1
|
Wang T, Quijada D, Ahmedna T, Castillo JR, Naji NS, Peske JD, Karakousis PC, Paul S, Karantanos T, Karanika S. Targeting CCRL2 enhances therapeutic outcomes in a tuberculosis mouse model. Front Immunol 2025; 16:1501329. [PMID: 40181978 PMCID: PMC11965133 DOI: 10.3389/fimmu.2025.1501329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Tuberculosis (TB) remains among the leading infectious causes of death. Due to the limited number of antimicrobials in the TB drug discovery pipeline, interest has developed in host-directed approaches to improve TB treatment outcomes. C-C motif chemokine-like receptor 2 (CCRL2) is a unique seven-transmembrane domain receptor that is upregulated by inflammatory signals and mediates leucocyte migration. However, little is known about its role in TB infection. Here, we show that Mycobacterium tuberculosis (Mtb) infection increases CCRL2 protein expression in macrophages in vitro and alveolar macrophages (AMs), dendritic cells (DCs) and neutrophils in mouse lungs. To target selectively CCRL2-expressing cells in vivo, we developed a novel mouse anti-CCRL2 antibody-drug conjugate (ADC) linked with the cytotoxic drug SG3249. We tested its adjunctive therapeutic efficacy against TB when combined with the first-line regimen for drug-susceptible TB (isoniazid, rifampin, pyrazinamide, ethambutol; RHZE). The anti-CCRL2 ADC treatment potentiated RHZE efficacy in Mtb-infected mice and decreased gross lung inflammation. CCRL2 expression in lung DCs and AMs was lower in mice receiving anti-CCRL2 ADC treatment+RHZE compared to those receiving RHZE alone or the control group, although the total innate cell populations did not differ across treatment groups. Interestingly, neutrophils were completely absent in the anti-CCRL2 ADC treatment + RHZE group, unlike in the other treatment groups. IFN-γ+-and IL17-α+-T-cell responses, which are associated with optimal TB control, were also elevated in the anti-CCRL2 ADC treatment + RHZE group. Our findings suggest that CCRL2-targeting approaches may improve TB treatment outcomes, possibly through selective killing of Mtb-infected innate immune cells.
Collapse
Affiliation(s)
- Tianyin Wang
- Division of Infectious Diseases, Department of Medicine, The Johns Hopkins Hospital, Baltimore, MD, United States
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Darla Quijada
- Division of Infectious Diseases, Department of Medicine, The Johns Hopkins Hospital, Baltimore, MD, United States
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Taha Ahmedna
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jennie Ruelas Castillo
- Division of Infectious Diseases, Department of Medicine, The Johns Hopkins Hospital, Baltimore, MD, United States
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nour Sabiha Naji
- Division of Hematologic Malignancies, Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - J David Peske
- Division of Hematopathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Petros C. Karakousis
- Division of Infectious Diseases, Department of Medicine, The Johns Hopkins Hospital, Baltimore, MD, United States
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Suman Paul
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Hematopathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Theodoros Karantanos
- Division of Hematologic Malignancies, Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Styliani Karanika
- Division of Infectious Diseases, Department of Medicine, The Johns Hopkins Hospital, Baltimore, MD, United States
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Wang T, Quijada D, Ahmenda T, Castillo JR, Naji NS, Peske JD, Karakousis PC, Paul S, Karantanos T, Karanika S. Targeting CCRL2 enhances therapeutic outcomes in a tuberculosis mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614576. [PMID: 39386470 PMCID: PMC11463537 DOI: 10.1101/2024.09.23.614576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Tuberculosis (TB) remains among the leading infectious causes of death. Due to the limited number of antimicrobials in the TB drug discovery pipeline, interest has developed in host-directed approaches to improve TB treatment outcomes. C-C motif chemokine-like receptor 2 (CCRL2) is a unique seven-transmembrane domain receptor that is upregulated by inflammatory signals and mediates leucocyte migration. However, little is known about its role in the setting of TB infection. Here, we show that Mycobacterium tuberculosis (Mtb) infection increases CCRL2 protein expression in macrophages and in mouse lungs. To target selectively CCRL2-expressing cells in vivo, we developed a novel mouse anti-CCRL2 antibody-drug conjugate (ADC) linked with the cytotoxic drug SG3249. We tested its adjunctive therapeutic efficacy against TB when combined with the first-line regimen for drug-susceptible TB (isoniazid, rifampin, pyrazinamide, ethambutol; RHZE). The anti-CCRL2 ADC treatment potentiated RHZE efficacy in Mtb-infected mice and decreased gross lung inflammation. CCRL2 expression in lung dendritic cells and alveolar macrophages was lower in mice receiving anti-CCRL2 ADC treatment + RHZE compared to those receiving RHZE alone or the control group, although the total innate cell populations did not differ across treatment groups. Interestingly, neutrophils were completely absent in the anti-CCRL2 ADC treatment + RHZE group, unlike in the other treatment groups. IFN-γ+ and IL17-Α+ T-cell responses, which are associated with optimal TB control, were also elevated in the anti-CCRL2 ADC treatment + RHZE group. Collectively, our findings suggest that CCRL2-targeting approaches may improve TB treatment outcomes, possibly through selective killing of Mtb-infected innate immune cells.
Collapse
|
3
|
Krishnan N, Priestman M, Uhía I, Charitakis N, Glegola-Madejska IT, Baer TM, Tranberg A, Faraj A, Simonsson USH, Robertson BD. A noninvasive BCG skin challenge model for assessing tuberculosis vaccine efficacy. PLoS Biol 2024; 22:e3002766. [PMID: 39159267 PMCID: PMC11361749 DOI: 10.1371/journal.pbio.3002766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/29/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
We report here on the characterisation in mice of a noninvasive bacille Calmette-Guérin (BCG) skin challenge model for assessing tuberculosis (TB) vaccine efficacy. Controlled human infection models (CHIMs) are valuable tools for assessing the relevant biological activity of vaccine candidates, with the potential to accelerate TB vaccine development into the clinic. TB infection poses significant constraints on the design of a CHIM using the causative agent Mycobacterium tuberculosis (Mtb). A safer alternative is a challenge model using the attenuated vaccine agent Mycobacterium bovis BCG as a surrogate for Mtb, and intradermal (skin) challenge as an alternative to pulmonary infection. We have developed a unique noninvasive imaging system based on fluorescent reporters (FluorBCG) to quantitatively measure bacterial load over time, thereby determining a relevant biological vaccine effect. We assessed the utility of this model to measure the effectiveness of 2 TB vaccines: the currently licenced BCG and a novel subunit vaccine candidate. To assess the efficacy of the skin challenge model, a nonlinear mixed-effects models was built describing the decline of fluorescence over time. The model-based analysis identified that BCG vaccination reduced the fluorescence readout of both fluorophores compared to unvaccinated mice (p < 0.001). However, vaccination with the novel subunit candidate did not alter the fluorescence decline compared to unvaccinated mice (p > 0.05). BCG-vaccinated mice that showed the reduced fluorescent readout also had a reduced bacterial burden in the lungs when challenged with Mtb. This supports the fluorescence activity in the skin as a reflection of vaccine induced functional pulmonary immune responses. This novel noninvasive approach allows for repeated measurements from the challenge site, providing a dynamic readout of vaccine induced responses over time. This BCG skin challenge model represents an important contribution to the ongoing development of controlled challenge models for TB.
Collapse
Affiliation(s)
- Nitya Krishnan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Miles Priestman
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Iria Uhía
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Natalie Charitakis
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Izabella T. Glegola-Madejska
- Department of Life Sciences, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Thomas M. Baer
- Stanford Photonics Research Center, Stanford University, Stanford, California, United States of America
| | - Albin Tranberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Alan Faraj
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ulrika SH Simonsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Brian D. Robertson
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Rais M, Abdelaal H, Reese VA, Ferede D, Larsen SE, Pecor T, Erasmus JH, Archer J, Khandhar AP, Cooper SK, Podell BK, Reed SG, Coler RN, Baldwin SL. Immunogenicity and protection against Mycobacterium avium with a heterologous RNA prime and protein boost vaccine regimen. Tuberculosis (Edinb) 2023; 138:102302. [PMID: 36586154 PMCID: PMC10361416 DOI: 10.1016/j.tube.2022.102302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Prophylactic efficacy of two different delivery platforms for vaccination against Mycobacterium avium (M. avium) were tested in this study; a subunit and an RNA-based vaccine. The vaccine antigen, ID91, includes four mycobacterial antigens: Rv3619, Rv2389, Rv3478, and Rv1886. We have shown that ID91+GLA-SE is effective against a clinical NTM isolate, M. avium 2-151 smt. Here, we extend these results and show that a heterologous prime/boost strategy with a repRNA-ID91 (replicon RNA) followed by protein ID91+GLA-SE boost is superior to the subunit protein vaccine given as a homologous prime/boost regimen. The repRNA-ID91/ID91+GLA-SE heterologous regimen elicited a higher polyfunctional CD4+ TH1 immune response when compared to the homologous protein prime/boost regimen. More significantly, among all the vaccine regimens tested only repRNA-ID91/ID91+GLA-SE induced IFN-γ and TNF-secreting CD8+ T cells. Furthermore, the repRNA-ID91/ID91+GLA-SE vaccine strategy elicited high systemic proinflammatory cytokine responses and induced strong ID91 and an Ag85B-specific humoral antibody response a pre- and post-challenge with M. avium 2-151 smt. Finally, while all prophylactic prime/boost vaccine regimens elicited a degree of protection in beige mice, the heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen provided greater pulmonary protection than the homologous protein prime/boost regimen. These data indicate that a prophylactic heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen augments immunogenicity and confers protection against M. avium.
Collapse
Affiliation(s)
- Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Hazem Abdelaal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Valerie A Reese
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Debora Ferede
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Sasha E Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Tiffany Pecor
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | | | | | | | - Sarah K Cooper
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Brendan K Podell
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | | | - Rhea N Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA; Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Susan L Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA.
| |
Collapse
|
5
|
Milián-Suazo F, González-Ruiz S, Contreras-Magallanes YG, Sosa-Gallegos SL, Bárcenas-Reyes I, Cantó-Alarcón GJ, Rodríguez-Hernández E. Vaccination Strategies in a Potential Use of the Vaccine against Bovine Tuberculosis in Infected Herds. Animals (Basel) 2022; 12:ani12233377. [PMID: 36496897 PMCID: PMC9735741 DOI: 10.3390/ani12233377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Bovine tuberculosis (bTB) is a disease of cattle that represents a risk to public health and causes severe economic losses to the livestock industry. Recently, one of the strategies recommended for reducing the prevalence of the disease in animals is the use of the BCG vaccine, alone or in combination with proteins. It has been shown that the vaccine elicits a strong immune response, downsizes the number of animals with visible lesions, and reduces the rate of infection as well as the bacillary count. This paper, based on scientific evidence, makes suggestions about some practical vaccination alternatives that can be used in infected herds to reduce bTB prevalence, considering BCG strains, vaccine doses, routes of application, and age of the animals. Our conclusion is that vaccination is a promising alternative to be included in current control programs in underdeveloped countries to reduce the disease burden.
Collapse
Affiliation(s)
- Feliciano Milián-Suazo
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico
| | - Sara González-Ruiz
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico
- Correspondence:
| | | | | | - Isabel Bárcenas-Reyes
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico
| | | | - Elba Rodríguez-Hernández
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ajuchitlán 76280, Mexico
| |
Collapse
|
6
|
Scott NR, Thirunavukkarasu S, Rangel-Moreno J, Griggs DW, Khader SA. CWHM-12, an Antagonist of Integrin-Mediated Transforming Growth Factor-Beta Activation Confers Protection During Early Mycobacterium tuberculosis Infection in Mice. J Interferon Cytokine Res 2022; 42:421-429. [PMID: 35914102 PMCID: PMC9422778 DOI: 10.1089/jir.2022.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/15/2022] [Indexed: 11/12/2022] Open
Abstract
Tuberculosis (TB) caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb) is one of the most lethal infectious diseases in the world. Presently, Bacillus Calmette-Guerin, the vaccine approved for use against TB, does not offer complete protection against the disease, which necessitates the development of new therapeutics to treat this infection. Overexpression of transforming growth factor beta (TGF-β) is associated with pulmonary profibrotic changes. The inactive TGF-β secreted is activated through its cleavage and release by αv integrins. Integrin-mediated regulation of TGF-β is considered as a master switch in the profibrotic process and a potential therapeutic target. Thus, in this study, we sought to determine if treatment with a broad range antagonist of integrins, CWHM-12, has the potency to inhibit pulmonary fibrosis and enhance Mtb control in a highly susceptible mouse model of Mtb infection, namely the C3Heb/FeJ (FeJ). CWHM-12 treatment at the early stages of Mtb infection was efficacious in reducing disease severity and inflammation associated with decreased iNOS, MIP-2, and IL-10 production without degradation of collagen. This suggests a potential for CWHM-12 targeting of TGF-β to be explored as an adjunct therapeutic for early Mtb infection.
Collapse
Affiliation(s)
- Ninecia R. Scott
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Shyamala Thirunavukkarasu
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - David W. Griggs
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Shabaana A. Khader
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Piergallini TJ, Scordo JM, Pino PA, Schlesinger LS, Torrelles JB, Turner J. Acute Inflammation Confers Enhanced Protection against Mycobacterium tuberculosis Infection in Mice. Microbiol Spectr 2021; 9:e0001621. [PMID: 34232086 PMCID: PMC8552513 DOI: 10.1128/spectrum.00016-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/02/2021] [Indexed: 01/02/2023] Open
Abstract
Inflammation plays a crucial role in the control of Mycobacterium tuberculosis infection. In this study, we demonstrate that an inflammatory pulmonary environment at the time of infection mediated by lipopolysaccharide treatment in mice confers enhanced protection against M. tuberculosis for up to 6 months postinfection. This early and transient inflammatory environment was associated with a neutrophil and CD11b+ cell influx and increased inflammatory cytokines. In vitro infection demonstrated that neutrophils from lipopolysaccharide-treated mice exhibited increased association with M. tuberculosis and had a greater innate capacity for killing M. tuberculosis. Finally, partial depletion of neutrophils in lipopolysaccharide-treated mice showed an increase in M. tuberculosis burden, suggesting neutrophils played a part in the protection observed in lipopolysaccharide-treated mice. These results indicate a positive role for an inflammatory environment in the initial stages of M. tuberculosis infection and suggest that acute inflammation at the time of M. tuberculosis infection can positively alter disease outcome. IMPORTANCE Mycobacterium tuberculosis, the causative agent of tuberculosis disease, is estimated to infect one-fourth of the world's population and is one of the leading causes of death due to an infectious disease worldwide. The high-level variability in tuberculosis disease responses in the human populace may be linked to immune processes related to inflammation. In many cases, inflammation appears to exasperate tuberculosis responses; however, some evidence suggests inflammatory processes improve control of M. tuberculosis infection. Here, we show an acute inflammatory stimulus in mice provides protection against M. tuberculosis for up to 6 months, suggesting acute inflammation can positively affect M. tuberculosis infection outcome.
Collapse
Affiliation(s)
- Tucker J. Piergallini
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Julia M. Scordo
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
- The Barshop Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Paula A. Pino
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Larry S. Schlesinger
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jordi B. Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Joanne Turner
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
8
|
Schild Y, Mohamed A, Wootton EJ, Lewis A, Elks PM. Hif-1alpha stabilisation is protective against infection in zebrafish comorbid models. FEBS J 2020; 287:3925-3943. [PMID: 32485057 DOI: 10.1111/febs.15433] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 01/22/2023]
Abstract
Multi-drug-resistant tuberculosis is a worldwide problem, and there is an urgent need for host-derived therapeutic targets, circumventing emerging drug resistance. We have previously shown that hypoxia-inducible factor-1α (Hif-1α) stabilisation helps the host to clear mycobacterial infection via neutrophil activation. However, Hif-1α stabilisation has also been implicated in chronic inflammatory diseases caused by prolonged neutrophilic inflammation. Comorbid infection and inflammation can be found together in disease settings, and it remains unclear whether Hif-1α stabilisation would be beneficial in a holistic disease setting. Here, we set out to understand the effects of Hif-1α on neutrophil behaviour in a comorbid setting by combining two well-characterised in vivo zebrafish models - TB infection (Mycobacterium marinum infection) and sterile injury (tailfin transection). Using a local Mm infection near to the tailfin wound site caused neutrophil migration between the two sites that was reduced during Hif-1α stabilisation. During systemic Mm infection, wounding leads to increased infection burden, but the protective effect of Hif-1α stabilisation remains. Our data indicate that Hif-1α stabilisation alters neutrophil migration dynamics between comorbid sites and that the protective effect of Hif-1α against Mm is maintained in the presence of inflammation, highlighting its potential as a host-derived target against TB infection.
Collapse
Affiliation(s)
- Yves Schild
- The Bateson Centre, University of Sheffield, Sheffield, UK.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,Universität Duisburg Essen, Duisburg, Germany
| | - Abdirizak Mohamed
- The Bateson Centre, University of Sheffield, Sheffield, UK.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Edward J Wootton
- The Bateson Centre, University of Sheffield, Sheffield, UK.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Amy Lewis
- The Bateson Centre, University of Sheffield, Sheffield, UK.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Philip M Elks
- The Bateson Centre, University of Sheffield, Sheffield, UK.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
9
|
Kang GY, Rhyu HJ, Choi HH, Shin SJ, Hyun YM. 3D Imaging of the Transparent Mycobacterium tuberculosis-Infected Lung Verifies the Localization of Innate Immune Cells With Granuloma. Front Cell Infect Microbiol 2020; 10:226. [PMID: 32500041 PMCID: PMC7243706 DOI: 10.3389/fcimb.2020.00226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Using a novel tissue-clearing method, we aimed to visualize the three-dimensional (3D) distribution of immune cells within Mycobacterium tuberculosis (Mtb)-infected mice lungs. Ethyl cinnamate-based tissue clearing of Mtb-infected mice lungs was performed to obtain transparent lung samples, which were then imaged using a light sheet fluorescence microscope. Using the 3D images, we performed quantitative analysis of the immune cell population within multiple granulomas. In addition, to compare the data from the tissue clearing method, we performed histopathological and immunofluorescence analyses, and flow cytometry. We then created 3D images of the Mtb-infected lung that successfully demonstrated the distribution of blood vessels, immune cells, and granulomas. Since the immune cells within a granuloma could be separately selected and counted, the immune cell population within a specific lesion could be quantified. In addition, macroscopic analysis, e.g., the size or shape of a granuloma, as well as microscopic analysis could be performed as intact lung samples were used. The use of the tissue clearing method in infected lungs could be a novel modality for understanding the role of the immune system in the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Gyeong-Yi Kang
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyeong-Jun Rhyu
- Department of Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong-Hee Choi
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.,Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
10
|
The role of low molecular weight thiols in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2019; 116:44-55. [PMID: 31153518 DOI: 10.1016/j.tube.2019.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Low molecular weight (LMW) thiols are molecules with a functional sulfhydryl group that enable them to detoxify reactive oxygen species, reactive nitrogen species and other free radicals. Their roles range from their ability to modulate the immune system to their ability to prevent damage of biological molecules such as DNA and proteins by protecting against oxidative, nitrosative and acidic stress. LMW thiols are synthesized and found in both eukaryotes and prokaryotes. Due to their beneficial role to both eukaryotes and prokaryotes, their specific functions need to be elucidated, most especially in pathogenic prokaryotes such as Mycobacterium tuberculosis (M.tb), in order to provide a rationale for targeting their biosynthesis for drug development. Ergothioneine (ERG), mycothiol (MSH) and gamma-glutamylcysteine (GGC) are LMW thiols that have been shown to interplay to protect M.tb against cellular stress. Though ERG, MSH and GGC seem to have overlapping functions, studies are gradually revealing their unique physiological roles. Understanding their unique physiological role during the course of tuberculosis (TB) infection, would pave the way for the development of drugs that target their biosynthetic pathway. This review identifies the knowledge gap in the unique physiological roles of LMW thiols and proposes their mechanistic roles based on previous studies. In addition, it gives an update on identified inhibitors of their biosynthetic enzymes.
Collapse
|
11
|
Olive AJ, Smith CM, Kiritsy MC, Sassetti CM. The Phagocyte Oxidase Controls Tolerance to Mycobacterium tuberculosis Infection. THE JOURNAL OF IMMUNOLOGY 2018; 201:1705-1716. [PMID: 30061198 DOI: 10.4049/jimmunol.1800202] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/11/2018] [Indexed: 01/16/2023]
Abstract
Protection from infectious disease relies on two distinct strategies: antimicrobial resistance directly inhibits pathogen growth, whereas infection tolerance protects from the negative impact of infection on host health. A single immune mediator can differentially contribute to these strategies in distinct contexts, confounding our understanding of protection to different pathogens. For example, the NADPH-dependent phagocyte oxidase (Phox) complex produces antimicrobial superoxide and protects from tuberculosis (TB) in humans. However, Phox-deficient mice display no sustained resistance defects to Mycobacterium tuberculosis, suggesting a more complicated role for NADPH Phox complex than strictly controlling bacterial growth. We examined the mechanisms by which Phox contributes to protection from TB and found that mice lacking the Cybb subunit of Phox suffered from a specific defect in tolerance, which was caused by unregulated Caspase-1 activation, IL-1β production, and neutrophil influx into the lung. These studies imply that a defect in tolerance alone is sufficient to compromise immunity to M. tuberculosis and highlight a central role for Phox and Caspase-1 in regulating TB disease progression.
Collapse
Affiliation(s)
- Andrew J Olive
- University of Massachusetts Medical School, Worcester, MA 01605
| | - Clare M Smith
- University of Massachusetts Medical School, Worcester, MA 01605
| | | | | |
Collapse
|
12
|
Leisching GR. Susceptibility to Tuberculosis Is Associated With PI3K-Dependent Increased Mobilization of Neutrophils. Front Immunol 2018; 9:1669. [PMID: 30065729 PMCID: PMC6056613 DOI: 10.3389/fimmu.2018.01669] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022] Open
Abstract
Neutrophilia is a condition commonly observed in patients with late-stage tuberculosis, but evidence suggests that increased neutrophil influx begins early after infection in susceptible hosts and functions to promote a nutrient-replete niche that promotes Mycobacterium tuberculosis survival and persistence. As the disease progresses, an increase in the number of neutrophil-like cells is observed, all of which exhibit characteristics associated with (i) phenotypic and biochemical features of immaturity, (ii) the inability to activate T-cells, (iii) hyper-inflammation, and (iv) prolonged survival. Transcriptomics reveal a common set of molecules associated with the PI3–Kinase pathway that are dysregulated in patients with active tuberculosis. Closer inspection of their individual biological roles reveal their ability to modulate the IL-17/G–CSF axis, induce leukocyte receptor activation, and regulate apoptosis and motility. This review draws attention to neutrophil hyper-reactivity as a driving force for both the establishment and progression of tuberculosis disease in susceptible individuals.
Collapse
Affiliation(s)
- Gina R Leisching
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
13
|
Majlessi L, Sayes F, Bureau JF, Pawlik A, Michel V, Jouvion G, Huerre M, Severgnini M, Consolandi C, Peano C, Brosch R, Touati E, Leclerc C. Colonization with Helicobacter is concomitant with modified gut microbiota and drastic failure of the immune control of Mycobacterium tuberculosis. Mucosal Immunol 2017; 10:1178-1189. [PMID: 28145441 DOI: 10.1038/mi.2016.140] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/28/2016] [Indexed: 02/04/2023]
Abstract
Epidemiological and experimental observations suggest that chronic microbial colonization can impact the immune control of other unrelated pathogens contracted in a concomitant or sequential manner. Possible interactions between Mycobacterium tuberculosis infection and persistence of other bacteria have scarcely been investigated. Here we demonstrated that natural colonization of the digestive tract with Helicobacter hepaticus in mice is concomitant with modification of the gut microbiota, subclinical inflammation, and drastic impairment of immune control of the growth of subsequently administered M. tuberculosis, which results in severe lung tissue injury. Our results provided insights upon the fact that this prior H. hepaticus colonization leads to failures in the mechanisms that could prevent the otherwise balanced cross-talk between M. tuberculosis and the immune system. Such disequilibrium ultimately leads to the inhibition of control of mycobacterial growth, outbreak of inflammation, and lung pathology. Among the dysregulated immune signatures, we noticed a correlation between the detrimental lung injury and the accumulation of activated T-lymphocytes. Our findings suggest that the impact of prior Helicobacter spp. colonization and subsequent M. tuberculosis parasitism might be greater than previously thought, which is a key point given that both species are among the most frequent invasive bacteria in human populations.
Collapse
Affiliation(s)
- L Majlessi
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, Paris, France.,Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Paris, France.,INSERM U1041, Paris, France
| | - F Sayes
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, Paris, France.,Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Paris, France.,INSERM U1041, Paris, France
| | - J-F Bureau
- Institut Pasteur, Unité de Génétique Fonctionnelle des Maladies Infectieuses, Paris, France
| | - A Pawlik
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, Paris, France
| | - V Michel
- Institut Pasteur, Unité de Pathogenèse de Helicobacter, Paris, France.,CNRS ERL3526, Paris, France
| | - G Jouvion
- Institut Pasteur, Unité d'Histopathologie Humaine et Modèles Animaux, Paris, France.,Institut Pasteur, URE Histotechnologie et Pathologie, Paris, France
| | - M Huerre
- Institut Pasteur, URE Histotechnologie et Pathologie, Paris, France.,Institut Curie, Département de Pathologie, Paris, France
| | - M Severgnini
- Institute of Biomedical Technologies, CNR, Segrate, Milan, Italy
| | - C Consolandi
- Institute of Biomedical Technologies, CNR, Segrate, Milan, Italy
| | - C Peano
- Institute of Biomedical Technologies, CNR, Segrate, Milan, Italy
| | - R Brosch
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, Paris, France
| | - E Touati
- Institut Pasteur, Unité de Pathogenèse de Helicobacter, Paris, France.,CNRS ERL3526, Paris, France
| | - C Leclerc
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Paris, France.,INSERM U1041, Paris, France
| |
Collapse
|
14
|
Abstract
Tuberculosis remains one of the greatest threats to human health. The causative bacterium, Mycobacterium tuberculosis, is acquired by the respiratory route. It is exquisitely adapted to humans and is a prototypic intracellular pathogen of macrophages, with alveolar macrophages being the primary conduit of infection and disease. However, M. tuberculosis bacilli interact with and are affected by several soluble and cellular components of the innate immune system which dictate the outcome of primary infection, most commonly a latently infected healthy human host, in whom the bacteria are held in check by the host immune response within the confines of tissue granuloma, the host histopathologic hallmark. Such individuals can develop active TB later in life with impairment in the immune system. In contrast, in a minority of infected individuals, the early host immune response fails to control bacterial growth, and progressive granulomatous disease develops, facilitating spread of the bacilli via infectious aerosols. The molecular details of the M. tuberculosis-host innate immune system interaction continue to be elucidated, particularly those occurring within the lung. However, it is clear that a number of complex processes are involved at the different stages of infection that may benefit either the bacterium or the host. In this article, we describe a contemporary view of the molecular events underlying the interaction between M. tuberculosis and a variety of cellular and soluble components and processes of the innate immune system.
Collapse
|
15
|
Méndez-Samperio P. Commentary: The Role of Neutrophils in the Induction of Specific Th1 and Th17 during Vaccination against Tuberculosis. Front Cell Infect Microbiol 2017; 7:179. [PMID: 28553622 PMCID: PMC5427539 DOI: 10.3389/fcimb.2017.00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/25/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
- Patricia Méndez-Samperio
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de AyalaMexico City, Mexico
| |
Collapse
|
16
|
Shepelkova G, Evstifeev V, Majorov K, Bocharova I, Apt A. Therapeutic Effect of Recombinant Mutated Interleukin 11 in the Mouse Model of Tuberculosis. J Infect Dis 2016; 214:496-501. [PMID: 27190186 DOI: 10.1093/infdis/jiw176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/25/2016] [Indexed: 12/23/2022] Open
Abstract
Earlier we demonstrated that blocking of interleukin 11 (IL-11) by systemic administration of anti-IL-11 antibodies attenuates severity of Mycobacterium tuberculosis infection in mice. The substitution W147A in the IL-11 molecule creates the form of cytokine capable to disrupt gp130/IL11R signaling complex formation, thus serving as a high-affinity specific antagonist of IL-11-mediated signaling. We hypothesized that this mutant form of IL-11 may serve as an effective tool for inhibition of native IL-11 activity in vivo. We established the recombinant W147A mutant form of IL-11 in an optimized Escherichia coli expression system and administered it as the aerosol in the lungs of M. tuberculosis-susceptible I/St mice infected with M. tuberculosis Our results show that this therapeutic approach markedly inhibits tuberculous inflammation in lungs, increases the survival time of infected animals, and decreases expression of key inflammatory factors at the RNA and protein levels. These findings are a step toward clinical evaluation of the anti-IL-11 therapy for tuberculosis.
Collapse
Affiliation(s)
- Galina Shepelkova
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| | - Vladimir Evstifeev
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| | - Konstantin Majorov
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| | - Irina Bocharova
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| | - Alexander Apt
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| |
Collapse
|
17
|
Edem MSc VF, Arinola GO. Innate Cellular Immunity in Newly Diagnosed Pulmonary Tuberculosis Patients and During Chemotherapy. Ann Glob Health 2016; 81:669-74. [DOI: 10.1016/j.aogh.2015.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Romero-Adrian TB, Leal-Montiel J, Fernández G, Valecillo A. Role of cytokines and other factors involved in the Mycobacterium tuberculosis infection. World J Immunol 2015; 5:16-50. [DOI: 10.5411/wji.v5.i1.16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/18/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a pathogen that is widely distributed geographically and continues to be a major threat to world health. Bacterial virulence factors, nutritional state, host genetic condition and immune response play an important role in the evolution of the infection. The genetically diverse Mtb strains from different lineages have been shown to induce variable immune system response. The modern and ancient lineages strains induce different cytokines patterns. The immunity to Mtb depends on Th1-cell activity [interferon-γ (IFN-γ), interleukin-12 (IL-12) and tumor necrosis factor-α (TNF-α)]. IL-1β directly kills Mtb in murine and human macrophages. IL-6 is a requirement in host resistance to Mtb infection. IFN-γ, TNF-α, IL-12 and IL-17 are participants in Mycobacterium-induced granuloma formation. Other regulating proteins as IL-27 and IL-10 can prevent extensive immunopathology. CXCL 8 enhances the capacity of the neutrophil to kill Mtb. CXCL13 and CCL19 have been identified as participants in the formation of granuloma and control the Mtb infection. Treg cells are increased in patients with active tuberculosis (TB) but decrease with anti-TB treatment. The increment of these cells causes down- regulation of adaptive immune response facilitating the persistence of the bacterial infection. Predominance of Th2 phenotype cytokines increases the severity of TB. The evolution of the Mtb infection will depend of the cytokines network and of the influence of other factors aforementioned.
Collapse
|
19
|
A role for Rab27 in neutrophil chemotaxis and lung recruitment. BMC Cell Biol 2014; 15:39. [PMID: 25359237 PMCID: PMC4221698 DOI: 10.1186/s12860-014-0039-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/16/2014] [Indexed: 01/08/2023] Open
Abstract
Background Neutrophils are a critical part of the innate immune system. Their ability to migrate into infected or injured tissues precedes their role in microbial killing and clearance. We have previously shown that Rab27a can promote neutrophil migration by facilitating uropod release through protease secretion from primary granule exocytosis at the cell rear. Rab27b has been implicated in primary granule exocytosis but its role in neutrophil migration has not been investigated. Results Here we found Rab27b to be expressed in bone marrow derived neutrophils and Rab27b knockout (Rab27b KO) along with Rab27a/b double knockout (Rab27DKO) neutrophils exhibited impaired transwell migration in vitro in response to chemokines MIP-2 and LTB4. Interestingly, no additional defect in migration was observed in Rab27DKO neutrophils compared with Rab27b KO neutrophils. In vivo, Rab27DKO mice displayed severe impairment in neutrophil recruitment to the lungs in a MIP-2 dependent model but not in an LPS dependent model. Conclusions These data taken together implicate Rab27b in the regulation of neutrophil chemotaxis, likely through the regulation of primary granule exocytosis.
Collapse
|
20
|
Nouailles G, Dorhoi A, Koch M, Zerrahn J, Weiner J, Faé KC, Arrey F, Kuhlmann S, Bandermann S, Loewe D, Mollenkopf HJ, Vogelzang A, Meyer-Schwesinger C, Mittrücker HW, McEwen G, Kaufmann SHE. CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis. J Clin Invest 2014; 124:1268-82. [PMID: 24509076 DOI: 10.1172/jci72030] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/27/2013] [Indexed: 12/17/2022] Open
Abstract
Successful host defense against numerous pulmonary infections depends on bacterial clearance by polymorphonuclear leukocytes (PMNs); however, excessive PMN accumulation can result in life-threatening lung injury. Local expression of CXC chemokines is critical for PMN recruitment. The impact of chemokine-dependent PMN recruitment during pulmonary Mycobacterium tuberculosis infection is not fully understood. Here, we analyzed expression of genes encoding CXC chemokines in M. tuberculosis-infected murine lung tissue and found that M. tuberculosis infection promotes upregulation of Cxcr2 and its ligand Cxcl5. To determine the contribution of CXCL5 in pulmonary PMN recruitment, we generated Cxcl5(-/-) mice and analyzed their immune response against M. tuberculosis. Both Cxcr2(-/-) mice and Cxcl5(-/-) mice, which are deficient for only one of numerous CXCR2 ligands, exhibited enhanced survival compared with that of WT mice following high-dose M. tuberculosis infection. The resistance of Cxcl5(-/-) mice to M. tuberculosis infection was not due to heightened M. tuberculosis clearance but was the result of impaired PMN recruitment, which reduced pulmonary inflammation. Lung epithelial cells were the main source of CXCL5 upon M. tuberculosis infection, and secretion of CXCL5 was reduced by blocking TLR2 signaling. Together, our data indicate that TLR2-induced epithelial-derived CXCL5 is critical for PMN-driven destructive inflammation in pulmonary tuberculosis.
Collapse
|
21
|
B cells regulate neutrophilia during Mycobacterium tuberculosis infection and BCG vaccination by modulating the interleukin-17 response. PLoS Pathog 2013; 9:e1003472. [PMID: 23853593 PMCID: PMC3708864 DOI: 10.1371/journal.ppat.1003472] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/15/2013] [Indexed: 12/13/2022] Open
Abstract
We have previously demonstrated that B cells can shape the immune response to Mycobacterium tuberculosis, including the level of neutrophil infiltration and granulomatous inflammation at the site of infection. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may influence vaccine efficacy. To address these questions, a murine aerosol infection tuberculosis (TB) model and an intradermal (ID) ear BCG immunization mouse model, involving both the μMT strain and B cell-depleted C57BL/6 mice, were used. IL (interleukin)-17 neutralization and neutrophil depletion experiments using these systems provide evidence that B cells can regulate neutrophilia by modulating the IL-17 response during M. tuberculosis infection and BCG immunization. Exuberant neutrophilia at the site of immunization in B cell-deficient mice adversely affects dendritic cell (DC) migration to the draining lymph nodes and attenuates the development of the vaccine-induced Th1 response. The results suggest that B cells are required for the development of optimal protective anti-TB immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Administration of sera derived from M. tuberculosis-infected C57BL/6 wild-type mice reverses the lung neutrophilia phenotype in tuberculous μMT mice. Together, these observations provide insight into the mechanisms by which B cells and humoral immunity modulate vaccine-induced Th1 response and regulate neutrophila during M. tuberculosis infection and BCG immunization. Mycobacterium tuberculosis poses a serious threat to public health globally. It has been well established that T cells are critical in protection against M. tuberculosis. The role of B cells and humoral immunity in the process is less well understood. We previously showed that B cells and humoral immunity regulate the immune response against M. tuberculosis. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may modulate the development of vaccine-induced protective immunity. The data reveal that B cells can regulate neutrophilia during M. tuberculosis infection and BCG vaccination by modulating the IL-17 response. Vaccination studies show that excess neutrophilia adversely affects the development of BCG-elicited Th1 response. These observations suggest that B cells can optimize the development of protective immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Understanding the mechanisms by which B cells and humoral immunity modulate the immune response during M. tuberculosis infection and BCG immunization, particularly those that regulate IL-17 levels and neutrophilia, may lead to the development of novel strategies for the control of the tubercle bacillus, including efficacious vaccines.
Collapse
|
22
|
Jena P, Mohanty S, Mohanty T, Kallert S, Morgelin M, Lindstrøm T, Borregaard N, Stenger S, Sonawane A, Sørensen OE. Azurophil granule proteins constitute the major mycobactericidal proteins in human neutrophils and enhance the killing of mycobacteria in macrophages. PLoS One 2012; 7:e50345. [PMID: 23251364 PMCID: PMC3522671 DOI: 10.1371/journal.pone.0050345] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/18/2012] [Indexed: 12/16/2022] Open
Abstract
Pathogenic mycobacteria reside in, and are in turn controlled by, macrophages. However, emerging data suggest that neutrophils also play a critical role in innate immunity to tuberculosis, presumably by their different antibacterial granule proteins. In this study, we purified neutrophil azurophil and specific granules and systematically analyzed the antimycobacterial activity of some purified azurophil and specific granule proteins against M. smegmatis, M. bovis-BCG and M. tuberculosis H37Rv. Using gel overlay and colony forming unit assays we showed that the defensin-depleted azurophil granule proteins (AZP) were more active against mycobacteria compared to other granule proteins and cytosolic proteins. The proteins showing antimycobacterial activity were identified by MALDI-TOF mass spectrometry. Electron microscopic studies demonstrate that the AZP disintegrate bacterial cell membrane resulting in killing of mycobacteria. Exogenous addition of AZP to murine macrophage RAW 264.7, THP-1 and peripheral blood monocyte-derived macrophages significantly reduced the intracellular survival of mycobacteria without exhibiting cytotoxic activity on macrophages. Immunofluorescence studies showed that macrophages actively endocytose neutrophil granular proteins. Treatment with AZP resulted in increase in co-localization of BCG containing phagosomes with lysosomes but not in increase of autophagy. These data demonstrate that neutrophil azurophil proteins may play an important role in controlling intracellular survival of mycobacteria in macrophages.
Collapse
Affiliation(s)
- Prajna Jena
- School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa, India
| | - Soumitra Mohanty
- School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa, India
| | - Tirthankar Mohanty
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Stephanie Kallert
- Institute for Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - Matthias Morgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Thomas Lindstrøm
- Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark
| | - Niels Borregaard
- Department of Hematology, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - Avinash Sonawane
- School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa, India
| | - Ole E. Sørensen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Guglani L, Gopal R, Rangel-Moreno J, Junecko BF, Lin Y, Berger T, Mak TW, Alcorn JF, Randall TD, Reinhart TA, Chan YR, Khader SA. Lipocalin 2 regulates inflammation during pulmonary mycobacterial infections. PLoS One 2012. [PMID: 23185529 PMCID: PMC3502292 DOI: 10.1371/journal.pone.0050052] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Pulmonary tuberculosis (TB), caused by the intracellular bacteria Mycobacterium tuberculosis, is a worldwide disease that continues to kill more than 1.5 million people every year worldwide. The accumulation of lymphocytes mediates the formation of the tubercle granuloma in the lung and is crucial for host protection against M.tuberculosis infection. However, paradoxically the tubercle granuloma is also the basis for the immunopathology associated with the disease and very little is known about the regulatory mechanisms that constrain the inflammation associated with the granulomas. Lipocalin 2 (Lcn2) is a member of the lipocalin family of proteins and binds to bacterial siderophores thereby sequestering iron required for bacterial growth. Thus far, it is not known whether Lcn2 plays a role in the inflammatory response to mycobacterial pulmonary infections. In the present study, using models of acute and chronic mycobacterial pulmonary infections, we reveal a novel role for Lcn2 in constraining T cell lymphocytic accumulation and inflammation by inhibiting inflammatory chemokines, such as CXCL9. In contrast, Lcn2 promotes neutrophil recruitment during mycobacterial pulmonary infection, by inducing G-CSF and KC in alveolar macrophages. Importantly, despite a common role for Lcn2 in regulating chemokines during mycobacterial pulmonary infections, Lcn2 deficient mice are more susceptible to acute M.bovis BCG, but not low dose M.tuberculosis pulmonary infection.
Collapse
Affiliation(s)
- Lokesh Guglani
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Radha Gopal
- Division of Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Beth Fallert Junecko
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yinyao Lin
- Division of Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Thorsten Berger
- The Campbell Family Institute for Breast Cancer Research and the Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Tak W. Mak
- The Campbell Family Institute for Breast Cancer Research and the Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - John F. Alcorn
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Troy D. Randall
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Todd A. Reinhart
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yvonne R. Chan
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Shabaana A. Khader
- Division of Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
24
|
Natural transmission of Plasmodium berghei exacerbates chronic tuberculosis in an experimental co-infection model. PLoS One 2012; 7:e48110. [PMID: 23110184 PMCID: PMC3482195 DOI: 10.1371/journal.pone.0048110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/19/2012] [Indexed: 01/23/2023] Open
Abstract
Human populations are rarely exposed to one pathogen alone. Particularly in high incidence regions such as sub-Saharan Africa, concurrent infections with more than one pathogen represent a widely underappreciated public health problem. Two of the world’s most notorious killers, malaria and tuberculosis, are co-endemic in impoverished populations in the tropics. However, interactions between both infections in a co-infected individual have not been studied in detail. Both pathogens have a major impact on the lung as the prime target organ for aerogenic Mycobacterium tuberculosis and the site for one of the main complications in severe malaria, malaria-associated acute respiratory distress syndrome (MA-ARDS). In order to study the ramifications caused by both infections within the same host we established an experimental mouse model of co-infection between Mycobacterium tuberculosis and Plasmodium berghei NK65, a recently described model for MA-ARDS. Our study provides evidence that malaria-induced immune responses impair host resistance to Mycobacterium tuberculosis. Using the natural routes of infection, we observed that co-infection exacerbated chronic tuberculosis while rendering mice less refractory to Plasmodium. Co-infected animals presented with enhanced inflammatory immune responses as reflected by exacerbated leukocyte infiltrates, tissue pathology and hypercytokinemia accompanied by altered T-cell responses. Our results - demonstrating striking changes in the immune regulation by co-infection with Plasmodium and Mycobacterium - are highly relevant for the medical management of both infections in humans.
Collapse
|
25
|
Steinwede K, Maus R, Bohling J, Voedisch S, Braun A, Ochs M, Schmiedl A, Länger F, Gauthier F, Roes J, Welte T, Bange FC, Niederweis M, Bühling F, Maus UA. Cathepsin G and neutrophil elastase contribute to lung-protective immunity against mycobacterial infections in mice. THE JOURNAL OF IMMUNOLOGY 2012; 188:4476-87. [PMID: 22461690 DOI: 10.4049/jimmunol.1103346] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neutrophil serine proteases cathepsin G (CG) and neutrophil elastase (NE) are involved in immune-regulatory processes and exert antibacterial activity against various pathogens. To date, their role and their therapeutic potential in pulmonary host defense against mycobacterial infections are poorly defined. In this work, we studied the roles of CG and NE in the pulmonary resistance against Mycobacterium bovis bacillus Calmette-Guérin (BCG). CG-deficient mice and even more pronounced CG/NE-deficient mice showed significantly impaired pathogen elimination to infection with M. bovis BCG in comparison to wild-type mice. Moreover, granuloma formation was more pronounced in M. bovis BCG-infected CG/NE-deficient mice in comparison to CG-deficient and wild-type mice. A close examination of professional phagocyte subsets revealed that exclusively neutrophils shuttled CG and NE into the bronchoalveolar space of M. bovis BCG-infected mice. Accordingly, chimeric wild-type mice with a CG/NE-deficient hematopoietic system displayed significantly increased lung bacterial loads in response to M. bovis BCG infection. Therapeutically applied human CG/NE encapsulated in liposomes colocalized with mycobacteria in alveolar macrophages, as assessed by laser scanning and electron microscopy. Importantly, therapy with CG/NE-loaded liposomes significantly reduced mycobacterial loads in the lungs of mice. Together, neutrophil-derived CG and NE critically contribute to deceleration of pathogen replication during the early phase of antimycobacterial responses. In addition, to our knowledge, we show for the first time that liposomal encapsulated CG/NE exhibit therapeutic potential against pulmonary mycobacterial infections. These findings may be relevant for novel adjuvant approaches in the treatment of tuberculosis in humans.
Collapse
Affiliation(s)
- Kathrin Steinwede
- Department of Experimental Pneumology, Hannover Medical School, Hannover 30625, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Singh RK, Liao W, Tracey-White D, Recchi C, Tolmachova T, Rankin SM, Hume AN, Seabra MC. Rab27a-mediated protease release regulates neutrophil recruitment by allowing uropod detachment. J Cell Sci 2012; 125:1652-6. [PMID: 22375060 PMCID: PMC3346826 DOI: 10.1242/jcs.100438] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Neutrophil migration is vital for immunity and precedes effector functions such as pathogen killing. Here, we report that this process is regulated by the Rab27a GTPase, a protein known to control granule exocytosis. Rab27a-deficient (Rab27a KO) neutrophils exhibit migration defects in vitro and in vivo, and live-cell microscopy suggests that delayed uropod detachment causes the migratory defect. Surface expression of CD11b, a key adhesion molecule, is increased in chemokine-stimulated Rab27a KO neutrophils compared with the control, suggesting a turnover delay caused by a defect in elastase secretion from azurophilic granules at the rear of bone marrow polymorphonuclear leukocytes (BM-PMNs). We suggest that Rab27a-dependent protease secretion regulates neutrophil migration through proteolysis-dependent de-adhesion of uropods, a mechanism that could be conserved in cell migration and invasion.
Collapse
Affiliation(s)
- Rajesh K Singh
- Molecular Medicine, National Heart and Lung Institute (NHLI), Imperial College, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Dias AT, de Castro SBR, Alves CCS, Rezende AB, Rodrigues MF, Machado RRP, Fernandes A, Negrão-Corrêa D, Teixeira HC, Ferreira AP. Lower production of IL-17A and increased susceptibility to Mycobacterium bovis in mice coinfected with Strongyloides venezuelensis. Mem Inst Oswaldo Cruz 2012; 106:617-9. [PMID: 21894384 DOI: 10.1590/s0074-02762011000500015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 06/06/2011] [Indexed: 11/22/2022] Open
Abstract
The presence of intestinal helminths can down-regulate the immune response required to control mycobacterial infection. BALB/c mice infected with Mycobacterium bovis following an infection with the intestinal helminth Strongyloides venezuelensis showed reduced interleukin-17A production by lung cells and increased bacterial burden. Also, small granulomas and a high accumulation of cells expressing the inhibitory molecule CTLA-4 were observed in the lung. These data suggest that intestinal helminth infection could have a detrimental effect on the control of tuberculosis (TB) and render coinfected individuals more susceptible to the development of TB.
Collapse
Affiliation(s)
- Alyria Teixeira Dias
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil, 36036-330
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Mycobacterium tuberculosis is an old enemy of the human race, with evidence of infection observed as early as 5000 years ago. Although more host-restricted than Mycobacterium bovis, which can infect all warm-blooded vertebrates, M. tuberculosis can infect, and cause morbidity and mortality in, several veterinary species as well. As M. tuberculosis is one of the earliest described bacterial pathogens, the literature describing this organism is vast and overwhelming. This review strives to distill what is currently known about this bacterium and the disease it causes for the veterinary pathologist.
Collapse
Affiliation(s)
- K Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Dr, Athens, GA 30602-7388, USA.
| |
Collapse
|
29
|
Neutrophils in tuberculosis: friend or foe? Trends Immunol 2011; 33:14-25. [PMID: 22094048 DOI: 10.1016/j.it.2011.10.003] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/06/2011] [Accepted: 10/17/2011] [Indexed: 12/22/2022]
Abstract
Neutrophils are rapidly recruited to sites of mycobacterial infection, where they phagocytose bacilli. Whether neutrophils can kill mycobacteria in vivo probably depends on the tissue microenvironment, stage of infection, individual host, and infecting organism. The interaction of neutrophils with macrophages, as well as the downstream effects on T cell activity, could result in a range of outcomes from early clearance of infection to dissemination of viable bacteria together with an attenuated acquired immune response. In established disease, neutrophils accumulate in situations of high pathogen load or immunological dysfunction, and are likely to contribute to pathology. These activities may have clinical importance in terms of new treatments, targeted interventions and vaccine strategies.
Collapse
|
30
|
Blomgran R, Ernst JD. Lung neutrophils facilitate activation of naive antigen-specific CD4+ T cells during Mycobacterium tuberculosis infection. THE JOURNAL OF IMMUNOLOGY 2011; 186:7110-9. [PMID: 21555529 DOI: 10.4049/jimmunol.1100001] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Initiation of the adaptive immune response to Mycobacterium tuberculosis occurs in the lung-draining mediastinal lymph node and requires transport of M. tuberculosis by migratory dendritic cells (DCs) to the local lymph node. The previously published observations that 1) neutrophils are a transiently prominent population of M. tuberculosis-infected cells in the lungs early in infection and 2) that the peak of infected neutrophils immediately precedes the peak of infected DCs in the lungs prompted us to characterize the role of neutrophils in the initiation of adaptive immune responses to M. tuberculosis. We found that, although depletion of neutrophils in vivo increased the frequency of M. tuberculosis-infected DCs in the lungs, it decreased trafficking of DCs to the mediastinal lymph node. This resulted in delayed activation (CD69 expression) and proliferation of naive M. tuberculosis Ag85B-specific CD4 T cells in the mediastinal lymph node. To further characterize the role of neutrophils in DC migration, we used a Transwell chemotaxis system and found that DCs that were directly infected by M. tuberculosis migrated poorly in response to CCL19, an agonist for the chemokine receptor CCR7. In contrast, DCs that had acquired M. tuberculosis through uptake of infected neutrophils exhibited unimpaired migration. These results revealed a mechanism wherein neutrophils promote adaptive immune responses to M. tuberculosis by delivering M. tuberculosis to DCs in a form that makes DCs more effective initiators of naive CD4 T cell activation. These observations provide insight into a mechanism for neutrophils to facilitate initiation of adaptive immune responses in tuberculosis.
Collapse
Affiliation(s)
- Robert Blomgran
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
31
|
Dlugovitzky D, Stanford C, Stanford J. Immunological basis for the introduction of immunotherapy with Mycobacterium vaccae into the routine treatment of TB. Immunotherapy 2011; 3:557-68. [DOI: 10.2217/imt.11.6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An account is given of the immunological investigations carried out in Rosario (Argentina) to identify suitable methods for the assessment of the efficacy of immunotherapy for TB. Some of these were then applied to three small studies: one of a single injected dose of heat-killed, borate-buffered Mycobacterium vaccae administered early in treatment, another of three such doses administered at monthly intervals from the start of treatment, and the third of ten oral doses at frequent intervals throughout short-course chemotherapy. All three displayed better clearance of bacilli from the sputum, faster improvement in clinical symptoms, better radiological resolution of lesions and a return of most immunological parameters towards those of healthy persons. In principle, the immune change achieved is an increase in Th1 mechanisms, notably IL-2 and -12 with downregulation of the tissue damaging aspects of Th2. As an addition to chemotherapy for drug-susceptible or drug-resistant TB, with or without concomitant HIV infection, this immunotherapy offers a safe and effective improvement.
Collapse
Affiliation(s)
- Diana Dlugovitzky
- Cátedra de Microbiologia, Virologia y Parasitologia, Facultad de Ciencias Medicas, Universidad Nacional de Rosario, Santa Fe 3100, 2000 Rosario, Argentina
| | - Cynthia Stanford
- Centre for Infectious Diseases & International Health, Windeyer Institute of Medical Sciences, University College London, 46 Cleveland Street, London W1T 4JF, UK
| | | |
Collapse
|
32
|
KuoLee R, Harris G, Conlan JW, Chen W. Role of neutrophils and NADPH phagocyte oxidase in host defense against respiratory infection with virulent Francisella tularensis in mice. Microbes Infect 2011; 13:447-56. [PMID: 21277990 DOI: 10.1016/j.micinf.2011.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/11/2011] [Accepted: 01/14/2011] [Indexed: 02/04/2023]
Abstract
Francisella tularensis subspecies (subsp.) tularensis is a CDC Category A biological warfare agent and inhalation of as few as 15 bacilli can initiate severe disease. Relatively little is known about the cellular and molecular mechanisms of host defense against respiratory infection with subsp. tularensis. In this study, we examined the role of neutrophils and NADPH phagocyte oxidase in host resistance to pulmonary infection in a mouse intranasal infection model. We found that despite neutrophil recruitment to the lungs and increased concentrations of neutrophil-chemotactic chemokines (KC, MIP-2 and RANTES) in the bronchoalveolar lavage fluid following intranasal inoculation of the pathogen, neither depletion of neutrophils nor enhancement of their recruitment into the lungs had any impact on bacterial burdens or survival rate/time. Nevertheless, mice deficient in NADPH phagocyte oxidase (gp91(phox⁻/⁻)) did exhibit higher tissue and blood bacterial burdens and succumbed to infection one day earlier than wild-type C57BL/6 mice. These results imply that although neutrophils are not a major effector cell in defense against subsp. tularensis infection, NADPH phagocyte oxidase does play a marginal role.
Collapse
Affiliation(s)
- Rhonda KuoLee
- Institute for Biological Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A0R6, Canada
| | | | | | | |
Collapse
|
33
|
Kato C, Mikami M. Effect of aging on BCG immunostimulation of Porphyromonas gingivalis infection in mice. Biomed Res 2011; 32:45-54. [DOI: 10.2220/biomedres.32.45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Guinea pig neutrophil-macrophage interactions during infection with Mycobacterium tuberculosis. Microbes Infect 2010; 12:828-37. [PMID: 20685396 DOI: 10.1016/j.micinf.2010.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/21/2010] [Accepted: 05/26/2010] [Indexed: 01/21/2023]
Abstract
We examined the ability of recombinant guinea pig IL-8 (CXCL8) to activate neutrophils upon infection with virulent Mycobacterium tuberculosis. Using a Transwell insert culture system, contact-independent cell cultures were studied in which rgpIL-8-treated neutrophils were infected with virulent M. tuberculosis in the upper well, and AM were cultured in the lower well. IL-1β and TNF-α mRNA expression was significantly upregulated by AM. Neutralizing anti-rgpTNF-α polyclonal antibody abrogated the response of AM to supernatants from the rgpIL-8-treated, infected neutrophils, while an anti-rgpIL-8 polyclonal antibody had no effect. This suggests that TNF-α produced by rgpIL-8 treated, infected neutrophils may play an important role in the activation of AM in the early response of the host against M. tuberculosis infection. Significant induction of apoptosis in M. tuberculosis-infected neutrophils was observed as compared to the uninfected neutrophils. Feeding of infected, apoptotic neutrophils to AM induced a significant up-regulation of TNF-α and IL-1β mRNA compared to AM exposed to staurosporine-treated apoptotic neutrophils. Suppressed intracellular mycobacterial growth was also seen in AM fed with infected, apoptotic neutrophils as compared to the AM infected with M. tuberculosis H37Rv alone. Taken together, these data suggest that neutrophil-macrophage interactions may contribute to host defense against M. tuberculosis infection.
Collapse
|
35
|
Host genetics in granuloma formation: human-like lung pathology in mice with reciprocal genetic susceptibility to M. tuberculosis and M. avium. PLoS One 2010; 5:e10515. [PMID: 20463893 PMCID: PMC2865535 DOI: 10.1371/journal.pone.0010515] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 04/13/2010] [Indexed: 12/31/2022] Open
Abstract
Development of lung granulomata is a hallmark of infections caused by virulent mycobacteria, reflecting both protective host response that restricts infection spreading and inflammatory pathology. The role of host genetics in granuloma formation is not well defined. Earlier we have shown that mice of the I/St strain are extremely susceptible to Mycobacterium tuberculosis but resistant to M. avium infection, whereas B6 mice show a reversed pattern of susceptibility. Here, by directly comparing: (i) characteristics of susceptibility to two infections in vivo; (ii) architecture of lung granulomata assessed by immune staining; and (iii) expression of genes encoding regulatory factors of neutrophil influx in the lung tissue, we demonstrate that genetic susceptibility of the host largely determines the pattern of lung pathology. Necrotizing granuloma surrounded by hypoxic zones, as well as a massive neutrophil influx, develop in the lungs of M. avium-infected B6 mice and in the lungs of M. tuberculosis-infected I/St mice, but not in the lungs of corresponding genetically resistant counterparts. The mirror-type lung tissue responses to two virulent mycobacteria indicate that the level of genetic susceptibility of the host to a given mycobacterial species largely determines characteristics of pathology, and directly demonstrate the importance of host genetics in pathogenesis.
Collapse
|
36
|
Schneider BE, Korbel D, Hagens K, Koch M, Raupach B, Enders J, Kaufmann SHE, Mittrücker HW, Schaible UE. A role for IL-18 in protective immunity against Mycobacterium tuberculosis. Eur J Immunol 2010; 40:396-405. [PMID: 19950174 DOI: 10.1002/eji.200939583] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tuberculosis remains the most hazardous bacterial infection worldwide. The causative agent, Mycobacterium tuberculosis, is a facultative intracellular pathogen of resting MPhi. IFN-gamma secreted by natural killer, CD4 Th 1 and CD8 T cells upon instruction by IL-12 and -18 activates MPhi to restrict mycobacterial growth. Production of both cytokines is induced by TLR signalling in DC and MPhi. Mice deficient for the TLR adaptor, MyD88, are highly susceptible to M. tuberculosis infection. Shared usage of MyD88 by signalling cascades for TLR and receptors for IL-1 and IL-18 prompted us to revisit the role of IL-18 during experimental infection with M. tuberculosis. We show that mice deficient for IL-18 and MyD88 but not for IL-18 receptor promptly succumbed to M. tuberculosis infection in contrast to WT or TLR-2/-4 double KO mice indicating that lack of IL-18 contributes to the high susceptibility of MyD88 KO mice to M. tuberculosis. Without IL-18, the protective Th1 response was decreased and hence, mycobacterial propagation was favoured. Neutrophil-driven lung immunopathology concomitant with unrestrained growth of tubercle bacilli are most likely responsible for the premature death of IL-18 KO mice. Thus, IL-18 plays a decisive role in protective immunity against tuberculosis.
Collapse
Affiliation(s)
- Bianca E Schneider
- London School of Hygiene & Tropical Medicine, Infectious and Tropical Diseases-Immunology, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gillespie PA, Kang GS, Elder A, Gelein R, Chen L, Moreira AL, Koberstein J, Tchou-Wong KM, Gordon T, Chen LC. Pulmonary response after exposure to inhaled nickel hydroxide nanoparticles: short and long-term studies in mice. Nanotoxicology 2010; 4:106-119. [PMID: 20730025 PMCID: PMC2922767 DOI: 10.3109/17435390903470101] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Short and long-term pulmonary response to inhaled nickel hydroxide nanoparticles (nano-Ni(OH)(2), CMD = 40 nm) in C57BL/6 mice was assessed using a whole body exposure system. For short-term studies mice were exposed for 4 h to nominal concentrations of 100, 500, and 1000 mg/m(3). For long-term studies mice were exposed for 5 h/d, 5 d/w, for up to 5 months (m) to a nominal concentration of 100 mg/m(3). Particle morphology, size distribution, chemical composition, solubility, and intrinsic oxidative capacity were determined. Markers of lung injury and inflammation in bronchoalveolar lavage fluid (BALF); histopathology; and lung tissue elemental nickel content and mRNA changes in macrophage inflammatory protein-2 (Mip-2), chemokine ligand 2 (Ccl2), interleukin 1-alpha (Il-1α), and tumor necrosis factor-alpha (Tnf-α) were assessed. Dose-related changes in BALF analyses were observed 24 h after short-term studies while significant changes were noted after 3 m and/or 5 m of exposure (24 h). Nickel content was detected in lung tissue, Ccl2 was most pronouncedly expressed, and histological changes were noted after 5 m of exposure. Collectively, data illustrates nano-Ni(OH)(2) can induce inflammatory responses in C57BL/6 mice.
Collapse
Affiliation(s)
- Patricia A. Gillespie
- New York University, Department of Environmental Medicine, 57 Old Forge Rd. Tuxedo, NY, 10987, USA. Voice: (845)-731-3599, Fax: (845)-351-5472,
| | - Gi Soo Kang
- New York University, Department of Environmental Medicine, 57 Old Forge Rd. Tuxedo, NY, 10987, USA. Voice: (845)-731-3599, Fax: (845)-351-5472,
| | - Alison Elder
- University of Rochester, Department of Environmental Medicine, 575 Elmwood Ave. Rochester, NY, 14642,USA. Voice: (585)-275-2324, Fax: (585)-256-2631,
| | - Robert Gelein
- University of Rochester, Department of Environmental Medicine, 575 Elmwood Ave. Rochester, NY, 14642, USA. Voice: (585)-275-2324, Fax: (585)-256-2631,
| | - Lu Chen
- Columbia University, Department of Chemical Engineering, 500 West 120 St. New York, NY, 10027, USA. Voice: (212)-854-4453, Fax: (212)-854-3054,
| | - Andre L. Moreira
- Memorial Sloan Kettering Cancer Center, Department of Pathology, 1275 York Ave. New York, NY, 10065, USA. Voice: (212)-639-5905, Fax: (212)-639-6318,
| | - Jeffrey Koberstein
- Columbia University, Department of Chemical Engineering, 500 West 120 St. New York, NY, 10027, USA. Voice: (212)-854-3120, Fax: (212)-854-3054,
| | - Kam-Meng Tchou-Wong
- New York University, Department of Environmental Medicine, 57 Old Forge Rd. Tuxedo, NY, 10987, USA. Voice: (845)-731-3504, Fax: (845)-351-5472,
| | - Terry Gordon
- New York University, Department of Environmental Medicine, 57 Old Forge Rd. Tuxedo, NY, 10987, USA. Voice: (845)-731-3536, Fax: (845)-351-5472,
| | - Lung Chi Chen
- New York University, Department of Environmental Medicine, 57 Old Forge Rd. Tuxedo, NY, 10987, USA. Voice: (845)-731-3560, Fax: (845)-351-5472,
| |
Collapse
|
38
|
Kondratieva TK, Rubakova EI, Linge IA, Evstifeev VV, Majorov KB, Apt AS. B cells delay neutrophil migration toward the site of stimulus: tardiness critical for effective bacillus Calmette-Guérin vaccination against tuberculosis infection in mice. THE JOURNAL OF IMMUNOLOGY 2009; 184:1227-34. [PMID: 20028653 DOI: 10.4049/jimmunol.0902011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations in the btk gene encoding Bruton's tyrosine kinase cause X-linked immune deficiency, with impaired B lymphocyte function as the major phenotype. Earlier, we demonstrated that CBA/N-xid mice, unlike the wild-type CBA mice, were not protected by bacillus Calmette-Guérin (BCG) vaccination against tuberculosis infection. Because IFN-gamma-producing T cells and activated macrophages are key elements of antituberculosis protection, it remained unclear how the mutation predominantly affecting B cell functions interferes with responses along the T cell-macrophage axis. In this study, we show that B cell deficiency leads to an abnormally rapid neutrophil migration toward the site of external stimulus. Using adoptive cell transfers and B cell genetic knockout, we demonstrate a previously unappreciated capacity of B cells to downregulate neutrophil motility. In our system, an advanced capture of BCG by neutrophils instead of macrophages leads to a significant decrease in numbers of IFN-gamma-producing T cells and impairs BCG performance in X-linked immune-deficient mice. The defect is readily compensated for by the in vivo neutrophil depletion.
Collapse
|
39
|
The role of neutrophils and TNF-related apoptosis-inducing ligand (TRAIL) in bacillus Calmette–Guérin (BCG) immunotherapy for urothelial carcinoma of the bladder. Cancer Metastasis Rev 2009; 28:345-53. [DOI: 10.1007/s10555-009-9195-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Qiu H, KuoLee R, Harris G, Chen W. High susceptibility to respiratory Acinetobacter baumannii infection in A/J mice is associated with a delay in early pulmonary recruitment of neutrophils. Microbes Infect 2009; 11:946-55. [PMID: 19573619 DOI: 10.1016/j.micinf.2009.06.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 05/28/2009] [Accepted: 06/16/2009] [Indexed: 11/17/2022]
Abstract
Acinetobacter baumannii is an important cause of both community-associated and nosocomial pneumonia, which have become increasingly difficult to treat because of the rapid development of resistance to multiple antibiotics. Despite its clinical importance, the pathogenesis of and host defense against respiratory A. baumannii infection remains largely unknown. To examine host factors that could contribute to the defense, we compared the susceptibilities of A/J and C57BL/6 mice to intranasal (i.n.) inoculation with A. baumannii. We found that A/J mice were significantly more susceptible to infection with higher mortality (P<0.05) and tissue bacterial burdens (P<0.01) as well as greater histopathology in the lung and spleen than C57BL/6 mice. More importantly, the high susceptibility of A/J mice was associated with a reduced local proinflammatory cytokine/chemokine (particularly IL-1beta, MIP-2 and TNF-alpha) responses and a significant delay and reduction in the early influx of neutrophils in the lung (P<0.05). Intranasal administration of neutrophil-inducing chemokine MIP-2 to A/J mice enhanced pulmonary neutrophil influx and partially restored host resistance to A. baumannii to a level comparable to the more resistant C57BL/6 mice. Our results imply that the early recruitment of neutrophils into the lung is critical for initiating an efficient host defense against respiratory A. baumannii infection.
Collapse
Affiliation(s)
- Hongyu Qiu
- Institute for Biological Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | | | | | | |
Collapse
|
41
|
Lee HM, Shin DM, Choi DK, Lee ZW, Kim KH, Yuk JM, Kim CD, Lee JH, Jo EK. Innate immune responses toMycobacterium ulceransvia toll-like receptors and dectin-1 in human keratinocytes. Cell Microbiol 2009; 11:678-92. [DOI: 10.1111/j.1462-5822.2009.01285.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
von Köckritz-Blickwede M, Rohde M, Oehmcke S, Miller LS, Cheung AL, Herwald H, Foster S, Medina E. Immunological mechanisms underlying the genetic predisposition to severe Staphylococcus aureus infection in the mouse model. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1657-68. [PMID: 18974303 DOI: 10.2353/ajpath.2008.080337] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Host genetic variations play a significant role in conferring predisposition to infection. In this study, we examined the immune mechanisms underlying the host genetic predisposition to severe Staphylococcus aureus infection in different mouse strains. Whereas C57BL/6 mice were the most resistant in terms of control of bacterial growth and survival, A/J, DBA/2, and BALB/c mice were highly susceptible and succumbed to infection shortly after bacterial inoculation. Other strains (C3H/HeN, CBA, and C57BL/10) exhibited intermediate susceptibility levels. Susceptibility of mice to S. aureus was associated with an inability to limit bacterial growth in the kidneys and development of pathology. Resistance to S. aureus in C57BL/6 mice was dependent on innate immune mechanisms because Rag2-IL2Rgamma(-/-) C57BL/6 mice, which are deficient in B, T, and NK cells, were also resistant to infection. Indeed, neutrophil depletion or inhibition of neutrophil recruitment rendered C57BL/6 mice completely susceptible to S. aureus, indicating that neutrophils are essential for the observed resistance. Although neutrophil function is not inhibited in A/J mice, expression of neutrophil chemoattractants KC and MIP-2 peaked earlier in the kidneys of C57BL/6 mice than in A/J mice, indicating that a delay in neutrophil recruitment to the site of infection may underlie the increased susceptibility of A/J mice to S. aureus.
Collapse
|
43
|
Morel C, Badell E, Abadie V, Robledo M, Setterblad N, Gluckman JC, Gicquel B, Boudaly S, Winter N. Mycobacterium bovis BCG-infected neutrophils and dendritic cells cooperate to induce specific T cell responses in humans and mice. Eur J Immunol 2008; 38:437-47. [PMID: 18203135 DOI: 10.1002/eji.200737905] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neutrophils are increasingly thought to modulate dendritic cell (DC) functions. We investigated the role of the neutrophil-DC partnership in the response to Mycobacterium bovis BCG-the vaccine used against tuberculosis. We compared neutrophil-DC crosstalk in humans and mice, searching for functional differences. In both species, neutrophils captured fluorescent BCG-enhanced green fluorescent protein (EGFP) and were more phagocytic than DC. Non-apoptotic BCG-infected neutrophils clustered with immature DC, establishing intimate contacts with dendrites, at which fluorescent intact bacilli were observed. Physical interactions between neutrophils and DC were required for DC activation. Human BCG-infected DC produced interleukin (IL)-10, an inhibitory cytokine, whereas DC exposed to BCG-infected neutrophils produced low to undetectable amounts of the cytokine. Mouse BCG-infected neutrophils induced sustained IL-2 production by DC. Human DC exposed to BCG-infected neutrophils stimulated recall T cell reactivity from vaccinated donors. Mouse DC infected with recombinant ovalbumin (OVA)-producing BCG (rBCG(ova)) elicited proliferation of TCR-OVA-transgenic CD4 and CD8 T cells. Moreover, exposing DC to rBCG(ova)-infected neutrophils enhanced OVA presentation. Thus, in mice and humans, neutrophils help DC to cross-present BCG antigens to T cells. Our results suggest that this "ménage à trois" involving neutrophils, DC and T cells plays a major role in the immune response to BCG.
Collapse
Affiliation(s)
- Céline Morel
- Unité Mixte de Recherche 7151 CNRS, Université Paris 7, Laboratoire d'immunologie cellulaire et immunopathologie de l'Ecole Pratique des Hautes Etudes, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Meijer AH, van der Sar AM, Cunha C, Lamers GEM, Laplante MA, Kikuta H, Bitter W, Becker TS, Spaink HP. Identification and real-time imaging of a myc-expressing neutrophil population involved in inflammation and mycobacterial granuloma formation in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:36-49. [PMID: 17553562 DOI: 10.1016/j.dci.2007.04.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 04/05/2007] [Accepted: 04/06/2007] [Indexed: 05/15/2023]
Abstract
By enhancer trap screening we identified a transgenic zebrafish line showing leukocyte-specific YFP expression during late embryo and early larval development. Its enhancer detection insertion was mapped near a novel member of the myc proto-oncogene family, encoding transcription factors known to be important for regulating human myelopoiesis. Characterization of the zebrafish myc family showed that only this particular myc gene is strongly expressed in leukocytes. To identify the myc/YFP-expressing cell type, we re-examined specificity of described myeloid markers by multiplex fluorescent in situ hybridization, showing that lcp1 can be considered as a general leukocyte marker, csf1r as a macrophage-specific marker, and mpx and lyz as neutrophil-specific markers. Subsequent colocalization analysis defined the YFP-positive cells as a subset of the neutrophil population. Using real-time confocal imaging we demonstrate that these cells migrate to sites of inflammation and are involved in innate immune responses towards infections, including Mycobacterium marinum-induced granuloma formation.
Collapse
Affiliation(s)
- Annemarie H Meijer
- Institute of Biology, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Suttmann H, Riemensberger J, Bentien G, Schmaltz D, Stöckle M, Jocham D, Böhle A, Brandau S. Neutrophil granulocytes are required for effective Bacillus Calmette-Guérin immunotherapy of bladder cancer and orchestrate local immune responses. Cancer Res 2007; 66:8250-7. [PMID: 16912205 DOI: 10.1158/0008-5472.can-06-1416] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of polymorphonuclear neutrophil granulocytes (PMN) in antitumoral immune responses displays a striking dichotomy. Under inflammatory conditions, PMN may promote tumor growth and progression. In contrast, especially in the context of therapeutic interventions, PMN can exert important antitumor functions. However, until now, the mechanisms of PMN-mediated activation of tumor immunity are poorly defined. Based on a murine model of Bacillus Calmette-Guérin (BCG) immunotherapy of bladder cancer, we provide evidence for a novel immunoregulatory role of this leukocyte subset. PMN immigrate into the bladder after intravesical BCG instillation and depletion of PMN from tumor-bearing mice completely abrogated antitumor efficacy of BCG. PMN stimulated with BCG in vitro as well as PMN isolated from the urine of BCG-treated patients were a major source of the chemokines interleukin-8, growth-related oncogene-alpha, macrophage inflammatory protein-1 alpha and of the inflammatory cytokine migration inhibitory factor. In vitro, BCG-stimulated PMN indirectly induced T-cell chemotaxis via the accessory function of activated monocytes. In vivo, depletion of PMN from BCG-treated mice significantly impaired CD4(+) T-cell trafficking to the bladder. These data show that PMN direct the migration of effector cells to the bladder and by this means are indispensable for effective tumor immunotherapy. Thus, our findings provide evidence for a novel early immunoregulatory role of these innate immune cells in local antitumor immunity.
Collapse
Affiliation(s)
- Henrik Suttmann
- Division of Immunotherapy, Research Center Borstel, Borstel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
van Faassen H, KuoLee R, Harris G, Zhao X, Conlan JW, Chen W. Neutrophils play an important role in host resistance to respiratory infection with Acinetobacter baumannii in mice. Infect Immun 2007; 75:5597-608. [PMID: 17908807 PMCID: PMC2168347 DOI: 10.1128/iai.00762-07] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acinetobacter baumannii has emerged as a major cause of both community-associated and nosocomial pneumonia, but little is known about the cellular and molecular mechanisms of host defense against respiratory infection with this bacterial pathogen. In this study, we examined the role of neutrophils in host resistance to pulmonary A. baumannii infection in a mouse model of intranasal (i.n.) infection. We found that neutrophils were rapidly recruited to the lungs following i.n. inoculation of the pathogen and declined to baseline level upon clearance of the infection. Depletion of neutrophils using monoclonal antibody RB6-8C5 prior to infection resulted in an acute lethal infection that was associated with enhanced bacterial burdens in the lung (P < 0.05) and extrapulmonary dissemination to the spleen. The increased susceptibility to A. baumannii in neutropenic mice was associated with a delay in the mRNA expression and production of early proinflammatory cytokines such as tumor necrosis factor alpha, interleukin-6, keratinocyte chemoattractant protein, monocyte chemoattractant protein 1, and macrophage inflammatory protein 2 (MIP-2) in the lungs and development of severe bronchopneumonia and lymphoid tissue destruction in the spleen. Moreover, i.n. administration of the neutrophil-inducing chemokine MIP-2 to normal mice induced a pulmonary influx of neutrophils and significantly enhanced the clearance of A. baumannii from the lungs (P < 0.01). These results imply that neutrophils play a critical role in host resistance to respiratory A. baumannii infection.
Collapse
Affiliation(s)
- Henk van Faassen
- Institute for Biological Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Umemura M, Yahagi A, Hamada S, Begum MD, Watanabe H, Kawakami K, Suda T, Sudo K, Nakae S, Iwakura Y, Matsuzaki G. IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection. THE JOURNAL OF IMMUNOLOGY 2007; 178:3786-96. [PMID: 17339477 DOI: 10.4049/jimmunol.178.6.3786] [Citation(s) in RCA: 428] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-17 is a cytokine that induces neutrophil-mediated inflammation, but its role in protective immunity against intracellular bacterial infection remains unclear. In the present study, we demonstrate that IL-17 is an important cytokine not only in the early neutrophil-mediated inflammatory response, but also in T cell-mediated IFN-gamma production and granuloma formation in response to pulmonary infection by Mycobacterium bovis bacille Calmette-Guérin (BCG). IL-17 expression in the BCG-infected lung was detected from the first day after infection and the expression depended on IL-23. Our observations indicated that gammadelta T cells are a primary source of IL-17. Lung-infiltrating T cells of IL-17-deficient mice produced less IFN-gamma in comparison to those from wild-type mice 4 wk after BCG infection. Impaired granuloma formation was also observed in the infected lungs of IL-17-deficient mice, which is consistent with the decreased delayed-type hypersensitivity response of the infected mice against mycobacterial Ag. These data suggest that IL-17 is an important cytokine in the induction of optimal Th1 response and protective immunity against mycobacterial infection.
Collapse
MESH Headings
- Animals
- Cytokines/immunology
- Hypersensitivity, Delayed/genetics
- Hypersensitivity, Delayed/immunology
- Hypersensitivity, Delayed/pathology
- Immunity, Cellular
- Immunity, Innate/genetics
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/pathology
- Interleukin-17/deficiency
- Interleukin-17/immunology
- Mice
- Mycobacterium bovis/immunology
- Neutrophils/immunology
- Neutrophils/pathology
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Th1 Cells/immunology
- Th1 Cells/pathology
- Time Factors
- Tuberculoma/genetics
- Tuberculoma/immunology
- Tuberculoma/pathology
- Tuberculoma/veterinary
- Tuberculosis, Pulmonary/genetics
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/veterinary
Collapse
Affiliation(s)
- Masayuki Umemura
- Molecular Microbiology Group, Center of Molecular Biosciences, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Torrado E, Adusumilli S, Fraga AG, Small PLC, Castro AG, Pedrosa J. Mycolactone-mediated inhibition of tumor necrosis factor production by macrophages infected with Mycobacterium ulcerans has implications for the control of infection. Infect Immun 2007; 75:3979-88. [PMID: 17517872 PMCID: PMC1951989 DOI: 10.1128/iai.00290-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The pathogenicity of Mycobacterium ulcerans, the agent of Buruli ulcer, depends on the cytotoxic exotoxin mycolactone. Little is known about the immune response to this pathogen. Following the demonstration of an intracellular growth phase in the life cycle of M. ulcerans, we investigated the production of tumor necrosis factor (TNF) induced by intramacrophage bacilli of diverse toxigenesis/virulence, as well as the biological relevance of TNF during M. ulcerans experimental infections. Our data show that murine bone marrow-derived macrophages infected with mycolactone-negative strains of M. ulcerans (nonvirulent) produce high amounts of TNF, while macrophages infected with mycolactone-positive strains of intermediate or high virulence produce intermediate or low amounts of TNF, respectively. These results are in accordance with the finding that TNF receptor P55-deficient (TNF-P55 KO) mice are not more susceptible than wild-type mice to infection by the highly virulent strains but are more susceptible to nonvirulent and intermediately virulent strains, demonstrating that TNF is required to control the proliferation of these strains in animals experimentally infected by M. ulcerans. We also show that mycolactone produced by intramacrophage M. ulcerans bacilli inhibits, in a dose-dependent manner, but does not abrogate, the production of macrophage inflammatory protein 2, which is consistent with the persistent inflammatory responses observed in experimentally infected mice.
Collapse
Affiliation(s)
- Egídio Torrado
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
| | | | | | | | | | | |
Collapse
|
49
|
Srivastava M, Meinders A, Steinwede K, Maus R, Lucke N, Bühling F, Ehlers S, Welte T, Maus UA. Mediator responses of alveolar macrophages and kinetics of mononuclear phagocyte subset recruitment during acute primary and secondary mycobacterial infections in the lungs of mice. Cell Microbiol 2007; 9:738-52. [PMID: 17054437 DOI: 10.1111/j.1462-5822.2006.00824.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Little is known about the activation programme induced in alveolar macrophages upon phagocytosis of mycobacteria and the concomitant mononuclear phagocyte migratory responses that shape the acute phase of mycobacterial infection. Using high-speed cell sorting in conjunction with real-time RT-PCR analysis, we show that sorted alveolar macrophages of transgenic CX3CR1+/GFP mice infected with red fluorescent-labelled Mycobacterium bovis BCG exhibited weak transcriptional changes of lysosomal cathepsins B, L, D, K and S, whereas antimicrobial cathepsin G was strongly induced upon infection. Moreover, mRNA levels of pattern recognition receptors TLR2, TLR4 and NOD2 were downregulated as were neutrophil chemoattractants KC, MIP-2 and IP-10, whereas highly upregulated mRNA levels of the monocyte chemoattractant CCL2 were observed. M. bovis BCG infection of the mice elicited the alveolar accumulation of highly CX3CR1-positive alveolar dendritic cells but not neutrophils within the alveolar compartment, whereas no increased accumulation of CX3CR1high lung parenchymal dendritic cells (lung DC) or CX3CR1neg lung macrophages compared with controls was noted. In contrast, CX3CR1+/GFP mice previously immunized with M. bovis BCG rapidly responded with increased accumulations of both CX3CR1high alveolar and lung parenchymal DC and CX3CR1neg lung macrophages upon intratracheal M. bovis BCG challenge. Moreover, alveolar and lung macrophages and lung DC were found to contribute to early uptake of M. bovis BCG. Together, acute mycobacterial infection triggers both rapid changes in gene expression profiles in infected alveolar macrophages and a compartment-specific accumulation of mononuclear phagocyte subsets contributing to M. bovis BCG uptake in vivo.
Collapse
MESH Headings
- Animals
- CX3C Chemokine Receptor 1
- Flow Cytometry
- Gene Expression Profiling
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Lung/metabolism
- Lung/microbiology
- Lung/pathology
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/microbiology
- Macrophages, Alveolar/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Microscopy, Fluorescence
- Monocytes/metabolism
- Monocytes/microbiology
- Monocytes/pathology
- Mycobacterium bovis/growth & development
- Nod2 Signaling Adaptor Protein/genetics
- Nod2 Signaling Adaptor Protein/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Toll-Like Receptor 2/genetics
- Toll-Like Receptor 2/metabolism
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/metabolism
- Tuberculosis, Pulmonary/genetics
- Tuberculosis, Pulmonary/metabolism
- Tuberculosis, Pulmonary/microbiology
Collapse
Affiliation(s)
- Mrigank Srivastava
- Laboratory for Experimental Lung Research, Department of Pulmonary Medicine, Hannover School of Medicine, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Anis MM, Fulton SA, Reba SM, Harding CV, Boom WH. Modulation of naive CD4+ T-cell responses to an airway antigen during pulmonary mycobacterial infection. Infect Immun 2007; 75:2260-8. [PMID: 17296758 PMCID: PMC1865791 DOI: 10.1128/iai.01709-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During pulmonary mycobacterial infection, there is increased trafficking of dendritic cells from the lungs to the draining lymph nodes. We hypothesized that ongoing mycobacterial infection would modulate recruitment and activation of antigen-specific naive CD4+ T cells after airway antigen challenge. BALB/c mice were infected by aerosol with Mycobacterium bovis BCG. At peak bacterial burden in the lungs (4 to 6 weeks postinfection), carboxy-fluorescein diacetate succinimidyl ester-labeled naive ovalbumin-specific DO11.10 T cells were adoptively transferred into infected and uninfected mice. Recipient mice were challenged intranasally with soluble ovalbumin (OVA), and OVA-specific T-cell responses were measured in the lungs, draining mediastinal lymph nodes (MLN), and spleens. OVA challenge resulted in increased activation and proliferation of OVA-specific T cells in the draining MLN of both infected and uninfected mice. However, only BCG-infected mice had prominent OVA-specific T-cell activation, proliferation, and Th1 differentiation in the lungs. BCG infection caused greater distribution of airway OVA to pulmonary dendritic cells and enhanced presentation of OVA peptide by lung CD11c+ cells. Together, these data suggest that an existing pulmonary mycobacterial infection alters the phenotype of lung dendritic cells so that they can activate antigen-specific naive CD4+ T cells in the lungs in response to airway antigen challenge.
Collapse
Affiliation(s)
- Mursalin M Anis
- Department of Pathology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106-4984, USA
| | | | | | | | | |
Collapse
|