1
|
Ito T, Guenther C, Ishikawa E, Yabuki T, Nagae M, Nakatani Y, Yamasaki S. Phylogenetic and structural insights into the origin of C-type lectin Mincle in vertebrates. Immunogenetics 2025; 77:18. [PMID: 40119899 PMCID: PMC11929736 DOI: 10.1007/s00251-025-01375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025]
Abstract
Our bodies are continuously exposed to injurious insults by infection and tissue damage, which are primarily sensed by innate immune receptors to maintain homeostasis. Among such receptors is macrophage-inducible C-type lectin (Mincle, gene symbol CLEC4E), a member of the C-type lectin receptor (CLR) family, which functions as an immune sensor for both pathogens and damaged self. To monitor these injurious stimuli, Mincle recognizes disaccharide-based pathogen-derived glycolipids and monosaccharide-based intracellular metabolites, such as β-glucosylceramide. Mincle is well-conserved among mammals; however, there are questions that remain unclear, such as from which lower vertebrate did it arise and whether the original ligand was self or non-self. Here, we found homologues of Mincle and its signaling subunit Fc receptor γ chain (FcRγ) in lower vertebrates, such as reptiles, amphibians, and fishes. The crystal structure of a Mincle homologue revealed that fish Mincle possesses a narrower sugar-binding pocket than that of mammalian Mincle, and accommodates only monosaccharide moieties. These results suggest that Mincle may have evolved from a self-recognizing receptor, and its sugar-binding pocket widened during evolution, presumably to adapt to disaccharide-based glycolipids derived from life-threatening pathogens.
Collapse
Affiliation(s)
- Taiki Ito
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Carla Guenther
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Eri Ishikawa
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Takae Yabuki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and Drug Delivery Systems (CAMaD), Osaka University, Suita, Osaka, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Yoichiro Nakatani
- Laboratory of Medical and Evolutionary Genomics, Department of Biological Informatics, Bioinformatics Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Center for Advanced Modalities and Drug Delivery Systems (CAMaD), Osaka University, Suita, Osaka, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
2
|
Larcombe E, Alexander ME, Snellgrove D, Henriquez FL, Sloman KA. Current disease treatments for the ornamental pet fish trade and their associated problems. REVIEWS IN AQUACULTURE 2025; 17. [DOI: 10.1111/raq.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/21/2024] [Indexed: 01/05/2025]
Abstract
AbstractThe trade in live ornamental fishes to be held as companion animals or displayed in public aquaria has an estimated global annual value of US$15–20 billion. Supply chains for ornamental pet fishes often involve many more parties than for fish farmed as food fishes, and at each stage, fishes are exposed to stressors including handling, confinement, crowding, mechanical disturbance, and poor water quality. If chronic, these stressors can compromise their immune system, making fishes more susceptible to pathogens. Mortality and morbidity from infectious disease can result in considerable welfare impacts and massive economic losses for the industry, and the range of infective agents seen in ornamental species is well documented. However, treating these diseases is not straightforward with practices varying greatly across the trade and with several approaches having unintended consequences, such as the emergence of resistant strains of pathogens. While disease treatments for a handful of fish species (e.g., koi, goldfish) have received focused research attention, for the home aquarium owner, there is an increasing reliance on products based on natural compounds which have received far less scientific attention. This review aims to highlight the gaps in our knowledge surrounding the range of disease treatments used across the ornamental pet fish trade, with a particular focus on freshwater tropical species destined for home aquaria. Consideration is given to the potential problems arising from these treatments, including microbial resistance and effects of treatments themselves on fish health and welfare.
Collapse
Affiliation(s)
- E. Larcombe
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| | - M. E. Alexander
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| | - D. Snellgrove
- Waltham Petcare Science Institute Waltham‐on‐the‐Wolds Leicestershire UK
| | - F. L. Henriquez
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| | - K. A. Sloman
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| |
Collapse
|
3
|
Lyu J, Narum DE, Baldwin SL, Larsen SE, Bai X, Griffith DE, Dartois V, Naidoo T, Steyn AJC, Coler RN, Chan ED. Understanding the development of tuberculous granulomas: insights into host protection and pathogenesis, a review in humans and animals. Front Immunol 2024; 15:1427559. [PMID: 39717773 PMCID: PMC11663721 DOI: 10.3389/fimmu.2024.1427559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Granulomas, organized aggregates of immune cells which form in response to Mycobacterium tuberculosis (Mtb), are characteristic but not exclusive of tuberculosis (TB). Despite existing investigations on TB granulomas, the determinants that differentiate host-protective granulomas from granulomas that contribute to TB pathogenesis are often disputed. Thus, the goal of this narrative review is to help clarify the existing literature on such determinants. We adopt the a priori view that TB granulomas are host-protective organelles and discuss the molecular and cellular determinants that induce protective granulomas and those that promote their failure. While reports about protective TB granulomas and their failure may initially seem contradictory, it is increasingly recognized that either deficiencies or excesses of the molecular and cellular components in TB granuloma formation may be detrimental to the host. More specifically, insufficient or excessive expression/representation of the following components have been reported to skew granulomas toward the less protective phenotype: (i) epithelioid macrophages; (ii) type 1 adaptive immune response; (iii) type 2 adaptive immune response; (iv) tumor necrosis factor; (v) interleukin-12; (vi) interleukin-17; (vii) matrix metalloproteinases; (viii) hypoxia in the TB granulomas; (ix) hypoxia inducible factor-1 alpha; (x) aerobic glycolysis; (xi) indoleamine 2,3-dioxygenase activity; (xii) heme oxygenase-1 activity; (xiii) immune checkpoint; (xiv) leukotriene A4 hydrolase activity; (xv) nuclear-factor-kappa B; and (xvi) transforming growth factor-beta. Rather, more precise and timely coordinated immune responses appear essential for eradication or containment of Mtb infection. Since there are several animal models of infection with Mtb, other species within the Mtb complex, and the surrogate Mycobacterium marinum - whether natural (cattle, elephants) or experimental (zebrafish, mouse, guinea pig, rabbit, mini pig, goat, non-human primate) infections - we also compared the TB granulomatous response and other pathologic lung lesions in various animals infected with one of these mycobacteria with that of human pulmonary TB. Identifying components that dictate the formation of host-protective granulomas and the circumstances that result in their failure can enhance our understanding of the macrocosm of human TB and facilitate the development of novel remedies - whether they be direct therapeutics or indirect interventions - to efficiently eliminate Mtb infection and prevent its pathologic sequelae.
Collapse
Affiliation(s)
- Jiwon Lyu
- Division of Pulmonary and Critical Medicine, Soon Chun Hyang University Cheonan Hospital, Seoul, Republic of Korea
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Drew E. Narum
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Susan L. Baldwin
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Sasha E. Larsen
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Xiyuan Bai
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - David E. Griffith
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Threnesan Naidoo
- Departments of Forensic & Legal Medicine and Laboratory Medicine & Pathology, Faculty of Medicine & Health Sciences, Walter Sisulu University, Mthatha, South Africa
| | - Adrie J. C. Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology and Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rhea N. Coler
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Edward D. Chan
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| |
Collapse
|
4
|
Zhang M, Adroub S, Ummels R, Asaad M, Song L, Pain A, Bitter W, Guan Q, Abdallah AM. Comprehensive pan-genome analysis of Mycobacterium marinum: insights into genomic diversity, evolution, and pathogenicity. Sci Rep 2024; 14:27723. [PMID: 39532890 PMCID: PMC11557581 DOI: 10.1038/s41598-024-75228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Mycobacteria is a diverse genus that includes both innocuous environmental species and serious pathogens like Mycobacterium tuberculosis, Mycobacterium leprae, and Mycobacterium ulcerans, the causative agents of tuberculosis, leprosy, and Buruli ulcer, respectively. This study focuses on Mycobacterium marinum, a closely related species known for its larger genome and ability to infect ectothermic species and cooler human extremities. Utilizing whole-genome sequencing, we conducted a comprehensive pan-genome analysis of 100 M. marinum strains, exploring genetic diversity and its impact on pathogenesis and host specificity. Our findings highlight significant genomic diversity, with clear distinctions in core, dispensable, and unique genes among the isolates. Phylogenetic analysis revealed a broad distribution of genetic lineages, challenging previous classifications into distinct clusters. Additionally, we examined the synteny and diversity of the virulence factor CpnT, noting a wide range of C-terminal domain variations across strains, which points to potential adaptations in pathogenic mechanisms. This study enhances our understanding of M. marinum's genomic architecture and its evolutionary relationship with other mycobacterial pathogens, providing insights that could inform disease control strategies for M. tuberculosis and other mycobacteria.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Sabir Adroub
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center, Section Molecular Microbiology, Amsterdam, The Netherlands
| | - Mohammed Asaad
- College of Medicine, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center, Section Molecular Microbiology, Amsterdam, The Netherlands
| | - Qingtian Guan
- Bioinformatics Laboratory, The First Hospital of Jilin University, Changchun, China.
| | - Abdallah M Abdallah
- College of Medicine, Qatar University (QU) Health, Qatar University, Doha, Qatar.
| |
Collapse
|
5
|
Barrantes Murillo DF, Negrão Watanabe TT, Sasaki E, Pirie GJ, Wakamatsu N. Coinfection by Mycobacterium marinum and Mycolicibacterium fortuitum in a captive adult diamondback water snake causing disseminated mycobacteriosis with acute cutaneous ulceration. J Vet Diagn Invest 2024; 36:269-273. [PMID: 38205524 PMCID: PMC10929634 DOI: 10.1177/10406387231224465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
An adult male captive diamondback water snake (Nerodia rhombifer) was found dead after a 1-d history of lethargy and cutaneous ulcers. The snake had eaten 2 sunfish (Mola spp.) 5 d before death. Gross examination revealed white-to-tan nodules in the lung and liver and segmental intestinal impactions with digested fish. Histopathology confirmed disseminated granulomas with numerous intrahistiocytic acid-fast bacteria in the skin, skeletal muscle, lung, liver, and intestines. Mycobacterium marinum and Mycolicibacterium fortuitum were identified by culture of the hepatic granuloma, followed by PCR and rpoB gene sequencing. To our knowledge, this is the first description of M. marinum and M. fortuitum coinfection in this species. Although M. fortuitum has been isolated from reptiles, lesions associated with its presence in tissues have not been described previously. Interestingly, the mineralization within granulomas that we observed in our case is not reported in mycobacterial infection in reptiles, whereas this finding is common in mammals.
Collapse
Affiliation(s)
| | | | - Emi Sasaki
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, and Louisiana Animal Disease Diagnostic Laboratory, Baton Rouge, LA, USA
| | | | - Nobuko Wakamatsu
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, and Louisiana Animal Disease Diagnostic Laboratory, Baton Rouge, LA, USA
- Current address: College of Veterinary Medicine, Purdue University, Indiana Animal Disease Diagnostic Laboratory, West Lafayette, IN, USA
| |
Collapse
|
6
|
van Alen I, Aguirre García MA, Maaskant JJ, Kuijl CP, Bitter W, Meijer AH, Ubbink M. Mycobacterium tuberculosis β-lactamase variant reduces sensitivity to ampicillin/avibactam in a zebrafish-Mycobacterium marinum model of tuberculosis. Sci Rep 2023; 13:15406. [PMID: 37717068 PMCID: PMC10505137 DOI: 10.1038/s41598-023-42152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023] Open
Abstract
The β-lactamase of Mycobacterium tuberculosis, BlaC, hydrolyzes β-lactam antibiotics, hindering the use of these antibiotics for the treatment of tuberculosis. Inhibitors, such as avibactam, can reversibly inhibit the enzyme, allowing for the development of combination therapies using both antibiotic and inhibitor. However, laboratory evolution studies using Escherichia coli resulted in the discovery of single amino acid variants of BlaC that reduce the sensitivity for inhibitors or show higher catalytic efficiency against antibiotics. Here, we tested these BlaC variants under more physiological conditions using the M. marinum infection model of zebrafish, which recapitulates hallmark features of tuberculosis, including the intracellular persistence of mycobacteria in macrophages and the induction of granuloma formation. To this end, the M. tuberculosis blaC gene was integrated into the chromosome of a blaC frameshift mutant of M. marinum. Subsequently, the resulting strains were used to infect zebrafish embryos in order to test the combinatorial effect of ampicillin and avibactam. The results show that embryos infected with an M. marinum strain producing BlaC show lower infection levels after treatment than untreated embryos. Additionally, BlaC K234R showed higher infection levels after treatment than those infected with bacteria producing the wild-type enzyme, demonstrating that the zebrafish host is less sensitive to the combinatorial therapy of β-lactam antibiotic and inhibitor. These findings are of interest for future development of combination therapies to treat tuberculosis.
Collapse
Affiliation(s)
- Ilona van Alen
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Mayra A Aguirre García
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Janneke J Maaskant
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VUmc, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Coenraad P Kuijl
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VUmc, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VUmc, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Section of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Annemarie H Meijer
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| |
Collapse
|
7
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
8
|
Abstract
The global burden of tuberculosis (TB) is aggravated by the continuously increasing emergence of drug resistance, highlighting the need for innovative therapeutic options. The concept of host-directed therapy (HDT) as adjunctive to classical antibacterial therapy with antibiotics represents a novel and promising approach for treating TB. Here, we have focused on repurposing the clinically used anticancer drug tamoxifen, which was identified as a molecule with strong host-directed activity against intracellular Mycobacterium tuberculosis (Mtb). Using a primary human macrophage Mtb infection model, we demonstrate the potential of tamoxifen against drug-sensitive as well as drug-resistant Mtb bacteria. The therapeutic effect of tamoxifen was confirmed in an in vivo TB model based on Mycobacterium marinum infection of zebrafish larvae. Tamoxifen had no direct antimicrobial effects at the concentrations used, confirming that tamoxifen acted as an HDT drug. Furthermore, we demonstrate that the antimycobacterial effect of tamoxifen is independent of its well-known target the estrogen receptor (ER) pathway, but instead acts by modulating autophagy, in particular the lysosomal pathway. Through RNA sequencing and microscopic colocalization studies, we show that tamoxifen stimulates lysosomal activation and increases the localization of mycobacteria in lysosomes both in vitro and in vivo, while inhibition of lysosomal activity during tamoxifen treatment partly restores mycobacterial survival. Thus, our work highlights the HDT potential of tamoxifen and proposes it as a repurposed molecule for the treatment of TB. IMPORTANCE Tuberculosis (TB) is the world's most lethal infectious disease caused by a bacterial pathogen, Mycobacterium tuberculosis. This pathogen evades the immune defenses of its host and grows intracellularly in immune cells, particularly inside macrophages. There is an urgent need for novel therapeutic strategies because treatment of TB patients is increasingly complicated by rising antibiotic resistance. In this study, we explored a breast cancer drug, tamoxifen, as a potential anti-TB drug. We show that tamoxifen acts as a so-called host-directed therapeutic, which means that it does not act directly on the bacteria but helps the host macrophages combat the infection more effectively. We confirmed the antimycobacterial effect of tamoxifen in a zebrafish model for TB and showed that it functions by promoting the delivery of mycobacteria to digestive organelles, the lysosomes. These results support the high potential of tamoxifen to be repurposed to fight antibiotic-resistant TB infections by host-directed therapy.
Collapse
|
9
|
Ho VQT, Rong MK, Habjan E, Bommer SD, Pham TV, Piersma SR, Bitter W, Ruijter E, Speer A. Dysregulation of Mycobacterium marinum ESX-5 Secretion by Novel 1,2,4-oxadiazoles. Biomolecules 2023; 13:biom13020211. [PMID: 36830581 PMCID: PMC9953084 DOI: 10.3390/biom13020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
The ESX-5 secretion system is essential for the viability and virulence of slow-growing pathogenic mycobacterial species. In this study, we identified a 1,2,4-oxadiazole derivative as a putative effector of the ESX-5 secretion system. We confirmed that this 1,2,4-oxadiazole and several newly synthesized derivatives inhibited the ESX-5-dependent secretion of active lipase LipY by Mycobacterium marinum (M. marinum). Despite reduced lipase activity, we did not observe a defect in LipY secretion itself. Moreover, we found that several other ESX-5 substrates, especially the high molecular-weight PE_PGRS MMAR_5294, were even more abundantly secreted by M. marinum treated with several 1,2,4-oxadiazoles. Analysis of M. marinum grown in the presence of different oxadiazole derivatives revealed that the secretion of LipY and the induction of PE_PGRS secretion were, in fact, two independent phenotypes, as we were able to identify structural features in the compounds that specifically induced only one of these phenotypes. Whereas the three most potent 1,2,4-oxadiazoles displayed only a mild effect on the growth of M. marinum or M. tuberculosis in culture, these compounds significantly reduced bacterial burden in M. marinum-infected zebrafish models. In conclusion, we report a 1,2,4-oxadiazole scaffold that dysregulates ESX-5 protein secretion.
Collapse
Affiliation(s)
- Vien Q. T. Ho
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Vrije Universiteit Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Mark K. Rong
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Eva Habjan
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Vrije Universiteit Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Samantha D. Bommer
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Thang V. Pham
- Department of Medical Oncology, OncoProteomics Laboratory, AmsterdamUMC, Vrije Universiteit Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, OncoProteomics Laboratory, AmsterdamUMC, Vrije Universiteit Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Vrije Universiteit Medical Center, 1081 HV Amsterdam, The Netherlands
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Alexander Speer
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Vrije Universiteit Medical Center, 1081 HV Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
10
|
Inohana M, Komine T, Tanaka Y, Kurata O, Wada S. Genital mycobacteriosis caused by Mycobacterium marinum detected in two captive sharks by peptide nucleic acid-fluorescence in situ hybridization. JOURNAL OF FISH DISEASES 2023; 46:47-59. [PMID: 36130072 PMCID: PMC10087912 DOI: 10.1111/jfd.13716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Mycobacterium marinum is a prevalent nontuberculous mycobacterium (NTM)-infecting teleosts. Conversely, little is known about mycobacteriosis in elasmobranchs, and M. marinum infection has never been reported from the subclass. This study investigated the histopathological characteristics and localization of this mycobacterium through molecular analysis of two captive sharks, a scalloped hammerhead Sphyrna lewini and a Japanese bullhead shark Heterodontus japonicus, exhibited in the same aquarium tank. We detected genital mycobacteriosis caused by M. marinum infection using molecular analyses, including polymerase chain reaction (PCR) and DNA sequencing targeting the 60 kDa heat-shock protein gene (hsp65), and peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH) targeting the 16S rRNA gene. Both sharks showed granulomas in connective tissues of the gonads without central necrosis or surrounding fibrous capsules, which is unlike the typical mycobacterial granulomas seen in teleosts. This study reveals that elasmobranchs can be aquatic hosts of M. marinum. Because M. marinum is a representative waterborne NTM and a potential zoonotic agent, cautious and intensive research is needed to overcome a lack of data on the relationship between NTM and the aquatic environment in association with this subclass of Chondrichthyes.
Collapse
Affiliation(s)
- Mari Inohana
- Laboratory of Aquatic Medicine, School of Veterinary Medicine, Faculty of Veterinary Medical ScienceNippon Veterinary and Life Science UniversityMusashinoJapan
| | - Takeshi Komine
- Laboratory of Aquatic Medicine, School of Veterinary Medicine, Faculty of Veterinary Medical ScienceNippon Veterinary and Life Science UniversityMusashinoJapan
| | | | - Osamu Kurata
- Laboratory of Aquatic Medicine, School of Veterinary Medicine, Faculty of Veterinary Medical ScienceNippon Veterinary and Life Science UniversityMusashinoJapan
| | - Shinpei Wada
- Laboratory of Aquatic Medicine, School of Veterinary Medicine, Faculty of Veterinary Medical ScienceNippon Veterinary and Life Science UniversityMusashinoJapan
| |
Collapse
|
11
|
Habjan E, Ho VQT, Gallant J, Van Stempvoort G, Jim KK, Kuijl C, Geerke DP, Bitter W, Speer A. Anti-tuberculosis Compound Screen using a Zebrafish Infection Model identifies an Aspartyl-tRNA Synthetase Inhibitor. Dis Model Mech 2021; 14:273850. [PMID: 34643222 PMCID: PMC8713996 DOI: 10.1242/dmm.049145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/03/2021] [Indexed: 11/20/2022] Open
Abstract
Finding new anti-tuberculosis compounds with convincing in vivo activity is an ongoing global challenge to fight the emergence of multidrug-resistant Mycobacterium tuberculosis isolates. In this study, we exploited the medium-throughput capabilities of the zebrafish embryo infection model with Mycobacterium marinum as a surrogate for M. tuberculosis. Using a representative set of clinically established drugs, we demonstrate that this model could be predictive and selective for antibiotics that can be administered orally. We further used the zebrafish infection model to screen 240 compounds from an anti-tuberculosis hit library for their in vivo activity and identified 14 highly active compounds. One of the most active compounds was the tetracyclic compound TBA161, which was studied in more detail. Analysis of resistant mutants revealed point mutations in aspS (rv2572c), encoding an aspartyl-tRNA synthetase. The target was genetically confirmed, and molecular docking studies propose the possible binding of TBA161 in a pocket adjacent to the catalytic site. This study shows that the zebrafish infection model is suitable for rapidly identifying promising scaffolds with in vivo activity. Summary: Exploitation of the medium-throughput capabilities of a zebrafish embryo infection model of tuberculosis to screen compounds for their in vivo activity, one of which was characterized as an aspartyl-tRNA synthetase inhibitor.
Collapse
Affiliation(s)
- Eva Habjan
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.,Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Vien Q T Ho
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - James Gallant
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Gunny Van Stempvoort
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Kin Ki Jim
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Coen Kuijl
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Daan P Geerke
- Department of Molecular Toxicology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.,Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Alexander Speer
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
12
|
A Small Protein but with Diverse Roles: A Review of EsxA in Mycobacterium-Host Interaction. Cells 2021; 10:cells10071645. [PMID: 34209120 PMCID: PMC8305481 DOI: 10.3390/cells10071645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
As a major effector of the ESX-1 secretion system, EsxA is essential for the virulence of pathogenic mycobacteria, such as Mycobacterium tuberculosis (Mtb) and Mycobacterium marinum (Mm). EsxA possesses an acidic pH-dependent membrane permeabilizing activity and plays an essential role by mediating mycobacterial escape from the phagosome and translocation to the cytosol for intracellular replication. Moreover, EsxA regulates host immune responses as a potent T-cell antigen and a strong immunoregulator. EsxA interacts with multiple cellular proteins and stimulates several signal pathways, such as necrosis, apoptosis, autophagy, and antigen presentation. Interestingly, there is a co-dependency in the expression and secretion of EsxA and other mycobacterial factors, which greatly increases the complexity of dissecting the precise roles of EsxA and other factors in mycobacterium-host interaction. In this review, we summarize the current understandings of the roles and functions of EsxA in mycobacterial infection and discuss the challenges and future directions.
Collapse
|
13
|
Sommer F, Torraca V, Xie Y, In 't Veld AE, Willemse J, Meijer AH. Disruption of Cxcr3 chemotactic signaling alters lysosomal function and renders macrophages more microbicidal. Cell Rep 2021; 35:109000. [PMID: 33852860 DOI: 10.1016/j.celrep.2021.109000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/11/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Chemotaxis and lysosomal function are closely intertwined processes essential for the inflammatory response and clearance of intracellular bacteria. We used the zebrafish model to examine the link between chemotactic signaling and lysosome physiology in macrophages during mycobacterial infection and wound-induced inflammation in vivo. Macrophages from zebrafish larvae carrying a mutation in a chemokine receptor of the Cxcr3 family display upregulated expression of vesicle trafficking and lysosomal genes and possess enlarged lysosomes that enhance intracellular bacterial clearance. This increased microbicidal capacity is phenocopied by inhibiting the lysosomal transcription factor EC, while its overexpression counteracts the protective effect of chemokine receptor mutation. Tracking macrophage migration in zebrafish revealed that lysosomes of chemokine receptor mutants accumulate in the front half of cells, preventing macrophage polarization during chemotaxis and reaching sites of inflammation. Our work shows that chemotactic signaling affects the bactericidal properties and localization during chemotaxis, key aspects of the inflammatory response.
Collapse
Affiliation(s)
- Frida Sommer
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Vincenzo Torraca
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands; Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Yufei Xie
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | | | - Joost Willemse
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Annemarie H Meijer
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
14
|
Heterologous Expression of ethA and katG in Mycobacterium marinum Enables the Rapid Identification of New Prodrugs Active against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2021; 65:AAC.01445-20. [PMID: 33495223 DOI: 10.1128/aac.01445-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/12/2021] [Indexed: 01/05/2023] Open
Abstract
Screening strategies for antituberculosis compounds using Mycobacterium tuberculosis are time consuming and require biosafety level 3 (BSL3) facilities, which makes the development of high-throughput assays difficult and expensive. Mycobacterium marinum, a close genetic relative of M. tuberculosis, possesses several advantages as a suitable model for tuberculosis drug screening. However, despite the high genetic similarity, there are some obvious differences in susceptibility to some tuberculosis drugs between these two species, especially for the prodrugs ethionamide and isoniazid. In this study, we aimed to improve M. marinum as a model for antituberculosis drug identification by heterologous expression of two common drug activators, EthA and KatG. These two activators were overexpressed in M. marinum, and the strains were tested against ethionamide, isoniazid, and a library of established antimycobacterial compounds from TB Alliance to compare drug susceptibility. Both in vitro and in vivo using zebrafish larvae, these genetically modified M. marinum strains showed significantly higher susceptibility against ethionamide and isoniazid, which require activation by EthA and KatG. More importantly, a strain overexpressing both ethA and katG was potentially more susceptible to approximately 20% of the antituberculosis hit compounds from the TB Alliance library. Most of these compounds were activated by EthA in M. marinum Four of these compounds were selected for further analysis, and three of them showed obvious EthA-dependent activity against M. tuberculosis Overall, our developed M. marinum strains are valuable tools for high-throughput discovery of potential novel antituberculosis prodrugs.
Collapse
|
15
|
Mycobacteriosis and Infections with Non-tuberculous Mycobacteria in Aquatic Organisms: A Review. Microorganisms 2020; 8:microorganisms8091368. [PMID: 32906655 PMCID: PMC7564596 DOI: 10.3390/microorganisms8091368] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
The Mycobacteriaceae constitute a family of varied Gram-positive organisms that include a large number of pathogenic bacteria. Among these, non-tuberculous mycobacteria are endemic worldwide and have been associated with infections in a large number of organisms, including humans and other mammals and reptiles, as well as fish. In this review, we summarize the most recent findings regarding this group of pathogens in fish. There, four species are most commonly associated with disease outbreaks: Mycobacterium marinum, the most common of these fish mycobacterial pathogens, Mycobacterium fortuitum, Mycobacterium gordonae, and Mycobacterium chelonae. These bacteria have a broad host range: they are zoonotic, and infections have been reported in a large number of fish species. The main route of entry of the bacterium into the fish is through the gastrointestinal route, and the disease is associated with ulcerative dermatitis as well as organomegaly and the development of granulomatous lesions in the internal organs. Mycobacteriaceae are slow-growing and fastidious and isolation is difficult and time consuming and diagnostic is mostly performed using serological and molecular tools. Control of the disease is also difficult: there is currently no effective vaccine and infections react poorly to antibiotherapy. For this reason, more research is needed on the subject of these vexing pathogens.
Collapse
|
16
|
Saralahti AK, Uusi-Mäkelä MIE, Niskanen MT, Rämet M. Integrating fish models in tuberculosis vaccine development. Dis Model Mech 2020; 13:13/8/dmm045716. [PMID: 32859577 PMCID: PMC7473647 DOI: 10.1242/dmm.045716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis is a chronic infection by Mycobacterium tuberculosis that results in over 1.5 million deaths worldwide each year. Currently, there is only one vaccine against tuberculosis, the Bacillus Calmette–Guérin (BCG) vaccine. Despite widespread vaccination programmes, over 10 million new M. tuberculosis infections are diagnosed yearly, with almost half a million cases caused by antibiotic-resistant strains. Novel vaccination strategies concentrate mainly on replacing BCG or boosting its efficacy and depend on animal models that accurately recapitulate the human disease. However, efforts to produce new vaccines against an M. tuberculosis infection have encountered several challenges, including the complexity of M. tuberculosis pathogenesis and limited knowledge of the protective immune responses. The preclinical evaluation of novel tuberculosis vaccine candidates is also hampered by the lack of an appropriate animal model that could accurately predict the protective effect of vaccines in humans. Here, we review the role of zebrafish (Danio rerio) and other fish models in the development of novel vaccines against tuberculosis and discuss how these models complement the more traditional mammalian models of tuberculosis. Summary: In this Review, we discuss how zebrafish (Danio rerio) and other fish models can complement the more traditional mammalian models in the development of novel vaccines against tuberculosis.
Collapse
Affiliation(s)
- Anni K Saralahti
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Meri I E Uusi-Mäkelä
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mirja T Niskanen
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland .,Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland.,PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu FI-90014, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu FI-90029, Finland
| |
Collapse
|
17
|
Röltgen K, Pluschke G. Buruli ulcer: The Efficacy of Innate Immune Defense May Be a Key Determinant for the Outcome of Infection With Mycobacterium ulcerans. Front Microbiol 2020; 11:1018. [PMID: 32523571 PMCID: PMC7261859 DOI: 10.3389/fmicb.2020.01018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022] Open
Abstract
Buruli ulcer (BU) is a neglected, tropical infectious disease of the skin and the subcutaneous tissue caused by Mycobacterium ulcerans. This pathogen has emerged as a new species from a common ancestor with Mycobacterium marinum by acquisition of the virulence plasmid pMUM. The plasmid encodes enzymes required for the synthesis of the macrolide toxin mycolactone, which has cytotoxic and immunosuppressive activities. In advanced BU lesions, extracellular clusters of M. ulcerans reside in necrotic subcutaneous tissue and are protected from infiltrating leukocytes by the cytotoxic activity of secreted mycolactone. Several lines of evidence indicate that elements of the innate immune system eliminate in many cases the initial inoculum before bacterial clusters can form and that therefore exposure to M. ulcerans leads only in a minority of individuals to the characteristic chronic necrotizing BU lesions. It is assumed that phagocytes play a key role in early host defense against M. ulcerans. Antibodies against bacterial surface structures seem to have less potential to enhance innate immunity than TH1 cell responses. Precise innate and adaptive immune effector mechanisms leading to protective immunity are however unclear, complicating the development of effective vaccines, the most desired solution to control BU. The tuberculosis vaccine Mycobacterium bovis Bacillus Calmette–Guérin (BCG) has limited short-term protective activity against BU. Whether this effect is due to the broad antigenic cross-reactivity between M. bovis and M. ulcerans or is at least partly mediated by a non-specific enhanced responsiveness of innate immune cells to secondary stimulation, recently described as “trained immunity” or “innate immune memory” is unknown but has major implications for vaccine design. Current vaccine research and development activities are focusing on recombinant BCG, subunit vaccines with selected M. ulcerans proteins, and the neutralization of mycolactone.
Collapse
Affiliation(s)
- Katharina Röltgen
- Department of Pathology, Stanford School of Medicine, Stanford University, Stanford, CA, United States
| | - Gerd Pluschke
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Zhang R, Varela M, Forn-Cuní G, Torraca V, van der Vaart M, Meijer AH. Deficiency in the autophagy modulator Dram1 exacerbates pyroptotic cell death of Mycobacteria-infected macrophages. Cell Death Dis 2020; 11:277. [PMID: 32332700 PMCID: PMC7181687 DOI: 10.1038/s41419-020-2477-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023]
Abstract
DNA damage regulated autophagy modulator 1 (DRAM1) is a stress-inducible regulator of autophagy and cell death. DRAM1 has been implicated in cancer, myocardial infarction, and infectious diseases, but the molecular and cellular functions of this transmembrane protein remain poorly understood. Previously, we have proposed DRAM1 as a host resistance factor for tuberculosis (TB) and a potential target for host-directed anti-infective therapies. In this study, we generated a zebrafish dram1 mutant and investigated its loss-of-function effects during Mycobacterium marinum (Mm) infection, a widely used model in TB research. In agreement with previous knockdown analysis, dram1 mutation increased the susceptibility of zebrafish larvae to Mm infection. RNA sequencing revealed major effects of Dram1 deficiency on metabolic, immune response, and cell death pathways during Mm infection, and only minor effects on proteinase and metabolic pathways were found under uninfected conditions. Furthermore, unchallenged dram1 mutants did not display overt autophagic defects, but autophagic targeting of Mm was reduced in the absence of Dram1. The phagocytic ability of macrophages in dram1 mutants was unaffected, but acidification of Mm-containing vesicles was strongly reduced, indicating that Dram1 is required for phagosome maturation. By in vivo imaging, we observed that Dram1-deficient macrophages fail to restrict Mm during early stages of infection. The resulting increase in bacterial burden could be reverted by knockdown of inflammatory caspase a (caspa) and gasdermin Eb (gsdmeb), demonstrating pyroptosis as the mechanism underlying premature cell death of Mm-infected macrophages in dram1 mutants. Collectively, these data demonstrate that dissemination of mycobacterial infection in zebrafish larvae is promoted in the absence of Dram1 due to reduced maturation of mycobacteria-containing vesicles, failed intracellular containment, and consequent pyroptotic death of infected macrophages. These results provide new evidence that Dram1 plays a central role in host resistance to intracellular infection, acting at the crossroad of autophagy and cell death.
Collapse
Affiliation(s)
- Rui Zhang
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Monica Varela
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Gabriel Forn-Cuní
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Vincenzo Torraca
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Michiel van der Vaart
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Annemarie H Meijer
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
19
|
Van Wijk RC, van der Sar AM, Krekels EHJ, Verboom T, Spaink HP, Simonsson USH, van der Graaf PH. Quantification of Natural Growth of Two Strains of Mycobacterium Marinum for Translational Antituberculosis Drug Development. Clin Transl Sci 2020; 13:1060-1064. [PMID: 32267997 PMCID: PMC7719371 DOI: 10.1111/cts.12793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/14/2020] [Indexed: 12/22/2022] Open
Abstract
The zebrafish infected with Mycobacterium marinum (M. marinum) is an attractive tuberculosis disease model, showing similar pathogenesis to Mycobacterium tuberculosis (M. tuberculosis) infections in humans. To translate pharmacological findings from this disease model to higher vertebrates, a quantitative understanding of the natural growth of M. marinum in comparison to the natural growth of M. tuberculosis is essential. Here, the natural growth of two strains of M. marinum, E11 and MUSA, is studied over an extended period using an established model‐based approach, the multistate tuberculosis pharmacometric (MTP) model, for comparison to that of M. tuberculosis. Poikilotherm‐derived strain E11 and human‐derived strain MUSA were grown undisturbed up to 221 days and viability of cultures (colony forming unit (CFU)/mL) was determined by plating at different time points. Nonlinear mixed effects modeling using the MTP model quantified the bacterial growth, the transfer among fast, slow, and non‐multiplying states, and the inoculi. Both strains showed initial logistic growth, reaching a maximum after 20–25 days for E11 and MUSA, respectively, followed by a decrease to a new plateau. Natural growth of both E11 and MUSA was best described with Gompertz growth functions. For E11, the inoculum was best described in the slow‐multiplying state, for MUSA in the fast‐multiplying state. Natural growth of E11 was most similar to that of M. tuberculosis, whereas MUSA showed more aggressive growth behavior. Characterization of natural growth of M. marinum and quantitative comparison with M. tuberculosis brings the zebrafish tuberculosis disease model closer to the quantitative translational pipeline of antituberculosis drug development.
Collapse
Affiliation(s)
- Rob C Van Wijk
- Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Astrid M van der Sar
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Elke H J Krekels
- Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Theo Verboom
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Herman P Spaink
- Division of Animal Sciences and Health, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | - Piet H van der Graaf
- Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,Certara QSP, Canterbury, UK
| |
Collapse
|
20
|
Cheng T, Kam JY, Johansen MD, Oehlers SH. High content analysis of granuloma histology and neutrophilic inflammation in adult zebrafish infected with Mycobacterium marinum. Micron 2019; 129:102782. [PMID: 31775097 DOI: 10.1016/j.micron.2019.102782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022]
Abstract
Infection of zebrafish with natural pathogen Mycobacterium marinum is a useful surrogate for studying the human granulomatous inflammatory response to infection by Mycobacterium tuberculosis. The adaptive immune system of the adult stage zebrafish offers an advance on the commonly used embryo infection model as adult zebrafish form granulomas with striking similarities to human-M. tuberculosis granulomas. Here, we present workflows to perform high content analyses of granulomas in adult zebrafish infected with M. marinum by cryosectioning to take advantage of strong endogenous transgenic fluorescence adapted from common zebrafish embryo infection tools. Specific guides to classifying granuloma necrosis and organisation, quantifying bacterial burden and leukocyte infiltration of granulomas, visualizing foam cell formation, analysing extracellular matrix remodelling and granuloma fibrosis are also provided. We use these methods to characterize neutrophil recruitment to M. marinum granulomas across time and find an inverse relation to granuloma necrosis suggesting granuloma necrosis is not a marker of immunopathology in the natural infection system of the adult zebrafish-M. marinum pairing. The methods can be easily translated to studying the zebrafish adaptive immune response to other chronic and granuloma-forming pathogens.
Collapse
Affiliation(s)
- Tina Cheng
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Julia Y Kam
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Matt D Johansen
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Stefan H Oehlers
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia; The University of Sydney, Discipline of Infectious Diseases & Immunology and Marie Bashir Institute, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
21
|
Rougeot J, Torraca V, Zakrzewska A, Kanwal Z, Jansen HJ, Sommer F, Spaink HP, Meijer AH. RNAseq Profiling of Leukocyte Populations in Zebrafish Larvae Reveals a cxcl11 Chemokine Gene as a Marker of Macrophage Polarization During Mycobacterial Infection. Front Immunol 2019; 10:832. [PMID: 31110502 PMCID: PMC6499218 DOI: 10.3389/fimmu.2019.00832] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022] Open
Abstract
Macrophages are phagocytic cells from the innate immune system, which forms the first line of host defense against invading pathogens. These highly dynamic immune cells can adopt specific functional phenotypes, with the pro-inflammatory M1 and anti-inflammatory M2 polarization states as the two extremes. Recently, the process of macrophage polarization during inflammation has been visualized by real time imaging in larvae of the zebrafish. This model organism has also become widely used to study macrophage responses to microbial pathogens. To support the increasing use of zebrafish in macrophage biology, we set out to determine the complete transcriptome of zebrafish larval macrophages. We studied the specificity of the macrophage signature compared with other larval immune cells and the macrophage-specific expression changes upon infection. We made use of the well-established mpeg1, mpx, and lck fluorescent reporter lines to sort and sequence the transcriptome of larval macrophages, neutrophils, and lymphoid progenitor cells, respectively. Our results provide a complete dataset of genes expressed in these different immune cell types and highlight their similarities and differences. Major differences between the macrophage and neutrophil signatures were found within the families of proteinases. Furthermore, expression of genes involved in antigen presentation and processing was specifically detected in macrophages, while lymphoid progenitors showed expression of genes involved in macrophage activation. Comparison with datasets of in vitro polarized human macrophages revealed that zebrafish macrophages express a strongly homologous gene set, comprising both M1 and M2 markers. Furthermore, transcriptome analysis of low numbers of macrophages infected by the intracellular pathogen Mycobacterium marinum revealed that infected macrophages change their transcriptomic response by downregulation of M2-associated genes and overexpression of specific M1-associated genes. Among the infection-induced genes, a homolog of the human CXCL11 chemokine gene, cxcl11aa, stood out as the most strongly overexpressed M1 marker. Upregulation of cxcl11aa in Mycobacterium-infected macrophages was found to require the function of Myd88, a critical adaptor molecule in the Toll-like and interleukin 1 receptor pathways that are central to pathogen recognition and activation of the innate immune response. Altogether, our data provide a valuable data mining resource to support infection and inflammation research in the zebrafish model.
Collapse
Affiliation(s)
- Julien Rougeot
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Vincenzo Torraca
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Ania Zakrzewska
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Zakia Kanwal
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | | | - Frida Sommer
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Herman P Spaink
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | | |
Collapse
|
22
|
Abdallah AM, Weerdenburg EM, Guan Q, Ummels R, Borggreve S, Adroub SA, Malas TB, Naeem R, Zhang H, Otto TD, Bitter W, Pain A. Integrated transcriptomic and proteomic analysis of pathogenic mycobacteria and their esx-1 mutants reveal secretion-dependent regulation of ESX-1 substrates and WhiB6 as a transcriptional regulator. PLoS One 2019; 14:e0211003. [PMID: 30673778 PMCID: PMC6343904 DOI: 10.1371/journal.pone.0211003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/04/2019] [Indexed: 12/14/2022] Open
Abstract
The mycobacterial type VII secretion system ESX-1 is responsible for the secretion of a number of proteins that play important roles during host infection. The regulation of the expression of secreted proteins is often essential to establish successful infection. Using transcriptome sequencing, we found that the abrogation of ESX-1 function in Mycobacterium marinum leads to a pronounced increase in gene expression levels of the espA operon during the infection of macrophages. In addition, the disruption of ESX-1-mediated protein secretion also leads to a specific down-regulation of the ESX-1 substrates, but not of the structural components of this system, during growth in culture medium. This effect is observed in both M. marinum and M. tuberculosis. We established that down-regulation of ESX-1 substrates is the result of a regulatory process that is influenced by the putative transcriptional regulator whib6, which is located adjacent to the esx-1 locus. In addition, the overexpression of the ESX-1-associated PE35/PPE68 protein pair resulted in a significantly increased secretion of the ESX-1 substrate EsxA, demonstrating a functional link between these proteins. Taken together, these data show that WhiB6 is required for the secretion-dependent regulation of ESX-1 substrates and that ESX-1 substrates are regulated independently from the structural components, both during infection and as a result of active secretion.
Collapse
Affiliation(s)
- Abdallah M. Abdallah
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal-Jeddah, Kingdom of Saudi Arabia
- * E-mail: (AMA); (WB); (AP)
| | - Eveline M. Weerdenburg
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Qingtian Guan
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal-Jeddah, Kingdom of Saudi Arabia
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Stephanie Borggreve
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Sabir A. Adroub
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal-Jeddah, Kingdom of Saudi Arabia
| | - Tareq B. Malas
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal-Jeddah, Kingdom of Saudi Arabia
| | - Raeece Naeem
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal-Jeddah, Kingdom of Saudi Arabia
| | - Huoming Zhang
- Bioscience Core Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal-Jeddah, Kingdom of Saudi Arabia
| | - Thomas D. Otto
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail: (AMA); (WB); (AP)
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal-Jeddah, Kingdom of Saudi Arabia
- * E-mail: (AMA); (WB); (AP)
| |
Collapse
|
23
|
Abstract
Tuberculosis is still a global health burden. It is caused by Mycobacterium tuberculosis which afflicts around one third of the world's population and costs around 1.3 million people their lives every year. Bacillus Calmette-Guerin vaccine is inefficient to prevent overt infection. Additionally, the lengthy inconvenient course of treatment, along with the raising issue of antimicrobial resistance, result in incomplete eradication of this infectious disease. The lack of proper animal models that replicate the latent and active courses of human tuberculosis infection remains one of the main reasons behind the poor advancement in tuberculosis research. Danio rerio, commonly known as zebrafish, is catching more attention as an animal model in tuberculosis research field. This shift is based on the histological and pathological similarities between Mycobacterium marinum infection in zebrafish and Mycobacterium tuberculosis infection in humans. Being small, cheap, transparent, and easy to handle have added further advantages to the use of zebrafish model. Besides better understanding of the pathogenesis of tuberculosis, Mycobacterium marinum infected zebrafish model is useful for evaluating novel vaccines against human tuberculosis, high throughput small molecule screening, repurposing established drugs with possible antitubercular activity, and assessing novel antituberculars for hepatotoxicity.
Collapse
Affiliation(s)
- Ghada Bouz
- a Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove , Charles University , Hradec Kralove , Czech Republic
| | - Nada Al Hasawi
- b Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Kuwait University , Kuwait , State of Kuwait
| |
Collapse
|
24
|
Krooks J, Weatherall A, Markowitz S. Complete Resolution of Mycobacterium marinum Infection with Clarithromycin and Ethambutol: A Case Report and a Review of the Literature. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2018; 11:48-51. [PMID: 30666280 PMCID: PMC6334835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A 70-year-old, immunocompetent male presented with mildly painful and pruritic erythematous patches and vesicles on the right dorsal aspect of the distal middle finger present for four weeks. Other skin lesions or systemic symptoms were notably absent. The patient failed to respond to valacyclovir, topical triamcinolone acetonide ointment, trimethoprim-sulfamethoxazole, and cephalexin for presumptive diagnoses of recurrent herpetic whitlow, dyshidrotic eczema, and blistering distal dactylitis, respectively. Furthermore, biopsy findings were inconsistent with eczema, psoriasis, or viral or fungal infection as potential etiologies. Mycobacterium marinum infection was then considered due to the patient's observation that the lesion appeared three weeks after purchasing a home fish tank. Mycobacterium marinum, referred to as "fish tank granuloma" as a result of its typical association with aquarium exposure, is usually diagnosed clinically and treated empirically due to the organism's slow-growing nature. In light of the infection's low prevalence, large studies regarding treatment options are limited. Our patient's lesion resolved within two weeks of treatment with clarithromycin (500mg twice a day) and ethambutol (15mg/kg once a day), which was then continued for two more months. Prior to this treatment, the patient's lesion had cleared completely with minocycline; we attribute recurrence to not continuing therapy past lesion resolution.
Collapse
Affiliation(s)
- Jolie Krooks
- Ms. Krooks, Dr. Weatherall, and Dr. Markowitz are with the Florida Atlantic University Charles E. Schmidt College of Medicine in Boca Raton, Florida
| | - Angela Weatherall
- Ms. Krooks, Dr. Weatherall, and Dr. Markowitz are with the Florida Atlantic University Charles E. Schmidt College of Medicine in Boca Raton, Florida
| | - Stuart Markowitz
- Ms. Krooks, Dr. Weatherall, and Dr. Markowitz are with the Florida Atlantic University Charles E. Schmidt College of Medicine in Boca Raton, Florida
| |
Collapse
|
25
|
Hashish E, Merwad A, Elgaml S, Amer A, Kamal H, Elsadek A, Marei A, Sitohy M. Mycobacterium marinum infection in fish and man: epidemiology, pathophysiology and management; a review. Vet Q 2018; 38:35-46. [PMID: 29493404 PMCID: PMC6831007 DOI: 10.1080/01652176.2018.1447171] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/26/2018] [Indexed: 11/04/2022] Open
Abstract
Mycobacterium marinum is an opportunistic pathogen inducing infection in fresh and marine water fish. This pathogen causes necrotizing granuloma like tuberculosis, morbidity and mortality in fish. The cell wall-associated lipid phthiocerol dimycocerosates, phenolic glycolipids and ESAT-6 secretion system 1 (ESX-1) are the conserved virulence determinant of the organism. Human infections with Mycobacterium marinum hypothetically are classified into four clinical categories (type I-type IV) and have been associated with the exposure of damaged skin to polluted water from fish pools or contacting objects contaminated with infected fish. Fish mycobacteriosis is clinically manifested and characterized in man by purple painless nodules, liable to develop into superficial crusting ulceration with scar formation. Early laboratory diagnosis of M. marinum including histopathology, culture and PCR is essential and critical as the clinical response to antibiotics requires months to be attained. The pathogenicity and virulence determinants of M. marinum need to be thoroughly and comprehensively investigated and understood. In spite of accumulating information on this pathogen, the different relevant data should be compared, connected and globally compiled. This article is reviewing the epidemiology, virulence factors, diagnosis and disease management in fish while casting light on the potential associated public health hazards.
Collapse
Affiliation(s)
- Emad Hashish
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Abdallah Merwad
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Shimaa Elgaml
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Ali Amer
- Tuberculosis Unit, Animal Health Research Institute (AHRI), Giza, Egypt
| | - Huda Kamal
- Department of Meat Hygiene, National Research Center (NRC), Zagazig, Egypt
| | - Ahmed Elsadek
- Immunology Research Lab, Immunology Division, Department of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Egypt
| | - Ayman Marei
- Immunology Research Lab, Immunology Division, Department of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Egypt
| | - Mahmoud Sitohy
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Egypt
| |
Collapse
|
26
|
Luukinen H, Hammarén MM, Vanha-Aho LM, Parikka M. Modeling Tuberculosis in Mycobacterium marinum Infected Adult Zebrafish. J Vis Exp 2018. [PMID: 30346391 DOI: 10.3791/58299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis is currently the deadliest human pathogen causing 1.7 million deaths and 10.4 million infections every year. Exposure to this bacterium causes a wide disease spectrum in humans ranging from a sterilized infection to an actively progressing deadly disease. The most common form is the latent tuberculosis, which is asymptomatic, but has the potential to reactivate into a fulminant disease. Adult zebrafish and its natural pathogen Mycobacterium marinum have recently proven to be an applicable model to study the wide disease spectrum of tuberculosis. Importantly, spontaneous latency and reactivation as well as adaptive immune responses in the context of mycobacterial infection can be studied in this model. In this article, we describe methods for the experimental infection of adult zebrafish, the collection of internal organs for the extraction of nucleic acids for the measurement of mycobacterial loads and host immune responses by quantitative PCR. The in-house-developed, M. marinum-specific qPCR assay is more sensitive than the traditional plating methods as it also detects DNA from non-dividing, dormant or recently dead mycobacteria. As both DNA and RNA are extracted from the same individual, it is possible to study the relationships between the diseased state, and the host and pathogen gene-expression. The adult zebrafish model for tuberculosis thus presents itself as a highly applicable, non-mammalian in vivo system to study host-pathogen interactions.
Collapse
Affiliation(s)
- Hanna Luukinen
- Faculty of Medicine and Life Sciences, University of Tampere;
| | | | | | - Mataleena Parikka
- Faculty of Medicine and Life Sciences, University of Tampere; Oral and Maxillofacial Unit, Tampere University Hospital
| |
Collapse
|
27
|
Bruinen AL, Fisher GL, Balez R, van der Sar AM, Ooi L, Heeren RMA. Identification and High-Resolution Imaging of α-Tocopherol from Human Cells to Whole Animals by TOF-SIMS Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1571-1581. [PMID: 29949055 PMCID: PMC6060986 DOI: 10.1007/s13361-018-1979-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/21/2018] [Accepted: 04/22/2018] [Indexed: 05/21/2023]
Abstract
A unique method for identification of biomolecular components in different biological specimens, while preserving the capability for high speed 2D and 3D molecular imaging, is employed to investigate cellular response to oxidative stress. The employed method enables observing the distribution of the antioxidant α-tocopherol and other molecules in cellular structures via time-of-flight secondary ion mass spectrometry (TOF-SIMS (MS1)) imaging in parallel with tandem mass spectrometry (MS2) imaging, collected simultaneously. The described method is employed to examine a network formed by neuronal cells differentiated from human induced pluripotent stem cells (iPSCs), a model for investigating human neurons in vitro. The antioxidant α-tocopherol is identified in situ within different cellular layers utilizing a 3D TOF-SIMS tandem MS imaging analysis. As oxidative stress also plays an important role in mediating inflammation, the study was expanded to whole body tissue sections of M. marinum-infected zebrafish, a model organism for tuberculosis. The TOF-SIMS tandem MS imaging results reveal an increased presence of α-tocopherol in response to the pathogen. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Anne L Bruinen
- M4i, The Maastricht Multi Modal Molecular Imaging Institute, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | | | - Rachelle Balez
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Astrid M van der Sar
- VU University Medical Center Medical Microbiology and Infection control, 1081 HV, Amsterdam, The Netherlands
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Ron M A Heeren
- M4i, The Maastricht Multi Modal Molecular Imaging Institute, Maastricht University, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
28
|
Palucci I, Matic I, Falasca L, Minerva M, Maulucci G, De Spirito M, Petruccioli E, Goletti D, Rossin F, Piacentini M, Delogu G. Transglutaminase type 2 plays a key role in the pathogenesis of Mycobacterium tuberculosis infection. J Intern Med 2018; 283:303-313. [PMID: 29205566 DOI: 10.1111/joim.12714] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Mycobacterium tuberculosis (MTB), the aetiological agent of tuberculosis (TB), is capable of interfering with the phagosome maturation pathway, by inhibiting phagosome-lysosome fusion and the autophagic process to ensure survival and replication in macrophages. Thus, it has been proposed that the modulation of autophagy may represent a therapeutic approach to reduce MTB viability by enhancing its clearance. OBJECTIVE The aim of this study was to investigate whether transglutaminase type 2 (TG2) is involved in the pathogenesis of MTB. RESULTS We have shown that either genetic or pharmacological inhibition of TG2 leads to a marked reduction in MTB replicative capacity. Infection of TG2 knockout mice demonstrated that TG2 is required for MTB intracellular survival in macrophages and host tissues. The same inhibitory effect can be reproduced in vitro using Z-DON, a specific inhibitor of the transamidating activity of TG2. Massive cell death observed in macrophages that properly express TG2 is hampered by the absence of the enzyme and can be largely reduced by the treatment of wild-type macrophages with the TG2 inhibitor. Our data suggest that reduced MTB replication in cells lacking TG2 is due to the impairment of LC3/autophagy homeostasis. Finally, we have shown that treatment of MTB-infected murine and human primary macrophages with cystamine, a TG2 inhibitor already tested in clinical studies, causes a reduction in intracellular colony-forming units in human macrophages similar to that achieved by the anti-TB drug capreomycin. CONCLUSION These results suggest that inhibition of TG2 activity is a potential novel approach for the treatment of TB.
Collapse
Affiliation(s)
- I Palucci
- Institute of Microbiology, Università Cattolica del Sacro Cuore - Fondazione Policlinico Gemelli, Rome, Italy
| | - I Matic
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - L Falasca
- National Institute for Infectious Diseases, IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - M Minerva
- Institute of Microbiology, Università Cattolica del Sacro Cuore - Fondazione Policlinico Gemelli, Rome, Italy
| | - G Maulucci
- Institute of Physics, Università Cattolica del Sacro Cuore - Fondazione Policlinico Gemelli, Rome, Italy
| | - M De Spirito
- Institute of Physics, Università Cattolica del Sacro Cuore - Fondazione Policlinico Gemelli, Rome, Italy
| | - E Petruccioli
- National Institute for Infectious Diseases, IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - D Goletti
- National Institute for Infectious Diseases, IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - F Rossin
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - M Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.,National Institute for Infectious Diseases, IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - G Delogu
- Institute of Microbiology, Università Cattolica del Sacro Cuore - Fondazione Policlinico Gemelli, Rome, Italy
| |
Collapse
|
29
|
van Leeuwen LM, Evans RJ, Jim KK, Verboom T, Fang X, Bojarczuk A, Malicki J, Johnston SA, van der Sar AM. A transgenic zebrafish model for the in vivo study of the blood and choroid plexus brain barriers using claudin 5. Biol Open 2018; 7:7/2/bio030494. [PMID: 29437557 PMCID: PMC5861362 DOI: 10.1242/bio.030494] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The central nervous system (CNS) has specific barriers that protect the brain from potential threats and tightly regulate molecular transport. Despite the critical functions of the CNS barriers, the mechanisms underlying their development and function are not well understood, and there are very limited experimental models for their study. Claudin 5 is a tight junction protein required for blood brain barrier (BBB) and, probably, choroid plexus (CP) structure and function in vertebrates. Here, we show that the gene claudin 5a is the zebrafish orthologue with high fidelity expression, in the BBB and CP barriers, that demonstrates the conservation of the BBB and CP between humans and zebrafish. Expression of claudin 5a correlates with developmental tightening of the BBB and is restricted to a subset of the brain vasculature clearly delineating the BBB. We show that claudin 5a-expressing cells of the CP are ciliated ependymal cells that drive fluid flow in the brain ventricles. Finally, we find that CP development precedes BBB development and that claudin 5a expression occurs simultaneously with angiogenesis. Thus, our novel transgenic zebrafish represents an ideal model to study CNS barrier development and function, critical in understanding the mechanisms underlying CNS barrier function in health and disease. Summary: A novel transgenic zebrafish, using claudin 5a, represents an ideal model to study blood brain barrier and choroid plexus barrier development and function in vivo.
Collapse
Affiliation(s)
- Lisanne Martine van Leeuwen
- Department of Medical Microbiology & Infection control, VU Medical Center, Amsterdam 1081HV, The Netherlands.,Department of Pediatric Infectious Diseases & Immunology, VU Medical Center, Amsterdam 1007MB, The Netherlands
| | - Robert J Evans
- Bateson Centre, University of Sheffield, Sheffield, S10 2TN, United Kingdom.,Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Kin Ki Jim
- Department of Medical Microbiology & Infection control, VU Medical Center, Amsterdam 1081HV, The Netherlands
| | - Theo Verboom
- Department of Medical Microbiology & Infection control, VU Medical Center, Amsterdam 1081HV, The Netherlands
| | - Xiaoming Fang
- Bateson Centre, University of Sheffield, Sheffield, S10 2TN, United Kingdom.,Department of Biomedical Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Aleksandra Bojarczuk
- Bateson Centre, University of Sheffield, Sheffield, S10 2TN, United Kingdom.,Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Jarema Malicki
- Bateson Centre, University of Sheffield, Sheffield, S10 2TN, United Kingdom.,Department of Biomedical Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Simon Andrew Johnston
- Bateson Centre, University of Sheffield, Sheffield, S10 2TN, United Kingdom .,Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Astrid Marijke van der Sar
- Department of Medical Microbiology & Infection control, VU Medical Center, Amsterdam 1081HV, The Netherlands
| |
Collapse
|
30
|
Trofimov V, Costa-Gouveia J, Hoffmann E, Brodin P. Host-pathogen systems for early drug discovery against tuberculosis. Curr Opin Microbiol 2017; 39:143-151. [PMID: 29179041 DOI: 10.1016/j.mib.2017.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) is a global disease causing 1.8 million deaths each year. The appearance of drug-resistant strains raised the demand for new anti-mycobacterial drugs and therapies, because previously discovered antibiotics are shown to be inefficient. Moreover, the number of newly discovered drugs is not increasing in proportion to the emergence of drug resistance, which suggests that more optimized methodology and screening procedures are required including the incorporation of in vivo properties of TB infection. A way to improve efficacy of screening approaches is by introducing the use of different host-pathogen systems into primary screenings. These include whole cell-based screenings, zebrafish larvae-based screenings and the impact of artificial granuloma research on the drug discovery process. This review highlights current screening attempts and the identified molecular targets and summarizes findings of alternative, not fully explored host-pathogen systems for the characterization of anti-mycobacterial compounds.
Collapse
Affiliation(s)
- Valentin Trofimov
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, University Lille, Lille, France
| | - Joana Costa-Gouveia
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, University Lille, Lille, France
| | - Eik Hoffmann
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, University Lille, Lille, France
| | - Priscille Brodin
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, University Lille, Lille, France.
| |
Collapse
|
31
|
Boot M, Jim KK, Liu T, Commandeur S, Lu P, Verboom T, Lill H, Bitter W, Bald D. A fluorescence-based reporter for monitoring expression of mycobacterial cytochrome bd in response to antibacterials and during infection. Sci Rep 2017; 7:10665. [PMID: 28878275 PMCID: PMC5587683 DOI: 10.1038/s41598-017-10944-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/16/2017] [Indexed: 12/16/2022] Open
Abstract
Cytochrome bd is a component of the oxidative phosphorylation pathway in many Gram-positive and Gram-negative bacteria. Next to its role as a terminal oxidase in the respiratory chain this enzyme plays an important role as a survival factor in the bacterial stress response. In Mycobacterium tuberculosis and related mycobacterial strains, cytochrome bd is an important component of the defense system against antibacterial drugs. In this report we describe and evaluate an mCherry-based fluorescent reporter for detection of cytochrome bd expression in Mycobacterium marinum. Cytochrome bd was induced by mycolic acid biosynthesis inhibitors such as isoniazid and most prominently by drugs targeting oxidative phosphorylation. We observed no induction by inhibitors of protein-, DNA- or RNA-synthesis. The constructed expression reporter was suitable for monitoring mycobacterial cytochrome bd expression during mouse macrophage infection and in a zebrafish embryo infection model when using Mycobacterium marinum. Interestingly, in both these infection models cytochrome bd levels were considerably higher than during in vitro culturing of M. marinum. The expression reporter described here can be a valuable tool for elucidating the role of cytochrome bd as a survival factor.
Collapse
Affiliation(s)
- Maikel Boot
- Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Kin Ki Jim
- Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Ting Liu
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Earth- and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Susanna Commandeur
- Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Ping Lu
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Earth- and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Theo Verboom
- Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Holger Lill
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Earth- and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.,Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Earth- and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Dirk Bald
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Earth- and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Aubry A, Mougari F, Reibel F, Cambau E. Mycobacterium marinum. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tnmi7-0038-2016. [PMID: 28387180 PMCID: PMC11687479 DOI: 10.1128/microbiolspec.tnmi7-0038-2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Indexed: 01/16/2023] Open
Abstract
Mycobacterium marinum is a well-known pathogenic mycobacterium for skin and soft tissue infections and is associated with fishes and water. Among nontuberculous mycobacteria (NTM), it is the leading cause of extrarespiratory human infections worldwide. In addition, there is a specific scientific interest in M. marinum because of its genetic relatedness to Mycobacterium tuberculosis and because experimental infection of M. marinum in fishes mimics tuberculosis pathogenesis. Microbiological characteristics include the fact that it grows in 7 to 14 days with photochromogenic colonies and is difficult to differentiate from Mycobacterium ulcerans and other mycolactone-producing NTM on a molecular basis. The diagnosis is highly suspected by the mode of infection, which is related to the hobby of fishkeeping, professional handling of marine shells, or swimming in nonchlorinated pools. Clinics distinguished skin and soft tissue lesions (typically sporotrichoid or subacute hand nodules) and lesions disseminated to joint and bone, often related with the local use of corticosteroids. In clinical microbiology, microscopy and culture are often negative because growth requires low temperature (30°C) and several weeks to succeed in primary cultivation. The treatment is not standardized, and no randomized control trials have been done. Therapy is a combination of surgery and antimicrobial agents such as cyclines and rifampin, with successful outcome in most of the skin diseases but less frequently in deep tissue infections. Prevention can be useful with hand protection recommendations for professionals and all persons manipulating fishes or fish tank water and use of alcohol disinfection after contact.
Collapse
Affiliation(s)
- Alexandra Aubry
- Centre National de Référence des mycobactéries et résistance des Mycobactéries aux antituberculeux
- Sorbonne Université, Université Pierre et Marie Curie, AP-HP Hôpital Pitié-Salpêtrière
- Centre d'Immunologie et des Maladies Infectieuses, Team 13, INSERM U1135, Paris, France
| | - Faiza Mougari
- Centre National de Référence des mycobactéries et résistance des Mycobactéries aux antituberculeux
- Laboratoire de Bactériologie, AP-HP Hôpital Lariboisière
- Université Paris Diderot, IAME UMR 1137 Inserm, Paris, France
| | - Florence Reibel
- Centre National de Référence des mycobactéries et résistance des Mycobactéries aux antituberculeux
- Sorbonne Université, Université Pierre et Marie Curie, AP-HP Hôpital Pitié-Salpêtrière
- Centre d'Immunologie et des Maladies Infectieuses, Team 13, INSERM U1135, Paris, France
| | - Emmanuelle Cambau
- Centre National de Référence des mycobactéries et résistance des Mycobactéries aux antituberculeux
- Laboratoire de Bactériologie, AP-HP Hôpital Lariboisière
- Université Paris Diderot, IAME UMR 1137 Inserm, Paris, France
| |
Collapse
|
33
|
Torraca V, Tulotta C, Snaar-Jagalska BE, Meijer AH. The chemokine receptor CXCR4 promotes granuloma formation by sustaining a mycobacteria-induced angiogenesis programme. Sci Rep 2017; 7:45061. [PMID: 28332618 PMCID: PMC5362882 DOI: 10.1038/srep45061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/20/2017] [Indexed: 12/14/2022] Open
Abstract
CXC chemokine receptor 4 plays a critical role in chemotaxis and leukocyte differentiation. Furthermore, there is increasing evidence that links this receptor to angiogenesis. Using the well-established zebrafish-Mycobacterium marinum model for tuberculosis, angiogenesis was recently found to be important for the development of cellular aggregates called granulomas that contain the mycobacteria and are the hallmark of tuberculosis disease. Here, we found that initiation of the granuloma-associated proangiogenic programme requires CXCR4 signalling. The nascent granulomas in cxcr4b-deficient zebrafish embryos were poorly vascularised, which in turn also delayed bacterial growth. Suppressed infection expansion in cxcr4b mutants could not be attributed to an overall deficient recruitment of leukocytes or to different intramacrophage bacterial growth rate, as cxcr4b mutants displayed similar microbicidal capabilities against initial mycobacterial infection and the cellular composition of granulomatous lesions was similar to wildtype siblings. Expression of vegfaa was upregulated to a similar extent in cxcr4b mutants and wildtypes, suggesting that the granuloma vascularisation phenotype of cxcr4b mutants is independent of vascular endothelial growth factor.
Collapse
|
34
|
Bruinen AL, Fisher GL, Heeren RMA. ToF-SIMS Parallel Imaging MS/MS of Lipid Species in Thin Tissue Sections. Methods Mol Biol 2017; 1618:165-173. [PMID: 28523507 DOI: 10.1007/978-1-4939-7051-3_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Unambiguous identification of detected species is essential in complex biomedical samples. To date, there are not many mass spectrometry imaging techniques that can provide both high spatial resolution and identification capabilities. A new and patented imaging tandem mass spectrometer, exploiting the unique characteristics of the nanoTOF II (Physical Electronics, USA) TOF-SIMS TRIFT instrument, was developed to address this.Tandem mass spectrometry is based on the selection of precursor ions from the full secondary ion spectrum (MS1), followed by energetic activation and fragmentation, and collection of the fragment ions to obtain a tandem MS spectrum (MS2). The PHI NanoTOF II mass spectrometer is equipped with a high-energy collision induced dissociation (CID) fragmentation cell as well as a second time-of-flight analyzer developed for simultaneous ToF-SIMS and tandem MS imaging experiments.We describe here the results of a ToF-SIMS imaging experiment on a thin tissue section of an infected zebrafish as a model organism for tuberculosis. The focus is on the obtained ion distribution plot of a fatty acid as well as its identification by tandem mass spectrometry.
Collapse
Affiliation(s)
- Anne Lisa Bruinen
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands.
| | | | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| |
Collapse
|
35
|
Benard EL, Rougeot J, Racz PI, Spaink HP, Meijer AH. Transcriptomic Approaches in the Zebrafish Model for Tuberculosis-Insights Into Host- and Pathogen-specific Determinants of the Innate Immune Response. ADVANCES IN GENETICS 2016; 95:217-51. [PMID: 27503359 DOI: 10.1016/bs.adgen.2016.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mycobacterium marinum infection in zebrafish has become a well-established model of tuberculosis. Both embryonic and adult zebrafish infection studies have contributed to our knowledge of the development and function of tuberculous granulomas, which are typical of mycobacterial pathogenesis. In this review we discuss how transcriptome profiling studies have helped to characterize this infection process. We illustrate this using new RNA sequencing (RNA-Seq) data that reveals three main phases in the host response to M. marinum during the early stages of granuloma development in zebrafish embryos and larvae. The early phase shows induction of complement and transcription factors, followed by a relatively minor induction of pro-inflammatory cytokines within hours following phagocytosis of M. marinum. A minimal response is observed in the mid-phase, between 6 hours and 1day post infection, when the tissue dissemination of M. marinum begins. During subsequent larval development the granulomas expand and a late-phase response is apparent, which is characterized by progressively increasing induction of complement, transcription factors, pro-inflammatory cytokines, matrix metalloproteinases, and other defense and inflammation-related gene groups. This late-phase response shares common components with the strong and acute host transcriptome response that has previously been reported for Salmonella typhimurium infection in zebrafish embryos. In contrast, the early/mid-phase response to M. marinum infection, characterized by suppressed pro-inflammatory signaling, is strikingly different from the acute response to S. typhimurium infection. Furthermore, M. marinum infection shows a collective and strongly fluctuating regulation of lipoproteins, while S. typhimurium infection has pronounced effects on amino acid metabolism and glycolysis.
Collapse
Affiliation(s)
- E L Benard
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - J Rougeot
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - P I Racz
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - H P Spaink
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - A H Meijer
- Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
36
|
Ates LS, van der Woude AD, Bestebroer J, van Stempvoort G, Musters RJP, Garcia-Vallejo JJ, Picavet DI, Weerd RVD, Maletta M, Kuijl CP, van der Wel NN, Bitter W. The ESX-5 System of Pathogenic Mycobacteria Is Involved In Capsule Integrity and Virulence through Its Substrate PPE10. PLoS Pathog 2016; 12:e1005696. [PMID: 27280885 PMCID: PMC4900558 DOI: 10.1371/journal.ppat.1005696] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 05/20/2016] [Indexed: 11/18/2022] Open
Abstract
Mycobacteria produce a capsule layer, which consists of glycan-like polysaccharides and a number of specific proteins. In this study, we show that, in slow-growing mycobacteria, the type VII secretion system ESX-5 plays a major role in the integrity and stability of the capsule. We have identified PPE10 as the ESX-5 substrate responsible for this effect. Mutants in esx-5 and ppe10 both have impaired capsule integrity as well as reduced surface hydrophobicity. Electron microscopy, immunoblot and flow cytometry analyses demonstrated reduced amounts of surface localized proteins and glycolipids, and morphological differences in the capsular layer. Since capsular proteins secreted by the ESX-1 system are important virulence factors, we tested the effect of the mutations that cause capsular defects on virulence mechanisms. Both esx-5 and ppe10 mutants of Mycobacterium marinum were shown to be impaired in ESX-1-dependent hemolysis. In agreement with this, the ppe10 and esx5 mutants showed reduced recruitment of ubiquitin in early macrophage infection and intermediate attenuation in zebrafish embryos. These results provide a pivotal role for the ESX-5 secretion system and its substrate PPE10, in the capsular integrity of pathogenic mycobacteria. These findings open up new roads for research on the mycobacterial capsule and its role in virulence and immune modulation.
Collapse
Affiliation(s)
- Louis S Ates
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands
| | - Aniek D van der Woude
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands.,Department of Molecular Microbiology, VU University, Amsterdam, the Netherlands
| | - Jovanka Bestebroer
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands
| | | | - René J P Musters
- Department of Physiology and Cardiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | - Daisy I Picavet
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam the Netherlands
| | - Robert van de Weerd
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands
| | | | - Coenraad P Kuijl
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands
| | - Nicole N van der Wel
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam the Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands.,Department of Molecular Microbiology, VU University, Amsterdam, the Netherlands
| |
Collapse
|
37
|
Singh VK, Berry L, Bernut A, Singh S, Carrère-Kremer S, Viljoen A, Alibaud L, Majlessi L, Brosch R, Chaturvedi V, Geurtsen J, Drancourt M, Kremer L. A unique PE_PGRS protein inhibiting host cell cytosolic defenses and sustaining full virulence of Mycobacterium marinum in multiple hosts. Cell Microbiol 2016; 18:1489-1507. [PMID: 27120981 DOI: 10.1111/cmi.12606] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/22/2016] [Accepted: 04/09/2016] [Indexed: 12/11/2022]
Abstract
Despite intense research, PE_PGRS proteins still represent an intriguing aspect of mycobacterial pathogenesis. These cell surface proteins influence virulence in several pathogenic species, but their diverse and exact functions remain unclear. Herein, we focussed on a PE_PGRS member from Mycobacterium marinum, MMAR_0242, characterized by an extended and unique C-terminal domain. We demonstrate that an M. marinum mutant carrying a transposon insertion in MMAR_0242 is highly impaired in its ability to replicate in macrophages and amoebae, because of its inability to inhibit lysosomal fusion. As a consequence, this mutant failed to survive intracellularly as evidenced by a reduced number of cytosolic actin tail-forming bacteria and by quantitative electron microscopy, which mainly localized MMAR_0242::Tn within membrane-defined vacuoles. Functional complementation studies indicated that the C-terminus, but not the N-terminal PE_PGRS domain, is required for intracellular growth/survival. In line with these findings, disruption of MMAR_0242 resulted in a highly attenuated virulence phenotype in zebrafish embryos, characterized by restricted bacterial loads and a failure to produce granulomas. Furthermore, expression of MMAR_0242 in Mycobacterium smegmatis, a non-pathogenic species naturally deficient in PE_PGRS production, resulted in increased survival in amoebae with enhanced cytotoxic cell death and increased survival in infected mice with splenomegaly. Overall, these results indicate that MMAR_0242 is required for full virulence of M. marinum and sufficient to confer pathogenic properties to M. smegmatis.
Collapse
Affiliation(s)
- Vipul K Singh
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS UMR 5235, case 107, Place Eugène Bataillon, 34095, Montpellier Cedex 05, France
| | - Laurence Berry
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS UMR 5235, case 107, Place Eugène Bataillon, 34095, Montpellier Cedex 05, France
| | - Audrey Bernut
- Centre d'étude des Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS FRE 3689, 1919 route de Mende, 34293, Montpellier, France
| | - Shubhra Singh
- Biochemistry Division, CSIR-Central Drug Research Institute, 226031, Lucknow, Uttar Pradesh, India.,IFTM University, Lodhipur Rajput, Delhi Road (NH-24) Moradabad, Uttar Pradesh, 244102, India
| | - Séverine Carrère-Kremer
- INSERM U1058, Université de Montpellier and Department of Bacteriology-Virology, CHU de Montpellier, 34095, Montpellier, France
| | - Albertus Viljoen
- Centre d'étude des Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS FRE 3689, 1919 route de Mende, 34293, Montpellier, France
| | - Laeticia Alibaud
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS UMR 5235, case 107, Place Eugène Bataillon, 34095, Montpellier Cedex 05, France
| | - Laleh Majlessi
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, 25 rue du Dr. Roux, 75724, Paris, France
| | - Roland Brosch
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, 25 rue du Dr. Roux, 75724, Paris, France
| | - Vinita Chaturvedi
- Biochemistry Division, CSIR-Central Drug Research Institute, 226031, Lucknow, Uttar Pradesh, India
| | - Jeroen Geurtsen
- Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 BT, Amsterdam, The Netherlands
| | - Michel Drancourt
- Université Aix-Marseille, URMITE, UMR63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Laurent Kremer
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS UMR 5235, case 107, Place Eugène Bataillon, 34095, Montpellier Cedex 05, France. .,Centre d'étude des Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS FRE 3689, 1919 route de Mende, 34293, Montpellier, France. .,INSERM, CPBS, 1919 route de Mende, Montpellier, France.
| |
Collapse
|
38
|
Fisher GL, Bruinen AL, Ogrinc Potočnik N, Hammond JS, Bryan SR, Larson PE, Heeren RM. A New Method and Mass Spectrometer Design for TOF-SIMS Parallel Imaging MS/MS. Anal Chem 2016; 88:6433-40. [DOI: 10.1021/acs.analchem.6b01022] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gregory L. Fisher
- Physical Electronics,
Inc., Chanhassen, Minnesota 55317, United States
| | - Anne L. Bruinen
- Multi-Modal
Molecular Imaging (M4I) Institute, Maastricht University, 6211 ER Maastricht, Netherlands
| | - Nina Ogrinc Potočnik
- Multi-Modal
Molecular Imaging (M4I) Institute, Maastricht University, 6211 ER Maastricht, Netherlands
| | - John S. Hammond
- Physical Electronics,
Inc., Chanhassen, Minnesota 55317, United States
| | - Scott R. Bryan
- Physical Electronics,
Inc., Chanhassen, Minnesota 55317, United States
| | - Paul E. Larson
- Physical Electronics,
Inc., Chanhassen, Minnesota 55317, United States
| | - Ron M.A. Heeren
- Multi-Modal
Molecular Imaging (M4I) Institute, Maastricht University, 6211 ER Maastricht, Netherlands
| |
Collapse
|
39
|
Myllymäki H, Bäuerlein CA, Rämet M. The Zebrafish Breathes New Life into the Study of Tuberculosis. Front Immunol 2016; 7:196. [PMID: 27242801 PMCID: PMC4871865 DOI: 10.3389/fimmu.2016.00196] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/06/2016] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis (TB) is a global health emergency. Up to one-third of the world’s population is infected with Mycobacterium tuberculosis, and the pathogen continues to kill 1.5 million people annually. Currently, the means for preventing, diagnosing, and treating TB are unsatisfactory. One of the main reasons for the poor progress in TB research has been a lack of good animal models to study the latency, dormancy, and reactivation of the disease. Although sophisticated in vitro and in silico methods suitable for TB research are constantly being developed, they cannot reproduce the complete vertebrate immune system and its interplay with pathogens and vaccines. However, the zebrafish has recently emerged as a useful alternative to more traditional models, such as mice, rabbits, guinea pigs, and non-human primates, for studying the complex pathophysiology of a mycobacterial infection. The model is based on the similarity between Mycobacterium marinum – a natural fish pathogen – and M. tuberculosis. In both zebrafish larvae and adult fish, an infection with M. marinum leads to the formation of macrophage aggregates and granulomas, which resemble the M. tuberculosis infections in humans. In this review, we will summarize the current status of the zebrafish model in TB research and highlight the advantages of using zebrafish to dissect mycobacterial virulence strategies as well as the host immune responses elicited against them. In addition, we will discuss the possibilities of using the adult zebrafish model for studying latency, dormancy, and reactivation in a mycobacterial infection.
Collapse
Affiliation(s)
| | | | - Mika Rämet
- BioMediTech, University of Tampere, Tampere, Finland; Department of Pediatrics, Tampere University Hospital, Tampere, Finland; Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland; PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
40
|
Devi PB, Sridevi JP, Kakan SS, Saxena S, Jeankumar VU, Soni V, Anantaraju HS, Yogeeswari P, Sriram D. Discovery of novel lysine ɛ-aminotransferase inhibitors: An intriguing potential target for latent tuberculosis. Tuberculosis (Edinb) 2015; 95:786-794. [DOI: 10.1016/j.tube.2015.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/19/2015] [Indexed: 11/25/2022]
|
41
|
Harvie EA, Huttenlocher A. Neutrophils in host defense: new insights from zebrafish. J Leukoc Biol 2015; 98:523-37. [PMID: 25717145 PMCID: PMC4569048 DOI: 10.1189/jlb.4mr1114-524r] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are highly motile phagocytic cells that play a critical role in the immune response to infection. Zebrafish (Danio rerio) are increasingly used to study neutrophil function and host-pathogen interactions. The generation of transgenic zebrafish lines with fluorescently labeled leukocytes has made it possible to visualize the neutrophil response to infection in real time by use of optically transparent zebrafish larvae. In addition, the genetic tractability of zebrafish has allowed for the generation of models of inherited neutrophil disorders. In this review, we discuss several zebrafish models of infectious disease, both in the context of immunocompetent, as well as neutrophil-deficient hosts and how these models have shed light on neutrophil behavior during infection.
Collapse
Affiliation(s)
- Elizabeth A Harvie
- *Microbiology Doctoral Training Program, Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anna Huttenlocher
- *Microbiology Doctoral Training Program, Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
42
|
Protection and pathology in TB: learning from the zebrafish model. Semin Immunopathol 2015; 38:261-73. [PMID: 26324465 PMCID: PMC4779130 DOI: 10.1007/s00281-015-0522-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022]
Abstract
Zebrafish has earned its place among animal models of tuberculosis. Its natural pathogen, Mycobacterium marinum, shares major virulence factors with the human pathogen Mycobacterium tuberculosis. In adult zebrafish, which possess recombination-activated adaptive immunity, it can cause acute infection or a chronic progressive disease with containment of mycobacteria in well-structured, caseating granulomas. In addition, a low-dose model that closely mimics human latent infection has recently been developed. These models are used alongside infection of optically transparent zebrafish embryos and larvae that rely on innate immunity and permit non-invasive visualization of the early stages of developing granulomas that are inaccessible in other animal models. By microinjecting mycobacteria intravenously or into different tissues, systemic and localized infections can be induced, each useful for studying particular aspects of early pathogenesis, such as phagocyte recruitment, granuloma expansion and maintenance, vascularization of granulomas, and the phagocyte-mediated dissemination of mycobacteria. This has contributed to new insights into the mycobacteria-driven mechanisms that promote granuloma formation, the double-edged role of inflammation, the mechanisms of macrophage cell death that favor disease progression, and the host-protective role of autophagy. As a result, zebrafish models are now increasingly used to explore strategies for adjunctive therapy of tuberculosis with host-directed drugs.
Collapse
|
43
|
van de Weerd R, Berbís MA, Sparrius M, Maaskant JJ, Boot M, Paauw NJ, de Vries N, Boon L, Baba O, Cañada FJ, Geurtsen J, Jiménez-Barbero J, Appelmelk BJ. A murine monoclonal antibody to glycogen: characterization of epitope-fine specificity by saturation transfer difference (STD) NMR spectroscopy and its use in mycobacterial capsular α-glucan research. Chembiochem 2015; 16:977-89. [PMID: 25766777 DOI: 10.1002/cbic.201402713] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 12/12/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a major pathogen responsible for 1.5 million deaths annually. This bacterium is characterized by a highly unusual and impermeable cell envelope, which plays a key role in mycobacterial survival and virulence. Although many studies have focused on the composition and functioning of the mycobacterial cell envelope, the capsular α-glucan has received relatively minor attention. Here we show that a murine monoclonal antibody (Mab) directed against glycogen cross-reacts with mycobacterial α-glucans, polymers of α(1-4)-linked glucose residues with α(1-6)-branch points. We identified the Mab epitope specificity by saturation transfer difference NMR and show that the α(1-4)-linked glucose residues are important in glucan-Mab interaction. The minimal epitope is formed by (linear) maltotriose. Notably, a Mycobacterium mutant lacking the branching enzyme GlgB does not react with the Mab; this suggests that the α(1-6)-branches form part of the epitope. These seemingly conflicting data can be explained by the fact that in the mutant the linear form of the α-glucan (amylose) is insoluble. This Mab was subsequently used to develop several techniques helpful in capsular α-glucan research. By using a capsular glucan-screening methodology based on this Mab we were able to identify several unknown genes involved in capsular α-glucan biogenesis. Additionally, we developed two methods for the detection of capsular α-glucan levels. This study therefore opens new ways to study capsular α-glucan and to identify possible targets for further research.
Collapse
Affiliation(s)
- Robert van de Weerd
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam (The Netherlands)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Genome-wide transposon mutagenesis indicates that Mycobacterium marinum customizes its virulence mechanisms for survival and replication in different hosts. Infect Immun 2015; 83:1778-88. [PMID: 25690095 DOI: 10.1128/iai.03050-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/05/2015] [Indexed: 11/20/2022] Open
Abstract
The interaction of environmental bacteria with unicellular eukaryotes is generally considered a major driving force for the evolution of intracellular pathogens, allowing them to survive and replicate in phagocytic cells of vertebrate hosts. To test this hypothesis on a genome-wide level, we determined for the intracellular pathogen Mycobacterium marinum whether it uses conserved strategies to exploit host cells from both protozoan and vertebrate origin. Using transposon-directed insertion site sequencing (TraDIS), we determined differences in genetic requirements for survival and replication in phagocytic cells of organisms from different kingdoms. In line with the general hypothesis, we identified a number of general virulence mechanisms, including the type VII protein secretion system ESX-1, biosynthesis of polyketide lipids, and utilization of sterols. However, we were also able to show that M. marinum contains an even larger set of host-specific virulence determinants, including proteins involved in the modification of surface glycolipids and, surprisingly, the auxiliary proteins of the ESX-1 system. Several of these factors were in fact counterproductive in other hosts. Therefore, M. marinum contains different sets of virulence factors that are tailored for specific hosts. Our data imply that although amoebae could function as a training ground for intracellular pathogens, they do not fully prepare pathogens for crossing species barriers.
Collapse
|
45
|
López Hernández Y, Yero D, Pinos-Rodríguez JM, Gibert I. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens. Front Microbiol 2015; 6:38. [PMID: 25699030 PMCID: PMC4316775 DOI: 10.3389/fmicb.2015.00038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/12/2015] [Indexed: 01/15/2023] Open
Abstract
Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as valuable tools to explore host-pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio), and non-vertebrate insects and nematodes (e.g., Caenorhabditis elegans) in the study of diverse infectious agents that affect humans. Here, we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favor of the use of these alternative animal models of infection to reveal the molecular signatures of host-pathogen interactions.
Collapse
Affiliation(s)
- Yamilé López Hernández
- Centro de Biociencias, Universidad Autónoma de San Luis Potosí San Luis de Potosí, Mexico
| | - Daniel Yero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Juan M Pinos-Rodríguez
- Centro de Biociencias, Universidad Autónoma de San Luis Potosí San Luis de Potosí, Mexico
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| |
Collapse
|
46
|
Fink IR, Benard EL, Hermsen T, Meijer AH, Forlenza M, Wiegertjes GF. Molecular and functional characterization of the scavenger receptor CD36 in zebrafish and common carp. Mol Immunol 2015; 63:381-93. [DOI: 10.1016/j.molimm.2014.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/11/2014] [Accepted: 09/17/2014] [Indexed: 11/26/2022]
|
47
|
Torraca V, Cui C, Boland R, Bebelman JP, van der Sar AM, Smit MJ, Siderius M, Spaink HP, Meijer AH. The CXCR3-CXCL11 signaling axis mediates macrophage recruitment and dissemination of mycobacterial infection. Dis Model Mech 2015; 8:253-69. [PMID: 25573892 PMCID: PMC4348563 DOI: 10.1242/dmm.017756] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The recruitment of leukocytes to infectious foci depends strongly on the local release of chemoattractant mediators. The human CXC chemokine receptor 3 (CXCR3) is an important node in the chemokine signaling network and is expressed by multiple leukocyte lineages, including T cells and macrophages. The ligands of this receptor originate from an ancestral CXCL11 gene in early vertebrates. Here, we used the optically accessible zebrafish embryo model to explore the function of the CXCR3-CXCL11 axis in macrophage recruitment and show that disruption of this axis increases the resistance to mycobacterial infection. In a mutant of the zebrafish ortholog of CXCR3 (cxcr3.2), macrophage chemotaxis to bacterial infections was attenuated, although migration to infection-independent stimuli was unaffected. Additionally, attenuation of macrophage recruitment to infection could be mimicked by treatment with NBI74330, a high-affinity antagonist of CXCR3. We identified two infection-inducible CXCL11-like chemokines as the functional ligands of Cxcr3.2, showing that the recombinant proteins exerted a Cxcr3.2-dependent chemoattraction when locally administrated in vivo. During infection of zebrafish embryos with Mycobacterium marinum, a well-established model for tuberculosis, we found that Cxcr3.2 deficiency limited the macrophage-mediated dissemination of mycobacteria. Furthermore, the loss of Cxcr3.2 function attenuated the formation of granulomatous lesions, the typical histopathological features of tuberculosis, and led to a reduction in the total bacterial burden. Prevention of mycobacterial dissemination by targeting the CXCR3 pathway, therefore, might represent a host-directed therapeutic strategy for treatment of tuberculosis. The demonstration of a conserved CXCR3-CXCL11 signaling axis in zebrafish extends the translational applicability of this model for studying diseases involving the innate immune system.
Collapse
Affiliation(s)
- Vincenzo Torraca
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Chao Cui
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Ralf Boland
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Jan-Paul Bebelman
- Amsterdam Institute for Molecules, Medicines and Systems, Division Medicinal Chemistry, Faculty of Sciences, VU University, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Astrid M van der Sar
- Department of Medical Microbiology and Infection Control, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecules, Medicines and Systems, Division Medicinal Chemistry, Faculty of Sciences, VU University, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Marco Siderius
- Amsterdam Institute for Molecules, Medicines and Systems, Division Medicinal Chemistry, Faculty of Sciences, VU University, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Annemarie H Meijer
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
48
|
Benard EL, Roobol SJ, Spaink HP, Meijer AH. Phagocytosis of mycobacteria by zebrafish macrophages is dependent on the scavenger receptor Marco, a key control factor of pro-inflammatory signalling. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:223-233. [PMID: 25086293 DOI: 10.1016/j.dci.2014.07.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
Scavenger receptors on the cell surface of macrophages play an important role in host defence through their ability to bind microbial ligands and induce phagocytosis. Concurrently, signal transduction pathways are initiated that aid in defence mechanisms against the invading microbe. Here we report on the function of scavenger receptor Marco (Macrophage receptor with collagenous structure) during infection of zebrafish embryos with Mycobacterium marinum, a close relative of M. tuberculosis. Morpholino knockdown demonstrates that Marco is required for the rapid phagocytosis of M. marinum following intravenous infection. Furthermore, gene expression analysis shows that Marco controls the initial transient pro-inflammatory response to M. marinum and remains a determining factor for the immune response signature at later stages of infection. Increased bacterial burden following marco knockdown indicates that this scavenger receptor is important for control of M. marinum growth, likely due to delayed phagocytosis and reduced pro-inflammatory signalling observed under conditions of Marco deficiency.
Collapse
Affiliation(s)
- Erica L Benard
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Stefan J Roobol
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Annemarie H Meijer
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
49
|
van Leeuwen LM, van der Sar AM, Bitter W. Animal models of tuberculosis: zebrafish. Cold Spring Harb Perspect Med 2014; 5:a018580. [PMID: 25414379 DOI: 10.1101/cshperspect.a018580] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past decade the zebrafish (Danio rerio) has become an attractive new vertebrate model organism for studying mycobacterial pathogenesis. The combination of medium-throughput screening and real-time in vivo visualization has allowed new ways to dissect host pathogenic interaction in a vertebrate host. Furthermore, genetic screens on the host and bacterial sides have elucidated new mechanisms involved in the initiation of granuloma formation and the importance of a balanced immune response for control of mycobacterial pathogens. This article will highlight the unique features of the zebrafish-Mycobacterium marinum infection model and its added value for tuberculosis research.
Collapse
Affiliation(s)
- Lisanne M van Leeuwen
- Department of Pediatric Infectious Diseases and Immunology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands Department of Medical Microbiology and Infection control, VU University Medical Center, 1081 BT Amsterdam, The Netherlands
| | - Astrid M van der Sar
- Department of Pediatric Infectious Diseases and Immunology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Pediatric Infectious Diseases and Immunology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands Department of Molecular Microbiology, VU University, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
50
|
Gauthier DT. Bacterial zoonoses of fishes: a review and appraisal of evidence for linkages between fish and human infections. Vet J 2014; 203:27-35. [PMID: 25466575 DOI: 10.1016/j.tvjl.2014.10.028] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 10/18/2014] [Accepted: 10/22/2014] [Indexed: 11/24/2022]
Abstract
Human contact with and consumption of fishes presents hazards from a range of bacterial zoonotic infections. Whereas many bacterial pathogens have been presented as fish-borne zoonoses on the basis of epidemiological and phenotypic evidence, genetic identity between fish and human isolates is not frequently examined or does not provide support for transmission between these hosts. In order to accurately assess the zoonotic risk from exposure to fishes in the context of aquaculture, wild fisheries and ornamental aquaria, it is important to critically examine evidence of linkages between bacteria infecting fishes and humans. This article reviews bacteria typically presented as fish-borne zoonoses, and examines the current strength of evidence for this classification. Of bacteria generally described as fish-borne zoonoses, only Mycobacterium spp., Streptococcus iniae, Clostridium botulinum, and Vibrio vulnificus appear to be well-supported as zoonoses in the strict sense. Erysipelothrix rhusiopathiae, while transmissible from fishes to humans, does not cause disease in fishes and is therefore excluded from the list. Some epidemiological and/or molecular linkages have been made between other bacteria infecting both fishes and humans, but more work is needed to elucidate routes of transmission and the identity of these pathogens in their respective hosts at the genomic level.
Collapse
Affiliation(s)
- David T Gauthier
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia 23529, USA.
| |
Collapse
|