in human blood.
Collapse
Affiliation(s)
- Morag R Graham
- Center for Human Bacterial Pathogenesis, Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wenig K, Chatwell L, von Pawel-Rammingen U, Björck L, Huber R, Sondermann P. Structure of the streptococcal endopeptidase IdeS, a cysteine proteinase with strict specificity for IgG. Proc Natl Acad Sci U S A 2004; 101:17371-6. [PMID: 15574492 PMCID: PMC536041 DOI: 10.1073/pnas.0407965101] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathogenic bacteria have developed complex and diverse virulence mechanisms that weaken or disable the host immune defense system. IdeS (IgG-degrading enzyme of Streptococcus pyogenes) is a secreted cysteine endopeptidase from the human pathogen S. pyogenes with an extraordinarily high degree of substrate specificity, catalyzing a single proteolytic cleavage at the lower hinge of human IgG. This proteolytic degradation promotes inhibition of opsonophagocytosis and interferes with the killing of group A Streptococcus. We have determined the crystal structure of the catalytically inactive mutant IdeS-C94S by x-ray crystallography at 1.9-A resolution. Despite negligible sequence homology to known proteinases, the core of the structure resembles the canonical papain fold although with major insertions and a distinct substrate-binding site. Therefore IdeS belongs to a unique family within the CA clan of cysteine proteinases. Based on analogy with inhibitor complexes of papain-like proteinases, we propose a model for substrate binding by IdeS.
Collapse
Affiliation(s)
- Katja Wenig
- Department of Structural Research, Max Planck Institute for Biochemistry, D-82152 Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Agniswamy J, Lei B, Musser JM, Sun PD. Insight of host immune evasion mediated by two variants of group a Streptococcus Mac protein. J Biol Chem 2004; 279:52789-96. [PMID: 15466462 DOI: 10.1074/jbc.m410698200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group A Streptococcus has evolved numerous mechanisms to evade the host immune system to survive, disseminate, and cause disease. Recently a secreted protein named Mac-1 was identified and shown to enhance survival of the pathogen. A new variant of Mac-1 (designated Mac-2) also was recently described and shown to differ from Mac-1 by approximately 50% amino acid sequence divergence in the middle one-third of the molecule. To gain new information about the role of Mac-1 and Mac-2 in host-pathogen interactions, solution binding experiments were performed using surface plasmon resonance and purified Mac proteins. Mac-1 bound the same lower hinge region of human IgG as Fc receptors with 2.5 microM affinity, which lead to proteolytic cleavage of the antibody. Similar Km (6.8-18.9 microM) and kcat (0.02-0.13 s(-1)) values of the Mac-1 endopeptidase activity were obtained for IgG1, IgG2, IgG3, and IgG4. Mac-2 variant, in contrast, bound human IgG poorly (KD = 16 mM) and had weak endopeptidase activity against IgG. Instead, Mac-2 bound FcgammaRII and FcgammaRIII with 5 and 75 microM affinity, respectively. This binding competitively blocked IgG from recognition by Fc receptors. Taken together, Mac proteins block immunoglobulin recognition by Fc receptors and degrade immunoglobulins, thereby enhancing survival of the pathogen through the inhibition of phagocytosis, endocytosis of IgG-opsonized particles, and antibody-dependent cell-mediated cytotoxicity. Consequently, these proteins may be potential therapeutic targets.
Collapse
Affiliation(s)
- Johnson Agniswamy
- Structural Immunology Section, Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | |
Collapse
|
38
|
Voyich JM, Musser JM, DeLeo FR. Streptococcus pyogenes and human neutrophils: a paradigm for evasion of innate host defense by bacterial pathogens. Microbes Infect 2004; 6:1117-23. [PMID: 15380782 DOI: 10.1016/j.micinf.2004.05.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human polymorphonuclear leukocytes (PMNs) are the first line of defense against invading microorganisms. Although most invading bacteria are eliminated by PMNs, some have evolved complex strategies to prevent normal PMN function. This review focuses on the interaction of human PMNs with Streptococcus pyogenes as a paradigm for successful pathogen evasion mechanisms.
Collapse
Affiliation(s)
- Jovanka M Voyich
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th Street, Hamilton, MT 59840, USA
| | | | | |
Collapse
|
39
|
Kuo CF, Luo YH, Lin HY, Huang KJ, Wu JJ, Lei HY, Lin MT, Chuang WJ, Liu CC, Jin YT, Lin YS. Histopathologic changes in kidney and liver correlate with streptococcal pyrogenic exotoxin B production in the mouse model of group A streptococcal infection. Microb Pathog 2004; 36:273-85. [PMID: 15043862 DOI: 10.1016/j.micpath.2004.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 01/15/2004] [Accepted: 01/19/2004] [Indexed: 11/25/2022]
Abstract
Previous studies show that isogenic mutants deficient in streptococcal pyrogenic exotoxin B (SPE B) cause less mortality and skin tissue damage than wild-type strains of Streptococcus pyogenes when inoculated into mice via an air pouch. In this study, the growth and dissemination of bacteria, pathologic changes in various organs, and their correlation with SPE B production were examined. Bacterial numbers in the air pouch from wild-type strain NZ131-infected mice increased at 48 h, while those from speB mutant SW510-infected mice continuously reduced. Mice infected with NZ131 developed bacteremia and greater dissemination in the kidney, liver, and spleen; those infected with SW510 showed either no or slight bacteremia and dissemination. Co-inoculation of SW510 with recombinant SPE B showed a higher bacterial count in the air pouch, bacteremia, and organ dissemination compared to co-inoculation with a C192S mutant lacking protease activity. The histopathologic changes examined showed lesions in kidney and liver in the NZ131-infected but not in SW510-infected mice. The elevation in sera of BUN, AST, and ALT correlated positively with renal and liver impairment. Taken together, SPE B produced during S. pyogenes infection plays a pathogenic role. A direct effect of SPE B on vessel permeability change was also demonstrated.
Collapse
Affiliation(s)
- Chih-Feng Kuo
- Department of Nursing, I-Shou University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mitchell TJ. The pathogenesis of streptococcal infections: from tooth decay to meningitis. Nat Rev Microbiol 2004; 1:219-30. [PMID: 15035026 DOI: 10.1038/nrmicro771] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The development of bacterial disease has been likened to a 'molecular arms race', in which the host tries to eliminate the bacteria, while the bacteria try to survive in the host. Although most bacteria do not cause disease, some cause serious human infection in a large proportion of encounters. Between these two extremes are bacteria that can coexist with humans in a carriage state but, under appropriate circumstances, cause disease. The streptococci exemplify this group of organisms, and by studying them we can begin to address why bacteria cause such a wide spectrum of disease.
Collapse
Affiliation(s)
- Timothy J Mitchell
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
41
|
Collin M, Olsén A. Extracellular enzymes with immunomodulating activities: variations on a theme in Streptococcus pyogenes. Infect Immun 2003; 71:2983-92. [PMID: 12761074 PMCID: PMC155735 DOI: 10.1128/iai.71.6.2983-2992.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Mattias Collin
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York 10021, USA.
| | | |
Collapse
|
42
|
Lei B, Liu M, Meyers EG, Manning HM, Nagiec MJ, Musser JM. Histidine and aspartic acid residues important for immunoglobulin G endopeptidase activity of the group A Streptococcus opsonophagocytosis-inhibiting Mac protein. Infect Immun 2003; 71:2881-4. [PMID: 12704162 PMCID: PMC153276 DOI: 10.1128/iai.71.5.2881-2884.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The secreted Mac protein made by serotype M1 group A Streptococcus (GAS) (designated Mac(5005)) inhibits opsonophagocytosis and killing of GAS by human polymorphonuclear neutrophils. This protein also has cysteine endopeptidase activity against human immunoglobulin G (IgG). Site-directed mutagenesis was used to identify histidine and aspartic acid residues important for Mac IgG endopeptidase activity. Replacement of His262 with Ala abolished Mac5005 IgG endopeptidase activity. Asp284Ala and Asp286Ala mutant proteins had compromised enzymatic activity, whereas 21 other Asp-to-Ala mutant proteins cleaved human IgG at the apparent wild-type level. The results suggest that His262 is an active-site residue and that Asp284 and Asp286 are important for the enzymatic activity or structure of Mac protein. These Mac mutants provide new information about structure-activity relationships in this protein and will assist study of the mechanism of inhibition of opsonophagocytosis and killing of GAS by Mac.
Collapse
Affiliation(s)
- Benfang Lei
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | | | | | | | |
Collapse
|