1
|
Huang W, Lin M, Rikihisa Y. Rab27a via its effector JFC1 localizes to Anaplasma inclusions and promotes Anaplasma proliferation in leukocytes. Microbes Infect 2025; 27:105278. [PMID: 38110148 DOI: 10.1016/j.micinf.2023.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023]
Abstract
Anaplasma phagocytophilum is an obligatory intracellular bacterium that causes tick-borne zoonosis called human granulocytic anaplasmosis. Mechanisms by which Anaplasma replicates inside of the membrane-bound compartment called "inclusion" in neutrophils are incompletely understood. A small GTPase Rab27a is found in the secretory granules and multivesicular endosomes. In this study we found Rab27a-containing granules were localized to Anaplasma inclusions in guanine nucleotide-dependent manner, and constitutively active Rab27a enhanced Anaplasma infection and dominant-negative Rab27a inhibited Anaplasma infection. Rab27a effector, JFC1 is known to mediate docking/fusion of Rab27a-bearing granules for exocytosis in leukocytes. shRNA stable knockdown of Rab27a or JFC1 inhibited Anaplasma infection in HL-60 cells. Similar to Rab27a, both endogenous and transfected JFC1 were localized to Anaplasma inclusions by immunostaining or live cell imaging. The JFC1 C2A domain that binds 3'-phosphoinositides, was sufficient and required for JFC1 and Rab27a localization to Anaplasma inclusions which were enriched with phosphatidylinositol 3-phosphate. Nexinhib20, the small molecule inhibitor specific to Rab27a and JFC1 binding, inhibited Anaplasma infection. Taken together, these results imply elevated phosphatidylinositol 3-phosphate in the inclusion membrane recruits JFC1 to mediate Rab27a-bearing granules/vesicles to dock/fuse with Anaplasma inclusions, the lumen of which is topologically equivalent to the exterior of the cell to benefit Anaplasma proliferation.
Collapse
Affiliation(s)
- Weiyan Huang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yasuko Rikihisa
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Lind MCH, Naimi WA, Chiarelli TJ, Sparrer T, Ghosh M, Shapiro L, Carlyon JA. Anaplasma phagocytophilum invasin AipA interacts with CD13 to elicit Src kinase signaling that promotes infection. mBio 2024; 15:e0156124. [PMID: 39324816 PMCID: PMC11481542 DOI: 10.1128/mbio.01561-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
Host-microbe interactions that facilitate entry into mammalian cells are essential for obligate intracellular bacterial survival and pathogenesis. Anaplasma phagocytophilum is an obligate intracellular bacterium that invades neutrophils to cause granulocytic anaplasmosis. The invasin-receptor pairs and signaling events that induce Anaplasma uptake are inadequately defined. A. phagocytophilum invasion protein A orchestrates entry via residues 9-21 (AipA9-21) engaging an unknown receptor. Yeast two-hybrid screening suggested that AipA binds within C-terminal amino acids 851-967 of CD13 (aminopeptidase N), a multifunctional protein that, when crosslinked, initiates Src kinase and Syk signaling that culminates in endocytosis. Co-immunoprecipitation validated the interaction and confirmed that it requires the AipA N-terminus. CD13 ectopic expression on non-phagocytic cells increased susceptibility to A. phagocytophilum infection. Antibody blocking and enzymatic inhibition experiments found that the microbe exploits CD13 but not its ectopeptidase activity to infect myeloid cells. A. phagocytophilum induces Src and Syk phosphorylation during invasion. Inhibitor treatment established that Src is key for A. phagocytophilum infection, while Syk is dispensable and oriented the pathogen-invoked signaling pathway by showing that Src is activated before Syk. Disrupting the AipA-CD13 interaction with AipA9-21 or CD13781-967 antibody inhibited Src and Syk phosphorylation and also infection. CD13 crosslinking antibody that induces Src and Syk signaling restored infectivity of anti-AipA9-21-treated A. phagocytophilum. The bacterium poorly infected CD13 knockout mice, providing the first demonstration that CD13 is important for microbial infection in vivo. Overall, A. phagocytophilum AipA9-21 binds CD13 to induce Src signaling that mediates uptake into host cells, and CD13 is critical for infection in vivo. IMPORTANCE Diverse microbes engage CD13 to infect host cells. Yet invasin-CD13 interactions, the signaling they invoke for pathogen entry, and the relevance of CD13 to infection in vivo are underexplored. Dissecting these concepts would advance fundamental understanding of a convergently evolved infection strategy and could have translational benefits. Anaplasma phagocytophilum infects neutrophils to cause granulocytic anaplasmosis, an emerging disease for which there is no vaccine and few therapeutic options. We found that A. phagocytophilum uses its surface protein and recently identified protective immunogen, AipA, to bind CD13 to elicit Src kinase signaling, which is critical for infection. We elucidated the AipA CD13 binding domain, which CD13 region AipA engages, and established that CD13 is key for A. phagocytophilum infection in vivo. Disrupting the AipA-CD13 interaction could be utilized to prevent granulocytic anaplasmosis and offers a model that could be applied to protect against multiple infectious diseases.
Collapse
Affiliation(s)
- Mary Clark H. Lind
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Waheeda A. Naimi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Travis J. Chiarelli
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Tavis Sparrer
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Mallika Ghosh
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Linda Shapiro
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
3
|
Chen Y, He X, Chen Q, He Y, Chen F, Yang C, Wang L. Nanomaterials against intracellular bacterial infection: from drug delivery to intrinsic biofunction. Front Bioeng Biotechnol 2023; 11:1197974. [PMID: 37180049 PMCID: PMC10174311 DOI: 10.3389/fbioe.2023.1197974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Fighting intracellular bacteria with strong antibiotics evading remains a long-standing challenge. Responding to and regulating the infectious microenvironment is crucial for treating intracellular infections. Sophisticated nanomaterials with unique physicochemical properties exhibit great potential for precise drug delivery towards infection sites, along with modulating infectious microenvironment via their instinct bioactivity. In this review, we first identify the key characters and therapeutic targets of intracellular infection microenvironment. Next, we illustrate how the nanomaterials physicochemical properties, such as size, charge, shape and functionalization affect the interaction between nanomaterials, cells and bacteria. We also introduce the recent progress of nanomaterial-based targeted delivery and controlled release of antibiotics in intracellular infection microenvironment. Notably, we highlight the nanomaterials with unique intrinsic properties, such as metal toxicity and enzyme-like activity for the treatment of intracellular bacteria. Finally, we discuss the opportunities and challenges of bioactive nanomaterials in addressing intracellular infections.
Collapse
Affiliation(s)
- Yinglu Chen
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoheng He
- Department of Applied Chemistry, Xi’an University of Technology, Xi’an, China
| | - Qiuhong Chen
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Fangman Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Chao Yang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Liang Wang, ; Chao Yang,
| | - Liang Wang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Liang Wang, ; Chao Yang,
| |
Collapse
|
4
|
Ehrlichia chaffeensis Uses an Invasin To Suppress Reactive Oxygen Species Generation by Macrophages via CD147-Dependent Inhibition of Vav1 To Block Rac1 Activation. mBio 2020; 11:mBio.00267-20. [PMID: 32317318 PMCID: PMC7175088 DOI: 10.1128/mbio.00267-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The obligatory intracellular pathogen Ehrlichia chaffeensis lacks most factors that could respond to oxidative stress (a host cell defense mechanism). We previously found that the C terminus of Ehrlichia surface invasin, entry-triggering protein of Ehrlichia (EtpE; EtpE-C) directly binds mammalian DNase X, a glycosylphosphatidylinositol-anchored cell surface receptor and that binding is required to induce bacterial entry and simultaneously to block the generation of reactive oxygen species (ROS) by host monocytes and macrophages. However, how the EtpE-C-DNase X complex mediates the ROS blockade was unknown. A mammalian transmembrane glycoprotein CD147 (basigin) binds to the EtpE-DNase X complex and is required for Ehrlichia entry and infection of host cells. Here, we found that bone marrow-derived macrophages (BMDM) from myeloid cell lineage-selective CD147-null mice had significantly reduced Ehrlichia-induced or EtpE-C-induced blockade of ROS generation in response to phorbol myristate acetate. In BMDM from CD147-null mice, nucleofection with CD147 partially restored the Ehrlichia-mediated inhibition of ROS generation. Indeed, CD147-null mice as well as their BMDM were resistant to Ehrlichia infection. Moreover, in human monocytes, anti-CD147 partially abrogated EtpE-C-induced blockade of ROS generation. Both Ehrlichia and EtpE-C could block activation of the small GTPase Rac1 (which in turn activates phagocyte NADPH oxidase) and suppress activation of Vav1, a hematopoietic-specific Rho/Rac guanine nucleotide exchange factor by phorbol myristate acetate. Vav1 suppression by Ehrlichia was CD147 dependent. E. chaffeensis is the first example of pathogens that block Rac1 activation to colonize macrophages. Furthermore, Ehrlichia uses EtpE to hijack the unique host DNase X-CD147-Vav1 signaling to block Rac1 activation.IMPORTANCEEhrlichia chaffeensis is an obligatory intracellular bacterium with the capability of causing an emerging infectious disease called human monocytic ehrlichiosis. E. chaffeensis preferentially infects monocytes and macrophages, professional phagocytes, equipped with an arsenal of antimicrobial mechanisms, including rapid reactive oxygen species (ROS) generation upon encountering bacteria. As Ehrlichia isolated from host cells are readily killed upon exposure to ROS, Ehrlichia must have evolved a unique mechanism to safely enter phagocytes. We discovered that binding of the Ehrlichia surface invasin to the host cell surface receptor not only triggers Ehrlichia entry but also blocks ROS generation by the host cells by mobilizing a novel intracellular signaling pathway. Knowledge of the mechanisms by which ROS production is inhibited may lead to the development of therapeutics for ehrlichiosis as well as other ROS-related pathologies.
Collapse
|
5
|
The redox metabolic pathways function to limit Anaplasma phagocytophilum infection and multiplication while preserving fitness in tick vector cells. Sci Rep 2019; 9:13236. [PMID: 31520000 PMCID: PMC6744499 DOI: 10.1038/s41598-019-49766-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/30/2019] [Indexed: 02/06/2023] Open
Abstract
Aerobic organisms evolved conserved mechanisms controlling the generation of reactive oxygen species (ROS) to maintain redox homeostasis signaling and modulate signal transduction, gene expression and cellular functional responses under physiological conditions. The production of ROS by mitochondria is essential in the oxidative stress associated with different pathologies and in response to pathogen infection. Anaplasma phagocytophilum is an intracellular pathogen transmitted by Ixodes scapularis ticks and causing human granulocytic anaplasmosis. Bacteria multiply in vertebrate neutrophils and infect first tick midgut cells and subsequently hemocytes and salivary glands from where transmission occurs. Previous results demonstrated that A. phagocytophilum does not induce the production of ROS as part of its survival strategy in human neutrophils. However, little is known about the role of ROS during pathogen infection in ticks. In this study, the role of tick oxidative stress during A. phagocytophilum infection was characterized through the function of different pathways involved in ROS production. The results showed that tick cells increase mitochondrial ROS production to limit A. phagocytophilum infection, while pathogen inhibits alternative ROS production pathways and apoptosis to preserve cell fitness and facilitate infection. The inhibition of NADPH oxidase-mediated ROS production by pathogen infection appears to occur in both neutrophils and tick cells, thus supporting that A. phagocytophilum uses common mechanisms for infection of ticks and vertebrate hosts. However, differences in ROS response to A. phagocytophilum infection between human and tick cells may reflect host-specific cell tropism that evolved during pathogen life cycle.
Collapse
|
6
|
Role and Function of the Type IV Secretion System in Anaplasma and Ehrlichia Species. Curr Top Microbiol Immunol 2019; 413:297-321. [PMID: 29536364 DOI: 10.1007/978-3-319-75241-9_12] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The obligatory intracellular pathogens Anaplasma phagocytophilum and Ehrlichia chaffeensis proliferate within membrane-bound vacuoles of human leukocytes and cause potentially fatal emerging infectious diseases. Despite the reductive genome evolution in this group of bacteria, genes encoding the type IV secretion system (T4SS), which is homologous to the VirB/VirD4 system of the plant pathogen Agrobacterium tumefaciens, have been expanded and are highly expressed in A. phagocytophilum and E. chaffeensis in human cells. Of six T4SS effector proteins identified in them, roles and functions have been described so far only for ankyrin repeat domain-containing protein A (AnkA), Anaplasma translocated substrate 1 (Ats-1), and Ehrlichia translocated factor 1 (Etf-1, ECH0825). These effectors are abundantly produced and secreted into the host cytoplasm during infection, but not toxic to host cells. They contain eukaryotic protein motifs or organelle localization signals and have distinct subcellular localization, target to specific host cell molecules to promote infection. Ats-1 and Etf-1 are orthologous proteins, subvert two important innate immune mechanisms against intracellular infection, cellular apoptosis and autophagy, and manipulate autophagy to gain nutrients from host cells. Although Ats-1 and Etf-1 have similar functions and roles in obligatory intracellular infection, they are specifically adapted to the distinct membrane-bound intracellular niche of A. phagocytophilum and E. chaffeensis, respectively. Ectopic expression of these effectors enhances respective bacterial infection, whereas intracellular delivery of antibodies against these effectors or targeted knockdown of the effector with antisense peptide nucleic acid significantly impairs bacterial infection. Thus, both T4SSs have evolved as important survival and nutritional virulence mechanism in these obligatory intracellular bacteria. Future studies on the functions of Anaplasma and Ehrlichia T4SS effector molecules and signaling pathways will undoubtedly advance our understanding of the complex interplay between obligatory intracellular pathogens and their hosts. Such data can be applied toward the treatment and control of anaplasmosis and ehrlichiosis.
Collapse
|
7
|
Mayorga LS, Cebrian I. Rab22a: A novel regulator of immune functions. Mol Immunol 2018; 113:87-92. [PMID: 29631761 DOI: 10.1016/j.molimm.2018.03.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/31/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) trigger CD8 + T cell responses after the internalization of exogenous antigens in a process called cross-presentation. Multiple intracellular transport events within the endocytic and secretory routes take place in order to accomplish this fundamental immunological process. The endomembrane system can be envisioned as a complex network of membrane domains coordinately working in the fusion of organelles, the budding of vesicles and tubules, and modifying the molecular composition of the limiting membranes. In this context of tightly regulated and dynamic endomembrane transport, small GTPases of the Rab family display a pivotal role by organizing membrane microdomains and defining specific identities to the different intracellular compartments. In this review, we synthesize and update the current knowledge about Rab22a, which has been involved in several immune functions. In this way, we analyze the intracellular localization of Rab22a and its important role in the endocytic recycling, including its relevance during MHC-I trafficking, antigen cross-presentation by DCs and the formation of T cell conjugates. We also describe how different pathogenic microorganisms hijack Rab22a functions to achieve efficient infection and intracellular survival strategies. Furthermore, we examine the oncogenic properties of Rab22a and how its expression determines the progression of many tumors. In summary, we highlight the role of Rab22a as a key effector of the intracellular trafficking that could be exploited in future therapies to modulate the immune system.
Collapse
Affiliation(s)
- Luis S Mayorga
- Instituto de Histología y Embriología de Mendoza (IHEM, Universidad Nacional de Cuyo, CONICET), Facultad de Ciencias Médicas and Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina.
| | - Ignacio Cebrian
- Instituto de Histología y Embriología de Mendoza (IHEM, Universidad Nacional de Cuyo, CONICET), Facultad de Ciencias Médicas and Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina.
| |
Collapse
|
8
|
Neutrophil apoptosis in the context of tuberculosis infection. Tuberculosis (Edinb) 2015; 95:359-63. [DOI: 10.1016/j.tube.2015.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/24/2015] [Indexed: 12/21/2022]
|
9
|
Rennoll-Bankert KE, Garcia-Garcia JC, Sinclair SH, Dumler JS. Chromatin-bound bacterial effector ankyrin A recruits histone deacetylase 1 and modifies host gene expression. Cell Microbiol 2015; 17:1640-52. [PMID: 25996657 DOI: 10.1111/cmi.12461] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/11/2015] [Accepted: 05/17/2015] [Indexed: 11/29/2022]
Abstract
Control of host epigenetics is becoming evident as a mechanism by which symbionts and pathogens survive. Anaplasma phagocytophilum, an obligate intracellular bacterium, down-regulates multiple host defence genes where histone deacetylase 1 (HDAC1) binds and histone 3 is deacetylated at their promoters, including the NADPH oxidase component, CYBB. How HDAC1 is targeted to defence gene promoters is unknown. Ankyrin A (AnkA), an A. phagocytophilum type IV secretion system effector, enters the granulocyte nucleus, binds stretches of AT-rich DNA and alters transcription of antimicrobial defence genes, including down-regulation of CYBB. Here we found AnkA binds to a predicted matrix attachment region in the proximal CYBB promoter. Using the CYBB promoter as a model of cis-gene silencing, we interrogated the mechanism of AnkA-mediated CYBB repression. The N-terminus of AnkA was critical for nuclear localization, the central ANK repeats and C-terminus were important for DNA binding, and most promoter activity localized to the central ANK repeats. Furthermore, a direct interaction between AnkA and HDAC1 was detected at the CYBB promoter, and was critical for AnkA-mediated CYBB repression. This novel microbial manipulation of host chromatin and gene expression provides important evidence of the direct effects that prokaryotic nuclear effectors can exert over host transcription and function.
Collapse
Affiliation(s)
- Kristen E Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Sara H Sinclair
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.,Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Stephen Dumler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.,Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Grayfer L, Hodgkinson JW, Belosevic M. Antimicrobial responses of teleost phagocytes and innate immune evasion strategies of intracellular bacteria. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:223-42. [PMID: 23954721 DOI: 10.1016/j.dci.2013.08.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 05/22/2023]
Abstract
During infection, macrophage lineage cells eliminate infiltrating pathogens through a battery of antimicrobial responses, where the efficacy of these innate immune responses is pivotal to immunological outcomes. Not surprisingly, many intracellular pathogens have evolved mechanisms to overcome macrophage defenses, using these immune cells as residences and dissemination strategies. With pathogenic infections causing increasing detriments to both aquacultural and wild fish populations, it is imperative to garner greater understanding of fish phagocyte antimicrobial responses and the mechanisms by which aquatic pathogens are able to overcome these teleost macrophage barriers. Insights into the regulation of macrophage immunity of bony fish species will lend to the development of more effective aquacultural prophylaxis as well as broadening our understanding of the evolution of these immune processes. Accordingly, this review focuses on recent advances in the understanding of teleost macrophage antimicrobial responses and the strategies by which intracellular fish pathogens are able to avoid being killed by phagocytes, with a focus on Mycobacterium marinum.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | | | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Canada; School of Public Health, University of Alberta, Edmonton, Canada.
| |
Collapse
|
11
|
Vylkova S, Lorenz MC. Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport. PLoS Pathog 2014; 10:e1003995. [PMID: 24626429 PMCID: PMC3953444 DOI: 10.1371/journal.ppat.1003995] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/30/2014] [Indexed: 12/23/2022] Open
Abstract
Candida albicans, the most important fungal pathogen of humans, has a unique interaction with macrophages in which phagocytosis induces a switch from the yeast to hyphal form, allowing it to escape by rupturing the immune cell. While a variety of factors induce this switch in vitro, including neutral pH, it is not clear what triggers morphogenesis within the macrophage where the acidic environment should inhibit this transition. In vitro, C. albicans grown in similar conditions in which amino acids are the primary carbon source generate large quantities of ammonia to raise the extracellular pH and induce the hyphal switch. We show here that C. albicans cells neutralize the macrophage phagosome and that neutral pH is a key inducer of germination in phagocytosed cells by using a mutant lacking STP2, a transcription factor that regulates the expression of multiple amino acid permeases, that is completely deficient in alkalinization in vitro. Phagocytosed stp2Δ mutant cells showed significant reduction in hypha formation and escaped from macrophages less readily compared to wild type cells; as a result stp2Δ mutant cells were killed at a higher rate and caused less damage to RAW264.7 macrophages. Stp2p-regulated import leads to alkalinization of the phagosome, since the majority of the wild type cells fail to co-localize with acidophilic dyes, whereas the stp2Δ mutant cells were located in acidic phagosomes. Furthermore, stp2Δ mutant cells were able to form hyphae and escape from neutral phagosomes, indicating that the survival defect in these cells was pH dependent. Finally, these defects are reflected in an attenuation of virulence in a mouse model of disseminated candidiasis. Altogether our results suggest that C. albicans utilizes amino acids to promote neutralization of the phagosomal pH, hyphal morphogenesis, and escape from macrophages. The innate immune system represents a key barrier that fungal pathogens such as Candida albicans must overcome in order to disseminate through the host. C. albicans cells phagocytosed by macrophages initiate a complex program that involves a large-scale reprogramming of metabolism and transcription and results in the switch to a hyphal form that can penetrate and kill the macrophage. Though a number of signals are known to induce this morphological transition in vitro, what does so following phagocytosis has been unclear. We previously showed that C. albicans rapidly neutralizes acidic, nutrient-poor media that resembles the phagolysosome and that this is deficient in mutants impaired in amino acid import due to a mutation in STP2. In this paper, we investigate whether this happens within the macrophage as well. We show here that, in contrast to wild-type cells, stp2Δ mutants occupy an acidic phagosome and are unable to initiate hyphal differentiation. Because of this, they are more sensitive to killing and do less damage to the macrophages than cells that can neutralize the phagolysosome. We conclude that alteration of phagosomal pH is an important virulence adaptation in this species.
Collapse
Affiliation(s)
- Slavena Vylkova
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Anaplasma phagocytophilum up-regulates some anti-apoptotic genes in neutrophils and pro-inflammatory genes in mononuclear cells of sheep. J Comp Pathol 2014; 150:351-6. [PMID: 24602324 DOI: 10.1016/j.jcpa.2014.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/04/2013] [Accepted: 01/13/2014] [Indexed: 01/03/2023]
Abstract
Anaplasma phagocytophilum, the causative agent of tick-borne fever (TBF) in sheep and cattle and human granulocytic anaplasmosis, has the unique ability to selectively infect and multiply within the hostile environment of the neutrophil. Previous studies have shown that sheep with TBF are more susceptible to other infections and that infected neutrophils have reduced phagocytic ability and delayed apoptosis. This suggests that survival of A. phagocytophilum in these short-lived cells involves the ability to subvert or resist their bacterial killing, but also to modify the host cells such that the host cells survive long after infection. The present study shows that infection of sheep by A. phagocytophilum is characterized by up-regulation of some anti-apoptotic genes (BCL2, BIRC3 and CFLAR) in neutrophils and up-regulation of genes encoding the pro-inflammatory cytokines interferon-γ, interleukin (IL)-1β and IL-6 in mononuclear cells during the period of bacteraemia. Infection with A. phagocytophilum was also characterized by significant up-regulation of CYBB, which is associated with the respiratory burst of neutrophils.
Collapse
|
13
|
Rennoll-Bankert KE, Sinclair SH, Lichay MA, Dumler JS. Comparison and characterization of granulocyte cell models for Anaplasma phagocytophilum infection. Pathog Dis 2013; 71:55-64. [PMID: 24376092 DOI: 10.1111/2049-632x.12111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/03/2013] [Indexed: 11/29/2022] Open
Abstract
Anaplasma phagocytophilum, an obligate intracellular bacterium, modifies functions of its in vivo host, the neutrophil. The challenges of using neutrophils ex vivo necessitate cell line models. However, cell line infections do not currently mimic ex vivo neutrophil infection characteristics. To understand these discrepancies, we compared infection of cell lines to ex vivo human neutrophils and differentiated hematopoietic stem cells with regard to infection capacity, oxidative burst, host defense gene expression, and differentiation. Using established methods, marked ex vivo neutrophil infection heterogeneity was observed at 24-48 h necessitating cell sorting to obtain homogeneously infected cells at levels observed in vivo. Moreover, gene expression of infected cell lines differed markedly from the prior standard of unsorted infected neutrophils. Differentiated HL-60 cells sustained similar infection levels to neutrophils in vivo and closely mimicked functional and transcriptional changes of sorted infected neutrophils. Thus, care must be exercised using ex vivo neutrophils for A. phagocytophilum infection studies because a major determinant of transcriptional and functional changes among all cells was the intracellular bacteria quantity. Furthermore, comparisons of ex vivo neutrophils and the surrogate HL-60 cell model allowed the determination that specific cellular functions and transcriptional programs are targeted by the bacterium without significantly modifying differentiation.
Collapse
Affiliation(s)
- Kristen E Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
14
|
He YF, Chen HJ, Qian LH, He LF, Buzby JS. Diphenyleneiodonium protects preoligodendrocytes against endotoxin-activated microglial NADPH oxidase-generated peroxynitrite in a neonatal rat model of periventricular leukomalacia. Brain Res 2012; 1492:108-21. [PMID: 23174417 DOI: 10.1016/j.brainres.2012.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 10/06/2012] [Accepted: 11/12/2012] [Indexed: 01/17/2023]
Abstract
The contribution of microglial activation to preoligodendroglial (preOL) damage in the central nervous system (CNS) is considered to be one of the principal causes of periventricular leukomalacia (PVL) pathogenesis. The present study explores the effect of diphenyleneiodonium (DPI), a NADPH oxidase (NOX) inhibitor, on protection of preOLs from bacterial lipopolysaccharide (LPS)-induced microglial toxicity in vivo and in vitro. In vitro, preOLs co-cultured with microglia exhibited increased preOL apoptosis, accompanied by overproduction of superoxide anion (O(2)(-)) and the formation of peroxynitrite (ONOO(-)) after LPS exposure. LPS also significantly up-regulated accumulation of activated microglial NOX subunits p67-phox and gp91-phox in the plasma membrane. Diphenyleneiodonium (DPI) (10μm) was found to significantly attenuate up-regulation of this NOX activity. In vivo, DPI was administered (1mg/kg/day) by subcutaneous injection for 3 days to two-day-old neonatal Sprague-Dawley rats subjected to intracerebral injection of LPS. Treatment with DPI within 24h of LPS injection significantly ameliorated white matter injury, decreasing preOL loss, O(2)(-) generation, and ONOO(-) formation, and inhibiting p67-phox, gp91-phox synthesis and p67phox membrane translocation in microglia. These results indicated that LPS-induced preOL apoptosis may have been mediated by microglia-derived ONOO(-). DPI prevented this LPS-induced brain injury, most likely by inhibiting ONOO(-) formation via NOX, thereby preventing preOL loss and immature white matter injury.
Collapse
Affiliation(s)
- Ya-Fang He
- Shanghai Institute for Pediatric Research, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Shanghai 200092, China.
| | | | | | | | | |
Collapse
|
15
|
Brennan LJ, Haukedal JA, Earle JC, Keddie B, Harris HL. Disruption of redox homeostasis leads to oxidative DNA damage in spermatocytes of Wolbachia-infected Drosophila simulans. INSECT MOLECULAR BIOLOGY 2012; 21:510-520. [PMID: 22831171 DOI: 10.1111/j.1365-2583.2012.01155.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Molecular interactions between symbiotic bacteria and their animal hosts are, as yet, poorly understood. The most widespread bacterial endosymbiont, Wolbachia pipientis, occurs in high density in testes of infected Drosophila simulans and causes cytoplasmic incompatibility (CI), a form of male-derived zygotic lethality. Wolbachia grow and divide within host vacuoles that generate reactive oxygen species (ROS), which in turn stimulate the up-regulation of antioxidant enzymes. These enzymes appear to protect the host from ROS-mediated damage, as there is no obvious fitness cost to Drosophila carrying Wolbachia infections. We have now determined that DNA from Wolbachia-infected mosquito Aedes albopictus (Aa23) cells shows a higher amount of the base 8-oxo-deoxyguanosine, a marker of oxidative DNA damage, than DNA from uninfected cells, and that Wolbachia infection in D. simulans is associated with an increase in DNA strand breaks in meiotic spermatocytes. Feeding exogenous antioxidants to male and female D. simulans dramatically increased Wolbachia numbers with no obvious effects on host fitness. These results suggest that ROS-induced DNA damage in sperm nuclei may contribute to the modification characteristic of CI expression in Wolbachia-infected males and that Wolbachia density is sensitive to redox balance in these flies.
Collapse
Affiliation(s)
- L J Brennan
- Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
16
|
Lam GY, Fattouh R, Muise AM, Grinstein S, Higgins DE, Brumell JH. Listeriolysin O suppresses phospholipase C-mediated activation of the microbicidal NADPH oxidase to promote Listeria monocytogenes infection. Cell Host Microbe 2012; 10:627-34. [PMID: 22177565 DOI: 10.1016/j.chom.2011.11.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 06/17/2011] [Accepted: 11/17/2011] [Indexed: 10/14/2022]
Abstract
The intracellular bacterial pathogen Listeria monocytogenes produces phospholipases C (PI-PLC and PC-PLC) and the pore-forming cytolysin listeriolysin O (LLO) to escape the phagosome and replicate within the host cytosol. We found that PLCs can also activate the phagocyte NADPH oxidase during L. monocytogenes infection, a response that would adversely affect pathogen survival. However, secretion of LLO inhibits the NADPH oxidase by preventing its localization to phagosomes. LLO-deficient bacteria can be complemented by perfringolysin O, a related cytolysin, suggesting that other pathogens may also use pore-forming cytolysins to inhibit the NADPH oxidase. Our studies demonstrate that while the PLCs induce antimicrobial NADPH oxidase activity, this effect is alleviated by the pore-forming activity of LLO. Therefore, the combined activities of PLCs and LLO on membrane lysis and the inhibitory effects of LLO on NADPH oxidase activity allow L. monocytogenes to efficiently escape the phagosome while avoiding the microbicidal respiratory burst.
Collapse
Affiliation(s)
- Grace Y Lam
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Rosales-Reyes R, Skeldon AM, Aubert DF, Valvano MA. The Type VI secretion system of Burkholderia cenocepacia affects multiple Rho family GTPases disrupting the actin cytoskeleton and the assembly of NADPH oxidase complex in macrophages. Cell Microbiol 2011; 14:255-73. [PMID: 22023353 DOI: 10.1111/j.1462-5822.2011.01716.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Burkholderia cenocepacia is a Gram-negative opportunistic pathogen of patients with cystic fibrosis and chronic granulomatous disease. The bacterium survives intracellularly in macrophages within a membrane-bound vacuole (BcCV) that precludes the fusion with lysosomes. The underlying cellular mechanisms and bacterial molecules mediating these phenotypes are unknown. Here, we show that intracellular B. cenocepacia expressing a type VI secretion system (T6SS) affects the activation of the Rac1 and Cdc42 RhoGTPase by reducing the cellular pool of GTP-bound Rac1 and Cdc42. The T6SS also increases the cellular pool of GTP-bound RhoA and decreases cofilin activity. These effects lead to abnormal actin polymerization causing collapse of lamellipodia and failure to retract the uropod. The T6SS also prevents the recruitment of soluble subunits of the NADPH oxidase complex including Rac1 to the BcCV membrane, but is not involved in the BcCV maturation arrest. Therefore, T6SS-mediated deregulation of Rho family GTPases is a common mechanism linking disruption of the actin cytoskeleton and delayed NADPH oxidase activation in macrophages infected with B. cenocepacia.
Collapse
Affiliation(s)
- Roberto Rosales-Reyes
- Centre for Human Immunology, Department of Microbiology and Immunology Department of Medicine, University of Western Ontario, London, ON N6A 5C1, Canada
| | | | | | | |
Collapse
|
18
|
Mechanisms of obligatory intracellular infection with Anaplasma phagocytophilum. Clin Microbiol Rev 2011; 24:469-89. [PMID: 21734244 PMCID: PMC3131063 DOI: 10.1128/cmr.00064-10] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Anaplasma phagocytophilum persists in nature by cycling between mammals and ticks. Human infection by the bite of an infected tick leads to a potentially fatal emerging disease called human granulocytic anaplasmosis. A. phagocytophilum is an obligatory intracellular bacterium that replicates inside mammalian granulocytes and the salivary gland and midgut cells of ticks. A. phagocytophilum evolved the remarkable ability to hijack the regulatory system of host cells. A. phagocytophilum alters vesicular traffic to create an intracellular membrane-bound compartment that allows replication in seclusion from lysosomes. The bacterium downregulates or actively inhibits a number of innate immune responses of mammalian host cells, and it upregulates cellular cholesterol uptake to acquire cholesterol for survival. It also upregulates several genes critical for the infection of ticks, and it prolongs tick survival at freezing temperatures. Several host factors that exacerbate infection have been identified, including interleukin-8 (IL-8) and cholesterol. Host factors that overcome infection include IL-12 and gamma interferon (IFN-γ). Two bacterial type IV secretion effectors and several bacterial proteins that associate with inclusion membranes have been identified. An understanding of the molecular mechanisms underlying A. phagocytophilum infection will foster the development of creative ideas to prevent or treat this emerging tick-borne disease.
Collapse
|
19
|
Huang B, Hubber A, McDonough JA, Roy CR, Scidmore MA, Carlyon JA. The Anaplasma phagocytophilum-occupied vacuole selectively recruits Rab-GTPases that are predominantly associated with recycling endosomes. Cell Microbiol 2010; 12:1292-307. [PMID: 20345488 PMCID: PMC2923681 DOI: 10.1111/j.1462-5822.2010.01468.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Anaplasma phagocytophilum is an obligate intracellular bacterium that infects neutrophils to reside within a host cell-derived vacuole. The A. phagocytophilum-occupied vacuole (ApV) fails to mature along the endocytic pathway and is non-fusogenic with lysosomes. Rab GTPases regulate membrane traffic. To better understand how the bacterium modulates the ApV's selective fusogencity, we examined the intracellular localization of 20 green fluorescent protein (GFP) or red fluorescent protein (RFP)-tagged Rab GTPases in A. phagocytophilum-infected HL-60 cells. GFP-Rab4A, GFP-Rab10, GFP-Rab11A, GFP-Rab14, RFP-Rab22A and GFP-Rab35, which regulate endocytic recycling, and GFP-Rab1, which mediates endoplasmic reticulum to Golgi apparatus trafficking, localize to the ApV. Fluorescently tagged Rabs are recruited to the ApV upon its formation and remain associated throughout infection. Endogenous Rab14 localizes to the ApV. Tetracycline treatment concomitantly promotes loss of recycling endosome-associated GFP-Rabs and acquisition of GFP-Rab5, GFP-Rab7, and the lysosomal marker, LAMP-1. Wild-type and GTPase- deficient versions, but not GDP-restricted versions of GFP-Rab1, GFP-Rab4A and GFP-Rab11A, localize to the ApV. Strikingly, GFP-Rab10 recruitment to the ApV is guanine nucleotide-independent. These data establish that A. phagocytophilum selectively recruits Rab GTPases that are primarily associated with recycling endosomes to facilitate its intracellular survival and implicate bacterial proteins in regulating Rab10 membrane cycling on the ApV.
Collapse
Affiliation(s)
- Bernice Huang
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Andree Hubber
- Section of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536
| | - Justin A. McDonough
- Section of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536
| | - Craig R. Roy
- Section of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536
| | - Marci A. Scidmore
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
20
|
Anaplasma phagocytophilum and Ehrlichia chaffeensis: subversive manipulators of host cells. Nat Rev Microbiol 2010; 8:328-39. [PMID: 20372158 DOI: 10.1038/nrmicro2318] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anaplasma spp. and Ehrlichia spp. cause several emerging human infectious diseases. Anaplasma phagocytophilum and Ehrlichia chaffeensis are transmitted between mammals by blood-sucking ticks and replicate inside mammalian white blood cells and tick salivary-gland and midgut cells. Adaptation to a life in eukaryotic cells and transmission between hosts has been assisted by the deletion of many genes that are present in the genomes of free-living bacteria (including genes required for the biosynthesis of lipopolysaccharide and peptidoglycan), by the acquisition of a cholesterol uptake pathway and by the expansion of the repertoire of genes encoding the outer-membrane porins and type IV secretion system. Here, I review the specialized properties and other adaptations of these intracellular bacteria.
Collapse
|
21
|
Abstract
Anaplasma phagocytophilum is the recently designated name replacing three species of granulocytic bacteria, Ehrlichia phagocytophila, Ehrlichia equi and the agent of human granulocytic ehrlichiosis, after the recent reorganization of the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales. Tick-borne fever (TBF), which is caused by the prototype of A. phagocytophilum, was first described in 1932 in Scotland. A similar disease caused by a related granulocytic agent was first described in horses in the USA in 1969; this was followed by the description of two distinct granulocytic agents causing similar diseases in dogs in the USA in 1971 and 1982. Until the discovery of human granulocytic anaplasmosis (HGA) in the USA in 1994, these organisms were thought to be distinct species of bacteria infecting specific domestic animals and free-living reservoirs. It is now widely accepted that the agents affecting different animal hosts are variants of the same Gram-negative obligatory intracellular bacterium, which is transmitted by hard ticks belonging to the Ixodes persulcatus complex. One of its fascinating features is that it infects and actively grows in neutrophils by employing an array of mechanisms to subvert their bactericidal activity. It is also able to survive within an apparently immune host by employing a complex mechanism of antigenic variation. Ruminants with TBF and humans with HGA develop severe febrile reaction, bacteraemia and leukopenia due to neutropenia, lymphocytopenia and thrombocytopenia within a week of exposure to a tick bite. Because of the severe haematological disorders lasting for several days and other adverse effects on the host's immune functions, infected animals and humans are more susceptible to other infections.
Collapse
Affiliation(s)
- Zerai Woldehiwet
- University of Liverpool, Department of Veterinary Pathology, Veterinary Teaching Hospital, Leahurst, Neston, South Wirral CH64 7TE, UK.
| |
Collapse
|
22
|
Rikihisa Y. Molecular events involved in cellular invasion by Ehrlichia chaffeensis and Anaplasma phagocytophilum. Vet Parasitol 2009; 167:155-66. [PMID: 19836896 DOI: 10.1016/j.vetpar.2009.09.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ehrlichia chaffeensis and Anaplasma phagocytophilum are obligatory intracellular bacteria that preferentially replicate inside leukocytes by utilizing biological compounds and processes of these primary host defensive cells. These bacteria incorporate cholesterol from the host for their survival. Upon interaction with host monocytes and granulocytes, respectively, these bacteria usurp the lipid raft domain containing GPI-anchored protein to induce a series of signaling events that result in internalization of the bacteria. Monocytes and neutrophils usually kill invading microorganisms by fusion of the phagosomes containing the bacteria with granules containing both antimicrobial peptides and lysosomal hydrolytic enzymes and/or through sequestering vital nutrients. However, E. chaffeensis and A. phagocytophilum alter vesicular traffic to create a unique intracellular membrane-bound compartment that allows their replication in seclusion from lysosomal killing. These bacteria are quite sensitive to reactive oxygen species (ROS), so in order to survive in host cells that are primary mediators of ROS-induced killing, they inhibit activation of NADPH oxidase and assembly of this enzyme in their inclusion compartments. Moreover, host phagocyte activation and differentiation, apoptosis, and IFN-gamma signaling pathways are inhibited by these bacteria. Through reductive evolution, lipopolysaccharide and peptidoglycan that activate the innate immune response, have been eliminated from these gram-negative bacteria at the genomic level. Upon interaction with new host cells, bacterial genes encoding the Type IV secretion apparatus and the two-component regulatory system are up-regulated to sense and adapt to the host environment. Thus dynamic signal transduction events concurrently proceed both in the host cells and in the invading E. chaffeensis and A. phagocytophilum bacteria for successful establishment of intracellular infection. Several bacterial surface-exposed proteins and porins are recently identified. Further functional studies on Ehrlichia and Anaplasma effector or ligand molecules and cognate host cell receptors will undoubtedly advance our understanding of the complex interplay between obligatory intracellular pathogens and their hosts. Such data can be applied towards treatment, diagnosis, and control of ehrlichiosis and anaplasmosis.
Collapse
Affiliation(s)
- Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
23
|
Rikihisa Y, Lin M, Niu H, Cheng Z. Type IV secretion system of Anaplasma phagocytophilum and Ehrlichia chaffeensis. Ann N Y Acad Sci 2009; 1166:106-11. [PMID: 19538269 DOI: 10.1111/j.1749-6632.2009.04527.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intracellular bacterial pathogens Ehrlichia chaffeensis and Anaplasma phagocytophilum have evolved to infect leukocytes and hijack biological compounds and processes of these host defensive cells. Bacterial type IV secretion (T4S) system transports macromolecules across the membrane in an ATP-dependent manner and is increasingly recognized as a virulence factor delivery mechanism that allows pathogens to modulate eukaryotic cell functions for their own benefit. Genes encoding T4S system homologous to those of a plant pathogen Agrobacterium tumefaciens have been identified in E. chaffeensis and A. phagocytophilum. Upon interaction with new host cells, E. chaffeensis and A. phagocytophilum genes encoding the T4S apparatus are upregulated. The delivered macromolecules are referred to as T4S substrates, or effectors, because they affect and alter basic host cellular processes, resulting in disease development. Recently, A. phagocytophilum 160-kDa AnkA protein was to be delivered by T4S system into the host cytoplasm. Thus, dynamic signal transduction events are likely induced by T4S substrates in the host cells for successful establishment of intracellular infection. Further studies on Ehrlichia and Anaplasma T4S effectors cognate host cell molecules will undoubtedly advance our understanding of the complex interplay between obligatory intracellular pathogens and their hosts. Such data can be applied toward treatment, diagnosis, and control of ehrlichiosis and anaplasmosis.
Collapse
Affiliation(s)
- Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | |
Collapse
|
24
|
Garcia-Garcia JC, Barat NC, Trembley SJ, Dumler JS. Epigenetic silencing of host cell defense genes enhances intracellular survival of the rickettsial pathogen Anaplasma phagocytophilum. PLoS Pathog 2009; 5:e1000488. [PMID: 19543390 PMCID: PMC2694362 DOI: 10.1371/journal.ppat.1000488] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 05/27/2009] [Indexed: 11/19/2022] Open
Abstract
Intracellular bacteria have evolved mechanisms that promote survival within hostile host environments, often resulting in functional dysregulation and disease. Using the Anaplasma phagocytophilum–infected granulocyte model, we establish a link between host chromatin modifications, defense gene transcription and intracellular bacterial infection. Infection of THP-1 cells with A. phagocytophilum led to silencing of host defense gene expression. Histone deacetylase 1 (HDAC1) expression, activity and binding to the defense gene promoters significantly increased during infection, which resulted in decreased histone H3 acetylation in infected cells. HDAC1 overexpression enhanced infection, whereas pharmacologic and siRNA HDAC1 inhibition significantly decreased bacterial load. HDAC2 does not seem to be involved, since HDAC2 silencing by siRNA had no effect on A. phagocytophilum intracellular propagation. These data indicate that HDAC up-regulation and epigenetic silencing of host cell defense genes is required for A. phagocytophilum infection. Bacterial epigenetic regulation of host cell gene transcription could be a general mechanism that enhances intracellular pathogen survival while altering cell function and promoting disease. Although the main function of defense cells is to eliminate invading infections, some intracellular bacterial pathogens manage to turn defense cells into suitable hosts for bacterial propagation. In doing so, intracellular pathogens dysregulate host cell function and cause disease. With genomic and metabolic resources thousands of times more limited than the host's, intracellular bacteria have evolved very efficient mechanisms to globally subvert the host defense. Here, we define a mechanism by which the intracellular pathogen Anaplasma phagocytophilum globally inhibits host cell defenses by affecting mechanisms of epigenetic control of defense gene expression. Silencing or inhibition of the host protein HDAC1 has a negative effect on intracellular bacterial replication, whereas HDAC1 overexpression leads to defense gene silencing and facilitates intracellular bacterial survival. This study not only provides new insight into a mechanism of host cell subversion, but also identifies a potential target for future development of novel therapeutic intervention strategies.
Collapse
Affiliation(s)
- Jose C. Garcia-Garcia
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nicole C. Barat
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sarah J. Trembley
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - J. Stephen Dumler
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Abstract
Polymorphonuclear leukocytes (PMNs) are the most abundant white cell in humans and an essential component of the innate immune system. PMNs are typically the first type of leukocyte recruited to sites of infection or areas of inflammation. Ingestion of microorganisms triggers production of reactive oxygen species and fusion of cytoplasmic granules with forming phagosomes, leading to effective killing of ingested microbes. Phagocytosis of bacteria typically accelerates neutrophil apoptosis, which ultimately promotes the resolution of infection. However, some bacterial pathogens alter PMN apoptosis to survive and thereby cause disease. Herein, we review PMN apoptosis and the ability of microorganisms to alter this important process.
Collapse
Affiliation(s)
- Adam D Kennedy
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | | |
Collapse
|
26
|
Keith KE, Hynes DW, Sholdice JE, Valvano MA. Delayed association of the NADPH oxidase complex with macrophage vacuoles containing the opportunistic pathogen Burkholderia cenocepacia. MICROBIOLOGY-SGM 2009; 155:1004-1015. [PMID: 19332803 DOI: 10.1099/mic.0.026781-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Burkholderia cenocepacia causes chronic lung infections in patients suffering from cystic fibrosis and chronic granulomatous disease. We have previously shown that B. cenocepacia survives intracellularly in macrophages within a membrane vacuole (BcCV) that delays acidification. Here, we report that after macrophage infection with live B. cenocepacia there is a approximately 6 h delay in the association of NADPH oxidase with BcCVs, while heat-inactivated bacteria are normally trafficked into NADPH oxidase-positive vacuoles. BcCVs in macrophages treated with a functional inhibitor of the cystic fibrosis transmembrane conductance regulator exhibited a further delay in the assembly of the NADPH oxidase complex at the BcCV membrane, but the inhibitor did not affect NADPH oxidase complex assembly onto vacuoles containing heat-inactivated B. cenocepacia or live Escherichia coli. Macrophages produced less superoxide following B. cenocepacia infection as compared to heat-inactivated B. cenocepacia and E. coli controls. Reduced superoxide production was associated with delayed deposition of cerium perhydroxide precipitates around BcCVs of macrophages infected with live B. cenocepacia, as visualized by transmission electron microscopy. Together, our results demonstrate that intracellular B. cenocepacia resides in macrophage vacuoles displaying an altered recruitment of the NADPH oxidase complex at the phagosomal membrane. This phenomenon may contribute to preventing the efficient clearance of this opportunistic pathogen from the infected airways of susceptible patients.
Collapse
Affiliation(s)
- Karen E Keith
- Infectious Diseases Research Group, Siebens-Drake Research Institute, Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Daniel W Hynes
- Infectious Diseases Research Group, Siebens-Drake Research Institute, Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Judith E Sholdice
- Infectious Diseases Research Group, Siebens-Drake Research Institute, Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Miguel A Valvano
- Department of Medicine, University of Western Ontario, London, ON N6A 5C1, Canada.,Infectious Diseases Research Group, Siebens-Drake Research Institute, Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
27
|
Abstract
Professional phagocytes have a vast and sophisticated arsenal of microbicidal features. They are capable of ingesting and destroying invading organisms, and can present microbial antigens on their surface, eliciting acquired immune responses. To survive this hostile response, certain bacterial species have developed evasive strategies that often involve the secretion of effectors to co-opt the cellular machinery of the host. In this Review, we present an overview of the antimicrobial defences of the host cell, with emphasis on macrophages, for which phagocytosis has been studied most extensively. In addition, using Mycobacterium tuberculosis, Listeria monocytogenes, Legionella pneumophila and Coxiella burnetii as examples, we describe some of the evasive strategies used by bacteria.
Collapse
|
28
|
Abstract
Symptomatic infection with Neisseria gonorrhoeae (Gc) results in a potent polymorphonuclear leukocyte (PMN)-driven inflammatory response, but the mechanisms by which Gc withstands PMN attack are poorly defined. Here we report that Gc can suppress the PMN oxidative burst, a central component of the PMN antimicrobial arsenal. Primary human PMNs remained viable after exposure to liquid-grown, exponential-phase, opacity-associated protein (Opa)-negative Gc of strains FA1090 and MS11 but did not generate reactive oxygen species (ROS), even after bacterial opsonization. Liquid-grown FA1090 Gc expressing OpaB, an Opa protein previously correlated with PMN ROS production, elicited a minor PMN oxidative burst. PMN ROS production in response to Opa(-) and OpaB+ Gc was markedly enhanced if bacteria were agar-grown or if liquid-grown bacteria were heat-killed. Liquid-grown Opa(-) Gc inhibited the PMN oxidative burst elicited by isogenic dead bacteria, formylated peptides or Staphylococcus aureus but did not inhibit PMN ROS production by OpaB+ Gc or phorbol esters. Suppression of the oxidative burst required Gc-PMN contact and bacterial protein synthesis but not phagocytosis. These results suggest that viable Gc directly inhibits PMN signalling pathways required for induction of the oxidative burst, which may contribute to gonococcal pathogenesis during inflammatory stages of gonorrhoeal disease.
Collapse
Affiliation(s)
- Alison K Criss
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | |
Collapse
|
29
|
Niu H, Yamaguchi M, Rikihisa Y. Subversion of cellular autophagy by Anaplasma phagocytophilum. Cell Microbiol 2007; 10:593-605. [PMID: 17979984 DOI: 10.1111/j.1462-5822.2007.01068.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis, is an obligatory intracellular pathogen. After entry into host cells, the bacterium is diverted from the endosomal pathway and replicates in a membrane-bound compartment devoid of endosomal or lysosomal markers. Here, we show that several hallmarks of early autophagosomes can be identified in A. phagocytophilum replicative inclusions, including a double-lipid bilayer membrane and colocalization with GFP-tagged LC3 and Beclin 1, the human homologues of Saccharomyces cerevisiae autophagy-related proteins Atg8 and Atg6 respectively. While the membrane-associated form of LC3, LC3-II, increased during A. phagocytophilum infection, A. phagocytophilum-containing inclusions enveloped with punctate GFP-LC3 did not colocalize with a lysosomal marker. Stimulation of autophagy by rapamycin favoured A. phagocytophilum infection. Inhibition of the autophagosomal pathway by 3-methyladenine did not inhibit A. phagocytophilum internalization, but reversibly arrested its growth. Although autophagy is considered part of the innate immune system that clears a variety of intracellular pathogens, our study implies that A. phagocytophilum subverts this system to establish itself in an early autophagosome-like compartment segregated from lysosomes to facilitate its proliferation.
Collapse
Affiliation(s)
- Hua Niu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
30
|
Lin M, den Dulk-Ras A, Hooykaas PJJ, Rikihisa Y. Anaplasma phagocytophilum AnkA secreted by type IV secretion system is tyrosine phosphorylated by Abl-1 to facilitate infection. Cell Microbiol 2007; 9:2644-57. [PMID: 17587335 DOI: 10.1111/j.1462-5822.2007.00985.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis, is an obligate intracellular bacterium of granulocytes. A. phagocytophilum specifically induces tyrosine phosphorylation of a 160 kDa protein (P160) in host cells. However, identity of P160, kinases involved, and effects of tyrosine phosphorylation on bacterial infection remain largely unknown. Here, we demonstrated through proteomic analysis that P160, an abundant and rapidly tyrosine-phosphorylated protein throughout infection, was AnkA of bacterial origin. Differential centrifugation and confocal microscopy revealed that AnkA was rarely retained within A. phagocytophilum or its inclusion, but localized mainly in the cytoplasm of infected cells. Using Cre recombinase reporter assay of Agrobacterium tumefaciens, we proved that AnkA could be secreted by VirB/D4-dependent type IV secretion (T4S) system. Yeast two-hybrid and coimmunoprecipitation analyses demonstrated that AnkA could bind to Abl-interactor 1 (Abi-1), an adaptor protein that interacts with Abl-1 tyrosine kinase, thus mediating AnkA phosphorylation. AnkA and Abl-1 were critical for bacterial infection, as infection was inhibited upon host cytoplasmic delivery of anti-AnkA antibody, Abl-1 knockdown with targeted siRNA, or treatment with a specific pharmacological inhibitor of Abl-1. These data establish AnkA as the first proven T4S substrate in members of obligate intracellular alpha-proteobacteria; furthermore, it demonstrated that AnkA plays an important role in facilitating intracellular infection by activating Abl-1 signalling pathway, and suggest a novel approach to treatment of human granulocytic anaplasmosis through inhibition of host cell signalling pathways.
Collapse
Affiliation(s)
- Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
31
|
Woldehiwet Z. Immune evasion and immunosuppression by Anaplasma phagocytophilum, the causative agent of tick-borne fever of ruminants and human granulocytic anaplasmosis. Vet J 2007; 175:37-44. [PMID: 17275372 DOI: 10.1016/j.tvjl.2006.11.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/22/2006] [Accepted: 11/25/2006] [Indexed: 01/02/2023]
Abstract
Anaplasma phagocytophilum, the causative agent of tick-borne fever (TBF) in sheep and cattle and human granulocytic anaplasmosis, has the unique ability to infect and multiply within neutrophils, eosinophils and monocytes, cells at the frontline of the immune system. Infection with A. phagocytophilum is also characterized by severe leukopenia due to lymphocytopenia, neutropenia and thrombocytopenia lasting for several days. By itself TBF does not cause high mortality rates but infected animals are more susceptible to other secondary infections, pregnant animals may abort and there is a severe reduction in milk yield in dairy cattle. The susceptibility to secondary infections can be attributed to the leukopenia that accompanies the disease and the organism's adverse effects on lymphocyte and neutrophil functions. One of its fascinating features is that it infects and actively grows in neutrophils by employing an array of mechanisms to subvert their bactericidal activity. These include its ability to inhibit phagosome-lysosome fusion, to suppress respiratory burst and to delay the apoptotic death of neutrophils. It is also able to survive within an apparently immune host by employing a complex mechanism of antigenic variation.
Collapse
Affiliation(s)
- Zerai Woldehiwet
- University of Liverpool, Department of Veterinary Pathology, Veterinary Teaching Hospital, Leahurst, Neston, Wirral CH64 7TE, UK.
| |
Collapse
|
32
|
Lin M, Rikihisa Y. Degradation of p22phox and inhibition of superoxide generation by Ehrlichia chaffeensis in human monocytes. Cell Microbiol 2006; 9:861-74. [PMID: 17087735 DOI: 10.1111/j.1462-5822.2006.00835.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ehrlichia chaffeensis is an obligate intracellular bacterium which replicates in monocytes or macrophages, the primary producers of reactive oxygen species (ROS). However, effects of ROS on E. chaffeensis infection and whether E. chaffeensis modulates ROS generation in host monocytes are unknown. Here, E. chaffeensis was shown to lose infectivity upon exposure to O(2)(-) or hydrogen peroxide. Upon incubation with human monocytes, E. chaffeensis neither induced O(2)(-) generation by human monocytes, nor colocalized with nicotinamide adenine dinucleotide phosphate (NADPH) oxidase components. Instead, it actively blocked O(2)(-) generation by monocytes stimulated with phorbol myristate acetate and caused the rapid degradation of p22(phox), a component of NADPH oxidase. These effects were not seen in neutrophil, which is another potent ROS generator, but a cell type that E. chaffeensis does not infect. Trypsin pretreatment of monocytes prevented the inhibition of O(2)(-) generation by E. chaffeensis. The degradation of p22(phox) by E. chaffeensis was specific to subsets of monocytes with bound and/or intracellular bacteria, and the degradation could be reduced by heat treatment of the bacterium, lipopolysaccharide pretreatment of monocytes, or the incubation with haemin. The degradation of p22(phox) by E. chaffeensis and its prevention by haemin or protease inhibitors also occurred in isolated monocyte membrane fractions, indicating that host cytoplasmic signalling is not required for these processes. The amount of gp91(phox) was stable under all conditions examined in this study. These findings point to a unique survival mechanism of ROS-sensitive obligate intraleucocytic bacteria that involves the destabilization of p22(phox) following the binding of bacteria to host cell surface proteins.
Collapse
Affiliation(s)
- Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
33
|
Ge Y, Rikihisa Y. Anaplasma phagocytophilum delays spontaneous human neutrophil apoptosis by modulation of multiple apoptotic pathways. Cell Microbiol 2006; 8:1406-16. [PMID: 16922860 DOI: 10.1111/j.1462-5822.2006.00720.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anaplasma phagocytophilum infects human neutrophils and inhibits the intrinsic pathway of spontaneous neutrophil apoptosis by protecting mitochondrial membrane integrity. In the present study, we investigated the molecular signalling of the extrinsic pathway and the interaction between the intrinsic and extrinsic pathways in the inhibition of spontaneous human neutrophil apoptosis by A. phagocytophilum. Cell surface Fas clustering during spontaneous neutrophil apoptosis was significantly blocked by A. phagocytophilum infection. The cleavage of pro-caspase 8, caspase 8 activation and the cleavage of Bid, which links the intrinsic and extrinsic pathways, in the extrinsic pathway of spontaneous neutrophil apoptosis were inhibited by A. phagocytophilum infection. Inhibition of this pathway was active as the cleavage of pro-caspase 8 and Bid in anti-Fas-induced neutrophil apoptosis was also inhibited by A. phagocytophilum infection. Likewise, A. phagocytophilum infection inhibited the pro-apoptotic Bax translocation to mitochondria, activation of caspase 9, the initiator caspase in the intrinsic pathway, and the degradation of a potent caspase inhibitor, X-chromosome-linked inhibitor of apoptosis protein (XIAP), during spontaneous neutrophil apoptosis. These data point to a novel mechanism induced by A. phagocytophilum involving both extrinsic and intrinsic pathways to ensure to delay the apoptosis of host neutrophils.
Collapse
Affiliation(s)
- Yan Ge
- Department of Veterinary Biosciences, The Ohio State University, Columbus, 43210, USA
| | | |
Collapse
|
34
|
Lillini E, Macrì G, Proietti G, Scarpulla M. New Findings on Anaplasmosis Caused by Infection withAnaplasma phagocytophilum. Ann N Y Acad Sci 2006; 1081:360-70. [PMID: 17135539 DOI: 10.1196/annals.1373.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ixodes ricinus (I. ricinus) is one of the vectors of Anaplasma phagocytophilum (A. phagocytophilum) in Europe, in which rates of infection range from 1.9% to 34%. In 1998, human granulocytic ehrlichiosis-like (HGE-like) Ehrlichia DNA was detected in Italy, by PCR technique in one I. ricinus nymph out of 55 ticks that were examined. In 1996, 6.3% of 310 human sera in high-risk subjects from Italy were found positive for antibodies to Ehrlichia phagocytophila (E. phagocytophila). In the same year, the authors reported the first case of equine granulocytic ehrlichiosis. In 1997, only 2 out of 563 equine blood samples examined were found positive for antibodies to E. phagocytophila in the Latium region. In 1998, serological positivity was not observed in 14 symptomatic race horses. In 2002, a symptomatic horse living in Rome was found positive for Ehrlichia equi (E. equi) antibodies, as confirmed by PCR. E. equi was also demonstrated in horses by detection of specific antibodies from two asymptomatic ponies. We tested 128 sera from sheep in different flocks, and antibodies to E. phagocytophila were detected in 17 sera (13.3%) of these sheep. From 2000 to 2004, 147 dog sera were tested for antibodies against A. phagocytophilum, and 7 of these sera were positive (4.8%). These data confirm the presence of the infection in human, domestic animals, and pets in Italy. Studies are under way to correlate the distributions of the disease and tick vector, I. ricinus.
Collapse
Affiliation(s)
- Eugenio Lillini
- Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana, Via Appia Nuova 1411, 00187 Roma, Italy.
| | | | | | | |
Collapse
|
35
|
Scorpio DG, von Loewenich FD, Göbel H, Bogdan C, Dumler JS. Innate immune response to Anaplasma phagocytophilum contributes to hepatic injury. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:806-9. [PMID: 16829620 PMCID: PMC1489578 DOI: 10.1128/cvi.00092-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mice, Anaplasma phagocytophilum control is independent of phagocyte oxidase (phox), inducible NO synthase (NOS2), tumor necrosis factor (TNF), and MyD88 Toll-like receptor signaling. We show that despite evasion of these host responses, phox, NOS2, TNF, and MyD88 are activated and contribute to inflammation and hepatic injury more than A. phagocytophilum itself.
Collapse
Affiliation(s)
- Diana G Scorpio
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, 720 Rutland Avenue, Ross 459, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|
36
|
Niu H, Rikihisa Y, Yamaguchi M, Ohashi N. Differential expression of VirB9 and VirB6 during the life cycle of Anaplasma phagocytophilum in human leucocytes is associated with differential binding and avoidance of lysosome pathway. Cell Microbiol 2006; 8:523-34. [PMID: 16469062 DOI: 10.1111/j.1462-5822.2005.00643.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Anaplasma phagocytophilum, an obligate intracellular bacterium, is the aetiologic agent of human granulocytic anaplasmosis (HGA). A. phagocytophilum virB/D operons encoding type IV secretion system are expressed in cell culture and in the blood of HGA patients. In the present study, their expression across the A. phagocytophilum intracellular developmental cycle was investigated. We found that mRNA levels of both virB9 and virB6 were upregulated during infection of human neutrophils in vitro. The antibody against the recombinant VirB9 protein was prepared and immunogold and immunofluorescence labelling were used to determine the VirB9 protein expression by individual organisms. Majority of A. phagocytophilum spontaneously released from the infected host cells poorly expressed VirB9. At 1 h post infection, VirB9 was not detectable on most bacteria associated with neutrophils. However, VirB9 was strongly expressed by A. phagocytophilum during proliferation in neutrophils. In contrast, with HL-60 cells, approximately 80% of A. phagocytophilum organisms associated at 1 h post infection expressed VirB9 protein and were colocalized with lysosome-associated membrane protein-1 (LAMP-1), whereas, VirB9-undetectable bacteria were not colocalized with LAMP-1. These results indicate developmental regulation of expression of components of type IV secretion system during A. phagocytophilum intracellular life cycle and suggest that bacterial developmental stages influence the nature of binding to the hosts and early avoidance of late endosome-lysosome pathway.
Collapse
Affiliation(s)
- Hua Niu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW This review summarizes recent knowledge regarding the strategies employed by Anaplasma phagocytophilum to evade or subvert neutrophil killing mechanisms and modify other neutrophil pathways to promote its survival. RECENT FINDINGS A. phagocytophilum evades neutrophil oxidative killing by preventing fusion of cytochrome b558-carrying specific granules and secretory vesicles with the membrane of its cytoplasmic compartment. It also directly detoxifies superoxide anion. Additionally, the bacterium alters the interaction of transcription factors with the CYYB promoter, which results in greatly reduced gp91phox levels and a consequent decline in respiratory burst capability. A. phagocytophilum not only fails to activate the normal neutrophil apoptosis differentiation program stimulated by bacterial uptake, but also delays spontaneous apoptosis by manipulating the expression of pro and antiapoptotic genes. Maintenance of the proapoptotic factor Bfl-1 contributes, at least in part, to the preservation of mitochondrial membrane integrity and inhibition of caspase 3 activation. SUMMARY A. phagocytophilum combats neutrophil oxidative killing by scavenging O2, inhibiting NADPH oxidase assembly on its vacuolar membrane, and modifying promoter activity for a key NADPH oxidase component, gp91phox. Uptake of this unique pathogen fails to induce neutrophil apoptosis. Furthermore, A. phagocytophilum extends the life of its otherwise short-lived host cell by dysregulating neutrophil gene expression and molecular machinery to potentially maximize its survival and dissemination within its mammalian host.
Collapse
Affiliation(s)
- Jason A Carlyon
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA.
| | | |
Collapse
|
38
|
Sukumaran B, Carlyon JA, Cai JL, Berliner N, Fikrig E. Early transcriptional response of human neutrophils to Anaplasma phagocytophilum infection. Infect Immun 2006; 73:8089-99. [PMID: 16299303 PMCID: PMC1307096 DOI: 10.1128/iai.73.12.8089-8099.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaplasma phagocytophilum, an unusual obligate intracellular pathogen that persists within neutrophils, causes human anaplasmosis (previously known as human granulocytic ehrlichiosis). To study the effects of this pathogen on the transcriptional profile of its host cell, we performed a comprehensive DNA microarray analysis of the early (4-h) transcriptional response of human neutrophils to A. phagocytophilum infection. A. phagocytophilum infection resulted in the up- and down-regulation of 177 and 67 neutrophil genes, respectively. These data were verified by quantitative reverse transcription-PCR of selected genes. Notably, the up-regulation of many antiapoptotic genes, including the BCL2A1, BIRC3, and CFLAR genes, and the down-regulation of the proapoptotic TNFSF10 gene were observed. Genes involved in inflammation, innate immunity, cytoskeletal remodeling, and vesicular transport also exhibited differential expression. Vascular endothelial growth factor was also induced. These data suggest that A. phagocytophilum may alter selected host pathways in order to facilitate its survival within human neutrophils. To gain further insight into the bacterium's influence on host cell gene expression, this report presents a detailed comparative analysis of our data and other gene expression profiling studies of A. phagocytophilum-infected neutrophils and promyelocytic cell lines.
Collapse
Affiliation(s)
- Bindu Sukumaran
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, The Anlyan Center for Medical Research and Education, New Haven, CT 06520-8031, USA
| | | | | | | | | |
Collapse
|
39
|
Pham NK, Mouriz J, Kima PE. Leishmania pifanoi amastigotes avoid macrophage production of superoxide by inducing heme degradation. Infect Immun 2006; 73:8322-33. [PMID: 16299330 PMCID: PMC1307057 DOI: 10.1128/iai.73.12.8322-8333.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Whereas infections of macrophages by promastigote forms of Leishmania mexicana pifanoi induce the production of superoxide, infections by amastigotes barely induce superoxide production. Several approaches were employed to gain insight into the mechanism by which amastigotes avoid eliciting superoxide production. First, in experiments with nitroblue tetrazolium, we found that 25% of parasitophorous vacuoles (PVs) that harbor promastigotes are positive for the NADPH oxidase complex, in contrast to only 2% of PVs that harbor amastigotes. Second, confocal microscope analyses of infected cells labeled with antibodies to gp91phox revealed that this enzyme subunit is found in PVs that harbor amastigotes. Third, in immunoblots of subcellular fractions enriched with PVs from amastigote-infected cells and probed with antibodies to gp91phox, only the 65-kDa premature form of gp91phox was found. In contrast, subcellular fractions from macrophages that ingested zymosan particles contained both the 91- and 65-kDa forms of gp91phox. This suggested that only the immature form of gp91phox is recruited to PVs that harbor amastigotes. Given that gp91phox maturation is dependent on the availability of heme, we found that infections by Leishmania parasites induce an increase in heme oxygenase 1 (HO-1), the rate-limiting enzyme in heme degradation. Infections by amastigotes performed in the presence of metalloporphyrins, which are inhibitors of HO-1, resulted in superoxide production by infected macrophages. Taken together, we propose that Leishmania amastigotes avoid superoxide production by inducing an increase in heme degradation, which results in blockage of the maturation of gp91phox, which prevents assembly of the NADPH oxidase enzyme complex.
Collapse
Affiliation(s)
- Nam-Kha Pham
- Department of Microbiology and Cell Science, Building 981, Box 110700, University of Florida, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
40
|
Rikihisa Y. Ehrlichia subversion of host innate responses. Curr Opin Microbiol 2006; 9:95-101. [PMID: 16406779 DOI: 10.1016/j.mib.2005.12.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 12/16/2005] [Indexed: 01/15/2023]
Abstract
Anaplasma (formerly Ehrlichia) phagocytophilum and Ehrlichia chaffeensis, upon infection of humans, replicate in host leukocyte granulocytes and monocytes/macrophages, respectively. These unusual Gram-negative bacteria lack genes for biosynthesis of the lipopolysaccharide and peptidoglycan that activate host leukocytes. Caveolae-mediated endocytosis directs A. phagocytophilum and E. chaffeensis to an intracellular compartment secluded from oxygen-dependent and -independent killing. Furthermore, these bacteria orchestrate a remarkable series of events that culminate in suppression of NADPH oxidase, phagocyte activation and differentiation pathways, apoptosis, and interferon-gamma signaling in host leukocytes. They offer a fascinating example of how pathogens employ intricate strategies to usurp and subvert host cell function.
Collapse
Affiliation(s)
- Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA.
| |
Collapse
|
41
|
Abbott JR, Palmer GH, Kegerreis KA, Hetrick PF, Howard CJ, Hope JC, Brown WC. Rapid and long-term disappearance of CD4+ T lymphocyte responses specific for Anaplasma marginale major surface protein-2 (MSP2) in MSP2 vaccinates following challenge with live A. marginale. THE JOURNAL OF IMMUNOLOGY 2005; 174:6702-15. [PMID: 15905510 DOI: 10.4049/jimmunol.174.11.6702] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In humans and ruminants infected with Anaplasma, the major surface protein 2 (MSP2) is immunodominant. Numerous CD4(+) T cell epitopes in the hypervariable and conserved regions of MSP2 contribute to this immunodominance. Antigenic variation in MSP2 occurs throughout acute and persistent infection, and sequentially emerging variants are thought to be controlled by variant-specific Ab. This study tested the hypothesis that challenge of cattle with Anaplasma marginale expressing MSP2 variants to which the animals had been immunized, would stimulate variant epitope-specific recall CD4(+) T cell and IgG responses and organism clearance. MSP2-specific T lymphocyte responses, determined by IFN-gamma ELISPOT and proliferation assays, were strong before and for 3 wk postchallenge. Surprisingly, these responses became undetectable by the peak of rickettsemia, composed predominantly of organisms expressing the same MSP2 variants used for immunization. Immune responsiveness remained insignificant during subsequent persistent A. marginale infection up to 1 year. The suppressed response was specific for A. marginale, as responses to Clostridium vaccine Ag were consistently observed. CD4(+)CD25(+) T cells and cytokines IL-10 and TGF-beta1 did not increase after challenge. Furthermore, a suppressive effect of nonresponding cells was not observed. Lymphocyte proliferation and viability were lost in vitro in the presence of physiologically relevant numbers of A. marginale organisms. These results suggest that loss of memory T cell responses following A. marginale infection is due to a mechanism other than induction of T regulatory cells, such as peripheral deletion of MSP2-specific T cells.
Collapse
Affiliation(s)
- Jeffrey R Abbott
- Program in Vector-Borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, 99164, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Borjesson DL, Kobayashi SD, Whitney AR, Voyich JM, Argue CM, Deleo FR. Insights into pathogen immune evasion mechanisms: Anaplasma phagocytophilum fails to induce an apoptosis differentiation program in human neutrophils. THE JOURNAL OF IMMUNOLOGY 2005; 174:6364-72. [PMID: 15879137 DOI: 10.4049/jimmunol.174.10.6364] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polymorphonuclear leukocytes (PMNs or neutrophils) are essential to human innate host defense. However, some bacterial pathogens circumvent destruction by PMNs and thereby cause disease. Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis, survives within PMNs in part by altering normal host cell processes, such as production of reactive oxygen species (ROS) and apoptosis. To investigate the molecular basis of A. phagocytophilum survival within neutrophils, we used Affymetrix microarrays to measure global changes in human PMN gene expression following infection with A. phagocytophilum. Notably, A. phagocytophilum uptake induced fewer perturbations in host cell gene regulation compared with phagocytosis of Staphylococcus aureus. Although ingestion of A. phagocytophilum did not elicit significant PMN ROS, proinflammatory genes were gradually up-regulated, indicating delayed PMN activation rather than loss of proinflammatory capacity normally observed during phagocytosis-induced apoptosis. Importantly, ingestion of A. phagocytophilum failed to trigger the neutrophil apoptosis differentiation program that typically follows phagocytosis and ROS production. Heat-killed A. phagocytophilum caused some similar initial alterations in neutrophil gene expression and function, which included delaying normal PMN apoptosis and blocking Fas-induced programmed cell death. However, at 24 h, down-regulation of PMN gene transcription may be more reliant on active infection. Taken together, these findings suggest two separate antiapoptotic processes may work concomitantly to promote bacterial survival: 1) uptake of A. phagocytophilum fails to trigger the apoptosis differentiation program usually induced by bacteria, and 2) a protein or molecule on the pathogen surface can mediate an early delay in spontaneous neutrophil apoptosis.
Collapse
Affiliation(s)
- Dori L Borjesson
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Thomas V, Samanta S, Wu C, Berliner N, Fikrig E. Anaplasma phagocytophilum modulates gp91phox gene expression through altered interferon regulatory factor 1 and PU.1 levels and binding of CCAAT displacement protein. Infect Immun 2005; 73:208-18. [PMID: 15618156 PMCID: PMC538944 DOI: 10.1128/iai.73.1.208-218.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Infection of neutrophil precursors with Anaplasma phagocytophilum, the causative agent of human granulocytic ehrlichiosis, results in downregulation of the gp91(phox) gene, a key component of NADPH oxidase. We now show that repression of gp91(phox) gene transcription is associated with reduced expression of interferon regulatory factor 1 (IRF-1) and PU.1 in nuclear extracts of A. phagocytophilum-infected cells. Loss of PU.1 and IRF-1 correlated with increased binding of the repressor, CCAAT displacement protein (CDP), to the promoter of the gp91(phox) gene. Reduced protein expression of IRF-1 was observed with or without gamma interferon (IFN-gamma) stimulation, and the defect in IFN-gamma signaling was associated with diminished binding of phosphorylated Stat1 to the Stat1 binding element of the IRF-1 promoter. The diminished levels of activator proteins and enhanced binding of CDP account for the transcriptional inhibition of the gp91(phox) gene during A. phagocytophilum infection, providing evidence of the first molecular mechanism that a pathogen uses to alter the regulation of genes that contribute to an effective respiratory burst.
Collapse
Affiliation(s)
- Venetta Thomas
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, S525A, 300 Cedar St., P.O. Box 208031, New Haven, CT 06520-8031, USA
| | | | | | | | | |
Collapse
|
44
|
Diebold BA, Bokoch GM. Rho GTPases and the control of the oxidative burst in polymorphonuclear leukocytes. Curr Top Microbiol Immunol 2005; 291:91-111. [PMID: 15981461 DOI: 10.1007/3-540-27511-8_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stimulation of quiescent leukocytes activates the NADPH oxidase, a membrane-associated enzyme system that generates superoxide and other reactive oxygen species (ROS) that are used to kill bacteria within the phagosome. This chapter describes this multicomponent NADPH oxidase system, one of the first cellular systems shown to be directly regulated by Rac GTPases. We present current models of NADPH oxidase regulation by Rac2 and describe how Rac2 activation controls the timing of ROS production in adherent neutrophils. The antagonistic role that Cdc42 plays as a competitor of Rac2 for binding to the cytochrome component of the NADPH oxidase is discussed as a possible mechanism for tonic regulation of ROS production during the formation of the phagosome. Finally, we briefly depict mechanisms by which invasive bacteria can alter (inhibit) NADPH oxidase function, focusing on the effects of invasive bacteria on components and assembly of the NADPH oxidase.
Collapse
Affiliation(s)
- B A Diebold
- Department of Immunology and Cell Biology, The Scripps Research Institute, IMM-14, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
45
|
Fang FC. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2004; 2:820-32. [PMID: 15378046 DOI: 10.1038/nrmicro1004] [Citation(s) in RCA: 1153] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phagocyte-derived reactive oxygen and nitrogen species are of crucial importance for host resistance to microbial pathogens. Decades of research have provided a detailed understanding of the regulation, generation and actions of these molecular mediators, as well as their roles in resisting infection. However, differences of opinion remain with regard to their host specificity, cell biology, sources and interactions with one another or with myeloperoxidase and granule proteases. More than a century after Metchnikoff first described phagocytosis, and more than four decades after the discovery of the burst of oxygen consumption that is associated with microbial killing, the seemingly elementary question of how phagocytes inhibit, kill and degrade microorganisms remains controversial. This review updates the reader on these concepts and the topical questions in the field.
Collapse
Affiliation(s)
- Ferric C Fang
- Department of Laboratory Medicine, University of Washington School of Medicine, 1959 North East Pacific Street, Box 357242, Seattle, Washington 98195-7242, USA.
| |
Collapse
|
46
|
IJdo JW, Mueller AC. Neutrophil NADPH oxidase is reduced at the Anaplasma phagocytophilum phagosome. Infect Immun 2004; 72:5392-401. [PMID: 15322037 PMCID: PMC517486 DOI: 10.1128/iai.72.9.5392-5401.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The intracellular organism Anaplasma phagocytophilum causes human granulocytic ehrlichiosis and specifically infects and multiplies in neutrophilic granulocytes. Previous reports have suggested that, for its survival, this bacterium suppresses the neutrophil respiratory burst. To investigate the mechanism of survival, we first assessed the kinetics of A. phagocytophilum entry into neutrophils by using double-labeling confocal microscopy. At 30, 60, 120, and 240 min of incubation, 25, 50, 55, and 70% of neutrophils contained bacteria, respectively. The neutrophil respiratory burst in the presence of A. phagocytophilum was assessed by a kinetic cytochrome c assay and by measurement of oxygen consumption. Neutrophils in the presence of A. phagocytophilum did not produce a significant respiratory burst, but A. phagocytophilum did not inhibit the neutrophil respiratory burst when phorbol myristate acetate was added. Immunoelectron microscopy of neutrophils infected with A. phagocytophilum or Escherichia coli revealed that NADPH oxidase subunits gp91(phox) and p22(phox) were significantly reduced at the A. phagocytophilum phagosome after 1 and 4 h of incubation. In neutrophils incubated simultaneously with A. phagocytophilum and E. coli for 30, 60, and 90 min, gp91(phox) was present on 20, 14, and 10% of the A. phagocytophilum phagosomes, whereas p22(phox) was present in 11, 5, and 4% of the phagosomes, respectively. Similarly, on E. coli phagosomes, gp91(phox) was present in 62, 64, and 65%, whereas p22(phox) was detected in 54, 48, and 48%. We conclude that A. phagocytophilum does not suppress a global respiratory burst and that, under identical conditions in the same cells, A. phagocytophilum, but not E. coli, significantly reduces gp91(phox) and p22(phox) from its phagosome membrane.
Collapse
Affiliation(s)
- Jacob W IJdo
- Inflammation Program, Department of Internal Medicine, Division of Rheumatology, C312GH, University of Iowa, Iowa City, IA, USA.
| | | |
Collapse
|
47
|
Carlyon JA, Abdel-Latif D, Pypaert M, Lacy P, Fikrig E. Anaplasma phagocytophilum utilizes multiple host evasion mechanisms to thwart NADPH oxidase-mediated killing during neutrophil infection. Infect Immun 2004; 72:4772-83. [PMID: 15271939 PMCID: PMC470610 DOI: 10.1128/iai.72.8.4772-4783.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2004] [Revised: 03/18/2004] [Accepted: 05/04/2004] [Indexed: 01/02/2023] Open
Abstract
Anaplasma phagocytophilum, the etiologic agent of human anaplasmosis, is a bacterial pathogen that specifically colonizes neutrophils. Neutrophils utilize the NADPH oxidase complex to generate superoxide (O(2)(-)) and initiate oxidative killing of microorganisms. A. phagocytophilum's unique tropism for neutrophils, however, indicates that it subverts and/or avoids oxidative killing. We therefore examined the effects of A. phagocytophilum infection on neutrophil NADPH oxidase assembly and reactive oxygen species (ROS) production. Following neutrophil binding, Anaplasma invasion requires at least 240 min. During its prolonged association with the neutrophil plasma membrane, A. phagocytophilum stimulates NADPH oxidase assembly, as indicated by increased cytochrome b(558) mobilization to the membrane, as well as colocalization of Rac and p22(phox). This initial stimulation taxes the host neutrophil's finite oxidase reserves, as demonstrated by time- and bacterial-dose-dependent decreases in secondary activation by N-formyl-methionyl-leucyl-phenylalanine (FMLP) or phorbol myristate acetate (PMA). This stimulation is modest, however, and does not diminish oxidase stores to nearly the extent that Escherichia coli, serum-opsonized zymosan, FMLP, or PMA do. Despite the apparent activation of NADPH oxidase, no change in ROS-dependent chemiluminescence is observed upon the addition of A. phagocytophilum to neutrophils, indicating that the bacterium may scavenge exogenous O(2)(-). Indeed, A. phagocytophilum rapidly detoxifies O(2)(-) in a cell-free system. Once internalized, the bacterium resides within a protective vacuole that excludes p22(phox) and gp91(phox). Thus, A. phagocytophilum employs at least two strategies to protect itself from neutrophil NADPH oxidase-mediated killing.
Collapse
Affiliation(s)
- Jason A Carlyon
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
48
|
Tsunawaki S, Yoshida LS, Nishida S, Kobayashi T, Shimoyama T. Fungal metabolite gliotoxin inhibits assembly of the human respiratory burst NADPH oxidase. Infect Immun 2004; 72:3373-82. [PMID: 15155643 PMCID: PMC415710 DOI: 10.1128/iai.72.6.3373-3382.2004] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species are a critical weapon in the killing of Aspergillus fumigatus by polymorphonuclear leukocytes (PMN), as demonstrated by severe aspergillosis in chronic granulomatous disease. In the present study, A. fumigatus-produced mycotoxins (fumagillin, gliotoxin [GT], and helvolic acid) are examined for their effects on the NADPH oxidase activity in human PMN. Of these mycotoxins, only GT significantly and stoichiometrically inhibits phorbol myristate acetate (PMA)-stimulated O2- generation, while the other two toxins are ineffective. The inhibition is dependent on the disulfide bridge of GT, which interferes with oxidase activation but not catalysis of the activated oxidase. Specifically, GT inhibits PMA-stimulated events: p47phox phosphorylation, its incorporation into the cytoskeleton, and the membrane translocation of p67phox, p47phox, and p40phox, which are crucial steps in the assembly of the active NADPH oxidase. Thus, damage to p47phox phosphorylation is likely a key to inhibiting NADPH oxidase activation. GT does not inhibit the membrane translocation of Rac2. The inhibition of p47phox phosphorylation is due to the defective membrane translocation of protein kinase C (PKC) betaII rather than an effect of GT on PKC betaII activity, suggesting a failure of PKC betaII to associate with the substrate, p47phox, on the membrane. These results suggest that A. fumigatus may confront PMN by inhibiting the assembly of the NADPH oxidase with its hyphal product, GT.
Collapse
Affiliation(s)
- Shohko Tsunawaki
- Department of Infectious Diseases, National Research Institute for Child Health and Development, Setagaya, Tokyo 154-8567, Japan.
| | | | | | | | | |
Collapse
|
49
|
Lin M, Rikihisa Y. Obligatory intracellular parasitism by Ehrlichia chaffeensis and Anaplasma phagocytophilum involves caveolae and glycosylphosphatidylinositol-anchored proteins. Cell Microbiol 2004; 5:809-20. [PMID: 14531896 DOI: 10.1046/j.1462-5822.2003.00322.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Obligatory intracellular, human ehrlichiosis agents Ehrlichia chaffeensis and Anaplasma phagocytophilum create unique replicative compartments devoid of lysosomal markers in monocytes/macrophages and granulocytes respectively. The entry of these bacteria requires host phospholipase C (PLC)-gamma2 and protein tyrosine kinases, but their entry route is still unclear. Here, using specific inhibitors, double immunofluorescence labelling and the fractionation of lipid rafts, we demonstrate that bacterial entry and intracellular infection involve cholesterol-rich lipid rafts or caveolae and glycosylphosphatidylinositol (GPI)-anchored proteins. By fluorescence microscopy, caveolar marker protein caveolin-1 was co-localized with both early and replicative bacterial inclusions. Additionally, tyrosine-phosphorylated proteins and PLC-gamma2 were found in bacterial early inclusions. In contrast, clathrin was not found in any inclusions from either bacterium. An early endosomal marker, transferrin receptor, was not present in the early inclusions of E. chaffeensis, but was found in replicative inclusions of E. chaffeensis. Furthermore, several bacterial proteins from E. chaffeensis and A. phagocytophilum were co-fractionated with Triton X-100-insoluble raft fractions. The formation of bacteria-encapsulating caveolae, which assemble and retain signalling molecules essential for bacterial entry and interact with the recycling endosome pathway, may ensure the survival of these obligatory intracellular bacteria in primary host defensive cells.
Collapse
Affiliation(s)
- Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | | |
Collapse
|
50
|
Park J, Choi KS, Grab DJ, Dumler JS. Divergent interactions of Ehrlichia chaffeensis- and Anaplasma phagocytophilum-infected leukocytes with endothelial cell barriers. Infect Immun 2004; 71:6728-33. [PMID: 14638757 PMCID: PMC308917 DOI: 10.1128/iai.71.12.6728-6733.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Human anaplasmosis (formerly human granulocytic ehrlichiosis) and human monocytic ehrlichiosis (HME) are emerging tick-borne infections caused by obligate intracellular bacteria in the family Anaplasmataceae. Clinical findings include fever, headache, myalgia, leukopenia, thrombocytopenia, and hepatic inflammatory injury. Whereas Ehrlichia chaffeensis (HME) often causes meningoencephalitis, this is rare with Anaplasma phagocytophilum infection. The abilities of infected primary host monocytes and neutrophils and of infected HL-60 cells to cross human umbilical vein endothelial cell-derived EA.hy926 cell barriers and human brain microvascular cells (BMEC), a human blood-brain barrier model, were studied. Uninfected monocyte/macrophages crossed endothelial cell barriers six times more efficiently than neutrophils. More E. chaffeensis-infected monocytes transmigrated than uninfected monocytes, whereas A. phagocytophilum suppressed neutrophil transmigration. Differences were not due to barrier dysfunction, as transendothelial cell resistivities were the same for uninfected cell controls. Similar results were obtained for HL-60 cells used as hosts for E. chaffeensis and A. phagocytophilum. Differential transmigration of E. chaffeensis- and A. phagocytophilum-infected leukocytes and HL-60 cells confirmed a role for the pathogen in modifying cell migratory capacity. These results support the hypothesis that Anaplasmataceae intracellular infections lead to unique pathogen-specific host cell functional alterations that are likely important for pathogen survival, pathogenesis, and disease induction.
Collapse
Affiliation(s)
- Jinho Park
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|