1
|
Koper P, Wysokiński J, Żebracki K, Decewicz P, Dziewit Ł, Kalita M, Palusińska-Szysz M, Mazur A. Comparative analysis of Legionella lytica genome identifies specific metabolic traits and virulence factors. Sci Rep 2025; 15:5554. [PMID: 39952999 PMCID: PMC11828895 DOI: 10.1038/s41598-025-90154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025] Open
Abstract
The complete genome of Legionella lytica PCM 2298 was sequenced and analyzed to provide insights into its genomic structure, virulence potential, and evolutionary position within the Legionella genus. The genome comprised a 3.2 Mbp chromosome and two plasmids, pLlyPCM2298_1 and pLlyPCM2298_2, contributing to a total genome size of 3.7 Mbp. Functional annotation identified 3,165 coding sequences, including genes associated with known virulence factors such as the major outer membrane protein (MOMP), the macrophage infectivity potentiator (Mip), and a comprehensive set of secretion systems (type II, type IVA, and type IVB Dot/Icm type IV secretion system). Notably, L. lytica contributed 383 unique genes to the Legionella pangenome, with 232 identified effector proteins, of which 35 were plasmid-encoded. The identification of unique genes, particularly those on plasmids, suggests an evolutionary strategy favoring horizontal gene transfer and niche adaptation. The effector repertoire included proteins with domains characteristic of host interaction strategies, such as ankyrin repeats and protein kinases. Comparative analyses showed that while L. lytica shares core virulence traits with other Legionella species, it has distinct features that may contribute to its adaptability and pathogenic potential. These findings underscore the genomic diversity within the genus and contribute to a deeper understanding of Legionella's ecological and clinical significance. A custom web application was developed using the R Shiny library, enabling users to interactively explore the expanded Legionella pangenome through UpSet plots.
Collapse
Affiliation(s)
- Piotr Koper
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland.
- Bioinformatics and Biostatistics Laboratory, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland.
| | - Jakub Wysokiński
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Kamil Żebracki
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Przemysław Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Łukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Michał Kalita
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Marta Palusińska-Szysz
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Andrzej Mazur
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
2
|
Lidbury IDEA, Hitchcock A, Groenhof SRM, Connolly AN, Moushtaq L. New insights in bacterial organophosphorus cycling: From human pathogens to environmental bacteria. Adv Microb Physiol 2024; 84:1-49. [PMID: 38821631 DOI: 10.1016/bs.ampbs.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
In terrestrial and aquatic ecosystems, phosphorus (P) availability controls primary production, with consequences for climate regulation and global food security. Understanding the microbial controls on the global P cycle is a prerequisite for minimising our reliance on non-renewable phosphate rock reserves and reducing pollution associated with excessive P fertiliser use. This recognised importance has reinvigorated research into microbial P cycling, which was pioneered over 75 years ago through the study of human pathogenic bacteria-host interactions. Immobilised organic P represents a significant fraction of the total P pool. Hence, microbes have evolved a plethora of mechanisms to transform this fraction into labile inorganic phosphate, the building block for numerous biological molecules. The 'genomics era' has revealed an extraordinary diversity of organic P cycling genes exist in the environment and studies going 'back to the lab' are determining how this diversity relates to function. Through this integrated approach, many hitherto unknown genes and proteins that are involved in microbial P cycling have been discovered. Not only do these fundamental discoveries push the frontier of our knowledge, but several examples also provide exciting opportunities for biotechnology and present possible solutions for improving the sustainability of how we grow our food, both locally and globally. In this review, we provide a comprehensive overview of bacterial organic P cycling, covering studies on human pathogens and how this knowledge is informing new discoveries in environmental microbiology.
Collapse
Affiliation(s)
- Ian D E A Lidbury
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom.
| | - Andrew Hitchcock
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom; Plants, Photosynthesis, and Soil, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Sophie R M Groenhof
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Alex N Connolly
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Laila Moushtaq
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
3
|
Weiler AJ, Spitz O, Gudzuhn M, Schott-Verdugo SN, Kamel M, Thiele B, Streit WR, Kedrov A, Schmitt L, Gohlke H, Kovacic F. A phospholipase B from Pseudomonas aeruginosa with activity towards endogenous phospholipids affects biofilm assembly. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159101. [DOI: 10.1016/j.bbalip.2021.159101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022]
|
4
|
Diwo M, Michel W, Aurass P, Kuhle-Keindorf K, Pippel J, Krausze J, Wamp S, Lang C, Blankenfeldt W, Flieger A. NAD(H)-mediated tetramerization controls the activity of Legionella pneumophila phospholipase PlaB. Proc Natl Acad Sci U S A 2021; 118:e2017046118. [PMID: 34074754 PMCID: PMC8201859 DOI: 10.1073/pnas.2017046118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The virulence factor PlaB promotes lung colonization, tissue destruction, and intracellular replication of Legionella pneumophila, the causative agent of Legionnaires' disease. It is a highly active phospholipase exposed at the bacterial surface and shows an extraordinary activation mechanism by tetramer deoligomerization. To unravel the molecular basis for enzyme activation and localization, we determined the crystal structure of PlaB in its tetrameric form. We found that the tetramer is a dimer of identical dimers, and a monomer consists of an N-terminal α/β-hydrolase domain expanded by two noncanonical two-stranded β-sheets, β-6/β-7 and β-9/β-10. The C-terminal domain reveals a fold displaying a bilobed β-sandwich with a hook structure required for dimer formation and structural complementation of the enzymatic domain in the neighboring monomer. This highlights the dimer as the active form. Δβ-9/β-10 mutants showed a decrease in the tetrameric fraction and altered activity profiles. The variant also revealed restricted binding to membranes resulting in mislocalization and bacterial lysis. Unexpectedly, we observed eight NAD(H) molecules at the dimer/dimer interface, suggesting that these molecules stabilize the tetramer and hence lead to enzyme inactivation. Indeed, addition of NAD(H) increased the fraction of the tetramer and concomitantly reduced activity. Together, these data reveal structural elements and an unprecedented NAD(H)-mediated tetramerization mechanism required for spatial and enzymatic control of a phospholipase virulence factor. The allosteric regulatory process identified here is suited to fine tune PlaB in a way that protects Legionella pneumophila from self-inflicted lysis while ensuring its activity at the pathogen-host interface.
Collapse
Affiliation(s)
- Maurice Diwo
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Wiebke Michel
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Philipp Aurass
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Katja Kuhle-Keindorf
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Jan Pippel
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Joern Krausze
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Sabrina Wamp
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Christina Lang
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany;
| |
Collapse
|
5
|
Varela-Barca FNT, Felipe MBMC, de Medeiros SRB. Mutational spectra induced by flavonoid extracts from pepper tree (Schinus terebinthifolius, Raddi) stem bark. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:29-38. [PMID: 33226671 DOI: 10.1002/em.22415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 06/11/2023]
Abstract
Flavonoids are a diverse family of plant compounds that are involved in pigmentation, protection, and endogenous regulation. Flavonoids also have medicinal applications, suggesting that they may exert chemoprotective effects. However, some studies have shown, that some plant flavonoids have oxidative and toxic effects, including those produced by Schinus terebinthifolius. In Brazil, extracts of this plant are widely used for medical purposes. In this study, we analyzed the mutagenic potential of two flavonoid-enriched fractions from Brazilian pepper tree stem bark using Escherichia coli CC strains deficient and proficient in enzymes involved in the DNA repair of oxidative lesions. The highest mutagenic response was detected in the CC104mutMmutY strain but CC104mutY showed a higher mutation frequency than CC104mutM. The spectrum of mutations induced in plasmid DNA is composed of mutations typically caused by oxidative lesions. However, a new type of lesion must be occurred to explain the cytotoxicity, higher mutation rates in the CC104mutY strain, and the rare A:T → T:A and G:C → C:G transversions found in this work.
Collapse
|
6
|
Virulence Traits of Environmental and Clinical Legionella pneumophila Multilocus Variable-Number Tandem-Repeat Analysis (MLVA) Genotypes. Appl Environ Microbiol 2018. [PMID: 29523542 DOI: 10.1128/aem.00429-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Legionella pneumophila causes water-based infections resulting in severe pneumonia. Recently, we showed that different MLVA-8 (multilocus variable-number tandem-repeat analysis using 8 loci) genotypes dominated different sites of a drinking-water distribution system. Each genotype displayed a unique temperature-dependent growth behavior. Here we compared the pathogenicity potentials of different MLVA-8 genotypes of environmental and clinical strains. The virulence traits studied were hemolytic activity and cytotoxicity toward amoebae and macrophages. Clinical strains were significantly more hemolytic than environmental strains, while their cytotoxicity toward amoebae was significantly lower at 30°C. No significant differences were detected between clinical and environmental strains in cytotoxicity toward macrophages. Significant differences in virulence were observed between the environmental genotypes (Gt). Gt15 strains showed a significantly higher hemolytic activity. In contrast, Gt4 and Gt6 strains were more infective toward Acanthamoeba castellanii Moreover, Gt4 strains exhibited increased cytotoxicity toward macrophages and demonstrated a broader temperature range of amoebal lysis than Gt6 and Gt15 strains. Understanding the virulence traits of Legionella genotypes may improve the assessment of public health risks of Legionella in drinking water.IMPORTANCELegionella pneumophila is the causative agent of a severe form of pneumonia. Here we demonstrated that clinical strains were significantly more cytotoxic toward red blood cells than environmental strains, while their cytotoxicity toward macrophages was similar. Genotype 4 (Gt4) strains were highly cytotoxic toward amoebae and macrophages and lysed amoebae in a broader temperature range than to the other studied genotypes. The results can explain the relatively high success of Gt4 in the environment and in clinical samples; thus, Gt4 strains should be considered a main factor for the assessment of public health risks of Legionella in drinking water. Our findings shed light on the ecology, virulence, and pathogenicity potential of different L. pneumophila genotypes, which can be a valuable parameter for future modeling and quantitative microbial risk assessment of Legionella in drinking-water systems.
Collapse
|
7
|
Lang C, Hiller M, Flieger A. Disulfide loop cleavage of Legionella pneumophila PlaA boosts lysophospholipase A activity. Sci Rep 2017; 7:16313. [PMID: 29176577 PMCID: PMC5701174 DOI: 10.1038/s41598-017-12796-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023] Open
Abstract
L. pneumophila, an important facultative intracellular bacterium, infects the human lung and environmental protozoa. At least fifteen phospholipases A (PLA) are encoded in its genome. Three of which, namely PlaA, PlaC, and PlaD, belong to the GDSL lipase family abundant in bacteria and higher plants. PlaA is a lysophospholipase A (LPLA) that destabilizes the phagosomal membrane in absence of a protective factor. PlaC shows PLA and glycerophospholipid: cholesterol acyltransferase (GCAT) activities which are activated by zinc metalloproteinase ProA via cleavage of a disulphide loop. In this work, we compared GDSL enzyme activities, their secretion, and activation of PlaA. We found that PlaA majorly contributed to LPLA, PlaC to PLA, and both substrate-dependently to GCAT activity. Western blotting revealed that PlaA and PlaC are type II-secreted and both processed by ProA. Interestingly, ProA steeply increased LPLA but diminished GCAT activity of PlaA. Deletion of 20 amino acids within a predicted disulfide loop of PlaA had the same effect. In summary, we propose a model by which ProA processes PlaA via disulfide loop cleavage leading to a steep increase in LPLA activity. Our results help to further characterize the L. pneumophila GDSL hydrolases, particularly PlaA, an enzyme acting in the Legionella-containing phagosome.
Collapse
Affiliation(s)
- Christina Lang
- Division of Enteropathogenic Bacteria and Legionella (FG11), Robert Koch-Institut, Burgstr. 37, D-38855, Wernigerode, Germany
| | - Miriam Hiller
- Division of Enteropathogenic Bacteria and Legionella (FG11), Robert Koch-Institut, Burgstr. 37, D-38855, Wernigerode, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella (FG11), Robert Koch-Institut, Burgstr. 37, D-38855, Wernigerode, Germany.
| |
Collapse
|
8
|
Hiller M, Lang C, Michel W, Flieger A. Secreted phospholipases of the lung pathogen Legionella pneumophila. Int J Med Microbiol 2017; 308:168-175. [PMID: 29108710 DOI: 10.1016/j.ijmm.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/06/2017] [Accepted: 10/22/2017] [Indexed: 11/28/2022] Open
Abstract
Legionella pneumophila is an intracellular pathogen and the main causative agent of Legionnaires' disease, a potentially fatal pneumonia. The bacteria infect both mammalian cells and environmental hosts, such as amoeba. Inside host cells, the bacteria withstand the multifaceted defenses of the phagocyte and replicate within a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). For establishment and maintenance of the infection, L. pneumophila secretes many proteins including effector proteins by means of different secretion systems and outer membrane vesicles. Among these are a large variety of lipolytic enzymes which possess phospholipase/lysophospholipase and/or glycerophospholipid:cholesterol acyltransferase activities. Secreted lipolytic activities may contribute to bacterial virulence, for example via modification of eukaryotic membranes, such as the LCV. In this review, we describe the secretion systems of L. pneumophila, introduce the classification of phospholipases, and summarize the state of the art on secreted L. pneumophila phospholipases. We especially highlight those enzymes secreted via the type II secretion system Lsp, via the type IVB secretion system Dot/Icm, via outer membrane vesicles, and such where the mode of secretion has not yet been defined. We also give an overview on the complexity of their activities, activation mechanisms, localization, growth-phase dependent abundance, and their role in infection.
Collapse
Affiliation(s)
- Miriam Hiller
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Christina Lang
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Wiebke Michel
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany.
| |
Collapse
|
9
|
Fozo EM, Rucks EA. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. Adv Microb Physiol 2016; 69:51-155. [PMID: 27720012 DOI: 10.1016/bs.ampbs.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora.
Collapse
Affiliation(s)
- E M Fozo
- University of Tennessee, Knoxville, TN, United States.
| | - E A Rucks
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|
10
|
Eisenreich W, Heuner K. The life stage-specific pathometabolism of Legionella pneumophila. FEBS Lett 2016; 590:3868-3886. [PMID: 27455397 DOI: 10.1002/1873-3468.12326] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/08/2016] [Accepted: 07/21/2016] [Indexed: 12/17/2022]
Abstract
The genus Legionella belongs to Gram-negative bacteria found ubiquitously in aquatic habitats, where it grows in natural biofilms and replicates intracellularly in various protozoa (amoebae, ciliates). L. pneumophila is known as the causative agent of Legionnaires' disease, since it is also able to replicate in human alveolar macrophages, finally leading to inflammation of the lung and pneumonia. To withstand the degradation by its host cells, a Legionella-containing vacuole (LCV) is established for intracellular replication, and numerous effector proteins are secreted into the host cytosol using a type four B secretion system (T4BSS). During intracellular replication, Legionella has a biphasic developmental cycle that alternates between a replicative and a transmissive form. New knowledge about the host-adapted and life stage-dependent metabolism of intracellular L. pneumophila revealed a bipartite metabolic network with life stage-specific usages of amino acids (e.g. serine), carbohydrates (e.g. glucose) and glycerol as major substrates. These metabolic features are associated with the differentiation of the intracellular bacteria, and thus have an important impact on the virulence of L. pneumophila.
Collapse
Affiliation(s)
| | - Klaus Heuner
- Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
11
|
Abstract
Bacterial sphingomyelinases and phospholipases are a heterogeneous group of esterases which are usually surface associated or secreted by a wide variety of Gram-positive and Gram-negative bacteria. These enzymes hydrolyze sphingomyelin and glycerophospholipids, respectively, generating products identical to the ones produced by eukaryotic enzymes which play crucial roles in distinct physiological processes, including membrane dynamics, cellular signaling, migration, growth, and death. Several bacterial sphingomyelinases and phospholipases are essential for virulence of extracellular, facultative, or obligate intracellular pathogens, as these enzymes contribute to phagosomal escape or phagosomal maturation avoidance, favoring tissue colonization, infection establishment and progression, or immune response evasion. This work presents a classification proposal for bacterial sphingomyelinases and phospholipases that considers not only their enzymatic activities but also their structural aspects. An overview of the main physiopathological activities is provided for each enzyme type, as are examples in which inactivation of a sphingomyelinase- or a phospholipase-encoding gene impairs the virulence of a pathogen. The identification of sphingomyelinases and phospholipases important for bacterial pathogenesis and the development of inhibitors for these enzymes could generate candidate vaccines and therapeutic agents, which will diminish the impacts of the associated human and animal diseases.
Collapse
|
12
|
Aurass P, Gerlach T, Becher D, Voigt B, Karste S, Bernhardt J, Riedel K, Hecker M, Flieger A. Life Stage-specific Proteomes of Legionella pneumophila Reveal a Highly Differential Abundance of Virulence-associated Dot/Icm effectors. Mol Cell Proteomics 2015; 15:177-200. [PMID: 26545400 DOI: 10.1074/mcp.m115.053579] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 12/28/2022] Open
Abstract
Major differences in the transcriptional program underlying the phenotypic switch between exponential and post-exponential growth of Legionella pneumophila were formerly described characterizing important alterations in infection capacity. Additionally, a third state is known where the bacteria transform in a viable but nonculturable state under stress, such as starvation. We here describe phase-related proteomic changes in exponential phase (E), postexponential phase (PE) bacteria, and unculturable microcosms (UNC) containing viable but nonculturable state cells, and identify phase-specific proteins. We present data on different bacterial subproteomes of E and PE, such as soluble whole cell proteins, outer membrane-associated proteins, and extracellular proteins. In total, 1368 different proteins were identified, 922 were quantified and 397 showed differential abundance in E/PE. The quantified subproteomes of soluble whole cell proteins, outer membrane-associated proteins, and extracellular proteins; 841, 55, and 77 proteins, respectively, were visualized in Voronoi treemaps. 95 proteins were quantified exclusively in E, such as cell division proteins MreC, FtsN, FtsA, and ZipA; 33 exclusively in PE, such as motility-related proteins of flagellum biogenesis FlgE, FlgK, and FliA; and 9 exclusively in unculturable microcosms soluble whole cell proteins, such as hypothetical, as well as transport/binding-, and metabolism-related proteins. A high frequency of differentially abundant or phase-exclusive proteins was observed among the 91 quantified effectors of the major virulence-associated protein secretion system Dot/Icm (> 60%). 24 were E-exclusive, such as LepA/B, YlfA, MavG, Lpg2271, and 13 were PE-exclusive, such as RalF, VipD, Lem10. The growth phase-related specific abundance of a subset of Dot/Icm virulence effectors was confirmed by means of Western blotting. We therefore conclude that many effectors are predominantly abundant at either E or PE which suggests their phase specific function. The distinct temporal or spatial presence of such proteins might have important implications for functional assignments in the future or for use as life-stage specific markers for pathogen analysis.
Collapse
Affiliation(s)
- Philipp Aurass
- From the ‡Robert Koch-Institut, Wernigerode Branch, Division of Enteropathogenic Bacteria and Legionella (FG11), Burgstr. 37, 38855 Wernigerode, Germany
| | - Thomas Gerlach
- From the ‡Robert Koch-Institut, Wernigerode Branch, Division of Enteropathogenic Bacteria and Legionella (FG11), Burgstr. 37, 38855 Wernigerode, Germany
| | - Dörte Becher
- §Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| | - Birgit Voigt
- §Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| | - Susanne Karste
- From the ‡Robert Koch-Institut, Wernigerode Branch, Division of Enteropathogenic Bacteria and Legionella (FG11), Burgstr. 37, 38855 Wernigerode, Germany
| | - Jörg Bernhardt
- §Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| | - Katharina Riedel
- §Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| | - Michael Hecker
- §Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| | - Antje Flieger
- From the ‡Robert Koch-Institut, Wernigerode Branch, Division of Enteropathogenic Bacteria and Legionella (FG11), Burgstr. 37, 38855 Wernigerode, Germany;
| |
Collapse
|
13
|
Kuhle K, Krausze J, Curth U, Rössle M, Heuner K, Lang C, Flieger A. Oligomerization inhibits Legionella pneumophila PlaB phospholipase A activity. J Biol Chem 2014; 289:18657-66. [PMID: 24811180 DOI: 10.1074/jbc.m114.573196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intracellularly replicating lung pathogen Legionella pneumophila consists of an extraordinary variety of phospholipases, including at least 15 different phospholipases A (PLA). Among them, PlaB, the first characterized member of a novel lipase family, is a hemolytic virulence factor that exhibits the most prominent PLA activity in L. pneumophila. We analyzed here protein oligomerization, the importance of oligomerization for activity, addressed further essential regions for activity within the PlaB C terminus, and the significance of PlaB-derived lipolytic activity for L. pneumophila intracellular replication. We determined by means of analytical ultracentrifugation and small angle x-ray scattering analysis that PlaB forms homodimers and homotetramers. The C-terminal 5, 10, or 15 amino acids, although the individual regions contributed to PLA activity, were not essential for protein tetramerization. Infection of mouse macrophages with L. pneumophila wild type, plaB knock-out mutant, and plaB complementing or various mutated plaB-harboring strains showed that catalytic activity of PlaB promotes intracellular replication. We observed that PlaB was most active in the lower nanomolar concentration range but not at or only at a low level at concentration above 0.1 μm where it exists in a dimer/tetramer equilibrium. We therefore conclude that PlaB is a virulence factor that, on the one hand, assembles in inactive tetramers at micromolar concentrations. On the other hand, oligomer dissociation at nanomolar concentrations activates PLA activity. Our data highlight the first example of concentration-dependent phospholipase inactivation by tetramerization, which may protect the bacterium from internal PLA activity, but enzyme dissociation may allow its activation after export.
Collapse
Affiliation(s)
- Katja Kuhle
- From the Robert Koch-Institut, 38855 Wernigerode
| | - Joern Krausze
- the Helmholtz Center for Infection Research, 38124 Braunschweig
| | - Ute Curth
- the Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover
| | - Manfred Rössle
- the European Molecular Biology Laboratory, 22603 Hamburg Branch, c/o DESY, Hamburg, and the Lübeck University of Applied Sciences, 23562 Lübeck, Germany
| | - Klaus Heuner
- From the Robert Koch-Institut, 38855 Wernigerode
| | | | | |
Collapse
|
14
|
Fonseca MV, Swanson MS. Nutrient salvaging and metabolism by the intracellular pathogen Legionella pneumophila. Front Cell Infect Microbiol 2014; 4:12. [PMID: 24575391 PMCID: PMC3920079 DOI: 10.3389/fcimb.2014.00012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 01/23/2014] [Indexed: 11/13/2022] Open
Abstract
The Gram-negative bacterium Legionella pneumophila is ubiquitous in freshwater environments as a free-swimming organism, resident of biofilms, or parasite of protozoa. If the bacterium is aerosolized and inhaled by a susceptible human host, it can infect alveolar macrophages and cause a severe pneumonia known as Legionnaires' disease. A sophisticated cell differentiation program equips L. pneumophila to persist in both extracellular and intracellular niches. During its life cycle, L. pneumophila alternates between at least two distinct forms: a transmissive form equipped to infect host cells and evade lysosomal degradation, and a replicative form that multiplies within a phagosomal compartment that it has retooled to its advantage. The efficient changeover between transmissive and replicative states is fundamental to L. pneumophila's fitness as an intracellular pathogen. The transmission and replication programs of L. pneumophila are governed by a number of metabolic cues that signal whether conditions are favorable for replication or instead trigger escape from a spent host. Several lines of experimental evidence gathered over the past decade establish strong links between metabolism, cellular differentiation, and virulence of L. pneumophila. Herein, we focus on current knowledge of the metabolic components employed by intracellular L. pneumophila for cell differentiation, nutrient salvaging and utilization of host factors. Specifically, we highlight the metabolic cues that are coupled to bacterial differentiation, nutrient acquisition systems, and the strategies utilized by L. pneumophila to exploit host metabolites for intracellular replication.
Collapse
Affiliation(s)
- Maris V Fonseca
- Science and Mathematics Division, Monroe County Community College Monroe, MI, USA
| | - Michele S Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School Ann Arbor, MI, USA
| |
Collapse
|
15
|
Buerth C, Kovacic F, Stock J, Terfrüchte M, Wilhelm S, Jaeger KE, Feldbrügge M, Schipper K, Ernst JF, Tielker D. Uml2 is a novel CalB-type lipase of Ustilago maydis with phospholipase A activity. Appl Microbiol Biotechnol 2014; 98:4963-73. [DOI: 10.1007/s00253-013-5493-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 12/06/2013] [Accepted: 12/24/2013] [Indexed: 10/25/2022]
|
16
|
Li L, Mou X, Nelson DR. Characterization of Plp, a phosphatidylcholine-specific phospholipase and hemolysin of Vibrio anguillarum. BMC Microbiol 2013; 13:271. [PMID: 24279474 PMCID: PMC4222444 DOI: 10.1186/1471-2180-13-271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vibrio anguillarum is the causative agent of vibriosis in fish. Several extracellular proteins secreted by V. anguillarum have been shown to contribute to virulence. While two hemolysin gene clusters, vah1-plp and rtxACHBDE, have been previously identified and described, the activities of the protein encoded by the plp gene were not known. Here we describe the biochemical activities of the plp-encoded protein and its role in pathogenesis. RESULTS The plp gene, one of the components in vah1 cluster, encodes a 416-amino-acid protein (Plp), which has homology to lipolytic enzymes containing the catalytic site amino acid signature SGNH. Hemolytic activity of the plp mutant increased 2-3-fold on sheep blood agar indicating that plp represses vah1; however, hemolytic activity of the plp mutant decreased by 2-3-fold on fish blood agar suggesting that Plp has different effects against erythrocytes from different species. His6-tagged recombinant Plp protein (rPlp) was over-expressed in E. coli. Purified and re-folded active rPlp exhibited phospholipase A2 activity against phosphatidylcholine and no activity against phosphatidylserine, phosphatidylethanolamine, or sphingomyelin. Characterization of rPlp revealed broad optimal activities at pH 5-9 and at temperatures of 30-64°C. Divalent cations and metal chelators did not affect activity of rPlp. We also demonstrated that Plp was secreted using thin layer chromatography and immunoblot analysis. Additionally, rPlp had strong hemolytic activity towards rainbow trout erythrocytes, but not to sheep erythrocytes suggesting that rPlp is optimized for lysis of phosphatidylcholine-rich fish erythrocytes. Further, only the loss of the plp gene had a significant effect on hemolytic activity of culture supernatant on fish erythrocytes, while the loss of rtxA and/or vah1 had little effect. However, V. anguillarum strains with mutations in plp or in plp and vah1 exhibited no significant reduction in virulence compared to the wild type strain when used to infect rainbow trout. CONCLUSION The plp gene of V. anguillarum encoding a phospholipase with A2 activity is specific for phosphatidylcholine and, therefore, able to lyse fish erythrocytes, but not sheep erythrocytes. Mutation of plp does not affect the virulence of V. anguillarum in rainbow trout.
Collapse
Affiliation(s)
- Ling Li
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Rd,, Kingston, RI 02881, USA.
| | | | | |
Collapse
|
17
|
Gedvilaite A, Jomantiene R, Dabrisius J, Norkiene M, Davis RE. Functional analysis of a lipolytic protein encoded in phytoplasma phage based genomic island. Microbiol Res 2013; 169:388-94. [PMID: 24168924 DOI: 10.1016/j.micres.2013.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/09/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
Abstract
Wall-less bacteria known as phytoplasmas are obligate transkingdom parasites and pathogens of plants and insect vectors. These unusual bacteria possess some of the smallest genomes known among pathogenic bacteria, and have never been successfully isolated in artificial culture. Disease symptoms induced by phytoplasmas in infected plants include abnormal growth and often severe yellowing of leaves, but mechanisms involved in phytoplasma parasitism and pathogenicity are little understood. A phage based genomic island (sequence variable mosaic, SVM) in the genome of Malaysian periwinkle yellows (MPY) phytoplasma harbors a gene encoding membrane-targeted proteins, including a putative phospholipase (PL), potentially important in pathogen-host interactions. Since some phytoplasmal disease symptoms could possibly be accounted for, at least in part, by damage and/or degradation of host cell membranes, we hypothesize that the MPY phytoplasma putative PL is an active enzyme. To test this hypothesis, functional analysis of the MPY putative pl gene-encoded protein was carried out in vitro after its expression in bacterial and yeast hosts. The results demonstrated that the heterologously expressed phytoplasmal putative PL is an active lipolytic enzyme and could possibly act as a pathogenicity factor in the plant, and/or insect, host.
Collapse
Affiliation(s)
- Alma Gedvilaite
- Institute of Biotechnology Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | - Jonas Dabrisius
- Institute of Biotechnology Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Milda Norkiene
- Institute of Biotechnology Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania; Nature Research Centre, Akademijos 2, Vilnius, Lithuania
| | - Robert E Davis
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
18
|
Brzuszkiewicz E, Schulz T, Rydzewski K, Daniel R, Gillmaier N, Dittmann C, Holland G, Schunder E, Lautner M, Eisenreich W, Lück C, Heuner K. Legionella oakridgensis ATCC 33761 genome sequence and phenotypic characterization reveals its replication capacity in amoebae. Int J Med Microbiol 2013; 303:514-28. [PMID: 23932911 DOI: 10.1016/j.ijmm.2013.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/27/2013] [Accepted: 07/10/2013] [Indexed: 11/30/2022] Open
Abstract
Legionella oakridgensis is able to cause Legionnaires' disease, but is less virulent compared to L. pneumophila strains and very rarely associated with human disease. L. oakridgensis is the only species of the family legionellae which is able to grow on media without additional cysteine. In contrast to earlier publications, we found that L. oakridgensis is able to multiply in amoebae. We sequenced the genome of L. oakridgensis type strain OR-10 (ATCC 33761). The genome is smaller than the other yet sequenced Legionella genomes and has a higher G+C-content of 40.9%. L. oakridgensis lacks a flagellum and it also lacks all genes of the flagellar regulon except of the alternative sigma-28 factor FliA and the anti-sigma-28 factor FlgM. Genes encoding structural components of type I, type II, type IV Lvh and type IV Dot/Icm, Sec- and Tat-secretion systems could be identified. Only a limited set of Dot/Icm effector proteins have been recognized within the genome sequence of L. oakridgensis. Like in L. pneumophila strains, various proteins with eukaryotic motifs and eukaryote-like proteins were detected. We could demonstrate that the Dot/Icm system is essential for intracellular replication of L. oakridgensis. Furthermore, we identified new putative virulence factors of Legionella.
Collapse
Affiliation(s)
- Elzbieta Brzuszkiewicz
- Department of Genomics and Applied Microbiology & Göttinger Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Seipel K, Flieger A. Legionella phospholipases implicated in infection: determination of enzymatic activities. Methods Mol Biol 2013; 954:355-65. [PMID: 23150408 DOI: 10.1007/978-1-62703-161-5_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The intracellularly replicating lung pathogen Legionella pneumophila expresses a multitude of different phospholipases which are important virulence tools during host cell infection. To study the lipolytic properties including substrate specificities of potential L. pneumophila phospholipases A (PLA), we used different assays to monitor lipid hydrolysis. Here we describe methods for quantitative analysis of liberated fatty acids via a photometric assay and for identification of specific lipids which are generated by PLA action by means of lipid extraction and thin-layer chromatography. The latter approach also identifies glycerophospholipid:cholesterol acyltransferase activity which may be associated with PLA activity and is responsible for the transfer of fatty acids derived from a phospholipid to an acceptor molecule, such as cholesterol. These methods applied for specific L. pneumophila enzyme knockout mutants compared to the wild type or for recombinantly expressed protein allow to conclude on substrate specificity and/or contribution of a specific enzyme to the total lipolytic activity. Further, via analysis of separated cellular fractions, such as culture supernatants and cell lysates, information on the localization of the enzymes will be obtained.
Collapse
Affiliation(s)
- Kathleen Seipel
- Division of Bacterial Infections (FG11), Robert Koch-Institut, Wernigerode, Germany
| | | |
Collapse
|
20
|
Aurass P, Schlegel M, Metwally O, Harding CR, Schroeder GN, Frankel G, Flieger A. The Legionella pneumophila Dot/Icm-secreted effector PlcC/CegC1 together with PlcA and PlcB promotes virulence and belongs to a novel zinc metallophospholipase C family present in bacteria and fungi. J Biol Chem 2013; 288:11080-92. [PMID: 23457299 PMCID: PMC3630882 DOI: 10.1074/jbc.m112.426049] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/19/2013] [Indexed: 11/06/2022] Open
Abstract
Legionella pneumophila is a water-borne bacterium that causes pneumonia in humans. PlcA and PlcB are two previously defined L. pneumophila proteins with homology to the phosphatidylcholine-specific phospholipase C (PC-PLC) of Pseudomonas fluorescens. Additionally, we found that Lpg0012 shows similarity to PLCs and has been shown to be a Dot/Icm-injected effector, CegC1, which is designated here as PlcC. It remained unclear, however, whether these L. pneumophila proteins exhibit PLC activity. PlcC expressed in Escherichia coli hydrolyzed a broad phospholipid spectrum, including PC, phosphatidylglycerol (PG), and phosphatidylinositol. The addition of Zn(2+) ions activated, whereas EDTA inhibited, PlcC-derived PLC activity. Protein homology search revealed that the three Legionella enzymes and P. fluorescens PC-PLC share conserved domains also present in uncharacterized fungal proteins. Fifteen conserved amino acids were essential for enzyme activity as identified via PlcC mutagenesis. Analysis of defined L. pneumophila knock-out mutants indicated Lsp-dependent export of PG-hydrolyzing PLC activity. PlcA and PlcB exhibited PG-specific activity and contain a predicted Sec signal sequence. In line with the reported requirement of host cell contact for Dot/Icm-dependent effector translocation, PlcC showed cell-associated PC-specific PLC activity after bacterial growth in broth. A PLC triple mutant, but not single or double mutants, exhibited reduced host killing in a Galleria mellonella infection model, highlighting the importance of the three PLCs in pathogenesis. In summary, we describe here a novel Zn(2+)-dependent PLC family present in Legionella, Pseudomonas, and fungi with broad substrate preference and function in virulence.
Collapse
Affiliation(s)
- Philipp Aurass
- From the Division of Bacterial Infections, Robert Koch-Institut, Burgstrasse 37, 38855 Wernigerode, Germany and
| | - Maren Schlegel
- From the Division of Bacterial Infections, Robert Koch-Institut, Burgstrasse 37, 38855 Wernigerode, Germany and
| | - Omar Metwally
- From the Division of Bacterial Infections, Robert Koch-Institut, Burgstrasse 37, 38855 Wernigerode, Germany and
| | - Clare R. Harding
- the MRC Centre for Molecular Bacteriology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Gunnar N. Schroeder
- the MRC Centre for Molecular Bacteriology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Gad Frankel
- the MRC Centre for Molecular Bacteriology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Antje Flieger
- From the Division of Bacterial Infections, Robert Koch-Institut, Burgstrasse 37, 38855 Wernigerode, Germany and
| |
Collapse
|
21
|
Chromobacterium violaceum: important insights for virulence and biotechnological potential by exoproteomic studies. Curr Microbiol 2013; 67:100-6. [PMID: 23455494 PMCID: PMC3661913 DOI: 10.1007/s00284-013-0334-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/04/2013] [Indexed: 01/30/2023]
Abstract
Chromobacterium violaceum is a beta-proteobacterium with high biotechnological potential, found in tropical environments. This bacterium causes opportunistic infections in both humans and animals, that can spread throughout several tissues, quickly leading to the death of the host. Genomic studies identified potential mechanisms of pathogenicity but no further studies were done to confirm the expression of these systems. In this study 36 unique protein entries were identified in databank from a two-dimensional profile of C. violaceum secreted proteins. Chromobacterium violaceum exoproteomic preliminary studies confirmed the production of proteins identified as virulence factors (such as a collagenase, flagellum proteins, metallopeptidases, and toxins), allowing us to better understand its pathogenicity mechanisms. Biotechnologically interesting proteins (such as chitinase and chitosanase) were also identified among the secreted proteins, as well as proteins involved in the transport and capture of amino acids, carbohydrates, and oxidative stress protection. Overall, the secreted proteins identified provide us important insights on pathogenicity mechanisms, biotechnological potential, and environment adaptation of C. violaceum.
Collapse
|
22
|
Regulation, integrase-dependent excision, and horizontal transfer of genomic islands in Legionella pneumophila. J Bacteriol 2013; 195:1583-97. [PMID: 23354744 DOI: 10.1128/jb.01739-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Legionella pneumophila is a Gram-negative freshwater agent which multiplies in specialized nutrient-rich vacuoles of amoebae. When replicating in human alveolar macrophages, Legionella can cause Legionnaires' disease. Recently, we identified a new type of conjugation/type IVA secretion system (T4ASS) in L. pneumophila Corby (named trb-tra). Analogous versions of trb-tra are localized on the genomic islands Trb-1 and Trb-2. Both can exist as an episomal circular form, and Trb-1 can be transferred horizontally to other Legionella strains by conjugation. In our current work, we discovered the importance of a site-specific integrase (Int-1, lpc2818) for the excision and conjugation process of Trb-1. Furthermore, we identified the genes lvrRABC (lpc2813 to lpc2816) to be involved in the regulation of Trb-1 excision. In addition, we demonstrated for the first time that a Legionella genomic island (LGI) of L. pneumophila Corby (LpcGI-2) encodes a functional type IV secretion system. The island can be transferred horizontally by conjugation and is integrated site specifically into the genome of the transconjugants. LpcGI-2 generates three different episomal forms. The predominant episomal form, form A, is generated integrase dependently (Lpc1833) and transferred by conjugation in a pilT-dependent manner. Therefore, the genomic islands Trb-1 and LpcGI-2 should be classified as integrative and conjugative elements (ICEs). Coculture studies of L. pneumophila wild-type and mutant strains revealed that the int-1 and lvrRABC genes (located on Trb-1) as well as lpc1833 and pilT (located on LpcGI-2) do not influence the in vivo fitness of L. pneumophila in Acanthamoeba castellanii.
Collapse
|
23
|
Kuhle K, Flieger A. Legionella phospholipases implicated in virulence. Curr Top Microbiol Immunol 2013; 376:175-209. [PMID: 23925490 DOI: 10.1007/82_2013_348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phospholipases are diverse enzymes produced in eukaryotic hosts and their bacterial pathogens. Several pathogen phospholipases have been identified as major virulence factors acting mainly in two different modes: on the one hand, they have the capability to destroy host membranes and on the other hand they are able to manipulate host signaling pathways. Reaction products of bacterial phospholipases may act as secondary messengers within the host and therefore influence inflammatory cascades and cellular processes, such as proliferation, migration, cytoskeletal changes as well as membrane traffic. The lung pathogen and intracellularly replicating bacterium Legionella pneumophila expresses a variety of phospholipases potentially involved in disease-promoting processes. So far, genes encoding 15 phospholipases A, three phospholipases C, and one phospholipase D have been identified. These cell-associated or secreted phospholipases may contribute to intracellular establishment, to egress of the pathogen from the host cell, and to the observed lung pathology. Due to the importance of phospholipase activities for host cell processes, it is conceivable that the pathogen enzymes may mimic or substitute host cell phospholipases to drive processes for the pathogen's benefit. The following chapter summarizes the current knowledge on the L. pneumophila phospholipases, especially their substrate specificity, localization, mode of secretion, and impact on host cells.
Collapse
Affiliation(s)
- Katja Kuhle
- FG 11 - Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institut, Burgstr. 37, 38855, Wernigerode, Germany
| | | |
Collapse
|
24
|
Lang C, Rastew E, Hermes B, Siegbrecht E, Ahrends R, Banerji S, Flieger A. Zinc metalloproteinase ProA directly activates Legionella pneumophila PlaC glycerophospholipid:cholesterol acyltransferase. J Biol Chem 2012; 287:23464-78. [PMID: 22582391 DOI: 10.1074/jbc.m112.346387] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzymes secreted by Legionella pneumophila, such as phospholipases A (PLAs) and glycerophospholipid:cholesterol acyltransferases (GCATs), may target host cell lipids and therefore contribute to the establishment of Legionnaires disease. L. pneumophila possesses three proteins, PlaA, PlaC, and PlaD, belonging to the GDSL family of lipases/acyltransferases. We have shown previously that PlaC is the major GCAT secreted by L. pneumophila and that the zinc metalloproteinase ProA is essential for GCAT activity. Here we characterized the mode of PlaC GCAT activation and determined that ProA directly processes PlaC. We further found that not only cholesterol but also ergosterol present in protozoa was palmitoylated by PlaC. Such ester formations were not induced by either PlaA or PlaD. PlaD was shown here to possess lysophospholipase A activity, and interestingly, all three GDSL enzymes transferred short chain fatty acids to sterols. The three single putative catalytic amino acids (Ser-37, Asp-398, and His-401) proved essential for all PlaC-associated PLA, lysophospholipase A, and GCAT activities. A further four cysteine residues are important for the PLA/GCAT activities as well as their oxidized state, and we therefore conclude that PlaC likely forms at least one disulfide loop. Analysis of cleavage site and loop deletion mutants suggested that for GCAT activation deletion of several amino acids within the loop is necessary rather than cleavage at a single site. Our data therefore suggest a novel enzyme inhibition/activation mechanism where a disulfide loop inhibits PlaC GCAT activity until the protein is exported to the external space where it is ProA-activated.
Collapse
Affiliation(s)
- Christina Lang
- Division of Bacterial Infections, Robert Koch-Institut, Burgstrasse 37, 38855 Wernigerode, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Lang C, Flieger A. Characterisation of Legionella pneumophila phospholipases and their impact on host cells. Eur J Cell Biol 2011; 90:903-12. [DOI: 10.1016/j.ejcb.2010.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/08/2010] [Accepted: 12/13/2010] [Indexed: 01/16/2023] Open
|
26
|
Dippe M, Ulbrich-Hofmann R. Phospholipid acylhydrolases trigger membrane degradation during fungal sporogenesis. Fungal Genet Biol 2011; 48:921-7. [DOI: 10.1016/j.fgb.2011.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 05/06/2011] [Accepted: 05/28/2011] [Indexed: 11/27/2022]
|
27
|
Abstract
The genus Legionella contains more than 50 species, of which at least 24 have been associated with human infection. The best-characterized member of the genus, Legionella pneumophila, is the major causative agent of Legionnaires' disease, a severe form of acute pneumonia. L. pneumophila is an intracellular pathogen, and as part of its pathogenesis, the bacteria avoid phagolysosome fusion and replicate within alveolar macrophages and epithelial cells in a vacuole that exhibits many characteristics of the endoplasmic reticulum (ER). The formation of the unusual L. pneumophila vacuole is a feature of its interaction with the host, yet the mechanisms by which the bacteria avoid classical endosome fusion and recruit markers of the ER are incompletely understood. Here we review the factors that contribute to the ability of L. pneumophila to infect and replicate in human cells and amoebae with an emphasis on proteins that are secreted by the bacteria into the Legionella vacuole and/or the host cell. Many of these factors undermine eukaryotic trafficking and signaling pathways by acting as functional and, in some cases, structural mimics of eukaryotic proteins. We discuss the consequences of this mimicry for the biology of the infected cell and also for immune responses to L. pneumophila infection.
Collapse
|
28
|
Schunder E, Adam P, Higa F, Remer KA, Lorenz U, Bender J, Schulz T, Flieger A, Steinert M, Heuner K. Phospholipase PlaB is a new virulence factor of Legionella pneumophila. Int J Med Microbiol 2010; 300:313-23. [DOI: 10.1016/j.ijmm.2010.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 01/08/2010] [Accepted: 01/20/2010] [Indexed: 12/01/2022] Open
|
29
|
Eylert E, Herrmann V, Jules M, Gillmaier N, Lautner M, Buchrieser C, Eisenreich W, Heuner K. Isotopologue profiling of Legionella pneumophila: role of serine and glucose as carbon substrates. J Biol Chem 2010; 285:22232-43. [PMID: 20442401 DOI: 10.1074/jbc.m110.128678] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Legionella pneumophila (Lp) is commonly found in freshwater habitats but is also the causative agent of Legionnaires' disease when infecting humans. Although various virulence factors have been reported, little is known about the nutrition and the metabolism of the bacterium. Here, we report the application of isotopologue profiling for analyzing the metabolism of L. pneumophila. Cultures of Lp were supplied with [U-(13)C(3)]serine, [U-(13)C(6)]glucose, or [1,2-(13)C(2)]glucose. After growth, (13)C enrichments and isotopologue patterns of protein-derived amino acids and poly-3-hydroxybutyrate were determined by mass spectrometry and/or NMR spectroscopy. The labeling patterns detected in the experiment with [U-(13)C(3)]serine showed major carbon flux from serine to pyruvate and from pyruvate to acetyl-CoA, which serves as a precursor of poly-3-hydroxybutyrate or as a substrate of a complete citrate cycle with Si specificity of the citrate synthase. Minor carbon flux was observed between pyruvate and oxaloacetate/malate by carboxylation and decarboxylation, respectively. The apparent lack of label in Val, Ile, Leu, Pro, Phe, Met, Arg, and Tyr confirmed that L. pneumophila is auxotrophic for these amino acids. Experiments with [(13)C]glucose showed that the carbohydrate is also used as a substrate to feed the central metabolism. The specific labeling patterns due to [1,2-(13)C(2)]glucose identified the Entner-Doudoroff pathway as the predominant route for glucose utilization. In line with these observations, a mutant lacking glucose-6-phosphate dehydrogenase (Delta zwf) did not incorporate label from glucose at significant levels and was slowly outcompeted by the wild type strain in successive rounds of infection in Acanthamoeba castellanii, indicating the importance of this enzyme and of carbohydrate usage in general for the life cycle of Lp.
Collapse
Affiliation(s)
- Eva Eylert
- Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Bender J, Rydzewski K, Broich M, Schunder E, Heuner K, Flieger A. Phospholipase PlaB of Legionella pneumophila represents a novel lipase family: protein residues essential for lipolytic activity, substrate specificity, and hemolysis. J Biol Chem 2009; 284:27185-94. [PMID: 19640837 DOI: 10.1074/jbc.m109.026021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Legionella pneumophila possesses several phospholipases capable of host cell manipulation and lung damage. Recently, we discovered that the major cell-associated hemolytic phospholipase A (PlaB) shares no homology to described phospholipases and is dispensable for intracellular replication in vitro. Nevertheless, here we show that PlaB is the major lipolytic activity in L. pneumophila cell infections and that PlaB utilizes a typical catalytic triad of Ser-Asp-His for effective hydrolysis of phospholipid substrates. Crucial residues were found to be located within the N-terminal half of the protein, and amino acids embedding these active sites were unique for PlaB and homologs. We further showed that catalytic activity toward phosphatidylcholine but not phosphatidylglycerol is directly linked to hemolytic potential of PlaB. Although the function of the prolonged PlaB C terminus remains to be elucidated, it is essential for lipolysis, since the removal of 15 amino acids already abolishes enzyme activity. Additionally, we determined that PlaB preferentially hydrolyzes long-chain fatty acid substrates containing 12 or more carbon atoms. Since phospholipases play an important role as bacterial virulence factors, we examined cell-associated enzymatic activities among L. pneumophila clinical isolates and non-pneumophila species. All tested clinical isolates showed comparable activities, whereas of the non-pneumophila species, only Legionella gormanii and Legionella spiritensis possessed lipolytic activities similar to those of L. pneumophila and comprised plaB-like genes. Interestingly, phosphatidylcholine-specific phospholipase A activity and hemolytic potential were more pronounced in L. pneumophila. Therefore, hydrolysis of the eukaryotic membrane constituent phosphatidylcholine triggered by PlaB could be an important virulence tool for Legionella pathogenicity.
Collapse
Affiliation(s)
- Jennifer Bender
- Division of Bacterial Infections, FG11, Robert Koch-Institut, Burgstrasse 37, Wernigerode 38855, Germany
| | | | | | | | | | | |
Collapse
|
31
|
bdhA-patD operon as a virulence determinant, revealed by a novel large-scale approach for identification of Legionella pneumophila mutants defective for amoeba infection. Appl Environ Microbiol 2009; 75:4506-15. [PMID: 19411431 DOI: 10.1128/aem.00187-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, is an intracellular parasite of eukaryotic cells. In the environment, it colonizes amoebae. After being inhaled into the human lung, the bacteria infect and damage alveolar cells in a way that is mechanistically similar to the amoeba infection. Several L. pneumophila traits, among those the Dot/Icm type IVB protein secretion machinery, are essential for exploiting host cells. In our search for novel Legionella virulence factors, we developed an agar plate assay, designated the scatter screen, which allowed screening for mutants deficient in infecting Acanthamoeba castellanii amoebae. Likewise, an L. pneumophila clone bank consisting of 23,000 transposon mutants was investigated here, and 19 different established Legionella virulence genes, for example, dot/icm genes, were identified. Importantly, 70 novel virulence-associated genes were found. One of those is L. pneumophila bdhA, coding for a protein with homology to established 3-hydroxybutyrate dehydrogenases involved in poly-3-hydroxybutyrate metabolism. Our study revealed that bdhA is cotranscribed with patD, encoding a patatin-like protein of L. pneumophila showing phospholipase A and lysophospholipase A activities. In addition to strongly reduced lipolytic activities and increased poly-3-hydroxybutyrate levels, the L. pneumophila bdhA-patD mutant showed a severe replication defect in amoebae and U937 macrophages. Our data suggest that the operon is involved in poly-3-hydroxybutyrate utilization and phospholipolysis and show that the bdhA-patD operon is a virulence determinant of L. pneumophila. In summary, the screen for amoeba-sensitive Legionella clones efficiently isolated mutants that do not grow in amoebae and, in the case of the bdhA-patD mutant, also human cells.
Collapse
|
32
|
Identification and characterization of hemolysin-like proteins similar to RTX toxin in Pasteurella pneumotropica. J Bacteriol 2009; 191:3698-705. [PMID: 19363112 DOI: 10.1128/jb.01527-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pasteurella pneumotropica is an opportunistic pathogen that causes lethal pneumonia in immunodeficient rodents. The virulence factors of this bacterium remain unknown. In this study, we identified the genes encoding two RTX toxins, designated as pnxI and pnxII, from the genomic DNA of P. pneumotropica ATCC 35149 and characterized with respect to hemolysis. The pnxI operon was organized according to the manner in which the genes encoded the structural RTX toxin (pnxIA), the type I secretion systems (pnxIB and pnxID), and the unknown orf. The pnxII gene was involved only with the pnxIIA that coded for a structural RTX toxin. Both the structural RTX toxins of deduced PnxIA and PnxIIA were involved in seven of the RTX repeat and repeat-like sequences. By quantitative PCR analysis of the structural RTX toxin-encoding genes in P. pneumotropica ATCC 35149, the gene expression of pnxIA was found to have increased from the early log phase, while that of pnxIIA increased from the late log to the early stationary phase. As expressed in Escherichia coli, both the recombinant proteins of PnxIA and PnxIIA showed weak hemolytic activity in both sheep and murine erythrocytes. On the basis of the results of the Southern blotting analysis, the pnxIA gene was detected in 82% of the isolates, while the pnxIIA gene was detected in 39%. These results indicate that the products of both pnxIA and pnxIIA were putative associations of virulence factors in the rodent pathogen P. pneumotropica.
Collapse
|
33
|
Istivan TS, Smith SC, Fry BN, Coloe PJ. Characterization of Campylobacter concisus hemolysins. ACTA ACUST UNITED AC 2008; 54:224-35. [PMID: 18754784 DOI: 10.1111/j.1574-695x.2008.00467.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Campylobacter concisus is an opportunistic pathogen commonly found in the human oral cavity. It has also been isolated from clinical sources including gastroenteritis cases. Both secreted and cell-associated hemolytic activities were detected in C. concisus strains isolated from children with gastroenteritis. The secreted hemolytic activity of C. concisus strains was labile and was detected in variable levels from fresh-culture filtrates only. In addition, another secreted hemolysin/cytotoxin with a molecular weight < 10 kDa was detected in a single C. concisus strain (RCH 12). A C. concisus genomic library, constructed from strain RCH 3 in Escherichia coli XL1-Blue, was screened for hemolytic clones. Subcloning and sequence analysis of selected hemolytic clones identified ORFs for genes that enhance hemolytic activity but do not appear to be related to any known hemolysin genes found in Gram-negative bacteria. In a previous study, a stable cell-associated hemolysin was identified as an outer-membrane phospholipase A (OMPLA) encoded by the pldA gene. In this study, we report cloning of the pldA gene of the clinical strain C. concisus RCH 3 and the complementation of phospholipase A activity in an E. coli pldA mutant.
Collapse
|
34
|
Schmeck B, Lorenz J, N'guessan PD, Opitz B, van Laak V, Zahlten J, Slevogt H, Witzenrath M, Flieger A, Suttorp N, Hippenstiel S. Histone acetylation and flagellin are essential for Legionella pneumophila-induced cytokine expression. THE JOURNAL OF IMMUNOLOGY 2008; 181:940-7. [PMID: 18606645 DOI: 10.4049/jimmunol.181.2.940] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Legionella pneumophila causes severe pneumonia. Acetylation of histones is thought to be an important regulator of gene transcription, but its impact on L. pneumophila-induced expression of proinflammatory cytokines is unknown. L. pneumophila strain 130b induced the expression of the important chemoattractant IL-8 and genome-wide histone modifications in human lung epithelial A549 cells. We analyzed the IL-8-promoter and found that histone H4 was acetylated and H3 was phosphorylated at Ser(10) and acetylated at Lys(14), followed by transcription factor NF-kappaB. Recruitment of RNA polymerase II to the IL-8 promoter corresponded with increases in gene transcription. Histone modification and IL-8 release were dependent on p38 kinase and NF-kappaB pathways. Legionella-induced IL-8 expression was decreased by histone acetylase (HAT) inhibitor anacardic acid and enhanced by histone deacetylase (HDAC) inhibitor trichostatin A. After Legionella infection, HATs p300 and CREB-binding protein were time-dependently recruited to the IL-8 promoter, whereas HDAC1 and HDAC5 first decreased and later reappeared at the promoter. Legionella specifically induced expression of HDAC5 but not of other HDACs in lung epithelial cells, but knockdown of HDAC1 or 5 did not alter IL-8 release. Furthermore, Legionella-induced cytokine release, promoter-specific histone modifications, and RNA polymerase II recruitment were reduced in infection with flagellin-deletion mutants. Legionella-induced histone modification as well as HAT-/HDAC-dependent IL-8 release could also be shown in primary lung epithelial cells. In summary, histone acetylation seems to be important for the regulation of proinflammatory gene expression in L. pneumophila infected lung epithelial cells. These pathways may contribute to the host response in Legionnaires' disease.
Collapse
Affiliation(s)
- Bernd Schmeck
- FORSYS Junior Research Group, Systems Biology of Lung Inflammation, Charité-Universitätsmedizin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Multiple roles of phospholipase A2 during lung infection and inflammation. Infect Immun 2008; 76:2259-72. [PMID: 18411286 DOI: 10.1128/iai.00059-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Proteomic characterization of the whole secretome of Legionella pneumophila and functional analysis of outer membrane vesicles. Infect Immun 2008; 76:1825-36. [PMID: 18250176 DOI: 10.1128/iai.01396-07] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secretion of effector molecules is one of the major mechanisms by which the intracellular human pathogen Legionella pneumophila interacts with host cells during infection. Specific secretion machineries which are responsible for the subfraction of secreted proteins (soluble supernatant proteins [SSPs]) and the production of bacterial outer membrane vesicles (OMVs) both contribute to the protein composition of the extracellular milieu of this lung pathogen. Here we present comprehensive proteome reference maps for both SSPs and OMVs. Protein identification and assignment analyses revealed a total of 181 supernatant proteins, 107 of which were specific to the SSP fraction and 33 of which were specific to OMVs. A functional classification showed that a large proportion of the identified OMV proteins are involved in the pathogenesis of Legionnaires' disease. Zymography and enzyme assays demonstrated that the SSP and OMV fractions possess proteolytic and lipolytic enzyme activities which may contribute to the destruction of the alveolar lining during infection. Furthermore, it was shown that OMVs do not kill host cells but specifically modulate their cytokine response. Binding of immunofluorescently stained OMVs to alveolar epithelial cells, as visualized by confocal laser scanning microscopy, suggested that there is delivery of a large and complex group of proteins and lipids in the infected tissue in association with OMVs. On the basis of these new findings, we discuss the relevance of protein sorting and compartmentalization of virulence factors, as well as environmental aspects of the vesicle-mediated secretion.
Collapse
|
37
|
Banerji S, Aurass P, Flieger A. The manifold phospholipases A of Legionella pneumophila - identification, export, regulation, and their link to bacterial virulence. Int J Med Microbiol 2008; 298:169-81. [PMID: 18178130 DOI: 10.1016/j.ijmm.2007.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 09/17/2007] [Accepted: 11/08/2007] [Indexed: 01/04/2023] Open
Abstract
The intracellular lung pathogen Legionella pneumophila expresses secreted and cell-associated phospholipase A (PLA) and lysophospholipase A (LPLA) activities belonging to at least three enzyme families. The first family consists of three secreted PLA and LPLA activities displaying the amino acid signature motif 'GDSL'; PlaA, PlaC and PlaD. The second group contains the cell-associated and very potent PLA/LPLA, PlaB. The third group, the patatin-like proteins, comprises 11 members. One patatin-like protein, PatA/VipD, shows LPLA and PLA activities and interferes with vesicular trafficking when expressed in yeast and therefore is possibly involved in the intracellular infection process. Likewise, members of the first two phospholipase families have roles in bacterial virulence because phospholipases are important virulence factors that have been shown to promote bacterial survival, spread and host cell modification/damage. The GDSL enzyme PlaA detoxifies cytolytic lysophospholipids, and PlaB shows contact-dependent haemolytic activity. PlaC acylates cholesterol, a lipid present in eukaryotic hosts but not in the bacterium. Many of the L. pneumophila PLAs are exported by the type II Lsp or the type IVB Dot/Icm secretion systems involved in virulence factor export. Moreover, the regulation of lipolytic activities depends on the transcriptional regulators LetA/S and RpoS, inducing the expression of virulence traits, and on posttranscriptional activators like the zinc metalloprotease ProA.
Collapse
Affiliation(s)
- Sangeeta Banerji
- Research Group Pathogenesis of Legionella Infections, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
| | | | | |
Collapse
|
38
|
Gonçalves MO, Coutinho-Filho WP, Pimenta FP, Pereira GA, Pereira JAA, Mattos-Guaraldi AL, Hirata R. Periodontal disease as reservoir for multi-resistant and hydrolytic enterobacterial species. Lett Appl Microbiol 2007; 44:488-94. [PMID: 17451514 DOI: 10.1111/j.1472-765x.2007.02111.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS This investigation aimed to isolate enteric rods from subgingival sites of patients presenting chronic periodontitis lesions, and to assess antimicrobial resistance and expression of hydrolytic enzymes. METHODS AND RESULTS Enterobacteriaceae were isolated from 20% patients, and assayed for antimicrobial susceptibility and hydrolytic enzymes with specificity to different substrates. Isolates comprised seven Enterobacter cloacae (43.75%), five Serratia marcescens (31.25%), one Klebsiella pneumoniae (6.25%), one Enterobacter aerogenes (6.25%), one Pantoea agglomerans (6.25%), and one Citrobacter freundii (6.25%). Gelatinase activity was observed for 75% strains; caseinase and elastase was produced by six and two strains, respectively. DNase, lecithinase and lipase were expressed by S. marcescens. Most of strains were resistant to ampicillin (93.75%) and amoxicillin/clavulanic acid (81.25%). The majority of strains were susceptible to cephalosporins and aztreonam. Enterobacteria remained susceptible to imipenem, streptomycin and fluoroquinolones. Resistance to gentamicin, amikacin, sulfamethoxazole/thrimethoprim, tetracycline, and chloramphenicol were also observed. Eight strains presented multiple drug resistance. CONCLUSIONS Subgingival sites from periodontal diseases contain multi-resistant and hydrolytic enzyme-producing enterobacteria that may contribute to overall tissue destruction and spreading. SIGNIFICANCE AND IMPACT OF THE STUDY Enterobacteria isolated from patients generally considered as healthy individuals poses periodontal diseases as reservoir for systemic infections particularly in immunocompromised and hospitalized hosts.
Collapse
Affiliation(s)
- M O Gonçalves
- Faculdade de Ciências Médicas, Disciplina de Microbiologia e Imunologia, Programa de Pós-graduação em Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
39
|
Varela-Barca FNT, Agnez-Lima LF, de Medeiros SRB. Base excision repair pathway is involved in the repair of lesions generated by flavonoid-enriched fractions of pepper tree (Schinus terebinthifolius, Raddi) stem bark. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2007; 48:672-81. [PMID: 17722088 DOI: 10.1002/em.20334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cell-free and bacterial assays indicate that flavonoid-enriched fractions and the flavonoids of pepper tree stem bark from Schinus terebinthifolius Raddi have genotoxic rather than antigenotoxic properties. In the present report, we have examined the ability of flavonoid-enriched fractions to damage plasmid DNA and the repair pathways involved in the recognition of these DNA lesions. High concentrations of two flavonoid-enriched fractions were able to break phosphodiester bonds in DNA. In addition, studies using bacterial strains deficient in nucleotide excision repair and base excision repair (BER) enzymes indicated that the flavonoid-enriched fractions generated lesions that were substrates for enzymes belonging to the BER pathway. In addition, in vitro studies indicated that the DNA damage produced by the flavonoid-enriched fractions was also a substrate for exonuclease III and that the phosphodiester breakage was amplified by copper ions. These results indicate that flavonoids from the pepper tree (Schinus terebinthifolius, Raddi) generate lesions on DNA that are potential targets of FPG and MutY glycosylase from the BER pathway. Chromatographic and spectral analyses helped to support the hypothesis that the flavonoids of the Brazilian pepper tree bark are the main factors involved in the fraction's damage potential. The isolated flavonoids from Fraction II were also tested in vitro and support the oxidative damage potential of these flavonoids.
Collapse
Affiliation(s)
- Francisco Napoleão Túlio Varela-Barca
- Departamento de Educação Física, Faculdade de Educação Física, Universidade do Estado do Rio Grande do Norte, Campus Universitário Central, Mossoró, Brazil
| | | | | |
Collapse
|
40
|
Istivan TS, Coloe PJ. Phospholipase A in Gram-negative bacteria and its role in pathogenesis. MICROBIOLOGY-SGM 2006; 152:1263-1274. [PMID: 16622044 DOI: 10.1099/mic.0.28609-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phospholipase A (PLA) is one of the few enzymes present in the outer membrane of Gram-negative bacteria, and is likely to be involved in the membrane disruption processes that occur during host cell invasion. Both secreted and membrane-bound phospholipase A(2) activities have been described in bacteria, fungi and protozoa. Recently there have been increasing reports on the involvement of PLA in bacterial invasion and pathogenesis. This review highlights the latest findings on PLA as a virulence factor in Gram-negative bacteria.
Collapse
Affiliation(s)
- Taghrid S Istivan
- Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, Melbourne, VIC 3083, Australia
| | - Peter J Coloe
- Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, Melbourne, VIC 3083, Australia
| |
Collapse
|
41
|
Broich M, Rydzewski K, McNealy TL, Marre R, Flieger A. The global regulatory proteins LetA and RpoS control phospholipase A, lysophospholipase A, acyltransferase, and other hydrolytic activities of Legionella pneumophila JR32. J Bacteriol 2006; 188:1218-26. [PMID: 16452402 PMCID: PMC1367211 DOI: 10.1128/jb.188.4.1218-1226.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Legionella pneumophila possesses a variety of secreted and cell-associated hydrolytic activities that could be involved in pathogenesis. The activities include phospholipase A, lysophospholipase A, glycerophospholipid:cholesterol acyltransferase, lipase, protease, phosphatase, RNase, and p-nitrophenylphosphorylcholine (p-NPPC) hydrolase. Up to now, there have been no data available on the regulation of the enzymes in L. pneumophila and no data at all concerning the regulation of bacterial phospholipases A. Therefore, we used L. pneumophila mutants in the genes coding for the global regulatory proteins RpoS and LetA to investigate the dependency of hydrolytic activities on a global regulatory network proposed to control important virulence traits in L. pneumophila. Our results show that both L. pneumophila rpoS and letA mutants exhibit on the one hand a dramatic reduction of secreted phospholipase A and glycerophospholipid:cholesterol acyltransferase activities, while on the other hand secreted lysophospholipase A and lipase activities were significantly increased during late logarithmic growth phase. The cell-associated phospholipase A, lysophospholipase A, and p-NPPC hydrolase activities, as well as the secreted protease, phosphatase, and p-NPPC hydrolase activities were significantly decreased in both of the mutant strains. Only cell-associated phosphatase activity was slightly increased. In contrast, RNase activity was not affected. The expression of plaC, coding for a secreted acyltransferase, phospholipase A, and lysophospholipase A, was found to be regulated by LetA and RpoS. In conclusion, our results show that RpoS and LetA affect phospholipase A, lysophospholipase A, acyltransferase, and other hydrolytic activities of L. pneumophila in a similar way, thereby corroborating the existence of the LetA/RpoS regulation cascade.
Collapse
Affiliation(s)
- Markus Broich
- Pathogenesis of Legionella Infection NG5, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
| | | | | | | | | |
Collapse
|
42
|
Hurley BP, Williams NL, McCormick BA. Involvement of phospholipase A2 in Pseudomonas aeruginosa-mediated PMN transepithelial migration. Am J Physiol Lung Cell Mol Physiol 2005; 290:L703-L709. [PMID: 16272174 DOI: 10.1152/ajplung.00390.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Inflammation resulting from bacterial infection of the respiratory mucosal surface during pneumonia and cystic fibrosis contributes to pathology. A major consequence of the inflammatory response is recruitment of polymorphonuclear cells (PMNs) to the infected site. To reach the airway, PMNs must travel through several cellular and extracellular barriers, via the actions of multiple cytokines, chemokines, and adhesion molecules. Using a model of polarized lung epithelial cells (A549 or Calu-3) grown on Transwell filters and human PMNs, we have shown that Pseudomonas aeruginosa induces PMN migration across lung epithelial barriers. The process is mediated by epithelial production of the eicosanoid hepoxilin A(3) (HXA(3)) in response to P. aeruginosa infection. HXA(3) is a PMN chemoattractant metabolized from arachidonic acid (AA). Given that release of AA is believed to be the rate-limiting step in generating eicosanoids, we investigated whether P. aeruginosa infection of lung epithelial cells resulted in an increase in free AA. P. aeruginosa infection of A549 or Calu-3 monolayers resulted in a significant increase in [(3)H]AA released from prelabeled lung epithelial cells. This was partially inhibited by PLA(2) inhibitors ONO-RS-082 and ACA as well as an inhibitor of diacylglycerol lipase. Both PLA(2) inhibitors dramatically reduced P. aeruginosa-induced PMN transmigration, whereas the diacylglycerol lipase inhibitor had no effect. In addition, we observed that P. aeruginosa infection caused an increase in the phosphorylation of cytosolic PLA(2) (cPLA(2)), suggesting a mechanism whereby P. aeruginosa activates cPLA(2) generating free AA that may be converted to HXA(3), which is required for mediating PMN transmigration.
Collapse
Affiliation(s)
- Bryan P Hurley
- Mucosal Immunology Laboratories, Massachusetts General Hospital, 3503 Charlestown, MA 02129, USA.
| | | | | |
Collapse
|
43
|
Molofsky AB, Shetron-Rama LM, Swanson MS. Components of the Legionella pneumophila flagellar regulon contribute to multiple virulence traits, including lysosome avoidance and macrophage death. Infect Immun 2005; 73:5720-34. [PMID: 16113289 PMCID: PMC1231111 DOI: 10.1128/iai.73.9.5720-5734.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is a motile intracellular pathogen of macrophages and amoebae. When nutrients become scarce, the bacterium induces expression of transmission traits, some of which are dependent on the flagellar sigma factor FliA (sigma(28)). To test how particular components of the L. pneumophila flagellar regulon contribute to virulence, we compared a fliA mutant with strains whose flagellar construction is disrupted at various stages. We find that L. pneumophila requires FliA to avoid lysosomal degradation in murine bone marrow-derived macrophages (BMM), to regulate production of a melanin-like pigment, and to regulate binding to the dye crystal violet, whereas motility, flagellar secretion, and external flagella or flagellin are dispensable for these activities. Thus, in addition to flagellar genes, the FliA sigma factor regulates an effector(s) or regulator(s) that contributes to other transmissive traits, notably inhibition of phagosome maturation. Whether or not the microbes produced flagellin, all nonmotile L. pneumophila mutants bound BMM less efficiently than the wild type, resulting in poor infectivity and a loss of contact-dependent death of BMM. Therefore, bacterial motility increases contact with host cells during infection, but flagellin is not an adhesin. When BMM contact by each nonmotile strain was promoted by centrifugation, all the mutants bound BMM similarly, but only those microbes that synthesized flagellin induced BMM death. Thus, the flagellar regulon equips the aquatic pathogen L. pneumophila to coordinate motility with multiple traits vital to virulence.
Collapse
Affiliation(s)
- A B Molofsky
- Department of Microbiology and Immunology, University of Michigan Medical School, 6734 Medical Sciences Building II, Ann Arbor, MI 48109-0620, USA
| | | | | |
Collapse
|
44
|
Banerji S, Bewersdorff M, Hermes B, Cianciotto NP, Flieger A. Characterization of the major secreted zinc metalloprotease- dependent glycerophospholipid:cholesterol acyltransferase, PlaC, of Legionella pneumophila. Infect Immun 2005; 73:2899-909. [PMID: 15845496 PMCID: PMC1087370 DOI: 10.1128/iai.73.5.2899-2909.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila, an intracellular pathogen causing a severe pneumonia, possesses distinct lipolytic activities which have not been completely assigned to specific enzymes so far. We cloned and characterized a gene, plaC, encoding a protein with high homology to PlaA, the major secreted lysophospholipase A of L. pneumophila and to other hydrolytic enzymes belonging to the GDSL family. Here we show that L. pneumophila plaC mutants possessed reduced phospholipase A and lysophospholipase A activities and lacked glycerophospholipid:cholesterol acyltransferase activity in their culture supernatants. The mutants' reduced phospholipase A and acyltransferase activities were complemented by reintroduction of an intact copy of plaC. Additionally, plaC conferred increased lysophospholipase A and glycerophospholipid:cholesterol acytransferase activities to recombinant Escherichia coli. Furthermore, PlaC was shown to be another candidate exported by the L. pneumophila type II secretion system and was activated by a factor present in the bacterial culture supernatant dependent on the zinc metalloprotease. Finally, the role of plaC in intracellular infection of Acanthamoeba castellanii and U937 macrophages with L. pneumophila was assessed, and plaC was found to be dispensable. Thus, L. pneumophila possesses another secreted lipolytic enzyme, a protein with acyltransferase, phospholipase A, and lysophospholipase A activities. This enzyme is distinguished from the previously characterized phospholipases A and lysophospholipases A by its capacity not only to cleave fatty acids from lipids but to transfer them to cholesterol. Cholesterol is an important compound of eukaryotic membranes, and an acyltransferase might be a tool for host cell modification to fit the needs of the bacterium.
Collapse
Affiliation(s)
- Sangeeta Banerji
- Robert Koch-Institut, Research Group NG5 Pathogenesis of Legionella Infections, Nordufer 20, D-13353 Berlin, Germany
| | | | | | | | | |
Collapse
|
45
|
Wright LC, Payne J, Santangelo RT, Simpanya MF, Chen SCA, Widmer F, Sorrell TC. Cryptococcal phospholipases: a novel lysophospholipase discovered in the pathogenic fungus Cryptococcus gattii. Biochem J 2005; 384:377-84. [PMID: 15320865 PMCID: PMC1134121 DOI: 10.1042/bj20041079] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pathogenic fungus Cryptococcus neoformans produces an extracellular PLB1 (phospholipase B1), shown previously to be a virulence factor. A novel phospholipase (LPL1) with only LPL (lysophospholipase) and LPTA (transacylase) activities has now been characterized in C. gattii, and found to be a 66-kDa glycoprotein (by SDS/PAGE), with a native molecular mass of 670 kDa. The pI was 6.3, and it was active at high temperatures (to 70 degrees C), as well as at both acidic and neutral pH values. It was stimulated by calcium and palmitoyl carnitine at pH 7.0, but not at pH 5.0, and palmitoyl lysophosphatidylcholine was the preferred substrate. Sequencing indicated that LPL1 is a novel cryptococcal lysophospholipase, and not the gene product of CnLYSO1 or PLB1. A protein with only LPL and LPTA activities was subsequently isolated from two strains of C. neoformans var. grubii. A PLB1 enzyme was isolated from both C. gattii and a highly virulent strain of C. neoformans var. grubii (H99). In both cases, all three enzyme activities (PLB, LPL and LPTA) were present in one 95-120 kDa glycoprotein (by SDS/PAGE) with pI 3.9-4.3. Characterization of PLB1 from C. gattii showed that it differed from that of C. neoformans in its larger native mass (275 kDa), high PLB activity relative to LPL and LPTA, and preference for saturated lipid substrates. Differences in the properties between the secreted phospholipases of the two cryptococcal species could contribute to phenotypic differences that determine their respective environmental niches and different clinical manifestations.
Collapse
Affiliation(s)
- Lesley C Wright
- Centre for Infectious Diseases and Microbiology, University of Sydney at Westmead, Westmead, NSW 2145, Australia.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The haploid social soil amoeba Dictyostelium discoideum has been established as a host model for several pathogens including Pseudomonas aeruginosa, Cryptococcus neoformans, Mycobacterium spp. and Legionella pneumophila. The research areas presently pursued include (i) the use of Dictyostelium wild-type cells as screening system for virulence of extracellular and intracellular pathogens and their corresponding mutants, (ii) the use of Dictyostelium mutant cells to identify genetic host determinants of susceptibility and resistance to infection and (iii) the use of reporter systems in Dictyostelium cells which allow the dissection of the complex host-pathogen cross-talk. The body of information presented in this review demonstrates that the availability of host cell markers, the knowledge of cell signalling pathways, the completion of the genome sequencing project and the tractability for genetic studies qualifies Dictyostelium for the study of fundamental cellular processes of pathogenesis.
Collapse
Affiliation(s)
- Michael Steinert
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Röntgenring 11, 97070, Würzburg, Germany.
| | | |
Collapse
|