1
|
Garg NJ. An Update on Vaccines Against Trypanosoma cruzi and Chagas Disease. Pathogens 2025; 14:124. [PMID: 40005501 PMCID: PMC11857938 DOI: 10.3390/pathogens14020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Chagas disease (CD) is a global health concern, with no existing therapies to prophylactically treat adults traveling to endemic countries or those who may already be infected with Trypanosoma cruzi. The economic burden of Chagas cardiomyopathy and heart failure, due to healthcare costs and lost productivity from premature deaths, provides a strong rationale for investment in the development of immune therapies against CD. Vaccine efficacy is proposed to depend heavily on the induction of a robust Th1 response for the clearance of intracellular pathogens like T. cruzi. In this review, updated information on the efforts for vaccine development against CD is provided.
Collapse
Affiliation(s)
- Nisha J. Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch (UTMB), Galveston, TX 77555-1070, USA;
- Institute for Human Infections and Immunity, University of Texas Medical Branch (UTMB), Galveston, TX 77555-1070, USA
| |
Collapse
|
2
|
Farani PSG, Jones KM, Poveda C. Treatments and the Perspectives of Developing a Vaccine for Chagas Disease. Vaccines (Basel) 2024; 12:870. [PMID: 39203996 PMCID: PMC11359273 DOI: 10.3390/vaccines12080870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Chagas disease (CD) treatment and vaccine development are critical due to the significant health burden caused by the disease, especially in Latin America. Current treatments include benznidazole and nifurtimox, which are most effective in the acute phase of the disease but less so in the chronic phase, often with significant side effects. Here, using the available literature, we summarize the progress in vaccine development and new treatments that promise to reduce CD incidence and improve the quality of life for those at risk, particularly in endemic regions. New treatment options, such as posaconazole and fexinidazole, are being explored to improve efficacy and reduce adverse effects. Vaccine development for CD remains a high priority. The complex life stages and genetic diversity of Trypanosoma cruzi present challenges, but several promising vaccine candidates are under investigation. These efforts focus on stimulating a protective immune response through various innovative approaches.
Collapse
Affiliation(s)
- Priscila Silva Grijó Farani
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Kathryn Marie Jones
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristina Poveda
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Durães-Oliveira J, Palma-Marques J, Moreno C, Rodrigues A, Monteiro M, Alexandre-Pires G, da Fonseca IP, Santos-Gomes G. Chagas Disease: A Silent Threat for Dogs and Humans. Int J Mol Sci 2024; 25:3840. [PMID: 38612650 PMCID: PMC11011309 DOI: 10.3390/ijms25073840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Chagas disease (CD) is a vector-borne Neglected Zoonotic Disease (NZD) caused by a flagellate protozoan, Trypanosoma cruzi, that affects various mammalian species across America, including humans and domestic animals. However, due to an increase in population movements and new routes of transmission, T. cruzi infection is presently considered a worldwide health concern, no longer restricted to endemic countries. Dogs play a major role in the domestic cycle by acting very efficiently as reservoirs and allowing the perpetuation of parasite transmission in endemic areas. Despite the significant progress made in recent years, still there is no vaccine against human and animal disease, there are few drugs available for the treatment of human CD, and there is no standard protocol for the treatment of canine CD. In this review, we highlight human and canine Chagas Disease in its different dimensions and interconnections. Dogs, which are considered to be the most important peridomestic reservoir and sentinel for the transmission of T. cruzi infection in a community, develop CD that is clinically similar to human CD. Therefore, an integrative approach, based on the One Health concept, bringing together the advances in genomics, immunology, and epidemiology can lead to the effective development of vaccines, new treatments, and innovative control strategies to tackle CD.
Collapse
Affiliation(s)
- João Durães-Oliveira
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Joana Palma-Marques
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Cláudia Moreno
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Armanda Rodrigues
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Marta Monteiro
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
- Centre for Interdisciplinary Research in Animal Health, CIISA, Faculty of Veterinary Medicine, FMV, University of Lisbon, ULisboa, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Graça Alexandre-Pires
- Centre for Interdisciplinary Research in Animal Health, CIISA, Faculty of Veterinary Medicine, FMV, University of Lisbon, ULisboa, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Isabel Pereira da Fonseca
- Centre for Interdisciplinary Research in Animal Health, CIISA, Faculty of Veterinary Medicine, FMV, University of Lisbon, ULisboa, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Gabriela Santos-Gomes
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| |
Collapse
|
4
|
Shang W, Hu X, Lin X, Li S, Xiong S, Huang B, Wang X. Iterative In Silico Screening for Optimizing Stable Conformation of Anti-SARS-CoV-2 Nanobodies. Pharmaceuticals (Basel) 2024; 17:424. [PMID: 38675386 PMCID: PMC11054880 DOI: 10.3390/ph17040424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Nanobodies (Nbs or VHHs) are single-domain antibodies (sdAbs) derived from camelid heavy-chain antibodies. Nbs have special and unique characteristics, such as small size, good tissue penetration, and cost-effective production, making Nbs a good candidate for the diagnosis and treatment of viruses and other pathologies. Identifying effective Nbs against COVID-19 would help us control this dangerous virus or other unknown variants in the future. Herein, we introduce an in silico screening strategy for optimizing stable conformation of anti-SARS-CoV-2 Nbs. Firstly, various complexes containing nanobodies were downloaded from the RCSB database, which were identified from immunized llamas. The primary docking between Nbs and the SARS-CoV-2 spike protein receptor-binding domain was performed through the ClusPro program, with the manual screening leaving the reasonable conformation to the next step. Then, the binding distances of atoms between the antigen-antibody interfaces were measured through the NeighborSearch algorithm. Finally, filtered nanobodies were acquired according to HADDOCK scores through HADDOCK docking the COVID-19 spike protein with nanobodies under restrictions of calculated molecular distance between active residues and antigenic epitopes less than 4.5 Å. In this way, those nanobodies with more reasonable conformation and stronger neutralizing efficacy were acquired. To validate the efficacy ranking of the nanobodies we obtained, we calculated the binding affinities (∆G) and dissociation constants (Kd) of all screened nanobodies using the PRODIGY web tool and predicted the stability changes induced by all possible point mutations in nanobodies using the MAESTROWeb server. Furthermore, we examined the performance of the relationship between nanobodies' ranking and their number of mutation-sensitive sites (Spearman correlation > 0.68); the results revealed a robust correlation, indicating that the superior nanobodies identified through our screening process exhibited fewer mutation hotspots and higher stability. This correlation analysis demonstrates the validity of our screening criteria, underscoring the suitability of these nanobodies for future development and practical implementation. In conclusion, this three-step screening strategy iteratively in silico greatly improved the accuracy of screening desired nanobodies compared to using only ClusPro docking or default HADDOCK docking settings. It provides new ideas for the screening of novel antibodies and computer-aided screening methods.
Collapse
Affiliation(s)
| | | | | | | | | | - Bingding Huang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China; (W.S.); (X.H.); (X.L.); (S.L.); (S.X.)
| | - Xin Wang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China; (W.S.); (X.H.); (X.L.); (S.L.); (S.X.)
| |
Collapse
|
5
|
Rios LE, Lokugamage N, Choudhuri S, Chowdhury IH, Garg NJ. Subunit nanovaccine elicited T cell functional activation controls Trypanosoma cruzi mediated maternal and placental tissue damage and improves pregnancy outcomes in mice. NPJ Vaccines 2023; 8:188. [PMID: 38104118 PMCID: PMC10725459 DOI: 10.1038/s41541-023-00782-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023] Open
Abstract
This study investigated a candidate vaccine effect against maternal Trypanosoma cruzi (Tc) infection and improved pregnancy outcomes. For this, TcG2 and TcG4 were cloned in a nanoplasmid optimized for delivery, antigen expression, and regulatory compliance (nano2/4 vaccine). Female C57BL/6 mice were immunized with nano2/4, infected (Tc SylvioX10), and mated 7-days post-infection to enable fetal development during the maternal acute parasitemia phase. Females were euthanized at E12-E17 (gestation) days. Splenic and placental T-cell responses were monitored by flow cytometry. Maternal and placental/fetal tissues were examined for parasites by qPCR and inflammatory infiltrate by histology. Controls included age/immunization-matched non-pregnant females. Nano2/4 exhibited no toxicity and elicited protective IgG2a/IgG1 response in mice. Nano2/4 signaled a splenic expansion of functionally active CD4+ effector/effector memory (Tem) and central memory (Tcm) cells in pregnant mice. Upon challenge infection, nano2/4 increased the splenic CD4+ and CD8+T cells in all mice and increased the proliferation of CD4+Tem, CD4+Tcm, and CD8+Tcm subsets producing IFNγ and cytolytic molecules (PRF1, GZB) in pregnant mice. A balanced serum cytokines/chemokines response and placental immune characteristics indicated that pregnancy prevented the overwhelming damaging immune response in mice. Importantly, pregnancy itself resulted in a significant reduction of parasites in maternal and fetal tissues. Nano2/4 was effective in arresting the Tc-induced tissue inflammatory infiltrate, necrosis, and fibrosis in maternal and placental tissues and improving maternal fertility, placental efficiency, and fetal survival. In conclusion, we show that maternal nano2/4 vaccination is beneficial in controlling the adverse effects of Tc infection on maternal health, fetal survival, and pregnancy outcomes.
Collapse
Affiliation(s)
- Lizette Elaine Rios
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, UTMB, Galveston, TX, USA
| | - Nandadeva Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Subhadip Choudhuri
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Imran Hussain Chowdhury
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA.
- Institute for Human Infections and Immunity (IHII), UTMB, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences (SIVS), UTMB, Galveston, TX, USA.
| |
Collapse
|
6
|
Kashif M, Hira SK, Manna PP. Immunoinformatics based design and prediction of proteome-wide killer cell epitopes of Leishmania donovani: Potential application in vaccine development. J Biomol Struct Dyn 2022; 40:10578-10591. [PMID: 34219625 DOI: 10.1080/07391102.2021.1945495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Despite several extensive and exhaustive efforts, search for potential therapy against leishmaniasis has not made much progress. In the present work, we have employed mining strategy to screen Leishmania donovani proteome for identification of promising vaccine candidate. We have screened 21 potential antigenic proteins from 7960 total protein of L. donovani, based on the presence of signal peptide, GPI anchor, antigenicity prediction and substractive proteomic approach. Secondly, we have also performed comprehensive immunogenic epitope prediction from the screened 21 proteins, using IEDB-AR tools. Out of the 21 antigenic proteins, we obtained 11 immunogenic epitopes from 9 proteins. The final results revealed that four predicted epitopes namely; YPAFAALVF, VAVAATVAY, AAAPTEAAL and MYPLVAVVF, have significantly better binding potential with respective alleles and could elicits immune responses. Docking analysis using PATCHDOCK server and molecular dynamic simulation using GROMACS revealed the potential of the sequences as immunogenic epitopes. In silico studies also suggested that the epitopes occupied almost same binding cleft with the respective alleles, when compared with the reference peptides. It is also suggested from the molecular dynamic simulation data that the peptides were intact in the pocket for longer periods of time. Our study was designed to select MHC class I restricted epitopes for the activation of CD8 T cells using immunoinformatics for the prediction of probable vaccine candidate against L. donovani parasites. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Kashif
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sumit Kumar Hira
- Cellular Immunology Laboratory, Department of Zoology, The University of Burdwan, Purba Bardhhaman, India
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
7
|
Vaccine Design against Chagas Disease Focused on the Use of Nucleic Acids. Vaccines (Basel) 2022; 10:vaccines10040587. [PMID: 35455336 PMCID: PMC9028413 DOI: 10.3390/vaccines10040587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Chagas disease is caused by the protozoan Trypanosoma cruzi and is endemic to Central and South America. However, it has spread around the world and affects several million people. Treatment with currently available drugs cause several side effects and require long treatment times to eliminate the parasite, however, this does not improve the chronic effects of the disease such as cardiomyopathy. A therapeutic vaccine for Chagas disease may be able to prevent the disease and improve the chronic effects such as cardiomyopathy. This vaccine would be beneficial for both infected people and those which are at risk in endemic and non-endemic areas. In this article, we will review the surface antigens of T. cruzi, in order to choose those that are most antigenic and least variable, to design effective vaccines against the etiological agent of Chagas disease. Also, we discuss aspects of the design of nucleic acid-based vaccines, which have been developed and proven to be effective against the SARS-CoV-2 virus. The role of co-adjuvants and delivery carriers is also discussed. We present an example of a chimeric trivalent vaccine, based on experimental work, which can be used to design a vaccine against Chagas disease.
Collapse
|
8
|
Pathogen diversity, immunity, and the fate of infections: lessons learned from Trypanosoma cruzi human–host interactions. THE LANCET MICROBE 2022; 3:e711-e722. [DOI: 10.1016/s2666-5247(21)00265-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/02/2023] Open
|
9
|
Das NC, Chakraborty P, Bayry J, Mukherjee S. In Silico Analyses on the Comparative Potential of Therapeutic Human Monoclonal Antibodies Against Newly Emerged SARS-CoV-2 Variants Bearing Mutant Spike Protein. Front Immunol 2022; 12:782506. [PMID: 35082779 PMCID: PMC8784557 DOI: 10.3389/fimmu.2021.782506] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/07/2021] [Indexed: 12/19/2022] Open
Abstract
Since the start of the pandemic, SARS-CoV-2 has already infected more than 250 million people globally, with more than five million fatal cases and huge socio-economic losses. In addition to corticosteroids, and antiviral drugs like remdesivir, various immunotherapies including monoclonal antibodies (mAbs) to S protein of SARS-CoV-2 have been investigated to treat COVID-19 patients. These mAbs were initially developed against the wild-type SARS-CoV-2; however, emergence of variant forms of SARS-CoV-2 having mutations in the spike protein in several countries including India raised serious questions on the potential use of these mAbs against SARS-CoV-2 variants. In this study, using an in silico approach, we have examined the binding abilities of eight mAbs against several SARS-CoV-2 variants of Alpha (B.1.1.7) and Delta (B.1.617.2) lineages. The structure of the Fab region of each mAb was designed in silico and subjected to molecular docking against each mutant protein. mAbs were subjected to two levels of selection based on their binding energy, stability, and conformational flexibility. Our data reveal that tixagevimab, regdanvimab, and cilgavimab can efficiently neutralize most of the SARS-CoV-2 Alpha strains while tixagevimab, bamlanivimab, and sotrovimab can form a stable complex with the Delta variants. Based on these data, we have designed, by in silico, a chimeric antibody by conjugating the CDRH3 of regdanivimab with a sotrovimab framework to combat the variants that could potentially escape from the mAb-mediated neutralization. Our finding suggests that though currently available mAbs could be used to treat COVID-19 caused by the variants of SARS-CoV-2, better results could be expected with the chimeric antibodies.
Collapse
Affiliation(s)
- Nabarun Chandra Das
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, India
| | - Pritha Chakraborty
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, India
| | - Jagadeesh Bayry
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, India
| |
Collapse
|
10
|
Use of a small molecule integrin activator as a systemically administered vaccine adjuvant in controlling Chagas disease. NPJ Vaccines 2021; 6:114. [PMID: 34497271 PMCID: PMC8426359 DOI: 10.1038/s41541-021-00378-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 08/13/2021] [Indexed: 01/07/2023] Open
Abstract
The development of suitable safe adjuvants to enhance appropriate antigen-driven immune responses remains a challenge. Here we describe the adjuvant properties of a small molecule activator of the integrins αLβ2 and α4β1, named 7HP349, which can be safely delivered systemically independent of antigen. 7HP349 directly activates integrin cell adhesion receptors crucial for the generation of an immune response. When delivered systemically in a model of Chagas disease following immunization with a DNA subunit vaccine encoding candidate T. cruzi antigens, TcG2 and TcG4, 7HP349 enhanced the vaccine efficacy in both prophylactic and therapeutic settings. In a prophylactic setting, mice immunized with 7HP349 adjuvanted vaccine exhibited significantly improved control of acute parasite burden in cardiac and skeletal muscle as compared to vaccination alone. When administered with vaccine therapeutically, parasite burden was again decreased, with the greatest adjuvant effect of 7HP349 being noted in skeletal muscle. In both settings, adjuvantation with 7HP349 was effective in decreasing pathological inflammatory infiltrate, improving the integrity of tissue, and controlling tissue fibrosis in the heart and skeletal muscle of acutely and chronically infected Chagas mice. The positive effects correlated with increased splenic frequencies of CD8+T effector cells and an increase in the production of IFN-γ and cytolytic molecules (perforin and granzyme) by the CD4+ and CD8+ effector and central memory subsets in response to challenge infection. This demonstrates that 7HP349 can serve as a systemically administered adjuvant to enhance T cell-mediated immune responses to vaccines. This approach could be applied to numerous vaccines with no reformulation of existing stockpiles.
Collapse
|
11
|
Choudhuri S, Rios L, Vázquez-Chagoyán JC, Garg NJ. Oxidative stress implications for therapeutic vaccine development against Chagas disease. Expert Rev Vaccines 2021; 20:1395-1406. [PMID: 34406892 DOI: 10.1080/14760584.2021.1969230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Pathogenesis of Chagas disease (CD) caused by the protozoan parasite Trypanosoma cruzi (T. cruzi) involves chronic oxidative and inflammatory stress. In this review, we discuss the research efforts in therapeutic vaccine development to date and the potential challenges imposed by oxidative stress in achieving an efficient therapeutic vaccine against CD. AREAS COVERED This review covers the immune and nonimmune mechanisms of reactive oxygen species production and immune response patterns during T. cruzi infection in CD. A discussion on immunotherapy development efforts, the efficacy of antigen-based immune therapies against T. cruzi, and the role of antioxidants as adjuvants is discussed to provide promising insights to developing future treatment strategies against CD. EXPERT OPINION Administration of therapeutic vaccines can be a good option to confront persistent parasitemia in CD by achieving a rapid, short-lived stimulation of type 1 cell-mediated immunity. At the same time, adjunct therapies could play a critical role in the preservation of mitochondrial metabolism and cardiac muscle contractility in CD. We propose combined therapy with antigen-based vaccine and small molecules to control the pathological oxidative insult would be effective in the conservation of cardiac structure and function in CD.
Collapse
Affiliation(s)
- Subhadip Choudhuri
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Lizette Rios
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Juan Carlos Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados En Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
| | - Nisha Jain Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Tx, USA
| |
Collapse
|
12
|
Chowdhury IH, Lokugamage N, Garg NJ. Experimental Nanovaccine Offers Protection Against Repeat Exposures to Trypanosoma cruzi Through Activation of Polyfunctional T Cell Response. Front Immunol 2020; 11:595039. [PMID: 33414785 PMCID: PMC7783422 DOI: 10.3389/fimmu.2020.595039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/19/2020] [Indexed: 10/26/2022] Open
Abstract
A parasitic protozoan Trypanosoma cruzi (T. cruzi) is the etiologic agent of Chagas disease. Previously, we have identified T. cruzi antigens TcG2 and TcG4 as potential vaccine candidates, cloned in eukaryotic expression vector pCDNA3.1 (referred as p2/4) and tested their ability to elicit protection from T. cruzi infection. In the present study, we subcloned the two antigens in a nanoplasmid that is optimized for delivery, antigen expression, and regulatory compliance standards, and evaluated the nanovaccine (referred as nano2/4) for prophylactic protection against repeat T. cruzi infections. For this, C57BL/6 mice were immunized with two doses of p2/4 or nano2/4 at 21 days interval, challenged with T. cruzi 21 days after 2nd immunization, and euthanized at 10- and 21-days post-infection (pi) corresponding to parasite dissemination and replication phase, respectively. Some mice were re-challenged 21 days pi and monitored at 7 days after re-infection. Without the help of a vaccine, T. cruzi elicited delayed and sub-par T cell activation and low levels of effector molecules that failed to control tissue dissemination and replication of the parasite and provided no protection against repeat challenge infection. The nano2/4 was most effective in eliciting an early activation and production of IFN-γ by CD4+T effector/effector memory (TEM) cells and cytolytic perforin (PFN) and granzyme B (GZB) molecules by CD4+ and CD8+ TEM subsets at 10 days pi that was followed by robust expansion of CD4+ and CD8+ TEM and TCM cells with further increase in IFN-γ production at 21 days pi. Consequently, nano2/4-immunized mice exhibited potent control of parasite dissemination at 10 days pi, and tissue parasite burden and tissue inflammatory infiltrate and necrosis were barely detectable at 21 days pi. Furthermore, nano2/4-immunized mice responded to re-challenge infection with high levels of effector molecules production by CD4+ and CD8+ TEM subpopulations that offered even better control of tissue parasite burden than was observed after 1st infection. In comparison, non-vaccinated/infected mice exhibited clinical features of sickness and 59% mortality within 7 days after re-infection. In conclusion, we show that delivery of TcG2 and TcG4 in nanoplasmid offers excellent, protective T cell immunity against repeat T. cruzi infections.
Collapse
Affiliation(s)
- Imran H Chowdhury
- Department of Microbiology and Immunology, The University of Texas Medical Branch (UTMB), Galveston, TX, United States
| | - Nandadeva Lokugamage
- Department of Microbiology and Immunology, The University of Texas Medical Branch (UTMB), Galveston, TX, United States
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, The University of Texas Medical Branch (UTMB), Galveston, TX, United States.,Institute for Human Infections and Immunity, UTMB, Galveston, TX, United States
| |
Collapse
|
13
|
Vergni D, Gaudio R, Santoni D. The farther the better: Investigating how distance from human self affects the propensity of a peptide to be presented on cell surface by MHC class I molecules, the case of Trypanosoma cruzi. PLoS One 2020; 15:e0243285. [PMID: 33284846 PMCID: PMC7721184 DOI: 10.1371/journal.pone.0243285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 11/19/2020] [Indexed: 12/04/2022] Open
Abstract
More than twenty years ago the reverse vaccinology paradigm came to light trying to design new vaccines based on the analysis of genomic information in order to select those pathogen peptides able to trigger an immune response. In this context, focusing on the proteome of Trypanosoma cruzi, we investigated the link between the probabilities for pathogen peptides to be presented on a cell surface and their distance from human self. We found a reasonable but, as far as we know, undiscovered property: the farther the distance between a peptide and the human-self the higher the probability for that peptide to be presented on a cell surface. We also found that the most distant peptides from human self bind, on average, a broader collection of HLAs than expected, implying a potential immunological role in a large portion of individuals. Finally, introducing a novel quantitative indicator for a peptide to measure its potential immunological role, we proposed a pool of peptides that could be potential epitopes and that can be suitable for experimental testing. The software to compute peptide classes according to the distance from human self is free available at http://www.iasi.cnr.it/~dsantoni/nullomers.
Collapse
Affiliation(s)
- Davide Vergni
- Istituto per le Applicazioni del Calcolo “Mauro Picone” - CNR, Rome, Italy
| | - Rosanna Gaudio
- Department of Biology, University Tor Vergata, Rome, Italy
| | - Daniele Santoni
- Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti” - CNR, Rome, Italy
- * E-mail:
| |
Collapse
|
14
|
Induction of Effective Immunity against Trypanosoma cruzi. Infect Immun 2020; 88:IAI.00908-19. [PMID: 31907197 DOI: 10.1128/iai.00908-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, is a major public health issue. Limitations in immune responses to natural T. cruzi infection usually result in parasite persistence with significant complications. A safe, effective, and reliable vaccine would reduce the threat of T. cruzi infections; however, no suitable vaccine is currently available due to a lack of understanding of the requirements for induction of fully protective immunity. We established a T. cruzi strain expressing green fluorescent protein (GFP) under the control of dihydrofolate reductase degradation domain (DDD) with a hemagglutinin (HA) tag, GFP-DDDHA, which was induced by trimethoprim-lactate (TMP-lactate), which results in the death of intracellular parasites. This attenuated strain induces very strong protection against reinfection. Using this GFP-DDDHA strain, we investigated the mechanisms underlying the protective immune response in mice. Immunization with this strain led to a response that included high levels of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α), as well as a rapid expansion of effector and memory T cells in the spleen. More CD8+ T cells differentiate to memory cells following GFP-DDDHA infection than after infection with a wild-type (WT) strain. The GFP-DDDHA strain also provides cross-protection against another T. cruzi isolate. IFN-γ is important in mediating the protection, as IFN-γ knockout (KO) mice failed to acquire protection when infected with the GFP-DDDHA strain. Immune cells demonstrated earlier and stronger protective responses in immunized mice after reinfection with T. cruzi than those in naive mice. Adoptive transfers with several types of immune cells or with serum revealed that several branches of the immune system mediated protection. A combination of serum and natural killer cells provided the most effective protection against infection in these transfer experiments.
Collapse
|
15
|
Rios L, Campos EE, Menon R, Zago MP, Garg NJ. Epidemiology and pathogenesis of maternal-fetal transmission of Trypanosoma cruzi and a case for vaccine development against congenital Chagas disease. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165591. [PMID: 31678160 PMCID: PMC6954953 DOI: 10.1016/j.bbadis.2019.165591] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/12/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Trypanos o ma cruzi (T. cruzi or Tc) is the causative agent of Chagas disease (CD). It is common for patients to suffer from non-specific symptoms or be clinically asymptomatic with acute and chronic conditions acquired through various routes of transmission. The expecting women and their fetuses are vulnerable to congenital transmission of Tc. Pregnant women face formidable health challenges because the frontline antiparasitic drugs, benznidazole and nifurtimox, are contraindicated during pregnancy. However, it is worthwhile to highlight that newborns can be cured if they are diagnosed and given treatment in a timely manner. In this review, we discuss the pathogenesis of maternal-fetal transmission of Tc and provide a justification for the investment in the development of vaccines against congenital CD.
Collapse
Affiliation(s)
- Lizette Rios
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - E Emanuel Campos
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - M Paola Zago
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina.
| | - Nisha J Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
16
|
Lokugamage N, Choudhuri S, Davies C, Chowdhury IH, Garg NJ. Antigen-Based Nano-Immunotherapy Controls Parasite Persistence, Inflammatory and Oxidative Stress, and Cardiac Fibrosis, the Hallmarks of Chronic Chagas Cardiomyopathy, in A Mouse Model of Trypanosoma cruzi Infection. Vaccines (Basel) 2020; 8:vaccines8010096. [PMID: 32098116 PMCID: PMC7157635 DOI: 10.3390/vaccines8010096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Chagas cardiomyopathy is caused by Trypanosoma cruzi (Tc). We identified two candidate antigens (TcG2 and TcG4) that elicit antibodies and T cell responses in naturally infected diverse hosts. In this study, we cloned TcG2 and TcG4 in a nanovector and evaluated whether nano-immunotherapy (referred as nano2/4) offers resistance to chronic Chagas disease. For this, C57BL/6 mice were infected with Tc and given nano2/4 at 21 and 42 days post-infection (pi). Non-infected, infected, and infected mice treated with pcDNA3.1 expression plasmid encoding TcG2/TcG4 (referred as p2/4) were used as controls. All mice responded to Tc infection with expansion and functional activation of splenic lymphocytes. Flow cytometry showed that frequency of splenic, poly-functional CD4+ and CD8+ T cells expressing interferon-γ, perforin, and granzyme B were increased by immunotherapy (Tc.nano2/4 > Tc.p2/4) and associated with 88%–99.7% decline in cardiac and skeletal (SK) tissue levels of parasite burden (Tc.nano2/4 > Tc.p2/4) in Chagas mice. Subsequently, Tc.nano2/4 mice exhibited a significant decline in peripheral and tissues levels of oxidative stress (e.g., 4-hydroxynonenal, protein carbonyls) and inflammatory infiltrate that otherwise were pronounced in Chagas mice. Further, nano2/4 therapy was effective in controlling the tissue infiltration of pro-fibrotic macrophages and established a balanced environment controlling the expression of collagens, metalloproteinases, and other markers of cardiomyopathy and improving the expression of Myh7 (encodes β myosin heavy chain) and Gsk3b (encodes glycogen synthase kinase 3) required for maintaining cardiac contractility in Chagas heart. We conclude that nano2/4 enhances the systemic T cell immunity that improves the host’s ability to control chronic parasite persistence and Chagas cardiomyopathy.
Collapse
Affiliation(s)
- Nandadeva Lokugamage
- Department of Microbiology and Immunology, The University of Texas Medical Branch (UTMB), Galveston, TX 77555-1070, USA; (N.L.); (S.C.); (I.H.C.)
| | - Subhadip Choudhuri
- Department of Microbiology and Immunology, The University of Texas Medical Branch (UTMB), Galveston, TX 77555-1070, USA; (N.L.); (S.C.); (I.H.C.)
| | - Carolina Davies
- Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta 4400, Argentina;
| | - Imran Hussain Chowdhury
- Department of Microbiology and Immunology, The University of Texas Medical Branch (UTMB), Galveston, TX 77555-1070, USA; (N.L.); (S.C.); (I.H.C.)
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, The University of Texas Medical Branch (UTMB), Galveston, TX 77555-1070, USA; (N.L.); (S.C.); (I.H.C.)
- Institute for Human Infections and Immunity, UTMB, Galveston, TX 77555, USA
- Correspondence: ; Tel.: +1-409-747-6865
| |
Collapse
|
17
|
Bivona AE, Alberti AS, Cerny N, Trinitario SN, Malchiodi EL. Chagas disease vaccine design: the search for an efficient Trypanosoma cruzi immune-mediated control. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165658. [PMID: 31904415 DOI: 10.1016/j.bbadis.2019.165658] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022]
Abstract
Chagas disease is currently endemic to 21 Latin-American countries and has also become a global concern because of globalization and mass migration of chronically infected individuals. Prophylactic and therapeutic vaccination might contribute to control the infection and the pathology, as complement of other strategies such as vector control and chemotherapy. Ideal prophylactic vaccine would produce sterilizing immunity; however, a reduction of the parasite burden would prevent progression from Trypanosoma cruzi infection to Chagas disease. A therapeutic vaccine for Chagas disease may improve or even replace the treatment with current drugs which have several side effects and require long term treatment that frequently leads to therapeutic withdrawal. Here, we will review some aspects about sub-unit vaccines, the rationale behind the selection of the immunogen, the role of adjuvants, the advantages and limitations of DNA-based vaccines and the idea of therapeutic vaccines. One of the main limitations to advance vaccine development against Chagas disease is the high number of variables that must be considered and the lack of uniform criteria among research laboratories. To make possible comparisons, much of this review will be focused on experiments that kept many variables constant including antigen mass/doses, type of eukaryotic plasmid, DNA-delivery system, mice strain and sex, lethal and sublethal model of infection, and similar immunogenicity and efficacy assessments.
Collapse
Affiliation(s)
- Augusto E Bivona
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Prof. Dr. Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología and Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina
| | - Andrés Sánchez Alberti
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Prof. Dr. Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología and Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina
| | - Natacha Cerny
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Prof. Dr. Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología and Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina
| | - Sebastián N Trinitario
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Prof. Dr. Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología and Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina
| | - Emilio L Malchiodi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Prof. Dr. Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología and Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Rios LE, Vázquez-Chagoyán JC, Pacheco AO, Zago MP, Garg NJ. Immunity and vaccine development efforts against Trypanosoma cruzi. Acta Trop 2019; 200:105168. [PMID: 31513763 PMCID: PMC7409534 DOI: 10.1016/j.actatropica.2019.105168] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 12/28/2022]
Abstract
Trypanosoma cruzi (T. cruzi) is the causative agent for Chagas disease (CD). There is a critical lack of methods for prevention of infection or treatment of acute infection and chronic disease. Studies in experimental models have suggested that the protective immunity against T. cruzi infection requires the elicitation of Th1 cytokines, lytic antibodies and the concerted activities of macrophages, T helper cells, and cytotoxic T lymphocytes (CTLs). In this review, we summarize the research efforts in vaccine development to date and the challenges faced in achieving an efficient prophylactic or therapeutic vaccine against human CD.
Collapse
Affiliation(s)
- Lizette E Rios
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Juan Carlos Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
| | - Antonio Ortega Pacheco
- Departamento de Salud Animal y Medicina Preventiva, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - M Paola Zago
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Nisha J Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX.
| |
Collapse
|
19
|
Gupta S, Salgado-Jiménez B, Lokugamage N, Vázquez-Chagoyán JC, Garg NJ. TcG2/TcG4 DNA Vaccine Induces Th1 Immunity Against Acute Trypanosoma cruzi Infection: Adjuvant and Antigenic Effects of Heterologous T. rangeli Booster Immunization. Front Immunol 2019; 10:1456. [PMID: 31293599 PMCID: PMC6606718 DOI: 10.3389/fimmu.2019.01456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Chagas cardiomyopathy is caused by Trypanosoma cruzi (Tc). Two antigenic candidates, TcG2 and TcG4, are recognized by antibodies in naturally infected dogs and humans; and these vaccine candidates provided protection from Tc infection in mice and dogs. Trypanosoma rangeli (Tr) is non-pathogenic to mammals and shown to elicit cross-reactive anti-Tc antibodies. In this study, we investigated if fixed Tr (fTr) can further enhance the efficacy of the TcG2/TcG4 DNA vaccine. Methods and Results: C57BL/6 mice were immunized with TcG2/TcG4 DNA vaccine and fTr (delivered as an adjuvant or in prime-boost approach), and challenged with Tc. Serology studies showed that fTr (±quil-A) elicited Tc- and Tr-reactive IgGs that otherwise were not stimulated by TcG2/TcG4 vaccine only, and quil-A had suppressive effects on fTr-induced IgGs. After challenge infection, TcG2/TcG4-vaccinated mice exhibited potent expansion of antigen- and Tc-specific IgGs that were not boosted by fTr±quil-A. Flow cytometry analysis showed that TcG2/TcG4-induced dendritic cells (DC) and macrophages (Mφ) responded to challenge infection by expression of markers of antigen uptake, processing, and presentation, and production of pro-inflammatory cytokines. TcG2/TcG4-induced CD4+T cells acquired Th1 phenotype and expressed markers that orchestrate adaptive immunity. A fraction of vaccine-induced CD4+T cells exhibited iTreg phenotype responsible for aversion of self-injurious immune responses. Further, TcG2/TcG4-vaccinated mice exhibited potent expansion of poly-functional CD8+T cells with TNF-α/IFN-γ production and cytolytic phenotype post-infection. Subsequently, tissue parasites and pathology were hardly detectable in TcG2/TcG4-vaccinated/infected mice. Inclusion of fTr±quil-A had no clear additive effects in improving the Tc-specific adaptive immunity and parasite control than was noted in mice vaccinated with TcG2/TcG4 alone. Non-vaccinated mice lacked sufficient activation of Th1 CD4+/CD8+T cells, and exhibited >10-fold higher levels of tissue parasite burden than was noted in vaccinated/infected mice. Conclusion:TcG2/TcG4 vaccine elicits highly effective immunity, and inclusion of fTr is not required to improve the efficacy of DNA vaccine against acute Tc infection in mice.
Collapse
Affiliation(s)
- Shivali Gupta
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Berenice Salgado-Jiménez
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Nandadeva Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Juan Carlos Vázquez-Chagoyán
- Facultad de Medicina Veterinaria y Zootecnia, Centro de Investigación y Estudios Avanzados en Salud Animal, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
20
|
Radío S, Fort RS, Garat B, Sotelo-Silveira J, Smircich P. UTRme: A Scoring-Based Tool to Annotate Untranslated Regions in Trypanosomatid Genomes. Front Genet 2018; 9:671. [PMID: 30619487 PMCID: PMC6305552 DOI: 10.3389/fgene.2018.00671] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/04/2018] [Indexed: 11/23/2022] Open
Abstract
Most signals involved in post-transcriptional regulatory networks are located in the untranslated regions (UTRs) of the mRNAs. Therefore, to deepen our understanding of gene expression regulation, delimitation of these regions with high accuracy is needed. The trypanosomatid lineage includes a variety of parasitic protozoans causing a significant worldwide burden on human health. Given their peculiar mechanisms of gene expression, these organisms depend on post-transcriptional regulation as the main level of gene expression control. In this context, the definition of the UTR regions becomes of key importance. We have developed UTR-mini-exon (UTRme), a graphical user interface (GUI) stand-alone application to identify and annotate 5′ and 3′ UTR regions in a highly accurate way. UTRme implements a multiple scoring system tailored to address the issue of false positive UTR assignment that frequently arise because of the characteristics of the intergenic regions. Even though it was developed for trypanosomatids, the tool can be used to predict 3′ sites in any eukaryote and 5′ UTRs in any organism where trans-splicing occurs (such as the model organism C. elegans). UTRme offers a way for non-bioinformaticians to precisely determine UTRs from transcriptomic data. The tool is freely available via the conda and github repositories.
Collapse
Affiliation(s)
- Santiago Radío
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay.,Laboratory of Molecular Interactions, Facultad de Ciencias. Universidad de la República, Montevideo, Uruguay
| | - Rafael Sebastián Fort
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay.,Laboratory of Molecular Interactions, Facultad de Ciencias. Universidad de la República, Montevideo, Uruguay
| | - Beatriz Garat
- Laboratory of Molecular Interactions, Facultad de Ciencias. Universidad de la República, Montevideo, Uruguay
| | - José Sotelo-Silveira
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay.,Department of Cell and Molecular Biology, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Pablo Smircich
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay.,Laboratory of Molecular Interactions, Facultad de Ciencias. Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
21
|
Hegazy-Hassan W, Zepeda-Escobar JA, Ochoa-García L, Contreras-Ortíz JME, Tenorio-Borroto E, Barbabosa-Pliego A, Aparicio-Burgos JE, Oros-Pantoja R, Rivas-Santiago B, Díaz-Albiter H, Garg NJ, Vázquez-Chagoyán JC. TcVac1 vaccine delivery by intradermal electroporation enhances vaccine induced immune protection against Trypanosoma cruzi infection in mice. Vaccine 2018; 37:248-257. [PMID: 30497833 DOI: 10.1016/j.vaccine.2018.11.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
The efforts for the development and testing of vaccines against Trypanosoma cruzi infection have increased during the past years. We have designed a TcVac series of vaccines composed of T. cruzi derived, GPI-anchored membrane antigens. The TcVac vaccines have been shown to elicit humoral and cellular mediated immune responses and provide significant (but not complete) control of experimental infection in mice and dogs. Herein, we aimed to test two immunization protocols for the delivery of DNA-prime/DNA-boost vaccine (TcVac1) composed of TcG2 and TcG4 antigens in a BALB/c mouse model. Mice were immunized with TcVac1 through intradermal/electroporation (IDE) or intramuscular (IM) routes, challenged with T. cruzi, and evaluated during acute phase of infection. The humoral immune response was evaluated through the assessment of anti-TcG2 and anti-TcG4 IgG subtypes by using an ELISA. Cellular immune response was assessed through a lymphocyte proliferation assay. Finally, clinical and morphopathological aspects were evaluated for all experimental animals. Our results demonstrated that when comparing TcVac1 IDE delivery vs IM delivery, the former induced significantly higher level of antigen-specific antibody response (IgG2a + IgG2b > IgG1) and lymphocyte proliferation, which expanded in response to challenge infection. Histological evaluation after challenge infection showed infiltration of inflammatory cells (macrophages and lymphocytes) in the heart and skeletal tissue of all infected mice. However, the largest increase in inflammatory infiltrate was observed in TcVac1_IDE/Tc mice when compared with TcVac1_IM/Tc or non-vaccinated/infected mice. The extent of tissue inflammatory infiltrate was directly associated with the control of tissue amastigote nests in vaccinated/infected (vs. non-vaccinated/infected) mice. Our results suggest that IDE delivery improves the protective efficacy of TcVac1 vaccine against T. cruzi infection in mice when compared with IM delivery of the vaccine.
Collapse
Affiliation(s)
- Wael Hegazy-Hassan
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Km 15.5 Carretera Panamericana Toluca-Atlacomulco, Toluca, Estado de México C.P. 50200, Mexico
| | - José Antonio Zepeda-Escobar
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Km 15.5 Carretera Panamericana Toluca-Atlacomulco, Toluca, Estado de México C.P. 50200, Mexico
| | - Laucel Ochoa-García
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Km 15.5 Carretera Panamericana Toluca-Atlacomulco, Toluca, Estado de México C.P. 50200, Mexico; Laboratorio Estatal de Salud Pública del Instituto de Salud del Estado de México, Independencia Oriente #1310 Colonia: Reforma y FFCC, CP. 50070 Toluca, Estado de México, Mexico
| | - J M Eloy Contreras-Ortíz
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Km 15.5 Carretera Panamericana Toluca-Atlacomulco, Toluca, Estado de México C.P. 50200, Mexico
| | - Esvieta Tenorio-Borroto
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Km 15.5 Carretera Panamericana Toluca-Atlacomulco, Toluca, Estado de México C.P. 50200, Mexico
| | - Alberto Barbabosa-Pliego
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Km 15.5 Carretera Panamericana Toluca-Atlacomulco, Toluca, Estado de México C.P. 50200, Mexico
| | - José Esteban Aparicio-Burgos
- Universidad Autónoma del Estado de Hidalgo, Escuela Superior de Apan, Carretera Apan-Calpulalpan, Km. 8, Chimalpa Tlalayote S/N, Colonia Chimalpa, Apan, C.P. 43920 Hidalgo, Mexico
| | - Rigoberto Oros-Pantoja
- Facultad de Medicina, Universidad Autónoma del Estado de México, Departamento de Neurociencias, Tollocan esq. Jesus Carranza S/N, Colonia Moderna de la Cruz, C.P. 50180 Estado de México, Toluca, Mexico
| | - Bruno Rivas-Santiago
- Unidad de Investigación Médica Zacatecas-IMSS, Interior de la Alameda, 45, Centro, C.P. 98000 Zacatecas, Mexico
| | - Héctor Díaz-Albiter
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, University Place, Glasgow G12 8TA, United Kingdom; El Colegio de la Frontera Sur, Carretera Villahermosa-Reforma Km 15.5, Ranchería Guineo, sección II, CP 86280 Villahermosa, Tabasco, Mexico
| | - Nisha Jain Garg
- Departments of Microbiology & Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1070, United States; Departments of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1070, United States
| | - Juan Carlos Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Km 15.5 Carretera Panamericana Toluca-Atlacomulco, Toluca, Estado de México C.P. 50200, Mexico.
| |
Collapse
|
22
|
Balouz V, Agüero F, Buscaglia CA. Chagas Disease Diagnostic Applications: Present Knowledge and Future Steps. ADVANCES IN PARASITOLOGY 2016; 97:1-45. [PMID: 28325368 PMCID: PMC5363286 DOI: 10.1016/bs.apar.2016.10.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is a lifelong and debilitating illness of major significance throughout Latin America and an emergent threat to global public health. Being a neglected disease, the vast majority of Chagasic patients have limited access to proper diagnosis and treatment, and there is only a marginal investment into R&D for drug and vaccine development. In this context, identification of novel biomarkers able to transcend the current limits of diagnostic methods surfaces as a main priority in Chagas disease applied research. The expectation is that these novel biomarkers will provide reliable, reproducible and accurate results irrespective of the genetic background, infecting parasite strain, stage of disease, and clinical-associated features of Chagasic populations. In addition, they should be able to address other still unmet diagnostic needs, including early detection of congenital T. cruzi transmission, rapid assessment of treatment efficiency or failure, indication/prediction of disease progression and direct parasite typification in clinical samples. The lack of access of poor and neglected populations to essential diagnostics also stresses the necessity of developing new methods operational in point-of-care settings. In summary, emergent diagnostic tests integrating these novel and tailored tools should provide a significant impact on the effectiveness of current intervention schemes and on the clinical management of Chagasic patients. In this chapter, we discuss the present knowledge and possible future steps in Chagas disease diagnostic applications, as well as the opportunity provided by recent advances in high-throughput methods for biomarker discovery.
Collapse
Affiliation(s)
- Virginia Balouz
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, B 1650 HMP, Buenos Aires, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, B 1650 HMP, Buenos Aires, Argentina
| | - Carlos A. Buscaglia
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, B 1650 HMP, Buenos Aires, Argentina
| |
Collapse
|
23
|
Wan X, Wen JJ, Koo SJ, Liang LY, Garg NJ. SIRT1-PGC1α-NFκB Pathway of Oxidative and Inflammatory Stress during Trypanosoma cruzi Infection: Benefits of SIRT1-Targeted Therapy in Improving Heart Function in Chagas Disease. PLoS Pathog 2016; 12:e1005954. [PMID: 27764247 PMCID: PMC5072651 DOI: 10.1371/journal.ppat.1005954] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/26/2016] [Indexed: 12/15/2022] Open
Abstract
Chronic chagasic cardiomyopathy (CCM) is presented by increased oxidative/inflammatory stress and decreased mitochondrial bioenergetics. SIRT1 senses the redox changes and integrates mitochondrial metabolism and inflammation; and SIRT1 deficiency may be a major determinant in CCM. To test this, C57BL/6 mice were infected with Trypanosoma cruzi (Tc), treated with SIRT1 agonists (resveratrol or SRT1720), and monitored during chronic phase (~150 days post-infection). Resveratrol treatment was partially beneficial in controlling the pathologic processes in Chagas disease. The 3-weeks SRT1720 therapy provided significant benefits in restoring the left ventricular (LV) function (stroke volume, cardiac output, ejection fraction etc.) in chagasic mice, though cardiac hypertrophy presented by increased thickness of the interventricular septum and LV posterior wall, increased LV mass, and disproportionate synthesis of collagens was not controlled. SRT1720 treatment preserved the myocardial SIRT1 activity and PGC1α deacetylation (active-form) that were decreased by 53% and 9-fold respectively, in chagasic mice. Yet, SIRT1/PGC1α-dependent mitochondrial biogenesis (i.e., mitochondrial DNA content, and expression of subunits of the respiratory complexes and mtDNA replication machinery) was not improved in chronically-infected/SRT1720-treated mice. Instead, SRT1720 therapy resulted in 2-10-fold inhibition of Tc-induced oxidative (H2O2 and advanced oxidation protein products), nitrosative (inducible nitric oxide synthase, 4-hydroxynonenal, 3-nitrotyrosine), and inflammatory (IFNγ, IL1β, IL6 and TNFα) stress and inflammatory infiltrate in chagasic myocardium. These benefits were delivered through SIRT1-dependent inhibition of NFκB transcriptional activity. We conclude that Tc inhibition of SIRT1/PGC1α activity was not a key mechanism in mitochondrial biogenesis defects during Chagas disease. SRT1720-dependent SIRT1 activation led to suppression of NFκB transcriptional activity, and subsequently, oxidative/nitrosative and inflammatory pathology were subdued, and antioxidant status and LV function were enhanced in chronic chagasic cardiomyopathy.
Collapse
Affiliation(s)
- Xianxiu Wan
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Jian-jun Wen
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Sue-Jie Koo
- Department of Pathology, UTMB, Galveston, Texas
| | - Lisa Yi Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
- Department of Pathology, UTMB, Galveston, Texas
- Institute for Human Infections and Immunity, UTMB, Galveston, Texas
- * E-mail:
| |
Collapse
|
24
|
Bilgic HB, Karagenc T, Bakırcı S, Shiels B, Tait A, Kinnaird J, Eren H, Weir W. Identification and Analysis of Immunodominant Antigens for ELISA-Based Detection of Theileria annulata. PLoS One 2016; 11:e0156645. [PMID: 27270235 PMCID: PMC4896419 DOI: 10.1371/journal.pone.0156645] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/17/2016] [Indexed: 01/26/2023] Open
Abstract
Tropical or Mediterranean theileriosis, caused by the protozoan parasite Theileria annulata, remains an economically important bovine disease in North Africa, Southern Europe, India, the Middle East and Asia. The disease affects mainly exotic cattle and imposes serious constraints upon livestock production and breed improvement programmes. While microscopic and molecular methods exist which are capable of detecting T. annulata during acute infection, the identification of animals in the carrier state is more challenging. Serological tests, which detect antibodies that react against parasite-encoded antigens, should ideally have the potential to identify carrier animals with very high levels of sensitivity and specificity. However, assays developed to date have suffered from a lack of sensitivity and/or specificity and it is, therefore, necessary to identify novel parasite antigens, which can be developed for this purpose. In the present study, genes encoding predicted antigens were bioinformatically identified in the T. annulata genome. These proteins, together with a panel of previously described antigens, were assessed by western blot analysis for immunoreactivity, and this revealed that four novel candidates and five previously described antigens were recognised by immune bovine serum. Using a combination of immunoprecipitation and mass spectrophotometric analysis, an immunodominant protein (encoded by TA15705) was identified as Ta9, a previously defined T cell antigen. Western blotting revealed another of the five proteins in the Ta9 family, TA15710, also to be an immunodominant protein. However, validation by Enzyme-Linked Immunosorbent Assay indicated that due to either allelic polymorphism or differential immune responses of individual hosts, none of the novel candidates can be considered ideal for routine detection of T. annulata-infected/carrier animals.
Collapse
Affiliation(s)
- Huseyin Bilgin Bilgic
- Faculty of Veterinary Medicine, Department of Parasitology, Adnan Menderes University, Isıklı Mevki, 09016, Aydın, Turkey
- * E-mail: ;
| | - Tulin Karagenc
- Faculty of Veterinary Medicine, Department of Parasitology, Adnan Menderes University, Isıklı Mevki, 09016, Aydın, Turkey
| | - Serkan Bakırcı
- Faculty of Veterinary Medicine, Department of Parasitology, Adnan Menderes University, Isıklı Mevki, 09016, Aydın, Turkey
| | - Brian Shiels
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, United Kingdom
| | - Andrew Tait
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, United Kingdom
| | - Jane Kinnaird
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, United Kingdom
| | - Hasan Eren
- Faculty of Veterinary Medicine, Department of Parasitology, Adnan Menderes University, Isıklı Mevki, 09016, Aydın, Turkey
| | - William Weir
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, United Kingdom
| |
Collapse
|
25
|
Genome-Wide Prediction of Vaccine Candidates for Leishmania major: An Integrated Approach. J Trop Med 2015; 2015:709216. [PMID: 26681959 PMCID: PMC4670862 DOI: 10.1155/2015/709216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/11/2022] Open
Abstract
Despite the wealth of information regarding genetics of the causative parasite and experimental immunology of the cutaneous leishmaniasis, there is currently no licensed vaccine against it. In the current study, a two-level data mining strategy was employed, to screen the Leishmania major genome for promising vaccine candidates. First, we screened a set of 25 potential antigens from 8312 protein coding sequences, based on presence of signal peptides, GPI anchors, and consensus antigenicity predictions. Second, we conducted a comprehensive immunogenic analysis of the 25 antigens based on epitopes predicted by NetCTL tool. Interestingly, results revealed that candidate antigen number 1 (LmjF.03.0550) had greater number of potential T cell epitopes, as compared to five well-characterized control antigens (CSP-Plasmodium falciparum, M1 and NP-Influenza A virus, core protein-Hepatitis B virus, and PSTA1-Mycobacterium tuberculosis). In order to determine an optimal set of epitopes among the highest scoring predicted epitopes, the OptiTope tool was employed for populations susceptible to cutaneous leishmaniasis. The epitope (127SLWSLLAGV) from antigen number 1, found to bind with the most prevalent allele HLA-A⁎0201 (25% frequency in Southwest Asia), was predicted as most immunogenic for all the target populations. Thus, our study reasserts the potential of genome-wide screening of pathogen antigens and epitopes, for identification of promising vaccine candidates.
Collapse
|
26
|
Tanowitz HB, Machado FS, Spray DC, Friedman JM, Weiss OS, Lora JN, Nagajyothi J, Moraes DN, Garg NJ, Nunes MCP, Ribeiro ALP. Developments in the management of Chagas cardiomyopathy. Expert Rev Cardiovasc Ther 2015; 13:1393-409. [PMID: 26496376 DOI: 10.1586/14779072.2015.1103648] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over 100 years have elapsed since the discovery of Chagas disease and there is still much to learn regarding pathogenesis and treatment. Although there are antiparasitic drugs available, such as benznidazole and nifurtimox, they are not totally reliable and often toxic. A recently released negative clinical trial with benznidazole in patients with chronic Chagas cardiomyopathy further reinforces the concerns regarding its effectiveness. New drugs and new delivery systems, including those based on nanotechnology, are being sought. Although vaccine development is still in its infancy, the reality of a therapeutic vaccine remains a challenge. New ECG methods may help to recognize patients prone to developing malignant ventricular arrhythmias. The management of heart failure, stroke and arrhythmias also remains a challenge. Although animal experiments have suggested that stem cell based therapy may be therapeutic in the management of heart failure in Chagas cardiomyopathy, clinical trials have not been promising.
Collapse
Affiliation(s)
- Herbert B Tanowitz
- a Department of Pathology , Albert Einstein College of Medicine , Bronx , NY , USA.,b Department of Medicine , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Fabiana S Machado
- c Department of Biochemistry and Immunology, Institute of Biological Science , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - David C Spray
- b Department of Medicine , Albert Einstein College of Medicine , Bronx , NY , USA.,e Dominick P. Purpura Department of Neuroscience , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Joel M Friedman
- f Department of Physiology & Biophysics , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Oren S Weiss
- a Department of Pathology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Jose N Lora
- a Department of Pathology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Jyothi Nagajyothi
- g Public Health Research Institute, New Jersey Medical School , Rutgers University , Newark , NJ , USA
| | - Diego N Moraes
- d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,h Department of Internal Medicine and University Hospital , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Nisha Jain Garg
- i Department of Microbiology & Immunology and Institute for Human Infections and Immunity , University of Texas Medical Branch , Galveston , TX , USA
| | - Maria Carmo P Nunes
- d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,h Department of Internal Medicine and University Hospital , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Antonio Luiz P Ribeiro
- d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,h Department of Internal Medicine and University Hospital , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
27
|
Gupta S, Smith C, Auclair S, Delgadillo ADJ, Garg NJ. Therapeutic Efficacy of a Subunit Vaccine in Controlling Chronic Trypanosoma cruzi Infection and Chagas Disease Is Enhanced by Glutathione Peroxidase Over-Expression. PLoS One 2015; 10:e0130562. [PMID: 26075398 PMCID: PMC4468200 DOI: 10.1371/journal.pone.0130562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/22/2015] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma cruzi-induced oxidative and inflammatory responses are implicated in chagasic cardiomyopathy. In this study, we examined the therapeutic utility of a subunit vaccine against T. cruzi and determined if glutathione peroxidase (GPx1, antioxidant) protects the heart from chagasic pathogenesis. C57BL/6 mice (wild-type (WT) and GPx1 transgenic (GPxtg) were infected with T. cruzi and at 45 days post-infection (dpi), immunized with TcG2/TcG4 vaccine delivered by a DNA-prime/Protein-boost (D/P) approach. The plasma and tissue-sections were analyzed on 150 dpi for parasite burden, inflammatory and oxidative stress markers, inflammatory infiltrate and fibrosis. WT mice infected with T. cruzi had significantly more blood and tissue parasite burden compared with infected/GPxtg mice (n = 5-8, p<0.01). Therapeutic vaccination provided >15-fold reduction in blood and tissue parasites in both WT and GPxtg mice. The increase in plasma levels of myeloperoxidase (MPO, 24.7%) and nitrite (iNOS activity, 45%) was associated with myocardial increase in oxidant levels (3-4-fold) and non-responsive antioxidant status in chagasic/WT mice; and these responses were not controlled after vaccination (n = 5-7). The GPxtg mice were better equipped than the WT mice in controlling T. cruzi-induced inflammatory and oxidative stress markers. Extensive myocardial and skeletal tissue inflammation noted in chagasic/WT mice, was significantly more compared with chagasic/GPxtg mice (n = 4-6, p<0.05). Vaccination was equally effective in reducing the chronic inflammatory infiltrate in the heart and skeletal tissue of infected WT and GPxtg mice (n = 6, p<0.05). Hypertrophy (increased BNP and ANP mRNA) and fibrosis (increased collagen) of the heart were extensively present in chronically-infected WT and GPxtg mice and notably decreased after therapeutic vaccination. We conclude the therapeutic delivery of D/P vaccine was effective in arresting the chronic parasite persistence and chagasic pathology; and GPx1 over-expression provided additive benefits in reducing the parasite burden, inflammatory/oxidative stress and cardiac remodeling in Chagas disease.
Collapse
Affiliation(s)
- Shivali Gupta
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (SG); (NG)
| | - Charity Smith
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sarah Auclair
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Anahi De Jesus Delgadillo
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity and the Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Galveston, Texas, United States of America
- * E-mail: (SG); (NG)
| |
Collapse
|
28
|
Gupta S, Garg NJ. A Two-Component DNA-Prime/Protein-Boost Vaccination Strategy for Eliciting Long-Term, Protective T Cell Immunity against Trypanosoma cruzi. PLoS Pathog 2015; 11:e1004828. [PMID: 25951312 PMCID: PMC4423834 DOI: 10.1371/journal.ppat.1004828] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/23/2015] [Indexed: 12/15/2022] Open
Abstract
In this study, we evaluated the long-term efficacy of a two-component subunit vaccine against Trypanosoma cruzi infection. C57BL/6 mice were immunized with TcG2/TcG4 vaccine delivered by a DNA-prime/Protein-boost (D/P) approach and challenged with T. cruzi at 120 or 180 days post-vaccination (dpv). We examined whether vaccine-primed T cell immunity was capable of rapid expansion and intercepting the infecting T. cruzi. Our data showed that D/P vaccine elicited CD4+ (30-38%) and CD8+ (22-42%) T cells maintained an effector phenotype up to 180 dpv, and were capable of responding to antigenic stimulus or challenge infection by a rapid expansion (CD8>CD4) with type 1 cytokine (IFNγ+ and TFNα+) production and cytolytic T lymphocyte (CTL) activity. Subsequently, challenge infection at 120 or 180 dpv, resulted in 2-3-fold lower parasite burden in vaccinated mice than was noted in unvaccinated/infected mice. Co-delivery of IL-12- and GMCSF-encoding expression plasmids provided no significant benefits in enhancing the anti-parasite efficacy of the vaccine-induced T cell immunity. Booster immunization (bi) with recombinant TcG2/TcG4 proteins 3-months after primary vaccine enhanced the protective efficacy, evidenced by an enhanced expansion (1.2-2.8-fold increase) of parasite-specific, type 1 CD4+ and CD8+ T cells and a potent CTL response capable of providing significantly improved (3-4.5-fold) control of infecting T. cruzi. Further, CD8+T cells in vaccinated/bi mice were predominantly of central memory phenotype, and capable of responding to challenge infection 4-6-months post bi by a rapid expansion to a poly-functional effector phenotype, and providing a 1.5-2.3-fold reduction in tissue parasite replication. We conclude that the TcG2/TcG4 D/P vaccine provided long-term anti-T. cruzi T cell immunity, and bi would be an effective strategy to maintain or enhance the vaccine-induced protective immunity against T. cruzi infection and Chagas disease. Chagas disease, caused by Trypanosoma cruzi infection, represents the third greatest tropical disease burden in the world. No vaccine or suitable treatment is available for control of this infection. Based upon several studies we have conducted, we believe that TcG2 and TcG4 candidate antigens that are highly conserved in T. cruzi, expressed in clinically relevant forms of the parasite, and recognized by both B and T cell responses in multiple hosts, are an excellent choice for subunit vaccine development. In this study, we demonstrate that the delivery of TcG2 and TcG4 as a DNA-prime/protein-boost vaccine provided long-term protection from challenge infection, and this protection was associated with elicitation of long-lived CD8+ effector T cells. The longevity and efficacy of vaccine could be enhanced by booster immunization. We believe that this is the first report demonstrating a) a subunit vaccine can be useful in achieving long-term protection against T. cruzi infection and Chagas disease, and b) the effector T cells can be long-lived and play a role in vaccine elicited protection from parasitic infection.
Collapse
Affiliation(s)
- Shivali Gupta
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- * E-mail: (SG); (NJG)
| | - Nisha J. Garg
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- Department of Pathology, School of Medicine, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- Institute for Human Infections and Immunity and the Sealy Center for Vaccine Development, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- * E-mail: (SG); (NJG)
| |
Collapse
|
29
|
Ma Y, Weiss LM, Huang H. Inducible suicide vector systems for Trypanosoma cruzi. Microbes Infect 2015; 17:440-50. [PMID: 25899945 DOI: 10.1016/j.micinf.2015.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/01/2022]
Abstract
Chagas disease caused by Trypanosoma cruzi is a major neglected tropical parasitic disease. The pathogenesis of this infection remains disputable. There is no suitable vaccine for the prevention. Attenuated live vaccines can provide strong protection against infection; however, there are the concerns about latent infection or reversion to virulence in such attenuated strains. A method to induce T. cruzi death would provide a critical tool for research into the pathophysiological mechanisms and provide a novel design of safe live attenuated vaccines. We established effective inducible systems for T. cruzi employing the degradation domain based on the Escherichia coli dihydrofolate reductase (ecDHFR). The DHFR degradation domain (DDD) can be stabilized by trimethoprim-lactate and can be used to express detrimental or toxic proteins. T. cruzi lines with Alpha-toxin, Cecropin A and GFP under the control of DDD with a hemagglutinin tag (HA) were developed. Interestingly, amastigotes bearing GFP-DDDHA, Alpha-toxin-DDDHA, Cecropin A-DDDHA and DDDHA all resulted in inducible cell death with these fusions, indicating that DDDHA protein is also detrimental to amastigotes. Furthermore, these strains were attenuated in mouse experiments producing no pathological changes and inoculation with these DDDHA strains in mice provided strong protection against lethal wild type infection.
Collapse
Affiliation(s)
- Yanfen Ma
- Department of Pathology, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Huan Huang
- Department of Pathology, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
30
|
Aparicio-Burgos JE, Zepeda-Escobar JA, de Oca-Jimenez RM, Estrada-Franco JG, Barbabosa-Pliego A, Ochoa-García L, Alejandre-Aguilar R, Rivas N, Peñuelas-Rivas G, Val-Arreola M, Gupta S, Salazar-García F, Garg NJ, Vázquez-Chagoyán JC. Immune protection against Trypanosoma cruzi induced by TcVac4 in a canine model. PLoS Negl Trop Dis 2015; 9:e0003625. [PMID: 25853654 PMCID: PMC4390229 DOI: 10.1371/journal.pntd.0003625] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/16/2015] [Indexed: 12/02/2022] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, is endemic in southern parts of the American continent. Herein, we have tested the protective efficacy of a DNA-prime/T. rangeli-boost (TcVac4) vaccine in a dog (Canis familiaris) model. Dogs were immunized with two-doses of DNA vaccine (pcDNA3.1 encoding TcG1, TcG2, and TcG4 antigens plus IL-12- and GM-CSF-encoding plasmids) followed by two doses of glutaraldehyde-inactivated T. rangeli epimastigotes (TrIE); and challenged with highly pathogenic T. cruzi (SylvioX10/4) isolate. Dogs given TrIE or empty pcDNA3.1 were used as controls. We monitored post-vaccination and post-challenge infection antibody response by an ELISA, parasitemia by blood analysis and xenodiagnosis, and heart function by electrocardiography. Post-mortem anatomic and pathologic evaluation of the heart was conducted. TcVac4 induced a strong IgG response (IgG2>IgG1) that was significantly expanded post-infection, and moved to a nearly balanced IgG2/IgG1 response in chronic phase. In comparison, dogs given TrIE or empty plasmid DNA only developed high IgG titers with IgG2 predominance in response to T. cruzi infection. Blood parasitemia, tissue parasite foci, parasite transmission to triatomines, electrocardiographic abnormalities were significantly lower in TcVac4-vaccinated dogs than was observed in dogs given TrIE or empty plasmid DNA only. Macroscopic and microscopic alterations, the hallmarks of chronic Chagas disease, were significantly decreased in the myocardium of TcVac4-vaccinated dogs. We conclude that TcVac4 induced immunity was beneficial in providing resistance to T. cruzi infection, evidenced by control of chronic pathology of the heart and preservation of cardiac function in dogs. Additionally, TcVac4 vaccination decreased the transmission of parasites from vaccinated/infected animals to triatomines.
Collapse
Affiliation(s)
| | - José A. Zepeda-Escobar
- Centro de Investigación y Estudios Avanzados en Salud Animal, Universidad Autónoma de Estado de México, Toluca, México
| | - Roberto Montes de Oca-Jimenez
- Centro de Investigación y Estudios Avanzados en Salud Animal, Universidad Autónoma de Estado de México, Toluca, México
| | - José G. Estrada-Franco
- Centro de Investigación y Estudios Avanzados en Salud Animal, Universidad Autónoma de Estado de México, Toluca, México
| | - Alberto Barbabosa-Pliego
- Centro de Investigación y Estudios Avanzados en Salud Animal, Universidad Autónoma de Estado de México, Toluca, México
| | - Laucel Ochoa-García
- Laboratorio Estatal de Salud Pública del Instituto Salud del Estado de México, Toluca, México
| | - Ricardo Alejandre-Aguilar
- Laboratorio de Entomología, Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, México City, México
| | - Nancy Rivas
- Laboratorio de Entomología, Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, México City, México
| | - Giovanna Peñuelas-Rivas
- Centro de Investigación y Estudios Avanzados en Salud Animal, Universidad Autónoma de Estado de México, Toluca, México
| | - Margarita Val-Arreola
- Hospital General de Zona No. 2, Instituto Mexicano del Seguro Social, Irapuato, México
| | - Shivali Gupta
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| | - Felix Salazar-García
- Centro de Investigación y Estudios Avanzados en Salud Animal, Universidad Autónoma de Estado de México, Toluca, México
| | - Nisha J. Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- Department of Pathology, and Faculty of the Institute for Human Infection and Immunity, and the Sealy Center for Vaccine Development, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| | - Juan C. Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados en Salud Animal, Universidad Autónoma de Estado de México, Toluca, México
| |
Collapse
|
31
|
Abstract
Reverse vaccinology (RV) is a computational approach that aims to identify putative vaccine candidates in the protein coding genome (proteome) of pathogens. RV has primarily been applied to bacterial pathogens to identify proteins that can be formulated into subunit vaccines, which consist of one or more protein antigens. An RV approach based on a filtering method has already been used to construct a subunit vaccine against Neisseria meningitidis serogroup B that is now registered in several countries (Bexsero). Recently, machine learning methods have been used to improve the ability of RV approaches to identify vaccine candidates. Further improvements related to the incorporation of epitope-binding annotation and gene expression data are discussed. In the future, it is envisaged that RV approaches will facilitate rapid vaccine design with less reliance on conventional animal testing and clinical trials in order to curb the threat of antibiotic resistance or newly emerged outbreaks of bacterial origin.
Collapse
|
32
|
Mapping antigenic motifs in the trypomastigote small surface antigen from Trypanosoma cruzi. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:304-12. [PMID: 25589551 DOI: 10.1128/cvi.00684-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The trypomastigote small surface antigen (TSSA) is a mucin-like molecule from Trypanosoma cruzi, the etiological agent of Chagas disease, which displays amino acid polymorphisms in parasite isolates. TSSA expression is restricted to the surface of infective cell-derived trypomastigotes, where it functions as an adhesin and engages surface receptors on the host cell as a prerequisite for parasite internalization. Previous results have established TSSA-CL, the isoform encoded by the CL Brener clone, as an appealing candidate for use in serology-based diagnostics for Chagas disease. Here, we used a combination of peptide- and recombinant protein-based tools to map the antigenic structure of TSSA-CL at maximal resolution. Our results indicate the presence of different partially overlapping B-cell epitopes clustering in the central portion of TSSA-CL, which contains most of the polymorphisms found in parasite isolates. Based on these results, we assessed the serodiagnostic performance of a 21-amino-acid-long peptide that spans TSSA-CL major antigenic determinants, which was similar to the performance of the previously validated glutathione S-transferase (GST)-TSSA-CL fusion molecule. Furthermore, the tools developed for the antigenic characterization of the TSSA antigen were also used to explore other potential diagnostic applications of the anti-TSSA humoral response in Chagasic patients. Overall, our present results provide additional insights into the antigenic structure of TSSA-CL and support this molecule as an excellent target for molecular intervention in Chagas disease.
Collapse
|
33
|
Teh-Poot C, Tzec-Arjona E, Martínez-Vega P, Ramirez-Sierra MJ, Rosado-Vallado M, Dumonteil E. From genome screening to creation of vaccine against Trypanosoma cruzi by use of immunoinformatics. J Infect Dis 2014; 211:258-66. [PMID: 25070943 DOI: 10.1093/infdis/jiu418] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi, and activation of CD8(+) T cells is crucial for a protective immune response. Therefore, the identification of antigens with major histocompatibility complex class I epitopes is a crucial step for vaccine development against T. cruzi. Our aim was to identify novel antigens and epitopes by immunoinformatics analysis of the parasite proteome (12 969 proteins) and to validate their immunotherapeutic potential in infected mice. We identified 172 predicted epitopes, using NetMHC and RANKPEP. The corresponding protein sequences were reanalyzed to generate a consensus prediction, and 26 epitopes were selected for in vivo validation. The interferon γ (IFN-γ) recall response of splenocytes from T. cruzi-infected mice confirmed that 10 of 26 epitopes (38%) induced IFN-γ production. The immunotherapeutic potential of a mixture of all 10 peptides was evaluated in infected mice. The therapeutic vaccine was able to control T. cruzi infection, as evidenced by reduced parasitemia, cardiac tissue inflammation, and parasite burden and increased survival. These findings illustrate the benefits of this approach for the rapid development of a vaccine against pathogens with large genomes. The identified peptides and the proteins from which they are derived are excellent candidates for the development of a vaccine against T. cruzi.
Collapse
Affiliation(s)
- Christian Teh-Poot
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Evelyn Tzec-Arjona
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Pedro Martínez-Vega
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Maria Jesus Ramirez-Sierra
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Miguel Rosado-Vallado
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Eric Dumonteil
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Mexico Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
34
|
Serum-mediated activation of macrophages reflects TcVac2 vaccine efficacy against Chagas disease. Infect Immun 2014; 82:1382-9. [PMID: 24421046 DOI: 10.1128/iai.01186-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chagas disease is endemic in Latin America and an emerging infectious disease in the United States. No effective treatments are available. The TcG1, TcG2, and TcG4 antigens are highly conserved in clinically relevant Trypanosoma cruzi isolates and are recognized by B and T cells in infected hosts. Delivery of these antigens as a DNA prime/protein boost vaccine (TcVac2) elicited lytic antibodies and type 1 CD8(+) T cells that expanded upon challenge infection and provided >90% control of parasite burden and myocarditis in chagasic mice. Here we determined if peripheral blood can be utilized to capture the TcVac2-induced protection from Chagas disease. We evaluated the serum levels of T. cruzi kinetoplast DNA (TckDNA), T. cruzi 18S ribosomal DNA (Tc18SrDNA), and murine mitochondrial DNA (mtDNA) as indicators of parasite persistence and tissue damage and monitored the effect of sera on macrophage phenotype. Circulating TckDNA/Tc18SrDNA and mtDNA were decreased by >3- to 5-fold and 2-fold, respectively, in vaccinated infected mice compared to nonvaccinated infected mice. Macrophages incubated with sera from vaccinated infected mice exhibited M2 surface markers (CD16, CD32, CD200, and CD206), moderate proliferation, a low oxidative/nitrosative burst, and a regulatory/anti-inflammatory cytokine response (interleukin-4 [IL-4] plus IL-10 > tumor necrosis factor alpha [TNF-α]). In comparison, macrophages incubated with sera from nonvaccinated infected mice exhibited M1 surface markers, vigorous proliferation, a substantial oxidative/nitrosative burst, and a proinflammatory cytokine response (TNF-α ≫ IL-4 plus IL-10). Cardiac infiltration of macrophages and TNF-α and oxidant levels were significantly reduced in TcVac2-immunized chagasic mice. We conclude that circulating TcDNA and mtDNA levels and macrophage phenotype mediated by serum constituents reflect in vivo levels of parasite persistence, tissue damage, and inflammatory/anti-inflammatory state and have potential utility in evaluating disease severity and efficacy of vaccines and drug therapies.
Collapse
|
35
|
Cazorla SI, Frank FM, Malchiodi EL. Vaccination approaches againstTrypanosoma cruziinfection. Expert Rev Vaccines 2014; 8:921-35. [DOI: 10.1586/erv.09.45] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Granulocyte colony-stimulating factor partially repairs the damage provoked by Trypanosoma cruzi in murine myocardium. Int J Cardiol 2013; 168:2567-74. [PMID: 23597573 DOI: 10.1016/j.ijcard.2013.03.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 12/13/2012] [Accepted: 03/17/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND The hallmark of Trypanosoma cruzi infection is cardiomyopathy that leads to end-stage heart failure. We investigated whether G-CSF, known to induce heart tissue repair by bone marrow stem cell mobilization, ameliorates T. cruzi-induced myocarditis. METHODS AND RESULTS T. cruzi-infected C3H/He mice were treated with G-CSF and monitored for parasite burden, BMSC mobilization, cytokine profile and cardiac remodeling. G-CSF increased the expression of CXCR4, CD34, and c-Kit, indicating mobilization and migration of BMSC, some of which differentiated to cardiomyocytes as evidenced by increased levels of GATA4(+)/MEF2C(+) cells and desmin expression in chagasic hearts. G-CSF enhanced a mixed cytokine response (IL-10+TGF-β>IFN-γ+TNF-α>IL-4) associated with increased heart inflammation and no beneficial effect on parasite control. Further, G-CSF controlled T. cruzi-induced extracellular-matrix alterations of collagens (Col I and Col llI), hydroxyproline, and glycosaminoglycan contents and promoted compensatory cardiac remodeling; however, these responses were not sufficient to control T. cruzi-induced cardiomyocyte atrophy. Benznidazole treatment prior to G-CSF resulted in the control of parasitism and parasite-induced inflammation, and subsequently, G-CSF was effective in executing the tissue repair, as evidenced by extracellular-matrix homeostasis and normalization of cardiomyocyte size in chagasic hearts. CONCLUSIONS G-CSF treatment after T. cruzi infection enhanced migration and homing of BMSC, some of which differentiated to cardiomyocytes. Yet, G-CSF promoted a mixed (Treg>Th1>Th2) immune response that contributed to persistent inflammation and limited improvement in cardiac homeostasis. Combinatorial therapy (BZ → G-CSF) was beneficial in arresting inflammatory processes and tissue damage in chagasic hearts.
Collapse
|
37
|
Gupta S, Garg NJ. TcVac3 induced control of Trypanosoma cruzi infection and chronic myocarditis in mice. PLoS One 2013; 8:e59434. [PMID: 23555672 PMCID: PMC3608676 DOI: 10.1371/journal.pone.0059434] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/14/2013] [Indexed: 11/19/2022] Open
Abstract
We characterized the immune responses elicited by a DNA-prime/MVA-boost vaccine (TcVac3) constituted of antigenic candidates (TcG2 and TcG4), shown to be recognized by B and T cell responses in Trypanosoma cruzi (Tc) infected multiple hosts. C57BL/6 mice immunized with TcVac3 elicited a strong antigen-specific, high-avidity, trypanolytic antibody response (IgG2b>IgG1); and a robust antigen- and Tc-specific CD8+T cell response with type-1 cytokine (IFN-γ+TNF-α>IL-4+IL-10) and cytolytic effector (CD8+CD107a+IFN-γ+Perforin+) phenotype. The vaccine-induced effector T cells significantly expanded upon challenge infection and provided >92% control of T. cruzi. Co-delivery of IL-12 and GMCSF cytokine adjuvants didn’t enhance the TcVac3-induced resistance to T. cruzi. In chronic phase, vaccinated/infected mice exhibited a significant decline (up to 70%) in IFN-γ+CD8+T cells, a predominance of immunoregulatory IL-10+/CD4+T and IL10+/CD8+T cells, and presented undetectable tissue parasitism, inflammatory infiltrate, and fibrosis in vaccinated/infected mice. In comparison, control mice responded to challenge infection by a low antibody response, mixed cytokine profile, and consistent activation of pro-inflammatory CD8+T cells associated with parasite persistence and pathologic damage in the heart. We conclude that TcVac3 elicited type-1 effector T cell immunity that effectively controlled T. cruzi infection, and subsequently, predominance of anti-inflammatory responses prevented chronic inflammation and myocarditis in chagasic mice.
Collapse
Affiliation(s)
- Shivali Gupta
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Faculty of the Institute for Human Infections and Immunity, Center for Tropical Diseases, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
38
|
Gupta S, Wan X, Zago MP, Sellers VCM, Silva TS, Assiah D, Dhiman M, Nuñez S, Petersen JR, Vázquez-Chagoyán JC, Estrada-Franco JG, Garg NJ. Antigenicity and diagnostic potential of vaccine candidates in human Chagas disease. PLoS Negl Trop Dis 2013; 7:e2018. [PMID: 23350012 PMCID: PMC3547861 DOI: 10.1371/journal.pntd.0002018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/04/2012] [Indexed: 12/15/2022] Open
Abstract
Background Chagas disease, caused by Trypanosoma cruzi, is endemic in Latin America and an emerging infectious disease in the US and Europe. We have shown TcG1, TcG2, and TcG4 antigens elicit protective immunity to T. cruzi in mice and dogs. Herein, we investigated antigenicity of the recombinant proteins in humans to determine their potential utility for the development of next generation diagnostics for screening of T. cruzi infection and Chagas disease. Methods and Results Sera samples from inhabitants of the endemic areas of Argentina-Bolivia and Mexico-Guatemala were analyzed in 1st-phase for anti-T. cruzi antibody response by traditional serology tests; and in 2nd-phase for antibody response to the recombinant antigens (individually or mixed) by an ELISA. We noted similar antibody response to candidate antigens in sera samples from inhabitants of Argentina and Mexico (n = 175). The IgG antibodies to TcG1, TcG2, and TcG4 (individually) and TcGmix were present in 62–71%, 65–78% and 72–82%, and 89–93% of the subjects, respectively, identified to be seropositive by traditional serology. Recombinant TcG1- (93.6%), TcG2- (96%), TcG4- (94.6%) and TcGmix- (98%) based ELISA exhibited significantly higher specificity compared to that noted for T. cruzi trypomastigote-based ELISA (77.8%) in diagnosing T. cruzi-infection and avoiding cross-reactivity to Leishmania spp. No significant correlation was noted in the sera levels of antibody response and clinical severity of Chagas disease in seropositive subjects. Conclusions Three candidate antigens were recognized by antibody response in chagasic patients from two distinct study sites and expressed in diverse strains of the circulating parasites. A multiplex ELISA detecting antibody response to three antigens was highly sensitive and specific in diagnosing T. cruzi infection in humans, suggesting that a diagnostic kit based on TcG1, TcG2 and TcG4 recombinant proteins will be useful in diverse situations. Chagas disease is the most common cause of congestive heart failure related deaths among young adults in the endemic areas of South and Central America and Mexico. Diagnosis and treatment of T. cruzi infection has remained difficult and challenging after 100 years of its identification. In >95% of human cases, T. cruzi infection remains undiagnosed until several years later when chronic evolution of progressive disease results in clinical symptoms associated with cardiac damage. Diagnosis generally depends on the measurement of T. cruzi–specific antibodies that can result in false positives. A conclusive diagnosis of T. cruzi infection thus often requires multiple serological tests, in combination with epidemiological data and clinical symptoms. In this study, we investigated the antibody response to TcG1, TcG2, and TcG4 in clinically characterized chagasic patients. These antigens were identified as vaccine candidates and shown to elicit protective immunity to T. cruzi and Chagas disease in experimental animals. Our data show the serology test developed using the TcGmix (multiplex ELISA) is a significantly better alternative to epimastigote extracts currently used in T. cruzi serodiagnosis or the trypomastigote lysate used in this study for comparison purposes.
Collapse
Affiliation(s)
- Shivali Gupta
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gupta S, Garg NJ. Delivery of antigenic candidates by a DNA/MVA heterologous approach elicits effector CD8(+)T cell mediated immunity against Trypanosoma cruzi. Vaccine 2012; 30:7179-86. [PMID: 23079191 DOI: 10.1016/j.vaccine.2012.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/05/2012] [Indexed: 01/22/2023]
Abstract
In this study, we have characterized the immune mechanisms elicited by antigenic candidates, TcG2 and TcG4, delivered by a DNA-prime/MVA-boost approach, and evaluated the host responses to Trypanosoma cruzi infection in C57BL/6 mice. Immunization of mice with antigenic candidates elicited antigen-specific, high-avidity, trypanolytic antibody response (IgG2b>IgG1) and CD8(+)T cells that exhibited type-1 cytolytic effector (CD8(+)CD107a(+)IFN-γ(+)Perforin(+)) phenotype. The extent of TcG2-dependent type 1 B and T cell immunity was higher than that noted in TcG4-immunized mice, and expanded accordingly in response to challenge infection with T. cruzi. The progression of chronic phase in immunized mice was associated with persistence of IgGs, 55-90% reduction in the frequency of proinflammatory (IFN-γ(+) or TNF-α(+)) CD8(+)T cells, and an increase or emergence of immunoregulatory (IL-10(+)) CD4/CD8 T cells. The tissue parasitism, infiltration of inflammatory infiltrate, parasite persistence, and fibrosis were decreased by 82-92% in heart and skeletal muscle of immunized/chronically infected mice. Control mice exhibited a significantly low antibody response, consistent activation of effector CD8(+)T cells dominated by pro-inflammatory phenotype and mixed cytokine profile (IFN-γ+TNF-α>IL-4+IL-10), parasite persistence and pathologic damage in chagasic hearts. We conclude that delivery of TcG2 or TcG4 by DNA-rMVA approach elicits effective antibody and CD8(+)T cell mediated immunity against T. cruzi and Chagas disease. The emergence of type 2 cytokine and T cell response in chronic phase was indicative of prevention of clinical disease.
Collapse
Affiliation(s)
- Shivali Gupta
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, United States
| | | |
Collapse
|
40
|
Dumonteil E. DNA Vaccines against Protozoan Parasites: Advances and Challenges. J Biomed Biotechnol 2012; 2007:90520. [PMID: 17710244 PMCID: PMC1940056 DOI: 10.1155/2007/90520] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 03/21/2007] [Indexed: 01/30/2023] Open
Abstract
Over the past 15 years, DNA vaccines have gone from a scientific curiosity to one of the most dynamic research field and may offer new alternatives for the control of parasitic diseases such as leishmaniasis and Chagas disease. We review here some of the advances and challenges for the development of DNA vaccines against these diseases. Many studies have validated the concept of using DNA vaccines for both protection and therapy against these protozoan parasites in a variety of mouse models. The challenge now is to translate what has been achieved in these models into veterinary or human vaccines of comparable efficacy. Also, genome-mining and new antigen discovery strategies may provide new tools for a more rational search of novel vaccine candidates.
Collapse
Affiliation(s)
- Eric Dumonteil
- Laboratorio de Parasitología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, 97000 Mérida, Yucatán, Mexico
- *Eric Dumonteil:
| |
Collapse
|
41
|
Dhiman M, Zago MP, Nunez S, Amoroso A, Rementeria H, Dousset P, Burgos FN, Garg NJ. Cardiac-oxidized antigens are targets of immune recognition by antibodies and potential molecular determinants in chagas disease pathogenesis. PLoS One 2012; 7:e28449. [PMID: 22238578 PMCID: PMC3251564 DOI: 10.1371/journal.pone.0028449] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/08/2011] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma cruzi elicits reactive oxygen species (ROS) of inflammatory and mitochondrial origin in infected hosts. In this study, we examined ROS-induced oxidative modifications in the heart and determined whether the resultant oxidized cardiac proteins are targets of immune response and of pathological significance in Chagas disease. Heart biopsies from chagasic mice, rats and human patients exhibited, when compared to those from normal controls, a substantial increase in protein 4-hydroxynonenal (4-HNE), malondialdehyde (MDA), carbonyl, and 3-nitrotyrosine (3-NT) adducts. To evaluate whether oxidized proteins gain antigenic properties, heart homogenates or isolated cardiomyocytes were oxidized in vitro and one- or two-dimensional gel electrophoresis (2D-GE)/Western blotting (WB) was performed to investigate the proteomic oxidative changes and recognition of oxidized proteins by sera antibodies in chagasic rodents (mice, rats) and human patients. Human cardiomyocytes exhibited LD(50) sensitivity to 30 µM 4-HNE and 100 µM H(2)O(2) at 6 h and 12 h, respectively. In vitro oxidation with 4-HNE or H(2)O(2) resulted in a substantial increase in 4-HNE- and carbonyl-modified proteins that correlated with increased recognition of cardiac (cardiomyocytes) proteins by sera antibodies of chagasic rodents and human patients. 2D-GE/Western blotting followed by MALDI-TOF-MS/MS analysis to identify cardiac proteins that were oxidized and recognized by human chagasic sera yielded 82 unique proteins. We validated the 2D-GE results by enzyme-linked immunosorbent assay (ELISA) and WB and demonstrated that oxidation of recombinant titin enhanced its immunogenicity and recognition by sera antibodies from chagasic hosts (rats and humans). Treatment of infected rats with phenyl-α-tert-butyl nitrone (PBN, antioxidant) resulted in normalized immune detection of cardiac proteins associated with control of cardiac pathology and preservation of heart contractile function in chagasic rats. We conclude that ROS-induced, cardiac-oxidized antigens are targets of immune recognition by antibodies and molecular determinants for pathogenesis during Chagas disease.
Collapse
Affiliation(s)
- Monisha Dhiman
- Department of Microbiology and Immunology, Center for Tropical Diseases, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maria Paola Zago
- Facultad de Ciencias de la Salud, Instituto de Patología Experimental, Universidad Nacional de Salta, Salta, Argentina
| | - Sonia Nunez
- Hospital Público de Gestión Descentralizada San Bernardo, Salta, Argentina
| | - Alejandro Amoroso
- Servicio de Cirugia Cardiovascular, Hospital San Bernardo, Salta, Argentina
| | - Hugo Rementeria
- Servicio de Cirugia Cardiovascular, Hospital San Bernardo, Salta, Argentina
| | - Pierre Dousset
- Servicio de Cirugia Cardiovascular, Hospital San Bernardo, Salta, Argentina
| | | | - Nisha Jain Garg
- Department of Microbiology and Immunology, Center for Tropical Diseases, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
42
|
Vázquez-Chagoyán JC, Gupta S, Garg NJ. Vaccine development against Trypanosoma cruzi and Chagas disease. ADVANCES IN PARASITOLOGY 2011; 75:121-46. [PMID: 21820554 DOI: 10.1016/b978-0-12-385863-4.00006-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pathology of Chagas disease presents a complicated and diverse picture in humans. The major complications and destructive evolutionary outcomes of chronic infection by Trypanosoma cruzi in humans include ventricular fibrillation, thromboembolism and congestive heart failure. Studies in animal models and human patients have revealed the pathogenic mechanisms during disease progression, pathology of disease and features of protective immunity. Accordingly, several antigens, antigen-delivery vehicles and adjuvants have been tested to elicit immune protection to T. cruzi in experimental animals. This review summarizes the research efforts in vaccine development against Chagas disease during the past decade.
Collapse
Affiliation(s)
- Juan C Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Estado de México, Toluca, Mexico
| | | | | |
Collapse
|
43
|
Lemaire D, Barbosa T, Rihet P. Coping with genetic diversity: the contribution of pathogen and human genomics to modern vaccinology. Braz J Med Biol Res 2011; 45:376-85. [PMID: 22030866 PMCID: PMC3854287 DOI: 10.1590/s0100-879x2011007500142] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/04/2011] [Indexed: 11/21/2022] Open
Abstract
Vaccine development faces major difficulties partly because of genetic variation in both infectious organisms and humans. This causes antigenic variation in infectious agents and a high interindividual variability in the human response to the vaccine. The exponential growth of genome sequence information has induced a shift from conventional culture-based to genome-based vaccinology, and allows the tackling of challenges in vaccine development due to pathogen genetic variability. Additionally, recent advances in immunogenetics and genomics should help in the understanding of the influence of genetic factors on the interindividual and interpopulation variations in immune responses to vaccines, and could be useful for developing new vaccine strategies. Accumulating results provide evidence for the existence of a number of genes involved in protective immune responses that are induced either by natural infections or vaccines. Variation in immune responses could be viewed as the result of a perturbation of gene networks; this should help in understanding how a particular polymorphism or a combination thereof could affect protective immune responses. Here we will present: i) the first genome-based vaccines that served as proof of concept, and that provided new critical insights into vaccine development strategies; ii) an overview of genetic predisposition in infectious diseases and genetic control in responses to vaccines; iii) population genetic differences that are a rationale behind group-targeted vaccines; iv) an outlook for genetic control in infectious diseases, with special emphasis on the concept of molecular networks that will provide a structure to the huge amount of genomic data.
Collapse
Affiliation(s)
- D Lemaire
- Universidade Federal da Bahia, Salvador, BA, Brasil
| | | | | |
Collapse
|
44
|
Dhiman M, Garg NJ. NADPH oxidase inhibition ameliorates Trypanosoma cruzi-induced myocarditis during Chagas disease. J Pathol 2011; 225:583-96. [PMID: 21952987 DOI: 10.1002/path.2975] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 07/04/2011] [Accepted: 07/18/2011] [Indexed: 12/15/2022]
Abstract
Trypanosoma cruzi, the aetiological agent of Chagas disease, invades nucleated mammalian cells including macrophages. In this study, we investigated the crosstalk between T. cruzi-induced immune activation of reactive oxygen species (ROS) and pro-inflammatory responses, and their role in myocardial pathology. Splenocytes of infected mice (C3H/HeN) responded to Tc-antigenic stimulus by more than a two-fold increase in NADPH oxidase (NOX) activity, ROS generation, cytokine production (IFN-γ > IL-4 > TNFα > IL1-β≈ IL6), and predominant expansion of CD4(+) and CD8(+) T cells. Inhibition of NOX, but not of myeloperoxidase and xanthine oxidase, controlled the ROS (>98%) and cytokine (70-89%) release by Tc-stimulated splenocytes of infected mice. Treatment of infected mice with apocynin (NOX inhibitor) in drinking water resulted in a 50-90% decline in endogenous NOX/ROS and cytokine levels, and splenic phagocytes' proliferation. The splenic percentage of T cells was maintained, though more than a 40% decline in splenic index (spleen weight/body weight) indicated decreased T-cell proliferation in apocynin-treated/infected mice. The blood and tissue parasite burden were significantly increased in apocynin-treated/infected mice, yet acute myocarditis, ie inflammatory infiltrate consisting of macrophages, neutrophils, and CD8(+) T cells, and tissue oxidative adducts (eg 8-isoprostanes, 3-nitrotyrosine, and 4-hydroxynonenal) were diminished in apocynin-treated/infected mice. Consequently, hypertrophy (increased cardiomyocytes' size and β-MHC, BNP, and ANP mRNA levels) and fibrosis (increased collagen, glycosaminoglycans, and lipid contents) of the heart during the chronic phase were controlled in apocynin-treated mice. We conclude that NOX/ROS is a critical regulator of the splenic response (phagocytes, T cells, and cytokines) to T. cruzi infection, and bystander effects of heart-infiltrating phagocytes and CD8(+) T cells resulting in cardiac remodelling in chagasic mice.
Collapse
Affiliation(s)
- Monisha Dhiman
- Department of Microbiology and Immunology, Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | |
Collapse
|
45
|
Aparicio-Burgos JE, Ochoa-García L, Zepeda-Escobar JA, Gupta S, Dhiman M, Martínez JS, de Oca-Jiménez RM, Arreola MV, Barbabosa-Pliego A, Vázquez-Chagoyán JC, Garg NJ. Testing the efficacy of a multi-component DNA-prime/DNA-boost vaccine against Trypanosoma cruzi infection in dogs. PLoS Negl Trop Dis 2011; 5:e1050. [PMID: 21625470 PMCID: PMC3098890 DOI: 10.1371/journal.pntd.0001050] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 04/15/2011] [Indexed: 11/19/2022] Open
Abstract
Background Trypanosoma cruzi, the etiologic agent of Chagas Disease, is
a major vector borne health problem in Latin America and an emerging
infectious disease in the United States. Methods We tested the efficacy of a multi-component DNA-prime/DNA-boost vaccine
(TcVac1) against experimental T. cruzi infection in a
canine model. Dogs were immunized with antigen-encoding plasmids and
cytokine adjuvants, and two weeks after the last immunization, challenged
with T. cruzi trypomastigotes. We measured antibody
responses by ELISA and haemagglutination assay, parasitemia and infectivity
to triatomines by xenodiagnosis, and performed electrocardiography and
histology to assess myocardial damage and tissue pathology. Results Vaccination with TcVac1 elicited parasite-and antigen-specific IgM and IgG
(IgG2>IgG1) responses. Upon challenge infection, TcVac1-vaccinated dogs,
as compared to non-vaccinated controls dogs, responded to T.
cruzi with a rapid expansion of antibody response, moderately
enhanced CD8+ T cell proliferation and IFN-γ production,
and suppression of phagocytes’ activity evidenced by decreased
myeloperoxidase and nitrite levels. Subsequently, vaccinated dogs controlled
the acute parasitemia by day 37 pi (44 dpi in non-vaccinated dogs), and
exhibited a moderate decline in infectivity to triatomines. TcVac1-immunized
dogs did not control the myocardial parasite burden and electrocardiographic
and histopatholgic cardiac alterations that are the hallmarks of acute
Chagas disease. During the chronic stage, TcVac1-vaccinated dogs exhibited a
moderate decline in cardiac alterations determined by EKG and
anatomo-/histo-pathological analysis while
chronically-infected/non-vaccinated dogs continued to exhibit severe EKG
alterations. Conclusions Overall, these results demonstrated that TcVac1 provided a partial resistance
to T. cruzi infection and Chagas disease, and provide an
impetus to improve the vaccination strategy against Chagas disease. Immunization of dogs with DNA-prime/DNA-boost vaccine (TcVac1) enhanced the
Trypanosoma cruzi-specific type 1 antibody and
CD8+ T cell responses that resulted in an early control of
acute parasitemia and a moderate decline in pathological symptoms during chronic
phase. Further improvement of vaccine-induced immunity would be required to
achieve clinical and epidemiological benefits and prevent transmission of
parasites from vaccinated/infected dogs to triatomines.
Collapse
Affiliation(s)
- José E. Aparicio-Burgos
- Centro de Investigación y Estudios
Avanzados, Universidad Autónoma de Estado de México, Toluca,
México
| | - Laucel Ochoa-García
- Centro de Investigación y Estudios
Avanzados, Universidad Autónoma de Estado de México, Toluca,
México
| | | | - Shivali Gupta
- Department of Microbiology and Immunology,
University of Texas Medical Branch, Galveston, Texas, United States of
America
| | - Monisha Dhiman
- Department of Microbiology and Immunology,
University of Texas Medical Branch, Galveston, Texas, United States of
America
| | - José Simón Martínez
- Centro de Investigación y Estudios
Avanzados, Universidad Autónoma de Estado de México, Toluca,
México
| | | | | | - Alberto Barbabosa-Pliego
- Centro de Investigación y Estudios
Avanzados, Universidad Autónoma de Estado de México, Toluca,
México
| | - Juan C. Vázquez-Chagoyán
- Centro de Investigación y Estudios
Avanzados, Universidad Autónoma de Estado de México, Toluca,
México
- * E-mail: (NJG); (JCV-C)
| | - Nisha Jain Garg
- Department of Microbiology and Immunology,
University of Texas Medical Branch, Galveston, Texas, United States of
America
- Department of Pathology, University of Texas
Medical Branch, Galveston, Texas, United States of America
- Faculty of the Institute for Human Infections
and Immunity, and the Sealy Center for Vaccine Development, University of Texas
Medical Branch, Galveston, Texas, United States of America
- * E-mail: (NJG); (JCV-C)
| |
Collapse
|
46
|
Farias LP, Tararam CA, Miyasato PA, Nishiyama MY, Oliveira KC, Kawano T, Verjovski-Almeida S, Leite LCDC. Screening the Schistosoma mansoni transcriptome for genes differentially expressed in the schistosomulum stage in search for vaccine candidates. Parasitol Res 2011; 108:123-35. [PMID: 20852890 DOI: 10.1007/s00436-010-2045-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 08/29/2010] [Indexed: 12/17/2022]
Abstract
Schistosomiasis affects more than 200 million people worldwide; another 600 million are at risk of infection. The schistosomulum stage is believed to be the target of protective immunity in the attenuated cercaria vaccine model. In an attempt to identify genes up-regulated in the schistosomulum stage in relation to cercaria, we explored the Schistosoma mansoni transcriptome by looking at the relative frequency of reads in EST libraries from both stages. The 400 genes potentially up-regulated in schistosomula were analyzed as to their Gene Ontology categorization, and we have focused on those encoding-predicted proteins with no similarity to proteins of other organisms, assuming they could be parasite-specific proteins important for survival in the host. Up-regulation in schistosomulum relative to cercaria was validated with real-time reverse transcription polymerase chain reaction (RT-PCR) for five out of nine selected genes (56%). We tested their protective potential in mice through immunization with DNA vaccines followed by a parasite challenge. Worm burden reductions of 16-17% were observed for one of them, indicating its protective potential. Our results demonstrate the value and caveats of using stage-associated frequency of ESTs as an indication of differential expression coupled to DNA vaccine screening in the identification of novel proteins to be further investigated as potential vaccine candidates.
Collapse
Affiliation(s)
- Leonardo P Farias
- Centro de Biotecnologia, Instituto Butantan, Av. Vital Brasil 1500, 05503-900 São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Gupta S, Garg NJ. Prophylactic efficacy of TcVac2 against Trypanosoma cruzi in mice. PLoS Negl Trop Dis 2010; 4:e797. [PMID: 20706586 PMCID: PMC2919396 DOI: 10.1371/journal.pntd.0000797] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 07/15/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chagas disease is a major health problem in Latin America, and an emerging infectious disease in the US. Previously, we have screened the Trypanosoma cruzi sequence database by a computational/bioinformatics approach, and identified antigens that exhibited the characteristics of vaccine candidates. METHODOLOGY We investigated the protective efficacy of a multi-component DNA-prime/protein-boost vaccine (TcVac2) constituted of the selected candidates and cytokine (IL-12 and GM-CSF) expression plasmids in a murine model. C57BL/6 mice were immunized with antigen-encoding plasmids plus cytokine adjuvants, followed by recombinant proteins; and two-weeks later, challenged with T. cruzi trypomastigotes. ELISA and flow cytometry were employed to measure humoral (antibody isotypes) and cellular (lymphocyte proliferation, CD4(+) and CD8(+) T cell phenotype and cytokines) responses. Myocardial pathology was evaluated by H&E and Masson's trichrome staining. PRINCIPAL FINDINGS TcVac2 induced a strong antigen-specific antibody response (IgG2b>IgG1) and a moderate level of lymphocyte proliferation in mice. Upon challenge infection, TcVac2-vaccinated mice expanded the IgG2b/IgG1 antibodies and elicited a substantial CD8(+) T cell response associated with type 1 cytokines (IFN-gamma and TNF-alpha) that resulted in control of acute parasite burden. During chronic phase, antibody response persisted, splenic activation of CD8(+) T cells and IFN-gamma/TNF-alpha cytokines subsided, and IL-4/IL-10 cytokines became dominant in vaccinated mice. The tissue parasitism, inflammation, and fibrosis in heart and skeletal muscle of TcVac2-vaccinated chronic mice were undetectable by histological techniques. In comparison, mice injected with vector or cytokines only responded to T. cruzi by elicitation of a mixed (type 1/type 2) antibody, T cell and cytokine response, and exhibited persistent parasite burden and immunopathology in the myocardium. CONCLUSION TcVac2-induced activation of type 1 antibody and lymphocyte responses provided resistance to acute T. cruzi infection, and consequently, prevented the evolution of chronic immunopathology associated with parasite persistence in chagasic hearts.
Collapse
Affiliation(s)
- Shivali Gupta
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nisha Jain Garg
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Member of the Institute for Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
48
|
Dumonteil E. Vaccine development against Trypanosoma cruzi and Leishmania species in the post-genomic era. INFECTION GENETICS AND EVOLUTION 2010; 9:1075-82. [PMID: 19805015 DOI: 10.1016/j.meegid.2009.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/17/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
Trypanosoma cruzi and the genus Leishmania are protozoan parasites causing diseases of major public health importance, and the recent completion of the sequencing of their genomes has opened new opportunities to further our understanding of the mechanisms required for protection and the development of vaccines. For example, trans-sialidases, one of the largest protein families from T. cruzi, contain dominant CD8+ T cell epitopes, and their use as preventive or therapeutic vaccines in different animal models has provided encouraging results. A much wider range of antigens and vaccine formulations have been tested against Leishmania, and new correlates for protection are being defined, such as the induction of multifunctional Th1 effector cells capable of producing a complex set of cytokines. Also, while a large number of these vaccine candidates have been rather successful in mouse models, their usefulness in more relevant animal models is still poor, in spite of significant immunogenicity. Novel proteomics and genomics approaches are being used for antigen discovery and the identification of new vaccine candidates, some of which have shown promise for the control of infection. These studies cast little doubt that T. cruzi and Leishmania genomes represent major resources for understanding key aspects of the mechanisms of immune protection against these parasites, and the increasing use of these tools will greatly impact vaccine development.
Collapse
Affiliation(s)
- Eric Dumonteil
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Merida, Yucatan, Mexico
| |
Collapse
|
49
|
Barbabosa-Pliego A, Díaz-Albiter HM, Ochoa-García L, Aparicio-Burgos E, López-Heydeck SM, Velásquez-Ordoñez V, Fajardo-Muñoz RC, Díaz-González S, De Oca-Jimenez RM, Barbosa-Mireles M, Guzmán-Bracho C, Estrada-Franco JG, Garg NJ, Vázquez-Chagoyán JC. Trypanosoma cruzi circulating in the southern region of the State of Mexico (Zumpahuacan) are pathogenic: a dog model. Am J Trop Med Hyg 2009; 81:390-395. [PMID: 19706902 PMCID: PMC2784919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
Here we describe clinical and pathologic evidence of Chagas disease caused in dogs by circulating Trypanosoma cruzi from a newly recognized endemic area in Mexico. We show that the Zumpahuacan isolate, although less virulent than the Sylvio-X10 reference strain that caused acute myocarditis and death, was pathogenic in dogs. Dogs infected with the Zumpahuacan isolate exhibited electrocardiographic alterations, left- and right-ventricle dilation, and hydropericardium. Histologically, diffused perimysial and endomysial lymphoplasmacytic cell infiltration, cardiomyocyte necrosis, and amastigote nests were noted in Zumpahuacan-infected dogs. These findings suggest that the risk of T. cruzi infection and Chagas disease is present in the State of Mexico, and further research is needed to identify the T. cruzi bio-types circulating in southern State of Mexico.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Nisha Jain Garg
- Address correspondence to Nisha J. Garg, 301 University Boulevard, Galveston, TX 77555-1070, or Juan C. Vázquez-Chagoyán, Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterimaria y Zootecnia, Universidad Autónoma del Estado de México, Autopista Toluca-Atlacomulco km 15.5, Toluca 50200, México,
| | - Juan C. Vázquez-Chagoyán
- Address correspondence to Nisha J. Garg, 301 University Boulevard, Galveston, TX 77555-1070, or Juan C. Vázquez-Chagoyán, Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterimaria y Zootecnia, Universidad Autónoma del Estado de México, Autopista Toluca-Atlacomulco km 15.5, Toluca 50200, México,
| |
Collapse
|
50
|
Herrera-Najera C, Piña-Aguilar R, Xacur-Garcia F, Ramirez-Sierra MJ, Dumonteil E. Mining the Leishmania genome for novel antigens and vaccine candidates. Proteomics 2009; 9:1293-301. [PMID: 19206109 DOI: 10.1002/pmic.200800533] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Leishmaniasis is a neglected disease with an estimated 12 million infected people. The recent completion of the sequencing of the Leishmania major genome has opened opportunities for the identification of targets for vaccine development. We present here the first attempt at identifying novel vaccine candidates by whole genome analysis. We predicted CD8(+) T cell epitopes from the L. major proteome and validated in vivo in mice the immunogenicity of some of the best predicted epitopes. Consensus epitope predictions from 8272 annotated protein sequences with 5-8 different algorithms allowed the identification of 78 class I CD8(+) epitopes. BALB/c mice were immunized with 26 synthetic peptides corresponding to the most likely epitopes. Fourteen (54%) resulted immunogenic, with eight being strong inducers of T cell IFNgamma production. None of the proteins from which the epitopes are derived are differentially expressed, only two may be surface proteins, eight have putative enzymatic, and metabolic activities. These epitopes and proteins represent new antigen candidates for further studies. While pathogen genomes have not yet delivered their full promise in terms of human health applications, our study opens the way for extensive genome mining for antigen identification and vaccine development against Leishmania and other pathogens.
Collapse
Affiliation(s)
- Carla Herrera-Najera
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Hideyo Noguchi, Universidad Autónoma de Yucatan, Mérida, Yucatan, Mexico
| | | | | | | | | |
Collapse
|