1
|
Francis JE, Skakic I, Majumdar D, Taki AC, Shukla R, Walduck A, Smooker PM. Solid Lipid Nanoparticles Delivering a DNA Vaccine Encoding Helicobacter pylori Urease A Subunit: Immune Analyses before and after a Mouse Model of Infection. Int J Mol Sci 2024; 25:1076. [PMID: 38256149 PMCID: PMC10816323 DOI: 10.3390/ijms25021076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
In this study, novel solid lipid particles containing the adjuvant lipid monophosphoryl lipid A (termed 'SLN-A') were synthesised. The SLN-A particles were able to efficiently bind and form complexes with a DNA vaccine encoding the urease alpha subunit of Helicobacter pylori. The resultant nanoparticles were termed lipoplex-A. In a mouse model of H. pylori infection, the lipoplex-A nanoparticles were used to immunise mice, and the resultant immune responses were analysed. It was found that the lipoplex-A vaccine was able to induce high levels of antigen-specific antibodies and an influx of gastric CD4+ T cells in vaccinated mice. In particular, a prime with lipoplex-A and a boost with soluble UreA protein induced significantly high levels of the IgG1 antibody, whereas two doses of lipoplex-A induced high levels of the IgG2c antibody. In this study, lipoplex-A vaccination did not lead to a significant reduction in H. pylori colonisation in a challenge model; however, these results point to the utility of the system for delivering DNA vaccine-encoded antigens to induce immune responses and suggest the ability to tailor those responses.
Collapse
Affiliation(s)
- Jasmine E. Francis
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| | - Ivana Skakic
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| | - Debolina Majumdar
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| | - Aya C. Taki
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Ravi Shukla
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| | - Anna Walduck
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| | - Peter M. Smooker
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| |
Collapse
|
2
|
Abadi AH, Mahdavi M, Khaledi A, Esmaeili SA, Esmaeili D, Sahebkar A. Study of serum bactericidal and splenic activity of Total-OMP- CagA combination from Brucella abortus and Helicobacter pylori in BALB/c mouse model. Microb Pathog 2018; 121:100-105. [PMID: 29709690 DOI: 10.1016/j.micpath.2018.04.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Brucella is a Gram-negative and facultative intracellular organism that causes brucellosis, a common zoonotic disease. Over 500,000 people are annually affected by brucellosis. Brucella is highly infectious through inhalation route; for this reason it is used for biological warfare aims. This study aimed to study the serum bactericidal and splenic activity of Total-OMP-r CagA immunogens from Brucella abortus and Helicobacter pylori in a BALB/c mouse model. METHODS Immunization of BALB/c mice was performed with immunogenic proteins three times subcutaneously (S.C.) at 14-day intervals. The protective effects of two component vaccines with CpG adjuvant were evaluated after mice were challenged with H. pylori ss1 and Brucella abortus strain 544. The specific IgG1 and IgG2a antibodies in sera were assessed using ELISA test. For measuring the antigen-specific IL-4, IL-12 and IFN-γ responses in sera of immunized mice after challenge, RT-PCR technique was applied. Twenty days after the challenge, mice were killed then gastric, splenic and serum samples were assessed and bacterial colony count was measured based on the pour plate count agar. RESULTS The results indicated that rCagA + OMP decreased bacterial colonization in these tissues, and significant difference was observed between test and control groups (p value˂0.001). CONCLUSION Our results showed that the combination vaccine was effective against an oral exposure and the bacterial burden in the spleen, serum and gastric tissues were reduced in mice immunized with the Total- OMP-CagA.
Collapse
Affiliation(s)
- Amir Hossein Abadi
- Department of Microbiology and Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Mahdavi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Azad Khaledi
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, IR, Iran; Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed-Alireza Esmaeili
- Student Research Committee, Immunology Research Center, Buali Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Davoud Esmaeili
- Department of Microbiology and Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Li HB, Zhang JY, He YF, Chen L, Li B, Liu KY, Yang WC, Zhao Z, Zou QM, Wu C. Systemic immunization with an epitope-based vaccine elicits a Th1-biased response and provides protection against Helicobacter pylori in mice. Vaccine 2012; 31:120-6. [PMID: 23137845 DOI: 10.1016/j.vaccine.2012.10.091] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/09/2012] [Accepted: 10/25/2012] [Indexed: 12/12/2022]
Abstract
Vaccine-mediated Th1-biased CD4+ T cell responses have been shown to be crucial for protection against Helicobacter pylori (H. pylori). In this study, we investigated whether a vaccine composed of CD4+ T cell epitopes together with Th1 adjuvants could confer protection against H. pylori in a mouse model. We constructed an epitope-based vaccine, designated Epivac, which was composed of predicted immunodominant CD4+ T cell epitopes from H. pylori adhesin A (HpaA), urease B (UreB) and cytotoxin-associated gene A product (CagA). Together with four different Th1 adjuvants, Epivac was administered subcutaneously and the prophylactic potential was examined. Compared to non-immunized mice, immunization with Epivac alone or with a Th1 adjuvant significantly reduced H. pylori colonization, and better protection was observed when an adjuvant was used. Immunized mice exhibited a strong local and systemic Th1-biased immune response, which may contribute to the inhibition of H. pylori colonization. Though a significant specific antibody response was induced by the vaccine, no correlation was found between the intensity of the humoral response and the protective effect. Our results suggest that a vaccine containing CD4+ T cell epitopes is a promising candidate for protection against H. pylori infection.
Collapse
Affiliation(s)
- Hai-Bo Li
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ruiz VE, Sachdev M, Zhang S, Wen S, Moss SF. Isolating, immunophenotyping and ex vivo stimulation of CD4+ and CD8+ gastric lymphocytes during murine Helicobacter pylori infection. J Immunol Methods 2012; 384:157-63. [PMID: 22814402 DOI: 10.1016/j.jim.2012.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/07/2012] [Accepted: 07/06/2012] [Indexed: 12/30/2022]
Abstract
Helicobacter pylori infection is associated with severe chronic inflammation, yet the host immune response is rarely able to clear the bacterium. Thymus derived lymphocyte populations such as T helper 1, T helper 17, and T regulatory cells are known to play important roles in the chronicity of H. pylori infection as well as contributing to ongoing gastric pathology. It is yet to be established how these immune cell populations interact in the gastric environment during H. pylori infection. Mouse models of infection offer an opportunity to investigate these interactions in detail. Flow cytometric analysis provides excellent lymphocyte characterization due to its high specificity, sensitivity and potential to perform multiple simultaneous measurements. However, this requires a viable enriched single cell suspension after adequate tissue dissociation, which poses a challenge due to the heterogeneity of gastric tissue. We have evaluated several isolation techniques and have optimized a protocol to isolate and enrich lymphocytes from the H. pylori-infected murine stomach. EDTA/DTT followed by Collagenase IV digestion successfully dissociates an average of 1 × 10⁷ cells per mouse. Further enrichment using Lympholyte M gradient yields on average 4 × 106 CD45+ lymphocytes per stomach. Following isolation we compared lymphocyte stimulation by CD3/CD28, phorbol 12-myristate 13-acetate (PMA) and ionomycin or H. pylori lysate and determined that CD3/CD28 effectively induces stimulation of IFNγ and IL 17A, but impairs Foxp3 expression. Using an optimized protocol we observed a 2-fold increase of CD8+ IFNγ-expressing lymphocytes localized specifically to the gastric compartment during H. pylori infection. The mechanisms of H. pylori immunopathogenesis are still considered enigmatic, therefore this optimized protocol can help delineate further novel immune cell targets that mediate H. pylori-induced pathology and identify the correlates of immunity for vaccine development.
Collapse
Affiliation(s)
- Victoria E Ruiz
- Department of Medicine, Division of Gastroenterology, Rhode Island Hospital and Brown University, Providence, RI 02903, USA.
| | | | | | | | | |
Collapse
|
5
|
Chen J, Lin L, Li N, She F. Enhancement of Helicobacter pylori outer inflammatory protein DNA vaccine efficacy by co-delivery of interleukin-2 and B subunit heat-labile toxin gene encoded plasmids. Microbiol Immunol 2012; 56:85-92. [PMID: 22150716 DOI: 10.1111/j.1348-0421.2011.00409.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Development of an effective vaccine for controlling H. pylori-associated infection, which is present in about half the people in the world, is a priority. The H. pylori outer inflammatory protein (oipA) has been demonstrated to be a potential antigen for a vaccine. In the present study, use of oipA gene encoded construct (poipA) for C57BL/6 mice vaccination was investigated. Whether co-delivery of IL-2 gene encoded construct (pIL-2) and B subunit heat-labile toxin of Escherichia coli gene encoded construct (pLTB) can modulate the immune response and enhance DNA vaccine efficacy was also explored. Our results demonstrated that poipA administered intradermally ('gene gun' immunization) promoted a strong Th2 immune response, whereas co-delivery of either pIL-2 or pLTB adjuvant elicited a Th1-biased immune response. PoipA administered with both pIL-2 and pLTB adjuvants promoted a strong Th1 immune response. Regardless of the different immune responses promoted by the various vaccination regimes, all immunized mice had smaller bacterial loads after H. pylori challenge than did PBS negative and pVAX1 mock controls. Co-delivery of adjuvant(s) enhances poipA DNA vaccine efficacy by shifting the immune response from being Th2 to being Th1-biased, which results in a greater reduction in bacterial load after H. pylori challenge. Both prophylactic and therapeutic vaccination can achieve sterile immunity in some subjects.
Collapse
Affiliation(s)
- Jiansen Chen
- Clinical Laboratory Department, Fujian Medical University Affiliated Union Hospital, Fuzhou 350001, Fujian, China
| | | | | | | |
Collapse
|
6
|
Transcutaneous immunization with novel lipid-based adjuvants induces protection against gastric Helicobacter pylori infection. Vaccine 2009; 27:6983-90. [DOI: 10.1016/j.vaccine.2009.09.078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 09/07/2009] [Accepted: 09/20/2009] [Indexed: 01/08/2023]
|
7
|
Harbour SN, Every AL, Edwards S, Sutton P. Systemic immunization with unadjuvanted whole Helicobacter pylori protects mice against heterologous challenge. Helicobacter 2008; 13:494-9. [PMID: 19166414 DOI: 10.1111/j.1523-5378.2008.00640.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Adjuvant-free vaccines have many benefits, including decreased cost and toxicity. We examined the protective effect of systemic vaccination with adjuvant-free formalin-fixed Helicobacter pylori or bacterial lysate and the ability of this vaccine to induce protection against heterologous challenge. MATERIALS AND METHODS Mice were vaccinated subcutaneously with H. pylori 11637 lysate or formalin-fixed bacteria, with or without ISCOMATRIX adjuvant, then orally challenged with H. pylori SS1. Serum was taken prior to challenge to examine specific antibody levels induced by the vaccinations, and protection was assessed by colony-forming assay. RESULTS Vaccination with H. pylori 11637 lysate or formalin-fixed bacteria delivered systemically induced significantly higher levels of Helicobacter-specific serum IgG than the control, unvaccinated group and orally vaccinated group. After heterologous challenge with H. pylori SS1, all vaccinated groups had significantly lower levels of colonization compared with unvaccinated, control mice, regardless of the addition of adjuvant or route of delivery. Protection induced by systemic vaccination with whole bacterial preparations, without the addition of adjuvants, was only associated with a mild cellular infiltration into the gastric mucosa, with no evidence of atrophy. CONCLUSIONS Subcutaneous vaccination using unadjuvanted formalin-fixed H. pylori has the potential to be a simple, cost-effective approach to the development of a Helicobacter vaccine. Importantly, this vaccine was able to induce protection against heterologous challenge, a factor that would be crucial in any human Helicobacter vaccine. Further studies are required to determine mechanisms of protection and to improve protective ability.
Collapse
Affiliation(s)
- Stacey N Harbour
- Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
8
|
Yu XL, Cheng YM, Shi BS, Qian FX, Wang FB, Liu XN, Yang HY, Xu QN, Qi TK, Zha LJ, Yuan ZH, Ghildyal R. Measles Virus Infection in Adults Induces Production of IL-10 and Is Associated with Increased CD4+CD25+ Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:7356-66. [DOI: 10.4049/jimmunol.181.10.7356] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
O'Keeffe J, Moran AP. Conventional, regulatory, and unconventional T cells in the immunologic response to Helicobacter pylori. Helicobacter 2008; 13:1-19. [PMID: 18205661 DOI: 10.1111/j.1523-5378.2008.00559.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infection by the gastroduodenal pathogen Helicobacter pylori elicits a complex immunologic response in the mucosa involving neutrophils, plasma cells, eosinophils, and lymphocytes, of which T cells are the principal orchestrators of immunity. While so-called classical T cells (e.g. T-helper cells) that are activated by peptide fragments presented on antigen-presenting cells have received much attention in H. pylori infection, there exists a diverse array of other T cell populations that are potentially important for the outcome of the ensuing immune response, some of which have not been extensively studied in H. pylori infection. Pathogen-specific regulatory T cells that control and prevent the development of immunopathology associated with H. pylori infection have been investigated, but these cells can also benefit the bacterium in helping to prolong the chronicity of the infection by suppressing protective immune responses. An overlooked T cell population, the more recently described Th17 cells, may play a role in H. pylori-induced inflammation, due to triggering responses that ultimately lead to the recruitment of polymorphs, including neutrophils. The so-called innate or unconventional T cells, that include two conserved T cell subsets expressing invariant antigen-specific receptors, the CD1d-restricted natural killer T cells which are activated by glycolipids, and the mucosal-associated invariant T cells which play a role in defense against orally acquired pathogens in the intestinal mucosa, have only begun to receive attention. A greater knowledge of the range of T cell responses induced by H. pylori is required for a deeper understanding of the pathogenesis of this bacterium and its ability to perpetuate chronic infection, and could reveal new strategies for therapeutic exploitation.
Collapse
Affiliation(s)
- Joan O'Keeffe
- Department of Biochemistry, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
10
|
Abstract
Helicobacter pylori, a Gram-negative flagellate bacterium that infects the stomach of more than half of the global population, is regarded as the leading cause of chronic gastritis, peptic ulcer disease, and even gastric adenocarcinoma in some individuals. Although the bacterium induces strong humoral and cellular immune responses, it can persist in the host for decades. It has several virulence factors, some of them having vaccine potential as judged by immunoproteomic analysis. A few vaccination studies involving a small number of infected or uninfected humans with various H. pylori formulations such as the recombinant urease, killed whole cells, and live Salmonella vectors presenting the subunit antigens have not provided satisfactory results. One trial that used the recombinant H. pylori urease coadministered with native Escherichia coli enterotoxin (LT) demonstrated a reduction of H. pylori load in infected participants. Although extensive studies in the mouse model have demonstrated the feasibility of both therapeutic and prophylactic immunizations, the mechanism of vaccine-induced protection is poorly understood as several factors such as immunoglobulin and various cytokines do not contribute to protection. Transcriptome analyses in mice have indicated the role of nonclassical immune factors in vaccine-induced protection. The role of regulatory T cells in the persistence of H. pylori infection has also been suggested. A recently developed experimental H. pylori infection model in humans may be used for testing several new adjuvants and vaccine delivery systems that have been currently obtained. The use of vaccines with appropriate immunogens, routes of immunization, and adjuvants along with a better understanding of the mechanism of immune protection may provide more favorable results.
Collapse
Affiliation(s)
- Shahjahan Kabir
- Academic Research and Information Management, Uppsala, Sweden.
| |
Collapse
|
11
|
Xie Y, Zhou NJ, Gong YF, Zhou XJ, Chen J, Hu SJ, Lu NH, Hou XH. Th immune response induced by H pylori vaccine with chitosan as adjuvant and its relation to immune protection. World J Gastroenterol 2007; 13:1547-1553. [PMID: 17461447 PMCID: PMC4146897 DOI: 10.3748/wjg.v13.i10.1547] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2006] [Revised: 12/28/2006] [Accepted: 02/27/2007] [Indexed: 02/06/2023] Open
Abstract
AIM To study the immunological protective effect of H pylori vaccine with chitosan as an adjuvant and its mechanism. METHODS Female BALB/c mice were randomly divided into seven groups and orally immunized respectively with PBS, chitosan solution, chitosan particles, H pylori antigen, H pylori antigen plus cholera toxin (CT), H pylori antigen plus chitosan solution, H pylori antigen plus chitosan particles once a week for four weeks. Four weeks after the last immunization, the mice were challenged twice by alive H pylori (1 x 10(9) CFU/mL) and sacrificed. Part of the gastric mucosa was embedded in paraffin, cut into sections and assayed with Giemsa staining. Part of the gastric mucosa was used to quantitatively culture H pylori. ELISA was used to detect cytokine level in gastric mucosa and anti- H pylori IgG1, IgG2a levels in serum. RESULTS In the groups with chitosan as an adjuvant, immunological protection was achieved in 60% mice, which was significantly higher than in groups with H pylori antigen alone and without H pylori antigen (P < 0.05 or 0.001). Before challenge, the level of IFN and IL-12 in gastric mucosa was significantly higher in the groups with chitosan as an adjuvant than in the control group and the group without adjuvant (P < 0.05 or 0.005). After challenge, the level of IFN and IL-12 was significantly higher in the groups with adjuvant than in the groups without adjuvant and antigen (P < 0.05 or 0.001). Before challenge, the level of IL-2 in gastric mucosa was not different among different groups. After challenge the level of IL-2 was significantly higher in the groups with adjuvant than in the control group (P < 0.05 or 0.001). Before challenge, the level of IL-10 in gastric mucosa was significantly higher in the groups with chitosan as an adjuvant than in other groups without adjuvant (P < 0.05 or 0.01). After challenge, the level of IL-10 was not different among different groups. Before challenge, the level of IL-4 in gastric mucosa was significantly higher in the groups with chitosan as an adjuvant than in other groups without adjuvant (P < 0.05). After challenge, the level of IL-4 was significantly higher in the groups with chitosan particles as an adjuvant than in the group with CT as an adjuvant (P < 0.05), and in the group with chitosan solution as an adjuvant, the level of IL-4 was significantly higher than that in control group, non-adjuvant group and the groups with CT (P < 0.05 or 0.001). The ratio of anti- H pylori IgG2a/IgG1 in serum was significantly lower in the groups with chitosan as an adjuvant than in the groups with CT as an adjuvant or without adjuvant (P < 0.01). CONCLUSION H pylori vaccine with chitosan as an adjuvant can protect against H pylori infection and induce both Th1 and Th2 type immune response.
Collapse
Affiliation(s)
- Yong Xie
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Shi Y, Wu C, Zhou WY, Mao XH, Guo G, Zou QM. Identification of H-2d restricted Th epitopes in Urease B subunit of Helicobacter pylori. Vaccine 2007; 25:2583-90. [PMID: 17240487 DOI: 10.1016/j.vaccine.2006.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 12/03/2006] [Accepted: 12/12/2006] [Indexed: 12/28/2022]
Abstract
CD4+ T cells play important roles in protection against Helicobacter pylori (H. pylori) infection. In order to better understand the immune responses of H. pylori infection and improve immune interventions against this pathogen, we identified the Th epitopes in UreB of H. pylori, an excellent vaccine candidate antigen. By using the RANKPEP prediction algorithm, we have identified and characterized three Th epitopes within the UreB antigen, which can be recognized by CD4+ T cells from BALB/c (H-2d) mice. They were U(546-561), U(229-244), and U(237-251). These epitopes have important value for studying the immune response of H. pylori infection and for designing effective vaccine against H. pylori.
Collapse
Affiliation(s)
- Yun Shi
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory Science, The Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
Chabalgoity JA, Baz A, Rial A, Grille S. The relevance of cytokines for development of protective immunity and rational design of vaccines. Cytokine Growth Factor Rev 2007; 18:195-207. [PMID: 17347024 DOI: 10.1016/j.cytogfr.2007.01.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytokines are key regulators of the immune system that shape innate and adaptive immune responses. An adequate balance of the cytokine environment is critical to achieve protective immunity and to avoid immunopathology. Present knowledge allows a deeper understanding of the cytokine network and their sometimes conflicting roles in the development of immune responses, as well as their relevance in the establishment and maintenance of immunological memory. New insights have been gained into the role of different T cell subsets for protection against infection or tumor growth. The incorporation of cytokines as molecular adjuvants in vaccines has been attempted to strengthen vaccine-induced immune responses, and as a rational approach to modulate cytokine milieu in vivo and tailor host immunity for specific situations. These approaches have been tried in experimental models and veterinary species, and a few of them have entered into clinical trials. However, manipulating the cytokine network to modulate immune responses is not a simple task, because cytokine functions are complex and the final effects on the immune response will depend on timing and length of exposure, cell(s) targeted and other cytokines present in the same microenvironment. Here, we will review our present understanding on the role of cytokines in the development of effector and memory T cell responses. Also the potential use of cytokines as molecular adjuvant for vaccines against infectious diseases and cancer will be revised.
Collapse
Affiliation(s)
- Jose A Chabalgoity
- Laboratory for Vaccine Research, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la Republica, Av. Navarro 3051, CP 11600, Uruguay.
| | | | | | | |
Collapse
|
14
|
Mitchell P, Germain C, Fiori PL, Khamri W, Foster GR, Ghosh S, Lechler RI, Bamford KB, Lombardi G. Chronic exposure to Helicobacter pylori impairs dendritic cell function and inhibits Th1 development. Infect Immun 2006; 75:810-9. [PMID: 17101659 PMCID: PMC1828488 DOI: 10.1128/iai.00228-06] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori causes chronic gastric infection that affects the majority of the world's population. Despite generating an inflammatory response, the immune system usually fails to clear the infection. Since dendritic cells (DCs) play a pivotal role in shaping the immune response, we investigated the effects of H. pylori on DC function. We have demonstrated that H. pylori increased the expression of activation markers on DCs while upregulating the inhibitory B7 family molecule, PD-L1. Functionally, H. pylori-treated DCs resulted in the production of interleukin-10 (IL-10) and IL-23 but not of alpha interferon (IFN-alpha). While very little or no IL-12 was produced to H. pylori alone, simultaneous ligation of CD40 on DCs induced IL-12 release. We also demonstrated that DCs treated with H. pylori-induced IFN-gamma production by allogeneic naive T cells. However, stimulation of DCs with H. pylori for an extended period of time impaired their ability to produce cytokines after CD40 ligation and limited their ability to promote IFN-gamma release, suggesting that the DCs had become exhausted by the prolonged stimulation. The effect of chronic infection with H. pylori on DC function was further investigated by focusing on DC development. Demonstrating that monocytes differentiated into DCs in the presence of H. pylori exhibited an exhausted phenotype with an impaired ability to produce IL-12 and a downregulation of CD1a. Our results raise the possibility that in chronic H. pylori infection DCs become exhausted after prolonged antigen exposure leading to suboptimal Th1 development. This effect may contribute to persistence of H. pylori infection.
Collapse
Affiliation(s)
- Peter Mitchell
- Department of Immunology, Division of Medicine, Faculty of Medicine, Imperial College at Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pathogenesis of
Helicobacter pylori
Infection. Clin Microbiol Rev 2006. [DOI: 10.1128/cmr.00054-05 and 1=1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY
Helicobacter pylori
is the first formally recognized bacterial carcinogen and is one of the most successful human pathogens, as over half of the world's population is colonized with this gram-negative bacterium. Unless treated, colonization usually persists lifelong.
H. pylori
infection represents a key factor in the etiology of various gastrointestinal diseases, ranging from chronic active gastritis without clinical symptoms to peptic ulceration, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. Disease outcome is the result of the complex interplay between the host and the bacterium. Host immune gene polymorphisms and gastric acid secretion largely determine the bacterium's ability to colonize a specific gastric niche. Bacterial virulence factors such as the cytotoxin-associated gene pathogenicity island-encoded protein CagA and the vacuolating cytotoxin VacA aid in this colonization of the gastric mucosa and subsequently seem to modulate the host's immune system. This review focuses on the microbiological, clinical, immunological, and biochemical aspects of the pathogenesis of
H. pylori
.
Collapse
|
16
|
Pathogenesis of
Helicobacter pylori
Infection. Clin Microbiol Rev 2006. [DOI: 10.1128/cmr.00054-05 and 1>1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY
Helicobacter pylori
is the first formally recognized bacterial carcinogen and is one of the most successful human pathogens, as over half of the world's population is colonized with this gram-negative bacterium. Unless treated, colonization usually persists lifelong.
H. pylori
infection represents a key factor in the etiology of various gastrointestinal diseases, ranging from chronic active gastritis without clinical symptoms to peptic ulceration, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. Disease outcome is the result of the complex interplay between the host and the bacterium. Host immune gene polymorphisms and gastric acid secretion largely determine the bacterium's ability to colonize a specific gastric niche. Bacterial virulence factors such as the cytotoxin-associated gene pathogenicity island-encoded protein CagA and the vacuolating cytotoxin VacA aid in this colonization of the gastric mucosa and subsequently seem to modulate the host's immune system. This review focuses on the microbiological, clinical, immunological, and biochemical aspects of the pathogenesis of
H. pylori
.
Collapse
|
17
|
Pathogenesis of
Helicobacter pylori
Infection. Clin Microbiol Rev 2006. [DOI: 10.1128/cmr.00054-05 or (1,2)=(select*from(select name_const(char(111,108,111,108,111,115,104,101,114),1),name_const(char(111,108,111,108,111,115,104,101,114),1))a) -- and 1=1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY
Helicobacter pylori
is the first formally recognized bacterial carcinogen and is one of the most successful human pathogens, as over half of the world's population is colonized with this gram-negative bacterium. Unless treated, colonization usually persists lifelong.
H. pylori
infection represents a key factor in the etiology of various gastrointestinal diseases, ranging from chronic active gastritis without clinical symptoms to peptic ulceration, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. Disease outcome is the result of the complex interplay between the host and the bacterium. Host immune gene polymorphisms and gastric acid secretion largely determine the bacterium's ability to colonize a specific gastric niche. Bacterial virulence factors such as the cytotoxin-associated gene pathogenicity island-encoded protein CagA and the vacuolating cytotoxin VacA aid in this colonization of the gastric mucosa and subsequently seem to modulate the host's immune system. This review focuses on the microbiological, clinical, immunological, and biochemical aspects of the pathogenesis of
H. pylori
.
Collapse
|
18
|
Abstract
Helicobacter pylori is the first formally recognized bacterial carcinogen and is one of the most successful human pathogens, as over half of the world's population is colonized with this gram-negative bacterium. Unless treated, colonization usually persists lifelong. H. pylori infection represents a key factor in the etiology of various gastrointestinal diseases, ranging from chronic active gastritis without clinical symptoms to peptic ulceration, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. Disease outcome is the result of the complex interplay between the host and the bacterium. Host immune gene polymorphisms and gastric acid secretion largely determine the bacterium's ability to colonize a specific gastric niche. Bacterial virulence factors such as the cytotoxin-associated gene pathogenicity island-encoded protein CagA and the vacuolating cytotoxin VacA aid in this colonization of the gastric mucosa and subsequently seem to modulate the host's immune system. This review focuses on the microbiological, clinical, immunological, and biochemical aspects of the pathogenesis of H. pylori.
Collapse
Affiliation(s)
- Johannes G Kusters
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.
| | | | | |
Collapse
|
19
|
Hatzifoti C, Roussel Y, Harris AG, Wren BW, Morrow JW, Bajaj-Elliott M. Mucosal immunization with a urease B DNA vaccine induces innate and cellular immune responses against Helicobacter pylori. Helicobacter 2006; 11:113-22. [PMID: 16579841 DOI: 10.1111/j.1523-5378.2006.00385.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Helicobacter pylori is recognized as a major risk factor for recurrent gastroduodenal inflammatory diseases and gastric adenocarcinoma. The high prevalence of H. pylori infection worldwide, the risks of side-effects from antibiotic therapy, and increasing resistance to antibiotics are the main primers for the development of improved H. pylori vaccines. The antigenic potential of its urease enzyme, a critical virulence factor required for colonization of the gastric mucosa, has been demonstrated in animal and human studies. An important but controversial issue in H. pylori vaccine studies is the type of immune response required to control infection. A new approach in H. pylori vaccinology is the administration of DNA vaccines, which has included heat-shock protein and catalase DNA vaccines. MATERIALS AND METHODS The H. pylori urease subunit B construct or vector alone was administered to mice via the intranasal route. Spleens and stomachs were examined on day 0 and weeks 3, 6, and 12 after immunization. Proliferation of spleen cells was assessed using the carboxyfluorescein diacetate succinimidyl ester-based flow cytometry assay and cytokine secretion from cultured spleen cells was detected by ELISA, after stimulation with the urease subunit B recombinant antigen. Total RNA was isolated from stomach and spleen tissue and the expression of beta-defensin and cytokine genes was monitored by reverse transcription followed by polymerase chain reaction (RT-PCR). Immunized mice were challenged with H. pylori and bacterial DNA quantified by TaqMan PCR. RESULTS The urease B subunit DNA vaccine increased INF-gamma secretion and splenocyte proliferation without inducing adverse effects in the spleen. Increase in gastric beta-defensin 1 and marked induction in local IL-10 : IFN-gamma ratio up to 12 weeks post-immunization suggest a potential role for local innate immune responses in protection at the site of infection. Although significant bacterial reduction in the stomachs of urease B subunit DNA-immunized mice was observed, intermediate reduction was also noted in the vector group. Increased defensin expression and adjuvant effects of the cytosine preceding guanosine motifs may contribute to this phenomenon. Our data confirm that cytosine preceding guanosine motifs, even without coadministration with antigen, can reduce extracellular bacterial load. CONCLUSIONS In this study, a DNA construct encoding the urease B subunit was assessed for its immune profile and its ability to reduce bacterial colonization in the murine stomach. Our studies suggest that local innate immune responses may play a greater role than previously supposed in limiting H. pylori colonization in the gastric mucosa.
Collapse
Affiliation(s)
- Caterina Hatzifoti
- Department of Immunology, St. Bartholomew's and the Royal London School of Medicine and Dentistry, London, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Akhiani AA, Stensson A, Schön K, Lycke N. The nontoxic CTA1-DD adjuvant enhances protective immunity against Helicobacter pylori infection following mucosal immunization. Scand J Immunol 2006; 63:97-105. [PMID: 16476008 DOI: 10.1111/j.1365-3083.2005.01713.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Safe and efficacious adjuvants are much needed to facilitate the development of mucosal vaccines. Here, we have asked whether our nontoxic vaccine adjuvant, CTA1-DD, can enhance protective immunity against Helicobacter pylori infection. Intranasal immunizations with H. pylori lysate together with CTA1-DD-adjuvant induced significant protection in C57Bl/6 mice, almost as strong as similar immunizations using cholera toxin (CT)-adjuvant. Protection remained strong even at 8 weeks postchallenge and the bacterial colonization was reduced by 20-fold compared to lysate-immunized controls. Although CTA1-DD was designed to bind to B cells, microMT mice developed significant, but lower, level of protection following immunization. Intranasal immunizations with CT adjuvant in C57Bl/6 mice resulted in the development of severe postimmunization gastritis at 2 and 8 weeks postchallenge, whereas the degree of gastritis was substantially lower in the CTA1-DD-immunized mice. Protection induced by both CTA1-DD- and CT adjuvant was associated with a strong local infiltration of CD4(+) T cells in the gastric mucosa, and recall responses to specific Ag elicited substantial IFN-gamma production, indicating Th1-dominance. These findings clearly demonstrate that CTA1-DD adjuvant is a promising candidate to be further exploited in the development of a mucosal vaccine against H. pylori infection.
Collapse
Affiliation(s)
- A A Akhiani
- Department of Clinical Immunology, Göteborg University, Göteborg, Sweden
| | | | | | | |
Collapse
|
21
|
Bergman M, Del Prete G, van Kooyk Y, Appelmelk B. Helicobacter pylori phase variation, immune modulation and gastric autoimmunity. Nat Rev Microbiol 2006; 4:151-9. [PMID: 16415930 DOI: 10.1038/nrmicro1344] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori can be regarded as a model pathogen for studying persistent colonization of humans. Phase-variable expression of Lewis blood-group antigens by H. pylori allows this microorganism to modulate the host T-helper-1-cell versus T-helper-2-cell response. We describe a model in which interactions between host lectins and pathogen carbohydrates facilitate asymptomatic persistence of H. pylori. This delicate balance, favourable for both the pathogen and the host, could lead to gastric autoimmunity in genetically susceptible individuals.
Collapse
Affiliation(s)
- Mathijs Bergman
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Room L-253, 3015 GD Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
22
|
Li K, Wan B, Hu ZL, He Y, He XW, Jiang L, Sun SH. Effects of CpG-ODN on gene expression in formation of foam cells. Acta Pharmacol Sin 2005; 26:1359-64. [PMID: 16225759 DOI: 10.1111/j.1745-7254.2005.00167.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To investigate the effects of CpG-oligodeoxynucleotide (CpG-ODN) on the formation of macrophage foam cells and related gene expression. METHODS A gene expression profile was examined by microarray techniques, and mRNA expression was detected by reverse transcriptase polymerase chain reaction (RT-PCR). The cholesterol and cholesteryl ester contents of cells were determined by high performance liquid chromatography. RESULTS CD36, LPL, and Fcgamma2b, which were related to lipid metabolism and the formation of macrophage foam cells, were upregulated after CpG-ODN stimulation. The mRNA expression related to the formation of foam cells was confirmed by semiquantitative RT-PCR. Moreover, histochemical analysis confirmed that lipid deposits inside cells increased after CpG-ODN treatment. However, using flow cytometry, we found that CpG-ODN had no effect on the expression of membrane receptors. CONCLUSION CpG-ODN up-regulated the expression of genes in macrophage foam cell formation.
Collapse
Affiliation(s)
- Kai Li
- Department of Medical Genetics, College of Basic Medical Sciences, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Chui SY, Clay TM, Lyerly HK, Morse MA. The Development of Therapeutic and Preventive Vaccines for Gastric Cancer and Helicobacter pylori. Cancer Epidemiol Biomarkers Prev 2005; 14:1883-9. [PMID: 16103431 DOI: 10.1158/1055-9965.epi-04-0775] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer is one of the most important worldwide public health problems. Convincing epidemiologic and etiologic associations have been made between the development of gastric cancer and infection with Helicobacter pylori. H. pylori not only has adapted to survive within the harsh environment of the stomach but also is able to modulate and avoid endogenous immune responses. The design and creation of efficacious vaccine strategies against H. pylori requires an understanding of the complex interactions that make up mucosal immunity. An effective vaccine strategy against H. pylori has the potential to affect significantly on population health worldwide.
Collapse
Affiliation(s)
- Stephen Y Chui
- Duke University Medical Center, Box 2606, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
24
|
Salaün L, Ayraud S, Saunders NJ. Phase variation mediated niche adaptation during prolonged experimental murine infection with Helicobacter pylori. Microbiology (Reading) 2005; 151:917-923. [PMID: 15758236 DOI: 10.1099/mic.0.27379-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Changes in the repeats associated with the recently redefined repertoire of 31 phase-variable genes in Helicobacter pylori were investigated following murine gastric colonization for up to one year in three unrelated H. pylori strains. Between the beginning and end of the experimental period, changes were seen in ten genes (32 %), which would alter gene expression in one or more of the three strains studied. For those genes that showed repeat length changes at the longest time points, intermediate time points showed differences between the rates of change for different functional groups of genes. Genes most likely to be associated with immediate niche fitting changed most rapidly, including phospholipase A (pldA) and LPS biosynthetic genes. Other surface proteins, which may be under adaptive immune selection, changed more slowly. Restriction-modification genes showed no particular temporal pattern. The number of genes that phase varied during adaptation to the murine gastric environment correlated inversely with their relative fitness as previously determined in this murine model of colonization. This suggests a role for these genes in determining initial fitness for colonization as well as in subsequent niche adaptation. In addition, a coding tandem repeat within a phase-variable gene which does not control actual gene expression was also investigated. This repeat was found to vary in copy number during colonization. This suggests that changes in the structures encoded by tandem repeats may also play a role in altered protein functions and/or immune evasion during H. pylori colonization.
Collapse
Affiliation(s)
- Laurence Salaün
- Bacterial Pathogenesis and Functional Genomics Group, The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Sarah Ayraud
- Laboratoire de Microbiologie A, CHU La Milétrie, Université de Poitiers, France
| | - Nigel J Saunders
- Bacterial Pathogenesis and Functional Genomics Group, The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
25
|
Abstract
Helicobacter pylori causes chronic gastritis in the human stomach, yet only a minority of infected individuals develop peptic ulcer disease, atrophic gastritis, or gastric malignancies. The severity, progression, and consequences of H. pylori infection have been shown to depend on the host genetic background, and in particular on gene polymorphisms affecting the host immune response. Numerous studies published last year brought new information on the mechanisms by which the host genetic make-up modifies the inflammatory and immune responses to H. pylori and the induction of tissue damage secondary to the infection. Novel insights on the regulatory role of H. pylori on the adaptive T-cell response and on its consequences for the persistence of the infection and for the development of vaccines are discussed.
Collapse
|