1
|
Gherlan GS, Lazar DS, Florescu SA, Dirtu RM, Codreanu DR, Lupascu S, Nica M. Non-toxigenic Vibrio cholerae - just another cause of vibriosis or a potential new pandemic? Arch Clin Cases 2025; 12:5-16. [PMID: 39925986 PMCID: PMC11801190 DOI: 10.22551/2025.46.1201.10305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Although nontoxigenic Vibrio cholerae usually stands in the shadow of the two serogroups (O1 and O139) that cause pandemic cholera, its role in human pathology is increasingly recognized and described in the literature. The habitat of these pathogens is brackish seawater or even freshwater, and the infections caused by them include contact with these waters or consumption of seafood originating in this habitat, which is constantly expanding because of global warming. This habitat extension is a typical example of climate change's impact on infectious diseases. Although nontoxigenic Vibrio cholerae strains are rarely capable of producing the classical cholera toxin, they possess many other virulence factors, can secrete various other toxins, and thus produce illnesses that are sometimes even severe or life-threatening, more frequently in immunocompromised patients. Vibriosis may manifest as gastrointestinal illnesses, wounds, skin or subcutaneous tissue infections, or septicemia. To establish the correct etiological diagnosis for these infections, a high index of suspicion must be maintained, as the diagnostic techniques require targeted investigations and specific collection and transportation of the samples. Empiric treatment recommendations are available, but owing to the increasing resistance of this pathogen, susceptibility testing is needed for every diagnosed case. We intend to raise awareness regarding these infections, as they tend to be more frequent than they were in the past and to appear in areas where they had not been recognized before.
Collapse
Affiliation(s)
- George Sebastian Gherlan
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Dragos Stefan Lazar
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Simin Aysel Florescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Raluca Mihaela Dirtu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Daniel Romeo Codreanu
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Stefan Lupascu
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Maria Nica
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| |
Collapse
|
2
|
Sajeevan A, Ramamurthy T, Solomon AP. Vibrio cholerae virulence and its suppression through the quorum-sensing system. Crit Rev Microbiol 2025; 51:22-43. [PMID: 38441045 DOI: 10.1080/1040841x.2024.2320823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/21/2023] [Accepted: 02/10/2024] [Indexed: 03/06/2024]
Abstract
Vibrio cholerae is a cholera-causing pathogen known to instigate severe contagious diarrhea that affects millions globally. Survival of vibrios depend on a combination of multicellular responses and adapt to changes that prevail in the environment. This process is achieved through a strong communication at the cellular level, the process has been recognized as quorum sensing (QS). The severity of infection is highly dependent on the QS of vibrios in the gut milieu. The quorum may exist in a low/high cell density (LCD/HCD) state to exert a positive or negative response to control the regulatory pathogenic networks. The impact of this regulation reflects on the transition of pathogenic V. cholerae from the environment to infect humans and cause outbreaks or epidemics of cholera. In this context, the review portrays various regulatory processes and associated virulent pathways, which maneuver and control LCD and HCD states for their survival in the host. Although several treatment options are existing, promotion of therapeutics by exploiting the virulence network may potentiate ineffective antibiotics to manage cholera. In addition, this approach is also useful in resource-limited settings, where the accessibility to antibiotics or conventional therapeutic options is limited.
Collapse
Affiliation(s)
- Anusree Sajeevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Disease, Kolkata, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
3
|
Price CTD, Hanford HE, Al-Quadan T, Santic M, Shin CJ, Da'as MSJ, Abu Kwaik Y. Amoebae as training grounds for microbial pathogens. mBio 2024; 15:e0082724. [PMID: 38975782 PMCID: PMC11323580 DOI: 10.1128/mbio.00827-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Grazing of amoebae on microorganisms represents one of the oldest predator-prey dynamic relationships in nature. It represents a genetic "melting pot" for an ancient and continuous multi-directional inter- and intra-kingdom horizontal gene transfer between amoebae and its preys, intracellular microbial residents, endosymbionts, and giant viruses, which has shaped the evolution, selection, and adaptation of microbes that evade degradation by predatory amoeba. Unicellular phagocytic amoebae are thought to be the ancient ancestors of macrophages with highly conserved eukaryotic processes. Selection and evolution of microbes within amoeba through their evolution to target highly conserved eukaryotic processes have facilitated the expansion of their host range to mammals, causing various infectious diseases. Legionella and environmental Chlamydia harbor an immense number of eukaryotic-like proteins that are involved in ubiquitin-related processes or are tandem repeats-containing proteins involved in protein-protein and protein-chromatin interactions. Some of these eukaryotic-like proteins exhibit novel domain architecture and novel enzymatic functions absent in mammalian cells, such as ubiquitin ligases, likely acquired from amoebae. Mammalian cells and amoebae may respond similarly to microbial factors that target highly conserved eukaryotic processes, but mammalian cells may undergo an accidental response to amoeba-adapted microbial factors. We discuss specific examples of microbes that have evolved to evade amoeba predation, including the bacterial pathogens- Legionella, Chlamydia, Coxiella, Rickettssia, Francisella, Mycobacteria, Salmonella, Bartonella, Rhodococcus, Pseudomonas, Vibrio, Helicobacter, Campylobacter, and Aliarcobacter. We also discuss the fungi Cryptococcus, and Asperigillus, as well as amoebae mimiviruses/giant viruses. We propose that amoeba-microbe interactions will continue to be a major "training ground" for the evolution, selection, adaptation, and emergence of microbial pathogens equipped with unique pathogenic tools to infect mammalian hosts. However, our progress will continue to be highly dependent on additional genomic, biochemical, and cellular data of unicellular eukaryotes.
Collapse
Affiliation(s)
- Christopher T. D. Price
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Hannah E. Hanford
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Tasneem Al-Quadan
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | | | - Cheon J. Shin
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Manal S. J. Da'as
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
4
|
Gladney LM, Griswold T, Turnsek M, Im MS, Parsons MMB, Katz LS, Tarr CL, Lee CC. Characterization of a Nonagglutinating Toxigenic Vibrio cholerae Isolate. Microbiol Spectr 2023; 11:e0018223. [PMID: 37195209 PMCID: PMC10269536 DOI: 10.1128/spectrum.00182-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/24/2023] [Indexed: 05/18/2023] Open
Abstract
Toxigenic Vibrio cholerae serogroup O1 is the etiologic agent of the disease cholera, and strains of this serogroup are responsible for pandemics. A few other serogroups have been found to carry cholera toxin genes-most notably, O139, O75, and O141-and public health surveillance in the United States is focused on these four serogroups. A toxigenic isolate was recovered from a case of vibriosis from Texas in 2008. This isolate did not agglutinate with any of the four different serogroups' antisera (O1, O139, O75, or O141) routinely used in phenotypic testing and did not display a rough phenotype. We investigated several hypotheses that might explain the recovery of this potential nonagglutinating (NAG) strain using whole-genome sequencing analysis and phylogenetic methods. The NAG strain formed a monophyletic cluster with O141 strains in a whole-genome phylogeny. Furthermore, a phylogeny of ctxAB and tcpA sequences revealed that the sequences from the NAG strain also formed a monophyletic cluster with toxigenic U.S. Gulf Coast (USGC) strains (O1, O75, and O141) that were recovered from vibriosis cases associated with exposures to Gulf Coast waters. A comparison of the NAG whole-genome sequence showed that the O-antigen-determining region of the NAG strain was closely related to those of O141 strains, and specific mutations were likely responsible for the inability to agglutinate. This work shows the utility of whole-genome sequence analysis tools for characterization of an atypical clinical isolate of V. cholerae originating from a USGC state. IMPORTANCE Clinical cases of vibriosis are on the rise due to climate events and ocean warming (1, 2), and increased surveillance of toxigenic Vibrio cholerae strains is now more crucial than ever. While traditional phenotyping using antisera against O1 and O139 is useful for monitoring currently circulating strains with pandemic or epidemic potential, reagents are limited for non-O1/non-O139 strains. With the increased use of next-generation sequencing technologies, analysis of less well-characterized strains and O-antigen regions is possible. The framework for advanced molecular analysis of O-antigen-determining regions presented herein will be useful in the absence of reagents for serotyping. Furthermore, molecular analyses based on whole-genome sequence data and using phylogenetic methods will help characterize both historical and novel strains of clinical importance. Closely monitoring emerging mutations and trends will improve our understanding of the epidemic potential of Vibrio cholerae to anticipate and rapidly respond to future public health emergencies.
Collapse
Affiliation(s)
- Lori M. Gladney
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Taylor Griswold
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Maryann Turnsek
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Monica S. Im
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michele M. B. Parsons
- Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lee S. Katz
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Cheryl L. Tarr
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- ASRT, Inc., Smyrna, Georgia, USA
| | - Christine C. Lee
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Hao T, Zheng W, Wu Y, Yu H, Qian X, Yang C, Zheng Z, Zhang X, Guo Y, Cui M, Wang H, Pan J, Cui Y. Population genomics implies potential public health risk of two non-toxigenic Vibrio cholerae lineages. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 112:105441. [PMID: 37146742 DOI: 10.1016/j.meegid.2023.105441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/07/2023]
Abstract
Diarrheal cases caused by non-toxigenic Vibrio cholerae have been reported globally. Lineages L3b and L9, characterized as ctxAB-negative and tcpA-positive (CNTP), pose the highest risk and have caused long-term epidemics in different regions worldwide. From 2001 to 2018, two waves (2001-2012 and 2013-2018) of epidemic caused by non-toxigenic V. cholerae occurred in the developed city of Hangzhou, China. In this study, through the integrated analysis of 207 genomes of Hangzhou isolates from these two waves (119 and 88) and 1573 publicly available genomes, we showed that L3b and L9 lineages together caused the second wave as had happened in the first wave, but the dominant lineage shifted from L3b (first wave: 69%) to L9 (second wave: 50%). We further found that the genotype of a key virulence gene, tcpF, in the L9 lineage during the second wave shifted to type I, which may have enhanced bacterial colonization in humans and potentially promoted the pathogenic lineage shift. Moreover, we found that 21% of L3b and L9 isolates had changed to predicted cholera toxin producers, providing evidence that gain of complete CTXφ-carrying ctxAB genes, rather than ctxAB gain in pre-CTXφ-carrying isolates, led to the transition. Taken together, our findings highlight the possible public health risk associated with L3b and L9 lineages due to their potential to cause long-term epidemics and turn into high-virulent cholera toxin producers, which necessitates a more comprehensive and unbiased sampling in further disease control efforts.
Collapse
Affiliation(s)
- Tongyu Hao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, China; Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wei Zheng
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hua Yu
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Xiuwei Qian
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chao Yang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, China
| | - Zhibei Zheng
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mengnan Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Haoqiu Wang
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China.
| | - Jingcao Pan
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China.
| | - Yujun Cui
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
6
|
Dorman MJ, Thomson NR. Vibrio cholerae O37: one of the exceptions that prove the rule. Microb Genom 2023; 9:mgen000980. [PMID: 37043377 PMCID: PMC10210954 DOI: 10.1099/mgen.0.000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/10/2023] [Indexed: 04/13/2023] Open
Abstract
Between 1965 and 1968, outbreaks of cholera in Sudan and former Czechoslovakia provoked considerable public health concern. These still represent important historical events that need to be linked to the growing genomic evidence describing the aetiological agent of cholera, Vibrio cholerae. Whilst O1 serogroup V. cholerae are canonically associated with epidemic and pandemic cholera, these events were caused by a clone of toxigenic V. cholerae O37 that may be more globally distributed than just to Europe and North Africa. Understanding the biology of these non-O1 strains of V. cholerae is key to understanding how diseases like cholera continue to be globally important. In this article, we consolidate epidemiological, molecular and genomic descriptions of the bacteria responsible for these outbreaks. We attempt to resolve discrepancies in order to summarize the history and provenance of as many commonly used serogroup O37 strains as possible. Finally, we highlight the potential for whole-genome sequencing of V. cholerae O37 isolates from strain collections to shed light on the open questions that we identify.
Collapse
Affiliation(s)
- Matthew J. Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Churchill College, University of Cambridge, Storey’s Way, Cambridge, CB3 0DS, UK
| | - Nicholas R. Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- London School of Hygiene and Tropical Medicine, Keppel St, Bloomsbury, London, WC1E 7HT, UK
| |
Collapse
|
7
|
Igere BE, Okoh AI, Nwodo UU. Non-serogroup O1/O139 agglutinable Vibrio cholerae: a phylogenetically and genealogically neglected yet emerging potential pathogen of clinical relevance. Arch Microbiol 2022; 204:323. [PMID: 35567650 PMCID: PMC9107296 DOI: 10.1007/s00203-022-02866-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 12/19/2022]
Abstract
Somatic antigen agglutinable type-1/139 Vibrio cholerae (SAAT-1/139-Vc) members or O1/O139 V. cholerae have been described by various investigators as pathogenic due to their increasing virulence potential and production of choleragen. Reported cholera outbreak cases around the world have been associated with these choleragenic V. cholerae with high case fatality affecting various human and animals. These virulent Vibrio members have shown genealogical and phylogenetic relationship with the avirulent somatic antigen non-agglutinable strains of 1/139 V. cholerae (SANAS-1/139- Vc) or O1/O139 non-agglutinating V. cholerae (O1/O139-NAG-Vc). Reports on implication of O1/O139-NAGVc members in most sporadic cholera/cholera-like cases of diarrhea, production of cholera toxin and transmission via consumption and/or contact with contaminated water/seafood are currently on the rise. Some reported sporadic cases of cholera outbreaks and observed change in nature has also been tracable to these non-agglutinable Vibrio members (O1/O139-NAGVc) yet there is a sustained paucity of research interest on the non-agglutinable V. cholerae members. The emergence of fulminating extraintestinal and systemic vibriosis is another aspect of SANAS-1/139- Vc implication which has received low attention in terms of research driven interest. This review addresses the need to appraise and continually expand research based studies on the somatic antigen non-serogroup agglutinable type-1/139 V. cholerae members which are currently prevalent in studies of water bodies, fruits/vegetables, foods and terrestrial environment. Our opinion is amassed from interest in integrated surveillance studies, management/control of cholera outbreaks as well as diarrhea and other disease-related cases both in the rural, suburban and urban metropolis.
Collapse
Affiliation(s)
- Bright E Igere
- Department of Microbiology and Biotechnology, Western Delta University, Oghara, Delta State, Nigeria.
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Uchechukwu U Nwodo
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
8
|
He T, Tu B, Jiang J, Mao X, Zhen Q, Jiang X, Wang F, Wang M, Wang Y, Sun H. Death in a farmer with underlying diseases carrying Vibrio cholerae non-O1/non-O139 producing Zonula occludens toxin. Int J Infect Dis 2022; 120:83-87. [DOI: 10.1016/j.ijid.2022.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022] Open
|
9
|
Biswas Q, Purohit A, Kumar A, Rakshit D, Maiti D, Das B, Bhadra RK. Genetic and mutational analysis of virulence traits and their modulation in an environmental toxigenic Vibrio cholerae non-O1/non-O139 strain, VCE232. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35113781 DOI: 10.1099/mic.0.001135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vibrio cholerae O1 and O139 isolates deploy cholera toxin (CT) and toxin-coregulated pilus (TCP) to cause the diarrhoeal disease cholera. The ctxAB and tcpA genes encoding CT and TCP are part of two acquired genetic elements, the CTX phage and Vibrio pathogenicity island-1 (VPI-1), respectively. ToxR and ToxT proteins are the key regulators of virulence genes of V. cholerae O1 and O139. V. cholerae isolates belonging to serogroups other than O1/O139, called non-O1/non-O139, are usually devoid of virulence-related elements and are non-pathogenic. Here, we have analysed the available whole genome sequence of an environmental toxigenic V. cholerae non-O1/non-O139 strain, VCE232, carrying the CTX phage and VPI-1. Extensive bioinformatics and phylogenetic analyses indicated high similarity of the VCE232 genome sequence with the genome of V. cholerae O1 strains, including organization of the VPI-1 locus, ctxAB, tcpA and toxT genes, and promoters. We established that the VCE232 strain produces an optimal amount of CT at 30 °C under AKI conditions. To investigate the role of ToxT and ToxR in the regulation of virulence factors, we constructed ΔtoxT, ΔtoxR and ΔtoxTΔtoxR deletion mutants of VCE232. Extensive genetic analyses of these mutants indicated that the toxT and toxR genes of VCE232 are crucial for CT and TCP production. However, unlike O1 isolates, the presence of either toxT or toxR gene is sufficient for optimal CT production in VCE232. In addition, the VCE232 ΔtoxR mutant showed differential regulation of the major outer membrane proteins, OmpT and OmpU. This is the first attempt to explore the regulation of expression of major virulence genes and regulators in an environmental toxigenic V. cholerae non-O1/non-O139 strain.
Collapse
Affiliation(s)
- Quoelee Biswas
- Infectious Diseases and Immunology Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Ayushi Purohit
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121 001, India
| | - Ashok Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121 001, India
- School of Life Sciences, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Dipayan Rakshit
- Infectious Diseases and Immunology Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Diganta Maiti
- Infectious Diseases and Immunology Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Bhabatosh Das
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121 001, India
- School of Life Sciences, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Rupak K Bhadra
- Infectious Diseases and Immunology Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| |
Collapse
|
10
|
Grubb SM, Riddle M. Cholera Presenting With Hyperkalemia, Rhabdomyolysis, and Acute Renal Failure. Mil Med 2021; 186:e1246-e1249. [PMID: 33252133 DOI: 10.1093/milmed/usaa530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/10/2020] [Accepted: 11/20/2020] [Indexed: 11/14/2022] Open
Abstract
Cholera is a well known cause of significant disease, particularly in resource-poor nations, but it is very rare in developed countries. The morbidity and mortality of cholera is resultant from large-volume diarrhea, hypovolemia, and electrolyte derangement. In the following case, a 60-year-old man with no recent travel history presented to the emergency department with muscle cramping, abdominal pain, and gastrointestinal distress. It was later confirmed that he was suffering from cholera. On presentation, he was hyperkalemic with ECG changes and soon went into a hypovolemic shock. After a complicated hospital course, he fortunately made a complete recovery. This case demonstrates that common complaints may result in uncommon diagnoses. It is important to pay attention to the clinical situation and intervene accordingly.
Collapse
Affiliation(s)
- Seth M Grubb
- Department of Emergency Medicine, San Antonio Military Medical Center, Fort Sam Houston, TX 78234, USA
| | - Mark Riddle
- Department of Emergency Medicine, Carl R. Darnall Army Medical Center, Fort Hood, TX 78628, USA
| |
Collapse
|
11
|
Takahashi E, Ochi S, Mizuno T, Morita D, Morita M, Ohnishi M, Koley H, Dutta M, Chowdhury G, Mukhopadhyay AK, Dutta S, Miyoshi SI, Okamoto K. Virulence of Cholera Toxin Gene-Positive Vibrio cholerae Non-O1/non-O139 Strains Isolated From Environmental Water in Kolkata, India. Front Microbiol 2021; 12:726273. [PMID: 34489915 PMCID: PMC8417801 DOI: 10.3389/fmicb.2021.726273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Cholera toxin (CT)-producing Vibrio cholerae O1 and O139 cause acute diarrheal disease and are proven etiological agents of cholera epidemics and pandemics. On the other hand, V. cholerae non-O1/non-O139 are designated as non-agglutinable (NAG) vibrios and are not associated with epidemic cholera. The majority of NAG vibrios do not possess the gene for CT (ctx). In this study, we isolated three NAG strains (strains No. 1, 2, and 3) with ctx from pond water in Kolkata, India, and examined their pathogenic properties. The enterotoxicity of the three NAG strains in vivo was examined using the rabbit ileal intestinal loop test. Strain No. 1 induced the accumulation of fluid in the loop, and the volume of fluid was reduced by simultaneous administration of anti-CT antiserum into the loop. The volume of fluid in the loop caused by strains No. 2 and 3 was small and undetectable, respectively. Then, we cultured these three strains in liquid medium in vitro at two temperatures, 25°C and 37°C, and examined the amount of CT accumulated in the culture supernatant. CT was accumulated in the culture supernatant of strain No.1 when the strain was cultured at 25°C, but that was low when cultured at 37°C. The CT amount accumulated in the culture supernatants of the No. 2 and No. 3 strains was extremely low at both temperature under culture conditions examined. In order to clarify the virulence properties of these strains, genome sequences of the three strains were analyzed. The analysis showed that there was no noticeable difference among three isolates both in the genes for virulence factors and regulatory genes of ctx. However, vibrio seventh pandemic island-II (VSP-II) was retained in strain No. 1, but not in strains No. 2 or 3. Furthermore, it was revealed that the genotype of the B subunit of CT in strain No. 1 was type 1 and those of strains No. 2 and 3 were type 8. Histopathological examination showed the disappearance of villi in intestinal tissue exposed to strain No. 1. In addition, fluid accumulated in the loop due to the action of strain No. 1 had hemolytic activity. This indicated that strain No. 1 may possesses virulence factors to induce severe syndrome when the strain infects humans, and that some strains of NAG vibrio inhabiting pond water in Kolkata have already acquired virulence, which can cause illness in humans. There is a possibility that these virulent NAG vibrios, which have acquired genes encoding factors involved in virulence of V. cholerae O1, may emerge in various parts of the world and cause epidemics in the future.
Collapse
Affiliation(s)
- Eizo Takahashi
- Collaborative Research Center of Okayama University for Infectious Diseases in India, NICED-JICA Building, Kolkata, India.,Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan
| | - Sadayuki Ochi
- Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan
| | - Tamaki Mizuno
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences of Okayama University, Okayama, Japan
| | - Daichi Morita
- Collaborative Research Center of Okayama University for Infectious Diseases in India, NICED-JICA Building, Kolkata, India
| | - Masatomo Morita
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hemanta Koley
- National Institute of Cholera and Enteric Diseases, NICED-JICA Building, Kolkata, India
| | - Moumita Dutta
- National Institute of Cholera and Enteric Diseases, NICED-JICA Building, Kolkata, India
| | - Goutam Chowdhury
- National Institute of Cholera and Enteric Diseases, NICED-JICA Building, Kolkata, India
| | - Asish K Mukhopadhyay
- National Institute of Cholera and Enteric Diseases, NICED-JICA Building, Kolkata, India
| | - Shanta Dutta
- National Institute of Cholera and Enteric Diseases, NICED-JICA Building, Kolkata, India
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences of Okayama University, Okayama, Japan
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases in India, NICED-JICA Building, Kolkata, India
| |
Collapse
|
12
|
Antibiotic Resistance in Vibrio cholerae: Mechanistic Insights from IncC Plasmid-Mediated Dissemination of a Novel Family of Genomic Islands Inserted at trmE. mSphere 2020; 5:5/4/e00748-20. [PMID: 32848007 PMCID: PMC7449626 DOI: 10.1128/msphere.00748-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The increasing association of the etiological agent of cholera, Vibrio cholerae serogroup O1 and O139, with multiple antibiotic resistance threatens to deprive health practitioners of this effective tool. Drug resistance in cholera results mainly from acquisition of mobile genetic elements. Genomic islands conferring multidrug resistance and mobilizable by IncC conjugative plasmids were reported to circulate in non-O1/non-O139 V. cholerae clinical strains isolated from the 2010 Haitian cholera outbreak. As these genomic islands can be transmitted to pandemic V. cholerae serogroups, their mechanism of transmission needed to be investigated. Our research revealed plasmid- and genomic island-encoded factors required for the resistance island excision, mobilization, and integration, as well as regulation of these functions. The discovery of related genomic islands carrying diverse phage resistance genes but lacking antibiotic resistance-conferring genes in a wide range of marine dwelling bacteria suggests that these elements are ancient and recently acquired drug resistance genes. Cholera remains a formidable disease, and reports of multidrug-resistant strains of the causative agent Vibrio cholerae have become common during the last 3 decades. The pervasiveness of resistance determinants has largely been ascribed to mobile genetic elements, including SXT/R391 integrative conjugative elements, IncC plasmids, and genomic islands (GIs). Conjugative transfer of IncC plasmids is activated by the master activator AcaCD whose regulatory network extends to chromosomally integrated GIs. MGIVchHai6 is a multidrug resistance GI integrated at the 3′ end of trmE (mnmE or thdF) in chromosome 1 of non-O1/non-O139 V. cholerae clinical isolates from the 2010 Haitian cholera outbreak. In the presence of an IncC plasmid expressing AcaCD, MGIVchHai6 excises from the chromosome and transfers at high frequency. Herein, the mechanism of mobilization of MGIVchHai6 GIs by IncC plasmids was dissected. Our results show that AcaCD drives expression of GI-borne genes, including xis and mobIM, involved in excision and mobilization. A 49-bp fragment upstream of mobIM was found to serve as the minimal origin of transfer (oriT) of MGIVchHai6. The direction of transfer initiated at oriT was determined using IncC plasmid-driven mobilization of chromosomal markers via MGIVchHai6. In addition, IncC plasmid-encoded factors, including the relaxase TraI, were found to be required for GI transfer. Finally, in silico exploration of Gammaproteobacteria genomes identified 47 novel related and potentially AcaCD-responsive GIs in 13 different genera. Despite sharing conserved features, these GIs integrate at trmE, yicC, or dusA and carry a diverse cargo of genes involved in phage resistance. IMPORTANCE The increasing association of the etiological agent of cholera, Vibrio cholerae serogroup O1 and O139, with multiple antibiotic resistance threatens to deprive health practitioners of this effective tool. Drug resistance in cholera results mainly from acquisition of mobile genetic elements. Genomic islands conferring multidrug resistance and mobilizable by IncC conjugative plasmids were reported to circulate in non-O1/non-O139 V. cholerae clinical strains isolated from the 2010 Haitian cholera outbreak. As these genomic islands can be transmitted to pandemic V. cholerae serogroups, their mechanism of transmission needed to be investigated. Our research revealed plasmid- and genomic island-encoded factors required for the resistance island excision, mobilization, and integration, as well as regulation of these functions. The discovery of related genomic islands carrying diverse phage resistance genes but lacking antibiotic resistance-conferring genes in a wide range of marine dwelling bacteria suggests that these elements are ancient and recently acquired drug resistance genes.
Collapse
|
13
|
Tsuruta K, Ueyama T, Watanabe T, Nakano K, Uno K, Fukushima H. Intensive care management of a patient with necrotizing fasciitis due to non-O1/O139 Vibrio cholerae after traveling to Taiwan: a case report. BMC Infect Dis 2020; 20:618. [PMID: 32831039 PMCID: PMC7444193 DOI: 10.1186/s12879-020-05343-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/13/2020] [Indexed: 11/10/2022] Open
Abstract
Background Vibrio cholerae are oxidase-positive bacteria that are classified into various serotypes based on the O surface antigen. V. cholerae serotypes are divided into two main groups: the O1 and O139 group and the non-O1/non-O139 group. O1 and O139 V. cholerae are related to cholera infection, whereas non-O1/non-O139 V. cholerae (NOVC) can cause cholera-like diarrhea. A PubMed search revealed that only 16 cases of necrotizing fasciitis caused by NOVC have been recorded in the scientific literature to date. We report the case of a Japanese woman who developed necrotizing fasciitis caused by NOVC after traveling to Taiwan and returning to Japan. Case presentation A 63-year-old woman visited our hospital because she had experienced left knee pain for the past 3 days. She had a history of colon cancer (Stage IV: T3N3 M1a) and had received chemotherapy. She had visited Taiwan 5 days previously, where she had received a massage. She was diagnosed with septic shock owing to necrotizing fasciitis. She underwent fasciotomy and received intensive care. She recovered from the septic shock; however, after 3 weeks, she required an above-knee amputation for necrosis and infection. Her condition improved, and she was discharged after 22 weeks in the hospital. Conclusions With the increase in tourism, it is important for clinicians to check patients’ travel history. Clinicians should be alert to the possibility of necrotizing fasciitis in patients with risk factors. Necrotizing fasciitis caused by NOVC is severe and requires early fasciotomy and debridement followed by intensive postoperative care.
Collapse
Affiliation(s)
- Keisuke Tsuruta
- Emergency Department, Minaminara General Hospital, 8-1 Ooazafukugami, Ooyodocho, Yoshino-gun, Nara, 638-0833, Japan.
| | - Toru Ueyama
- Emergency Department, Minaminara General Hospital, 8-1 Ooazafukugami, Ooyodocho, Yoshino-gun, Nara, 638-0833, Japan
| | - Tomoo Watanabe
- Emergency Department, Minaminara General Hospital, 8-1 Ooazafukugami, Ooyodocho, Yoshino-gun, Nara, 638-0833, Japan
| | - Kenichi Nakano
- Orthopedic Department, Minaminara General Hospital, Nara, Japan
| | - Kenji Uno
- Infectious Diseases Department, Minaminara General Hospital, Nara, Japan
| | - Hidetada Fukushima
- Department of Emergency and Critical Care Medicine, Nara Medical University, Nara, Japan
| |
Collapse
|
14
|
Vezzulli L, Baker-Austin C, Kirschner A, Pruzzo C, Martinez-Urtaza J. Global emergence of environmental non-O1/O139 Vibrio cholerae infections linked with climate change: a neglected research field? Environ Microbiol 2020; 22:4342-4355. [PMID: 32337781 DOI: 10.1111/1462-2920.15040] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
The bacterium Vibrio cholerae is a natural inhabitant of aquatic ecosystems across the planet. V. cholerae serogroups O1 and O139 are responsible for cholera outbreaks in developing countries accounting for 3-5 million infections worldwide and 28.800-130.000 deaths per year according to the World Health Organization. In contrast, V. cholerae serogroups other than O1 and O139, also designated as V. cholerae non-O1/O139 (NOVC), are not associated with epidemic cholera but can cause other illnesses that may range in severity from mild (e.g. gastroenteritis, otitis, etc.) to life-threatening (e.g. necrotizing fasciitis). Although generally neglected, NOVC-related infections are on the rise and represent one of the most striking examples of emerging human diseases linked to climate change. NOVC strains are also believed to potentially contribute to the emergence of new pathogenic strains including strains with epidemic potential as a direct consequence of genetic exchange mechanisms such as horizontal gene transfer and genetic recombination. Besides general features concerning the biology and ecology of NOVC strains and their associated diseases, this review aims to highlight the most relevant aspects related to the emergence and potential threat posed by NOVC strains under a rapidly changing environmental and climatic scenario.
Collapse
Affiliation(s)
- Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture Science, CEFAS, Weymouth, UK
| | - Alexander Kirschner
- Institute for Hygiene and Applied Immunology - Water Microbiology, Medical University of Vienna, Vienna, Austria.,Division Water Quality and Health, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Carla Pruzzo
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Jaime Martinez-Urtaza
- Centre for Environment, Fisheries and Aquaculture Science, CEFAS, Weymouth, UK.,Department of Genetics and Microbiology, Facultat de Biociéncies, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
15
|
Wang H, Yang C, Sun Z, Zheng W, Zhang W, Yu H, Wu Y, Didelot X, Yang R, Pan J, Cui Y. Genomic epidemiology of Vibrio cholerae reveals the regional and global spread of two epidemic non-toxigenic lineages. PLoS Negl Trop Dis 2020; 14:e0008046. [PMID: 32069325 PMCID: PMC7048298 DOI: 10.1371/journal.pntd.0008046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 02/28/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Non-toxigenic Vibrio cholerae isolates have been found associated with diarrheal disease globally, however, the global picture of non-toxigenic infections is largely unknown. Among non-toxigenic V. cholerae, ctxAB negative, tcpA positive (CNTP) isolates have the highest risk of disease. From 2001 to 2012, 71 infectious diarrhea cases were reported in Hangzhou, China, caused by CNTP serogroup O1 isolates. We sequenced 119 V. cholerae genomes isolated from patients, carriers and the environment in Hangzhou between 2001 and 2012, and compared them with 850 publicly available global isolates. We found that CNTP isolates from Hangzhou belonged to two distinctive lineages, named L3b and L9. Both lineages caused disease over a long time period with usually mild or moderate clinical symptoms. Within Hangzhou, the spread route of the L3b lineage was apparently from rural to urban areas, with aquatic food products being the most likely medium. Both lineages had been previously reported as causing local endemic disease in Latin America, but here we show that global spread of them has occurred, with the most likely origin of L3b lineage being in Central Asia. The L3b lineage has spread to China on at least three occasions. Other spread events, including from China to Thailand and to Latin America were also observed. We fill the missing links in the global spread of the two non-toxigenic serogroup O1 V. cholerae lineages that can cause human infection. The results are important for the design of future disease control strategies: surveillance of V. cholerae should not be limited to ctxAB positive strains.
Collapse
Affiliation(s)
- Haoqiu Wang
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Chao Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhou Sun
- Institution of Infectious Disease Control, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Wei Zheng
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Wei Zhang
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Hua Yu
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xavier Didelot
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingcao Pan
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
16
|
DNA-uptake pili of Vibrio cholerae are required for chitin colonization and capable of kin recognition via sequence-specific self-interaction. Nat Microbiol 2019; 4:1545-1557. [PMID: 31182799 PMCID: PMC6708440 DOI: 10.1038/s41564-019-0479-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 05/01/2019] [Indexed: 12/02/2022]
Abstract
How bacteria colonise surfaces and how they distinguish the individuals around them are fundamental biological questions. Type IV pili are a widespread and multi-purpose class of cell surface polymers. Here we directly visualise the DNA-uptake pilus of Vibrio cholerae, which is produced specifically during growth upon its natural habitat - chitinous surfaces. As predicted, these pili are highly dynamic and retract prior to DNA-uptake during competence for natural transformation. Interestingly, DNA-uptake pili can also self-interact to mediate auto-aggregation. This capability is conserved in disease-causing pandemic strains, which typically encode the same major pilin subunit, PilA. Unexpectedly, however, we discovered that extensive strain-to-strain variability in PilA, present in environmental isolates, creates a set of highly specific interactions, enabling cells producing pili composed of different PilA subunits to distinguish between one another. We go on to show that DNA-uptake pili bind to chitinous surfaces, are required for chitin colonisation under flow, and that pili capable of self-interaction connect cells on chitin within dense pili networks. Our results suggest a model whereby DNA-uptake pili function to promote inter-bacterial interactions during surface colonisation. Moreover, they provide evidence that type IV pili could offer a simple and potentially widespread mechanism for bacterial kin recognition.
Collapse
|
17
|
Genomic comparison of serogroups O159 and O170 with other Vibrio cholerae serogroups. BMC Genomics 2019; 20:241. [PMID: 30909880 PMCID: PMC6434791 DOI: 10.1186/s12864-019-5603-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 03/13/2019] [Indexed: 12/04/2022] Open
Abstract
Background Of the hundreds of Vibrio cholerae serogroups, O1 and O139 are the main epidemic-causing ones. Although non-O1/non-O139 serogroups rarely cause epidemics, the possibility exists for strains within them to have pathogenic potential. Results We selected 25 representative strains within 16 V. cholerae serogroups and examined their genomic and functional characteristics. We tentatively constructed a gene pool containing 405 homologous gene clusters, which is well organized and functions in O-antigen polysaccharide (O-PS) synthesis. Our network analysis indicate that great diversity exists in O-PS among the serogroups, and several serogroup pairs share a high number of homologous genes (e.g., O115 and O37; O170 and O139; O12 and O39). The phylogenetic analysis results suggest that a close relationship exists between serogroups O170, O89 and O144, based on neighbor-joining (NJ) and gene trees, although serogroup O159 showed an inconsistent phylogenetic relationship between the NJ tree and the gene tree, indicating that it may have undergone extensive recombination and horizontal gene transfer. Different phylogenetic structures were observed between the core genes, pan genes, and O-PS genes. The virulence gene analysis indicated that the virulence genes from all the representative strains may have their sources from four particular bacteria (Pseudomonas aeruginosa, V. vulnificus, Haemophilus somnus and H. influenzae), which suggests that V. cholerae may have exchanged virulence genes with other bacterial genera or species in certain environments. The mobile genetic element analysis indicated that O159 carries nearly complete VSP-II and partial VPI-1 and VPI-2, O170 carries partial VPI-1 and VPI-2, and several non-O1/non-O139 strains contain full or partial VPI-1 and VPI-2. Several genes showing evidence of positive selection are involved in chemotaxis, Na + resistance, or cell wall synthesis, suggestive of environmental adaptation. Conclusions This study reports on the newly sequenced O159 and O170 genomes and their comparisons with other V. cholerae serogroups. The complicated O-PS network of constituent genes highlights the detailed recombination mechanisms that have acted on the serogroups’ genomes. The serogroups have different virulence-related gene profiles, and there is evidence of positive selection acting on other genes, possibly during adaptation to different environments and hosts. Electronic supplementary material The online version of this article (10.1186/s12864-019-5603-7) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Fang L, Ginn AM, Harper J, Kane AS, Wright AC. Survey and genetic characterization of Vibrio cholerae in Apalachicola Bay, Florida (2012-2014). J Appl Microbiol 2019; 126:1265-1277. [PMID: 30629784 DOI: 10.1111/jam.14199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/29/2018] [Accepted: 12/28/2018] [Indexed: 01/24/2023]
Abstract
AIMS A small outbreak of gastroenteritis in 2011 in Apalachicola Bay, FL was attributed to consumption of raw oysters carrying Vibrio cholerae serotype O75. To better understand possible health risks, V. cholerae was surveyed in oysters, fish and seawater, and results were compared to data for Vibrio vulnificus and Vibrio parahaemolyticus. METHODS AND RESULTS Enrichment protocols were used to compare prevalence of V. cholerae (0, 48, 50%), V. vulnificus (89, 97, 100%) and V. parahaemolyticus (83, 83, 100%) in fish, seawater and oysters respectively. Compared to other species, Most probable number results indicated significantly (P < 0·001) lower abundance of V. cholerae, which was also detected more frequently at lower salinity, near-shore sites; other species were more widely distributed throughout the bay. Genes for expression (ctxA, ctxB) and acquisition (tcpA) of cholera toxin were absent in all strains by PCR, which was confirmed by whole genome sequencing; however, other putative virulence genes (toxR, rtxA, hlyA, opmU) were common. Multi-locus sequence typing revealed 78% of isolates were genetically closer to V. cholerae O75 lineage or other non-O1 serogroups than to O1 or O139 serogroups. Resistance to amoxicillin, kanamycin, streptomycin, amikacin, tetracycline and cephalothin, as well as multidrug resistance, was noted. CONCLUSIONS Results indicated minimal human health risk posed by V. cholerae, as all isolates recovered from Apalachicola Bay did not have the genetic capacity to produce cholera toxin. Vibrio cholerae was less prevalent and abundant relative to other pathogenic Vibrio species. SIGNIFICANCE AND IMPACT OF THE STUDY These studies provide important baseline observations for V. cholerae virulence potential regarding: (i) genetic relatedness to V. cholerae O75, (ii) antibiotic resistance and (iii) prevalence of multiple virulence genes. These data will serve as a biomonitoring tool to better understand ecosystem status and management if bacterial densities and virulence potential are altered by environmental and climatic changes over time.
Collapse
Affiliation(s)
- L Fang
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - A M Ginn
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - J Harper
- Apalachicola National Estuarine Research Reserve, East Point, FL, USA
| | - A S Kane
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - A C Wright
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Tulatorn S, Preeprem S, Vuddhakul V, Mittraparp-arthorn P. Comparison of virulence gene profiles and genomic fingerprints of Vibrio cholerae O1 and non-O1/non-O139 isolates from diarrheal patients in southern Thailand. Trop Med Health 2018; 46:31. [PMID: 30202236 PMCID: PMC6125998 DOI: 10.1186/s41182-018-0113-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/23/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Vibrio cholerae is associated with severe watery diarrheal disease among people in many parts of the world, including the coastal provinces of Southern Thailand. There are relatively few studies focusing on the genetic characterization among V. cholerae isolates in this region. Therefore, this study aimed at exploring the presence of virulence genes and DNA fingerprints among V. cholerae O1 and non-O1/non-O139 isolates obtained from clinical samples in four southern coastal provinces during the period of 2001-2009 (n = 21). RESULTS All V. cholerae O1 isolates possessed ctxA, tcpA, zot, ace, hlyA, and vasH genes. However, only hlyA, vcsV2, and vasH genes were detected in the majority of the non-O1/non-O139 isolates. All O1 isolates showed indistinguishable PCR fingerprints by arbitrarily primed (AP)-PCR and enterobacterial repetitive intergenic consensus (ERIC)-PCR regardless of the geographical area and period of isolation. However, the multi-locus variable-number of tandem-repeat analysis (MLVA) could differentiate these O1 isolates (n = 11) into eight profiles. Isolates exhibiting an undistinguished MLVA profile also showed identical pulsed-field gel electrophoresis (PFGE). In addition, the O1 isolates were grouped into the same cluster by all methods used in this study. CONCLUSIONS This study demonstrated the presence of virulence genes and genetic diversity among different serogroups of V. cholerae isolates from clinical samples in southern Thailand. V. cholerae O1 isolated over a period of multiple years were genetically related, suggesting that they had a clonal origin, whereas non-O1/non-O139 isolates could have evolved independently.
Collapse
Affiliation(s)
- Sakrapee Tulatorn
- Department of Microbiology, Faculty of Science, Prince of Songkla University, 15 Kanjanavanich Rd., Hat Yai, Songkhla, 90110 Thailand
| | - Sutima Preeprem
- Department of Microbiology, Faculty of Science, Prince of Songkla University, 15 Kanjanavanich Rd., Hat Yai, Songkhla, 90110 Thailand
| | - Varaporn Vuddhakul
- Department of Microbiology, Faculty of Science, Prince of Songkla University, 15 Kanjanavanich Rd., Hat Yai, Songkhla, 90110 Thailand
| | - Pimonsri Mittraparp-arthorn
- Department of Microbiology, Faculty of Science, Prince of Songkla University, 15 Kanjanavanich Rd., Hat Yai, Songkhla, 90110 Thailand
| |
Collapse
|
20
|
Watson AP, Armstrong AQ, White GH, Thran BH. Health-based ingestion exposure guidelines for Vibrio cholerae: Technical basis for water reuse applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:379-387. [PMID: 28917176 DOI: 10.1016/j.scitotenv.2017.08.297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
U.S. military and allied contingency operations are increasingly occurring in locations with limited, unstable or compromised fresh water supplies. Non-potable graywater reuse is currently under assessment as a viable means to increase mission sustainability while significantly reducing the resources, logistics and attack vulnerabilities posed by transport of fresh water. Development of health-based (non-potable) exposure guidelines for the potential microbial components of graywater would provide a logical and consistent human-health basis for water reuse strategies. Such health-based strategies will support not only improved water security for contingency operations, but also sustainable military operations. Dose-response assessment of Vibrio cholerae based on adult human oral exposure data were coupled with operational water exposure scenario parameters common to numerous military activities, and then used to derive health risk-based water concentrations. The microbial risk assessment approach utilized oral human exposure V. cholerae dose studies in open literature. Selected studies focused on gastrointestinal illness associated with experimental infection by specific V. cholerae serogroups most often associated with epidemics and pandemics (O1 and O139). Nonlinear dose-response model analyses estimated V. cholerae effective doses (EDs) aligned with gastrointestinal illness severity categories characterized by diarrheal purge volume. The EDs and water exposure assumptions were used to derive Risk-Based Water Concentrations (CFU/100mL) for mission-critical illness severity levels over a range of water use activities common to military operations. Human dose-response studies, data and analyses indicate that ingestion exposures at the estimated ED1 (50CFU) are unlikely to be associated with diarrheal illness while ingestion exposures at the lower limit (200CFU) of the estimated ED10 are not expected to result in a level of diarrheal illness associated with degraded individual capability. The current analysis indicates that the estimated ED20 (approximately 1000CFU) represents initiation of a more advanced stage of diarrheal illness associated with clinical care.
Collapse
Affiliation(s)
- Annetta P Watson
- Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Bldg 1507, MS 6407, Oak Ridge, TN 37831-6407, United States
| | - Anthony Q Armstrong
- Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Bldg 1507, MS 6407, Oak Ridge, TN 37831-6407, United States.
| | - George H White
- U.S. Army Public Health Center, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010-5403, United States
| | - Brandolyn H Thran
- U.S. Army Public Health Center, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010-5403, United States
| |
Collapse
|
21
|
Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101188. [PMID: 28991153 PMCID: PMC5664689 DOI: 10.3390/ijerph14101188] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens.
Collapse
|
22
|
The role of CTX and RS1 satellite phages genomic arrangement in Vibrio cholera toxin production in two recent cholera outbreaks (2012 and 2013) in IR Iran. Microb Pathog 2017; 112:89-94. [PMID: 28923607 DOI: 10.1016/j.micpath.2017.09.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 11/24/2022]
Abstract
The objective of the present study was to investigate the genomic arrangement of CTX/RS1 prophages in 30 Vibrio cholerae strains obtained from 2 consecutive years of cholera outbreak and to compare the role of different CTX/RS1 arrangements in cholera toxin expression among the El Tor strains. Profile A with TLC-RS1-CTX-RTX arrangement was observed in 46.7% of the isolates with RS1 phage locating adjacent to TLC element. About 50% of the isolates showed Profile B with TLC-CTX-RS1-RTX arrangement and one single isolate (3.3%) revealed TLC-CTX-RS1-RS1-RTX arrangement (Profile C). No RS1 element was detected to be adjacent to TLC element in B and C profiles. No truncated CTX phage genome was detected among the isolates of 2 years. Different CTX-RS1 arrangement profiles (A, B, and C) with different RS1 copy numbers and locations uniformly showed low level of cholera toxin production in El Tor strains with no significant difference, revealing that different RS1 copy numbers and locations have no effect on cholera toxin production level (p-value >0.05). However, increased cholera toxin expression was observed for control V. cholerae classical biotype strain. In conclusion, variations in RS1 prophage did not affect CT expression level in related El Tor V. cholerae strains. CTX genotyping establishes a more valuable database for epidemiologic, pathogenesis, and source tracking purposes.
Collapse
|
23
|
Kaboré S, Cecchi P, Mosser T, Toubiana M, Traoré O, Ouattara AS, Traoré AS, Barro N, Colwell RR, Monfort P. Occurrence of Vibrio cholerae in water reservoirs of Burkina Faso. Res Microbiol 2017; 169:1-10. [PMID: 28888938 DOI: 10.1016/j.resmic.2017.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 11/26/2022]
Abstract
Africa is currently an important region in which cholera epidemics occur. Little is known about the presence of Vibrio cholerae in freshwater bodies in Africa. There are ca. 1700 lakes and reservoirs in Burkina Faso, most of which have been built within recent decades to secure water resources. The purpose of this study was to investigate the presence of V. cholerae in the water of reservoirs, using the most-probable-number polymerase chain reaction. Results showed that V. cholerae could be detected in water samples collected from 14 of 39 sampled reservoirs. The concentrations varied from 0 MPN/l to more than 1100 MPN/l. Fifty strains of V. cholerae isolated on CHROMagar™ vibrio were identified as V. cholerae non-O1/non-O139, none of which carried the ctxA gene. A significant positive correlation was found between the presence of V. cholerae in the reservoirs and both alkaline pH and phytoplankton biomass. V. cholerae was present in significantly higher numbers in reservoirs of urban areas than in rural areas. Since V. cholerae non-O1/non-O139 has been shown to be a causative agent of endemic diarrheal outbreaks, their presence in Burkina Faso reservoirs suggests they may play a role in gastroenteritis in that country.
Collapse
Affiliation(s)
- Saidou Kaboré
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles Par Les Aliments (LaBESTA), Centre de Recherches en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université de Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso.
| | - Philippe Cecchi
- MARBEC UMR 248 IRD, CNRS, Ifremer, Université de Montpellier, Centre de Recherches Océanologiques, Abidjan, Côte d'Ivoire.
| | - Thomas Mosser
- HydroSciences Montpellier, UMR 5569 CNRS, IRD, Université de Montpellier, 34093 Montpellier Cedex 05, France
| | - Mylène Toubiana
- HydroSciences Montpellier, UMR 5569 CNRS, IRD, Université de Montpellier, 34093 Montpellier Cedex 05, France.
| | - Oumar Traoré
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles Par Les Aliments (LaBESTA), Centre de Recherches en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université de Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso; Laboratoire National de Santé Publique, 09 BP 24 Ouagadougou 09, Burkina Faso.
| | - Aboubakar S Ouattara
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles Par Les Aliments (LaBESTA), Centre de Recherches en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université de Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso.
| | - Alfred S Traoré
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles Par Les Aliments (LaBESTA), Centre de Recherches en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université de Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso.
| | - Nicolas Barro
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles Par Les Aliments (LaBESTA), Centre de Recherches en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université de Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso.
| | - Rita R Colwell
- Center for Bioinformatics and Computational Biology and Institute for Advanced Computer Studies, 3103 Biomolecular Sciences Building, 8314 Paint Branch Drive, University of Maryland, College Park, MD 20742, USA.
| | - Patrick Monfort
- HydroSciences Montpellier, UMR 5569 CNRS, IRD, Université de Montpellier, 34093 Montpellier Cedex 05, France.
| |
Collapse
|
24
|
Characterization of Vibrio cholerae isolates from 1976 to 2013 in Shandong Province, China. Braz J Microbiol 2016; 48:173-179. [PMID: 27780663 PMCID: PMC5221356 DOI: 10.1016/j.bjm.2016.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 06/09/2016] [Indexed: 11/22/2022] Open
Abstract
Cholera continues to be a serious public health issue in developing countries. We analyzed the epidemiological data of cholera from 1976 to 2013 in Shandong Province, an eastern coastal area of China. A total of 250 Vibrio cholerae isolates were selected for PCR analysis of virulence genes and pulsed-field gel electrophoresis (PFGE). The analysis of the virulence genes showed that the positive rates for tcpA and tcpI were the highest among strains from the southwest region, which had the highest incidence rate of cholera. Low positive rates for tcpA, tcpI and ctxAB among isolates from after 2000 may be an influencing factor contributing to the contemporary decline in cholera incidence rates. Spatiotemporal serotype shifts (Ogawa, Inaba, Ogawa, Inaba and O139) generally correlated with the variations in the PFGE patterns (PIV, PIIIc, PIa, PIIIb, PIIIa, PIb, and PII). O1 strains from different years or regions also had similar PFGE patterns, while O139 strains exclusively formed one cluster and differed from all other O1 strains. These data indicate that V. cholerae isolates in Shandong Province have continually undergone spatiotemporal changes. The serotype switching between Ogawa and Inaba originated from indigenous strains, while the emergence of serogroup O139 appeared to be unrelated to endemic V. cholerae O1 strains.
Collapse
|
25
|
|
26
|
The Hybrid Pre-CTXΦ-RS1 Prophage Genome and Its Regulatory Function in Environmental Vibrio cholerae O1 Strains. Appl Environ Microbiol 2015; 81:7171-7. [PMID: 26253680 DOI: 10.1128/aem.01742-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/29/2015] [Indexed: 11/20/2022] Open
Abstract
The cholera toxin genes of Vibrio cholerae are encoded by CTXΦ, a lysogenic bacteriophage. Infection with this phage plays a determinant role in toxigenicity conversion and the emergence of new clones of pathogenic V. cholerae. Multiple phage alleles, defined by sequence types of the repressor gene rstR, have been found, showing the divergence of phage genomes. Pre-CTXΦ, which is characterized by the absence of toxin genes, is predicted to be the precursor of CTXΦ. We have found a new pre-CTXΦ prophage genome (named pre-CTXZJΦ for its novel rstR allele) in nontoxigenic V. cholerae O1 isolates that were obtained during surveillance of the estuary water of the Zhujiang River. A novel hybrid genome of the helper phage RS1 was identified in an environmental strain carrying pre-CTXZJΦ in this study. The chromosomal integration and genomic arrangement of pre-CTXZJΦ and RS1 were determined. The RS2 of pre-CTXZJΦ was shown to have a function in replication, but it seemed to have lost its ability to integrate. The RstR of pre-CTXZJΦ exerted the highest repression of its own rstA promoter compared to other RstRs, suggesting rstR-specific phage superinfection immunity and potential coinfection with other pre-CTXΦ/CTXΦ alleles. The environmental strain carrying pre-CTXZJΦ could still be infected by CTXETΦ, the most common phage allele in the strains of the seventh cholera pandemic, suggesting that this nontoxigenic clone could potentially undergo toxigenicity conversion by CTXΦ infection and become a new toxigenic clone despite already containing the pre-CTXΦ prophage.
Collapse
|
27
|
Kim EJ, Lee CH, Nair GB, Kim DW. Whole-genome sequence comparisons reveal the evolution of Vibrio cholerae O1. Trends Microbiol 2015; 23:479-89. [DOI: 10.1016/j.tim.2015.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/23/2015] [Accepted: 03/31/2015] [Indexed: 12/20/2022]
|
28
|
Chapman C, Henry M, Bishop-Lilly KA, Awosika J, Briska A, Ptashkin RN, Wagner T, Rajanna C, Tsang H, Johnson SL, Mokashi VP, Chain PSG, Sozhamannan S. Scanning the landscape of genome architecture of non-O1 and non-O139 Vibrio cholerae by whole genome mapping reveals extensive population genetic diversity. PLoS One 2015; 10:e0120311. [PMID: 25794000 PMCID: PMC4368569 DOI: 10.1371/journal.pone.0120311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/20/2015] [Indexed: 01/08/2023] Open
Abstract
Historically, cholera outbreaks have been linked to V. cholerae O1 serogroup strains or its derivatives of the O37 and O139 serogroups. A genomic study on the 2010 Haiti cholera outbreak strains highlighted the putative role of non O1/non-O139 V. cholerae in causing cholera and the lack of genomic sequences of such strains from around the world. Here we address these gaps by scanning a global collection of V. cholerae strains as a first step towards understanding the population genetic diversity and epidemic potential of non O1/non-O139 strains. Whole Genome Mapping (Optical Mapping) based bar coding produces a high resolution, ordered restriction map, depicting a complete view of the unique chromosomal architecture of an organism. To assess the genomic diversity of non-O1/non-O139 V. cholerae, we applied a Whole Genome Mapping strategy on a well-defined and geographically and temporally diverse strain collection, the Sakazaki serogroup type strains. Whole Genome Map data on 91 of the 206 serogroup type strains support the hypothesis that V. cholerae has an unprecedented genetic and genomic structural diversity. Interestingly, we discovered chromosomal fusions in two unusual strains that possess a single chromosome instead of the two chromosomes usually found in V. cholerae. We also found pervasive chromosomal rearrangements such as duplications and indels in many strains. The majority of Vibrio genome sequences currently in public databases are unfinished draft sequences. The Whole Genome Mapping approach presented here enables rapid screening of large strain collections to capture genomic complexities that would not have been otherwise revealed by unfinished draft genome sequencing and thus aids in assembling and finishing draft sequences of complex genomes. Furthermore, Whole Genome Mapping allows for prediction of novel V. cholerae non-O1/non-O139 strains that may have the potential to cause future cholera outbreaks.
Collapse
Affiliation(s)
- Carol Chapman
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Naval Medical Research Center—Frederick, Fort Detrick, Maryland, United States of America
| | - Matthew Henry
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Naval Medical Research Center—Frederick, Fort Detrick, Maryland, United States of America
| | - Kimberly A. Bishop-Lilly
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Naval Medical Research Center—Frederick, Fort Detrick, Maryland, United States of America
| | - Joy Awosika
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Naval Medical Research Center—Frederick, Fort Detrick, Maryland, United States of America
| | - Adam Briska
- OpGen, Inc., Gaithersburg, Maryland, United States of America
| | | | - Trevor Wagner
- OpGen, Inc., Gaithersburg, Maryland, United States of America
| | - Chythanya Rajanna
- University of Florida, Gainesville, Florida, United States of America
| | - Hsinyi Tsang
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Naval Medical Research Center—Frederick, Fort Detrick, Maryland, United States of America
| | - Shannon L. Johnson
- Genome Science, Biosciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Vishwesh P. Mokashi
- Naval Medical Research Center—Frederick, Fort Detrick, Maryland, United States of America
| | - Patrick S. G. Chain
- Genome Science, Biosciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Shanmuga Sozhamannan
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Naval Medical Research Center—Frederick, Fort Detrick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
29
|
Akoachere JFTK, Mbuntcha CKP. Water sources as reservoirs of Vibrio cholerae O1 and non-O1 strains in Bepanda, Douala (Cameroon): relationship between isolation and physico-chemical factors. BMC Infect Dis 2014; 14:421. [PMID: 25073409 PMCID: PMC4131033 DOI: 10.1186/1471-2334-14-421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 07/11/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Cholera has been endemic in Douala since 1971. Most outbreaks start from Bepanda, an overcrowded neighbourhood with poor hygiene and sanitary conditions. We investigated water sources in Bepanda as reservoirs of Vibrio cholerae, the causative agent of cholera, determined its antibiotic susceptibility and some physico-chemical characteristics that could maintain the endemicity of this organism in Bepanda. METHODS Three hundred and eighteen water samples collected from 45 wells, 8 taps and 1 stream from February to July 2009 were analyzed for V. cholerae using standard methods. Isolates were characterized morphologically, biochemically and serologically. The disc diffusion technique was employed to investigate antibiotic susceptibility. Differences in prevalence of organism between seasons were analysed. Correlation strength and direction of association between physico-chemical parameters and occurrence of V. cholerae was analyzed using the Kendall tau_b non-parametric correlation. This was further confirmed with the forward-stepwise binary logistic regression. RESULTS Eighty-seven (27.4%) samples were positive for V. cholerae. Isolation was highest from wells. The organism was isolated in the rainy season and dry season but the frequency of isolation was significantly higher (χ2 = 7.009, df = 1, P = 0.008) in the rainy season. Of the 96 confirmed V. cholerae isolates, 32 (33.3%) belonged to serogroup O1 and 64 (66.6%) were serogroup non-O1/non-O139. Isolates from tap (municipal water) were non-O1/non-O139 strains. Salinity had a significant positive correlation with isolation in the dry season (+0.267, P = 0.015) and rainy season (+0.223, P = 0.028). The forward-stepwise method of binary logistic regression indicated that as pH (Wald = 11.753, df = 1), P = 0.001) increased, odds of isolation of V. cholerae also increased (B = 1.297, S.E = 0.378, Exp(B) = 3.657). All isolates were sensitive to ciprofloxacin and ofloxacin. Multi-drug resistance was predominant among the non-O1/non-O139 isolates. CONCLUSION V. cholerae was found in wells and stream in both seasons. Cholera will continue to be a health threat in Bepanda if intervention measures to prevent outbreak are not implemented. Continuous monitoring of water sources in this and other cholera high-risk areas in Cameroon is necessary, for a better preparedness and control of cholera.
Collapse
Affiliation(s)
- Jane-Francis Tatah Kihla Akoachere
- />Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
- />Laboratory for Emerging Infectious Diseases, Faculty of Science, University of Buea, Buea, Cameroon
| | | |
Collapse
|
30
|
Banerjee R, Das B, Balakrish Nair G, Basak S. Dynamics in genome evolution of Vibrio cholerae. INFECTION GENETICS AND EVOLUTION 2014; 23:32-41. [PMID: 24462909 DOI: 10.1016/j.meegid.2014.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 12/31/2022]
Abstract
Vibrio cholerae, the etiological agent of the acute secretary diarrheal disease cholera, is still a major public health concern in developing countries. In former centuries cholera was a permanent threat even to the highly developed populations of Europe, North America, and the northern part of Asia. Extensive studies on the cholera bug over more than a century have made significant advances in our understanding of the disease and ways of treating patients. V. cholerae has more than 200 serogroups, but only few serogroups have caused disease on a worldwide scale. Until the present, the evolutionary relationship of these pandemic causing serogroups was not clear. In the last decades, we have witnessed a shift involving genetically and phenotypically varied pandemic clones of V. cholerae in Asia and Africa. The exponential knowledge on the genome of several representatives V. cholerae strains has been used to identify and analyze the key determinants for rapid evolution of cholera pathogen. Recent comparative genomic studies have identified the presence of various integrative mobile genetic elements (IMGEs) in V. cholerae genome, which can be used as a marker of differentiation of all seventh pandemic clones with very similar core genome. This review attempts to bring together some of the important researches in recent times that have contributed towards understanding the genetics, epidemiology and evolution of toxigenic V. cholerae strains.
Collapse
Affiliation(s)
- Rachana Banerjee
- Department of Bio-Physics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Bhabatosh Das
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, 496, Phase III, Udyog Vihar, Gurgaon 122016, Haryana, India
| | - G Balakrish Nair
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, 496, Phase III, Udyog Vihar, Gurgaon 122016, Haryana, India
| | - Surajit Basak
- Department of Molecular Biology & Bioinformatics, Tripura University, Suryamaninagar 799 022, Tripura, India; Bioinformatics Centre, Tripura University, Suryamaninagar 799 022, Tripura, India.
| |
Collapse
|
31
|
Octavia S, Salim A, Kurniawan J, Lam C, Leung Q, Ahsan S, Reeves PR, Nair GB, Lan R. Population structure and evolution of non-O1/non-O139 Vibrio cholerae by multilocus sequence typing. PLoS One 2013; 8:e65342. [PMID: 23776471 PMCID: PMC3679125 DOI: 10.1371/journal.pone.0065342] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/24/2013] [Indexed: 01/09/2023] Open
Abstract
Pathogenic non-O1/non-O139 Vibrio cholerae strains can cause sporadic outbreaks of cholera worldwide. In this study, multilocus sequence typing (MLST) of seven housekeeping genes was applied to 55 non-O1/non-O139 isolates from clinical and environmental sources. Data from five published O1 isolates and 17 genomes were also included, giving a total of 77 isolates available for analysis. There were 66 sequence types (STs), with the majority being unique, and only three clonal complexes. The V. cholerae strains can be divided into four subpopulations with evidence of recombination among the subpopulations. Subpopulations I and III contained predominantly clinical strains. PCR screening for virulence factors including Vibrio pathogenicity island (VPI), cholera toxin prophage (CTXΦ), type III secretion system (T3SS), and enterotoxin genes (rtxA and sto/stn) showed that combinations of these factors were present in the clinical isolates with 85.7% having rtxA, 51.4% T3SS, 31.4% VPI, 31.4% sto/stn (NAG-ST) and 11.4% CTXΦ. These factors were also present in environmental isolates but at a lower frequency. Five strains previously mis-identified as V. cholerae serogroups O114 to O117 were also analysed and formed a separate population with V. mimicus. The MLST scheme developed in this study provides a framework to identify sporadic cholera isolates by genetic identity.
Collapse
Affiliation(s)
- Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Anna Salim
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Jacob Kurniawan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Connie Lam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Queenie Leung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sunjukta Ahsan
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Peter R. Reeves
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - G. Balakrish Nair
- Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
32
|
Morita M, Yamamoto S, Hiyoshi H, Kodama T, Okura M, Arakawa E, Alam M, Ohnishi M, Izumiya H, Watanabe H. Horizontal gene transfer of a genetic island encoding a type III secretion system distributed inVibrio cholerae. Microbiol Immunol 2013; 57:334-9. [DOI: 10.1111/1348-0421.12039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/04/2012] [Accepted: 02/03/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Masatomo Morita
- Department of Bacteriology I; National Institute of Infectious Diseases; Tokyo
| | - Shouji Yamamoto
- Department of Bacteriology I; National Institute of Infectious Diseases; Tokyo
| | - Hirotaka Hiyoshi
- Research Institute for Microbial Diseases; Osaka University; Osaka
| | - Toshio Kodama
- Research Institute for Microbial Diseases; Osaka University; Osaka
| | | | - Eiji Arakawa
- Department of Bacteriology I; National Institute of Infectious Diseases; Tokyo
| | - Munirul Alam
- International Center for Diarrhoeal Disease Research; Bangladesh; Dhaka; Bangladesh
| | - Makoto Ohnishi
- Department of Bacteriology I; National Institute of Infectious Diseases; Tokyo
| | - Hidemasa Izumiya
- Department of Bacteriology I; National Institute of Infectious Diseases; Tokyo
| | - Haruo Watanabe
- Department of Bacteriology I; National Institute of Infectious Diseases; Tokyo
| |
Collapse
|
33
|
Stine OC, Morris JG. Circulation and transmission of clones of Vibrio cholerae during cholera outbreaks. Curr Top Microbiol Immunol 2013; 379:181-93. [PMID: 24407776 DOI: 10.1007/82_2013_360] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cholera is still a major public health problem. The underlying bacterial pathogen Vibrio cholerae (V. cholerae) is evolving and some of its mutations have set the stage for outbreaks. After V. cholerae acquired the mobile elements VSP I & II, the El Tor pandemic began and spread across the tropics. The replacement of the O1 serotype encoding genes with the O139 encoding genes triggered an outbreak that swept across the Indian subcontinent. The sxt element generated a third selective sweep and most recently a fourth sweep was associated with the exchange of the El Tor ctx allele for a classical ctx allele in the El Tor background. In Kenya, variants of this fourth selective sweep have differentiated and become endemic residing in and emerging from environmental reservoirs. On a local level, studies in Bangladesh have revealed that outbreaks may arise from a nonrandom subset of the genetic lineages in the environment and as the population of the pathogen expands, many novel mutations may be found increasing the amount of genetic variation, a phenomenon known as a founder flush. In Haiti, after the initial invasion and expansion of V. cholerae in 2010, a second outbreak occurred in the winter of 2011-2012 driven by natural selection of specific mutations.
Collapse
Affiliation(s)
- O Colin Stine
- Department of Epidemiology and Public Health, University of Maryland, 596 Howard Hall, 660 W. Redwood St., Baltimore, MD, 21201, USA,
| | | |
Collapse
|
34
|
Bakhshi B, Mohammadi-Barzelighi H, Sharifnia A, Dashtbani-Roozbehani A, Rahbar M, Pourshafie MR. Presence of CTX gene cluster in environmental non-O1/O139 Vibrio cholerae and its potential clinical significance. Indian J Med Microbiol 2012; 30:285-9. [DOI: 10.4103/0255-0857.99487] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Talkington D, Bopp C, Tarr C, Parsons MB, Dahourou G, Freeman M, Joyce K, Turnsek M, Garrett N, Humphrys M, Gomez G, Stroika S, Boncy J, Ochieng B, Oundo J, Klena J, Smith A, Keddy K, Gerner-Smidt P. Characterization of toxigenic Vibrio cholerae from Haiti, 2010-2011. Emerg Infect Dis 2012; 17:2122-9. [PMID: 22099116 PMCID: PMC3310580 DOI: 10.3201/eid1711.110805] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In October 2010, the US Centers for Disease Control and Prevention received reports of cases of severe watery diarrhea in Haiti. The cause was confirmed to be toxigenic Vibrio cholerae, serogroup O1, serotype Ogawa, biotype El Tor. We characterized 122 isolates from Haiti and compared them with isolates from other countries. Antimicrobial drug susceptibility was tested by disk diffusion and broth microdilution. Analyses included identification of rstR and VC2346 genes, sequencing of ctxAB and tcpA genes, and pulsed-field gel electrophoresis with SfiI and NotI enzymes. All isolates were susceptible to doxycycline and azithromycin. One pulsed-field gel electrophoresis pattern predominated, and ctxB sequence of all isolates matched the B-7 allele. We identified the tcpETCIRS allele, which is also present in Bangladesh strain CIRS 101. These data show that the isolates from Haiti are clonally and genetically similar to isolates originating in Africa and southern Asia and that ctxB-7 and tcpET(CIRS) alleles are undergoing global dissemination.
Collapse
Affiliation(s)
- Deborah Talkington
- Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hill VR, Cohen N, Kahler AM, Jones JL, Bopp CA, Marano N, Tarr CL, Garrett NM, Boncy J, Henry A, Gómez GA, Wellman M, Curtis M, Freeman MM, Turnsek M, Benner RA, Dahourou G, Espey D, DePaola A, Tappero JW, Handzel T, Tauxe RV. Toxigenic Vibrio cholerae O1 in water and seafood, Haiti. Emerg Infect Dis 2012; 17:2147-50. [PMID: 22099121 PMCID: PMC3310574 DOI: 10.3201/eid1711.110748] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During the 2010 cholera outbreak in Haiti, water and seafood samples were collected to detect Vibrio cholerae. The outbreak strain of toxigenic V. cholerae O1 serotype Ogawa was isolated from freshwater and seafood samples. The cholera toxin gene was detected in harbor water samples.
Collapse
Affiliation(s)
- Vincent R Hill
- Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kay MK, Cartwright EJ, Maceachern D, McCullough J, Barzilay E, Mintz E, Duchin JS, Macdonald K, Turnsek M, Tarr C, Talkington D, Newton A, Marfin AA. Vibrio mimicus infection associated with crayfish consumption, Spokane, Washington, 2010. J Food Prot 2012; 75:762-4. [PMID: 22488068 DOI: 10.4315/0362-028x.jfp-11-410] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report a cluster of severe diarrheal disease caused by Vibrio mimicus infection among four persons who had consumed leftover crayfish the day after a private crayfish boil. Gastrointestinal illness caused by Vibrio mimicus has not been reported previously in Washington State. Three cases were laboratory confirmed by stool culture; using PCR, isolates were found to have ctx genes that encode cholera toxin (CT). Two of the cases were hospitalized under intensive care with a cholera-like illness. The illnesses were most likely caused by cross-contamination of cooked crayfish with uncooked crayfish; however, V. mimicus was not isolated nor were CT genes detected by PCR in leftover samples of frozen crayfish. Clinicians should be aware that V. mimicus can produce CT and that V. mimicus infection can cause severe illness.
Collapse
Affiliation(s)
- Meagan K Kay
- Epidemic Intelligence Service Program, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The role of bacteriophages as natural vectors for some of the most potent bacterial toxins is well recognized and includes classical type I membrane-acting superantigens, type II pore-forming lysins, and type III exotoxins, such as diphtheria and botulinum toxins. Among Gram-negative pathogens, a novel class of bacterial virulence factors called effector proteins (EPs) are phage encoded among pathovars of Escherichia coli, Shigella spp., and Salmonella enterica. This chapter gives an overview of the different types of virulence factors encoded within phage genomes based on their role in bacterial pathogenesis. It also discusses phage-pathogenicity island interactions uncovered from studies of phage-encoded EPs. A detailed examination of the filamentous phage CTXφ that encodes cholera toxin is given as the sole example to date of a single-stranded DNA phage that encodes a bacterial toxin.
Collapse
|
39
|
Possible laboratory contamination leads to incorrect reporting of Vibrio cholerae O1 and initiates an outbreak response. J Clin Microbiol 2011; 50:480-2. [PMID: 22162543 DOI: 10.1128/jcm.05785-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae O1 in a river water specimen in South Africa was reported, and a public health response followed in order to prevent an outbreak. Further investigation determined this to be a pseudoalert of V. cholerae O1, possibly linked to laboratory contamination. Following culture of bacteria from the water specimen, the testing laboratory possibly contaminated the culture with a V. cholerae O1 reference strain and then mistakenly reported isolation of V. cholerae O1.
Collapse
|
40
|
Abstract
Cholera has affected humans for at least a millennium and persists as a major cause of illness and death worldwide, with recent epidemics in Zimbabwe (2008-2009) and Haiti (2010). Clinically, evidence exists of increasing severity of disease linked with emergence of atypical Vibrio cholerae organisms that have incorporated genetic material from classical biotype strains into an El Tor biotype background. A key element in transmission may be a recently recognized hyperinfectious phase, which persists for hours after passage in diarrheal feces. We propose a model of transmission in which environmental triggers (such as temperature) lead to increases in V. cholerae in environmental reservoirs, with spillover into human populations. However, once the microorganism is introduced into a human population, transmission occurs primary by "fast" transmission from person to person (taking advantage of the hyperinfectious state), without returning to the aquatic environment.
Collapse
Affiliation(s)
- J Glenn Morris
- University of Florida, Gainesville, Florida 32610-0009, USA. .edu
| |
Collapse
|
41
|
Variants of Vibrio cholerae O1 El Tor from Zambia showed new genotypes of ctxB. Epidemiol Infect 2011; 140:1386-7; author reply 1387-8. [PMID: 21939579 DOI: 10.1017/s0950268811001944] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
42
|
Dashtbani-Roozbehani A, Bakhshi B, Katouli M, Pourshafie MR. Comparative sequence analysis of recA gene among Vibrio cholerae isolates from Iran with globally reported sequences. Lett Appl Microbiol 2011; 53:313-23. [PMID: 21707677 DOI: 10.1111/j.1472-765x.2011.03108.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To study the genetic relatedness between V. cholerae isolates from Iran and other countries based on housekeeping gene recA sequence analysis. METHODS AND RESULTS A 995-bp region of the recA gene from 24 V. cholerae isolates obtained from human and surface water origins in Iran over a 5-year period was sequenced and compared with the sequence data from the isolates belonging to other places. Cluster analysis of the constructed dendrogram based on recA sequence divergence for our clinical isolates showed one sequence type (ST), whereas environmental isolates revealed eight STs. Interestingly, one of our environmental isolates was intermixed with clinical isolates in the largest cluster containing the epidemic strains. Our 24 isolates plus 198 global isolates available in the GenBank showed 77 sequence types (STs) with at least one nucleotide difference. CONCLUSIONS Our result suggested that recA sequencing is a reliable analysis method for understanding the relatedness of the local isolates with the isolates obtained elsewhere. SIGNIFICANCE AND IMPACT OF THE STUDY Understanding the genetic relatedness between V. cholerae isolates could give insights into the health care system for better control and prevention of the cholera.
Collapse
|
43
|
Teh CSJ, Chua KH, Thong KL. Genetic variation analysis of Vibrio cholerae using multilocus sequencing typing and multi-virulence locus sequencing typing. INFECTION GENETICS AND EVOLUTION 2011; 11:1121-8. [PMID: 21511055 DOI: 10.1016/j.meegid.2011.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 03/25/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022]
Abstract
This paper describes the development and application of multilocus sequencing typing (MLST) and multi-virulence locus sequencing typing (MVLST) methods in determining the genetic variation and relatedness of 43 Vibrio cholerae strains of different serogroups isolated from various sources in Malaysia. The MLST assay used six housekeeping genes (dnaE, lap, recA, gyrB, cat and gmd), while the MVLST assay incorporated three virulence genes (ctxAB, tcpA and tcpI) and three virulence-associated genes (hlyA, toxR and rtxA). Our data showed that the dnaE and rtxA genes were the most conserved genes in V. cholerae O1 strains. Among the 12 studied genes, transitional substitutions that led to silent mutations were observed in all, except for gmd and hlyA, while non-synonymous substitutions occurred more frequently in virulence and virulence-associated genes. Five V. cholerae O1 strains were found to be the El Tor variant O1 strains because they harboured the classical ctxB gene. In addition, the classical ctxB gene was also observed in O139 V. cholerae. A total of 29 MLST types were observed, and this assay could differentiate V. cholerae within the non-O1/non-O139 serogroups. A total of 27 MVLST types were obtained. MVLST appeared to be more discriminatory than MLST because it could differentiate V. cholerae strains from two different outbreaks and could separate the toxigenic from the non-toxigenic subtypes. Although the O1 V. cholerae strains were closely related, the combined MLST and MVLST analyses differentiated the strains isolated from different localities. In conclusion, sequence-based analysis in this study provided a better understanding of mutation points and the type of mutations in V. cholerae. The MVLST assay is useful to characterise O1 V. cholerae strains, while combined analysis may improve the discriminatory power and is suitable for the local epidemiological study of V. cholerae.
Collapse
Affiliation(s)
- Cindy Shuan Ju Teh
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
44
|
Chen Y, Dai J, Morris JG, Johnson JA. Genetic analysis of the capsule polysaccharide (K antigen) and exopolysaccharide genes in pandemic Vibrio parahaemolyticus O3:K6. BMC Microbiol 2010; 10:274. [PMID: 21044320 PMCID: PMC2987987 DOI: 10.1186/1471-2180-10-274] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 11/02/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pandemic Vibrio parahaemolyticus has undergone rapid changes in both K- and O-antigens, making detection of outbreaks more difficult. In order to understand these rapid changes, the genetic regions encoding these antigens must be examined. In Vibrio cholerae and Vibrio vulnificus, both O-antigen and capsular polysaccharides are encoded in a single region on the large chromosome; a similar arrangement in pandemic V. parahaemolyticus would help explain the rapid serotype changes. However, previous reports on "capsule" genes are controversial. Therefore, we set out to clarify and characterize these regions in pandemic V. parahaemolyticus O3:K6 by gene deletion using a chitin based transformation strategy. RESULTS We generated different deletion mutants of putative polysaccharide genes and examined the mutants by immuno-blots with O and K specific antisera. Our results showed that O- and K-antigen genes are separated in V. parahaemolyticus O3:K6; the region encoding both O-antigen and capsule biosynthesis in other vibrios, i.e. genes between gmhD and rjg, determines the K6-antigen but not the O3-antigen in V. parahaemolyticus. The previously identified "capsule genes" on the smaller chromosome were related to exopolysaccharide synthesis, not K-antigen. CONCLUSION Understanding of the genetic basis of O- and K-antigens is critical to understanding the rapid changes in these polysaccharides seen in pandemic V. parahaemolyticus. This report confirms the genetic location of K-antigen synthesis in V. parahaemolyticus O3:K6 allowing us to focus future studies of the evolution of serotypes to this region.
Collapse
Affiliation(s)
- Yuansha Chen
- Department of Pathology, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
45
|
Cariri FAMO, Costa APR, Melo CC, Theophilo GND, Hofer E, de Melo Neto OP, Leal NC. Characterization of potentially virulent non-O1/non-O139 Vibrio cholerae strains isolated from human patients. Clin Microbiol Infect 2010; 16:62-7. [PMID: 19456828 DOI: 10.1111/j.1469-0691.2009.02763.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Traditional methods of typing Vibrio cholerae define virulent strains according to their recognition by sera directed against the known epidemic serogroups O1 and O139, overlooking potentially virulent non-O1/non-O139 strains. Here, we have undertaken the characterization of eight clinical isolates of non-O1/non-O139 V. cholerae, collected during cholera outbreaks in Brazil. Seven of these were typed as O26 and one, 17155, was defined as non-typable. A PCR-based approach has previously detected in these strains several virulence genes derived from the CTXvarphi prophage and generally associated with pathogenic strains. Here, the presence of the O1-specific wbeN gene was investigated through PCR and found to be restricted to strain 17155, as well as one of the O26 strains, 4756, although neither strain was recognized by O1-specific antisera. The same two isolates were the only strains able to express the cholera toxin in culture, assayed by western blotting. They also possessed four repeats of the heptanucleotide TTTTGAT upstream of the ctxAB genes encoding the cholera toxin. The remaining strains possessed only two intact repeats, whereas pathogenic O1 possessed four to six repeats. To define their evolutionary relationships, selected 16S-23S intergenic rRNA spacer regions were sequenced from the various strains and the resulting sequences used to build phylogenetic trees. Strains 4756 and 17155 always clustered with control O1 strains, whereas the remaining O26 strains clustered separately. These results confirm that, despite their serological phenotype, these two strains are genotypically related to O1 strains and potentially able to produce epidemic cholera.
Collapse
Affiliation(s)
- F A M O Cariri
- Departamento de Microbiologia, Centro de Pesquisas Aggeu Magalhães/Fiocruz, Av. Moraes Rego s/n, Campus UFPE, Recife, PE, Brazil
| | | | | | | | | | | | | |
Collapse
|
46
|
Safa A, Nair GB, Kong RYC. Evolution of new variants of Vibrio cholerae O1. Trends Microbiol 2009; 18:46-54. [PMID: 19942436 DOI: 10.1016/j.tim.2009.10.003] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 10/27/2009] [Accepted: 10/28/2009] [Indexed: 12/17/2022]
Abstract
Vibrio cholerae typically contains a prophage that carries the genes encoding the cholera toxin, which is responsible for the major clinical symptoms of the disease. In recent years, new pathogenic variants of V. cholerae have emerged and spread throughout many Asian and African countries. These variants display a mixture of phenotypic and genotypic traits from the two main biotypes (known as 'classical' and 'El Tor'), suggesting that they are genetic hybrids. Classical and El Tor biotypes have been the most epidemiologically successful cholera strains during the past century, and it is believed that the new variants (which we call here 'atypical El Tor') are likely to develop successfully in a manner similar to these biotypes. Here, we describe recent advances in our understanding of the epidemiology and evolution of the atypical El Tor strains.
Collapse
Affiliation(s)
- Ashrafus Safa
- Department of Biology and Chemistry and MERIT, City University of Hong Kong, 83, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR
| | | | | |
Collapse
|
47
|
Olivier V, Queen J, Satchell KJF. Successful small intestine colonization of adult mice by Vibrio cholerae requires ketamine anesthesia and accessory toxins. PLoS One 2009; 4:e7352. [PMID: 19812690 PMCID: PMC2753775 DOI: 10.1371/journal.pone.0007352] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 09/15/2009] [Indexed: 12/11/2022] Open
Abstract
Vibrio cholerae colonizes the small intestine of adult C57BL/6 mice. In this study, the physical and genetic parameters that facilitate this colonization were investigated. Successful colonization was found to depend upon anesthesia with ketamine-xylazine and neutralization of stomach acid with sodium bicarbonate, but not streptomycin treatment. A variety of common mouse strains were colonized by O1, O139, and non-O1/non-O139 strains. All combinations of mutants in the genes for hemolysin, the multifunctional, autoprocessing RTX toxin (MARTX), and hemagglutinin/protease were assessed, and it was found that hemolysin and MARTX are each sufficient for colonization after a low dose infection. Overall, this study suggests that, after intragastric inoculation, V. cholerae encounters barriers to infection including an acidic environment and an immediate immune response that is circumvented by sodium bicarbonate and the anti-inflammatory effects of ketamine-xylazine. After initial adherence in the small intestine, the bacteria are subjected to additional clearance mechanisms that are evaded by the independent toxic action of hemolysin or MARTX. Once colonization is established, it is suggested that, in humans, these now persisting bacteria initiate synthesis of the major virulence factors to cause cholera disease. This adult mouse model of intestinal V. cholerae infection, now well-characterized and fully optimized, should serve as a valuable tool for studies of pathogenesis and testing vaccine efficacy.
Collapse
Affiliation(s)
- Verena Olivier
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | | | | |
Collapse
|
48
|
Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci U S A 2009; 106:15442-7. [PMID: 19720995 DOI: 10.1073/pnas.0907787106] [Citation(s) in RCA: 292] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Vibrio cholerae, the causative agent of cholera, is a bacterium autochthonous to the aquatic environment, and a serious public health threat. V. cholerae serogroup O1 is responsible for the previous two cholera pandemics, in which classical and El Tor biotypes were dominant in the sixth and the current seventh pandemics, respectively. Cholera researchers continually face newly emerging and reemerging pathogenic clones carrying diverse combinations of phenotypic and genotypic properties, which significantly hampered control of the disease. To elucidate evolutionary mechanisms governing genetic diversity of pandemic V. cholerae, we compared the genome sequences of 23 V. cholerae strains isolated from a variety of sources over the past 98 years. The genome-based phylogeny revealed 12 distinct V. cholerae lineages, of which one comprises both O1 classical and El Tor biotypes. All seventh pandemic clones share nearly identical gene content. Using analogy to influenza virology, we define the transition from sixth to seventh pandemic strains as a "shift" between pathogenic clones belonging to the same O1 serogroup, but from significantly different phyletic lineages. In contrast, transition among clones during the present pandemic period is characterized as a "drift" between clones, differentiated mainly by varying composition of laterally transferred genomic islands, resulting in emergence of variants, exemplified by V. cholerae O139 and V. cholerae O1 El Tor hybrid clones. Based on the comparative genomics it is concluded that V. cholerae undergoes extensive genetic recombination via lateral gene transfer, and, therefore, genome assortment, not serogroup, should be used to define pathogenic V. cholerae clones.
Collapse
|
49
|
Tay CY, Reeves PR, Lan R. Importation of the major pilin TcpA gene and frequent recombination drive the divergence of the Vibrio pathogenicity island in Vibrio cholerae. FEMS Microbiol Lett 2009; 289:210-8. [PMID: 19054108 DOI: 10.1111/j.1574-6968.2008.01385.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Vibrio pathogenicity island (VPI) encodes the toxin-coregulated pilus and other virulence factors for Vibrio cholerae to colonize the human intestine to cause cholera. We assessed the level of genetic variation of VPI in nine nonpandemic isolates, and compared them with the sixth and seventh pandemic strains by sequencing c. 5 kb each from the start, middle and end regions of the VPI. Variation is similar among the three regions at around 2%, except for the tcpA gene, which has a much higher level of variation (23%). Numerous recombination segments were identified with sizes up to 2177 bp. Nearly all VPI genes sequenced have a ratio of synonymous to nonsynonymous substitutions considerably lower than that for housekeeping genes, suggesting that VPI genes are under positive selection pressure for change. The tagA gene was deleted or damaged in six isolates, which is likely to affect the efficiency of colonization of the human intestine. Two genes, orf2 and acfD, previously found to be translated differently in the sixth and seventh pandemic strains, were determined to be mutant in the seventh and sixth pandemic strains, respectively. These findings enhance our understanding of variation in the VPI, and of the pathogenic potential of VPI-positive environmental isolates.
Collapse
Affiliation(s)
- Chin Yen Tay
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | |
Collapse
|
50
|
González-Fraga S, Pichel M, Binsztein N, Johnson JA, Morris JG, Stine OC. Lateral gene transfer of O1 serogroup encoding genes of Vibrio cholerae. FEMS Microbiol Lett 2008; 286:32-8. [PMID: 18616601 DOI: 10.1111/j.1574-6968.2008.01251.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In Gram-negative bacteria, the O-antigen-encoding genes may be transferred between lineages, although mechanisms are not fully understood. To assess possible lateral gene transfer (LGT), 21 Argentinean Vibrio cholerae O-group 1 (O1) isolates were examined using multilocus sequence typing (MLST) to determine the genetic relatedness of housekeeping genes and genes from the O1 gene cluster. MSLT analysis revealed that 4.4% of the nucleotides in the seven housekeeping loci were variable, with six distinct genetic lineages identified among O1 isolates. In contrast, MLST analysis of the eight loci from the O1 serogroup region revealed that 0.24% of the 4943 nucleotides were variable. A putative breakpoint was identified in the JUMPstart sequence. Nine conserved nucleotides differed by a single nucleotide from a DNA uptake signal sequence (USS) also found in Pastuerellaceae. Our data indicate that genes in the O1 biogenesis region are closely related even in distinct genetic lineages, indicative of LGT, with a putative DNA USS identified at the defined boundary for the DNA exchange.
Collapse
Affiliation(s)
- Sol González-Fraga
- Instituto Nacional de Enfermedades Infecciosas-ANLIS Carlos G. Malbrán, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|