1
|
de Barros RAM, Torrecilhas AC, Marciano MAM, Mazuz ML, Pereira-Chioccola VL, Fux B. Toxoplasmosis in Human and Animals Around the World. Diagnosis and Perspectives in the One Health Approach. Acta Trop 2022; 231:106432. [PMID: 35390311 DOI: 10.1016/j.actatropica.2022.106432] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/12/2022]
Abstract
Toxoplasmosis is a unique health disease that significantly affects the health of humans, domestic animals, wildlife and is present in ecosystems, including water, soil and food. Toxoplasma gondii is one of the best-adapted parasites in the word. This parasite is able to persist for long periods in its hosts, in different geographic regions of the word. This review summarizes the current literature of these themes, focusing on: (1) toxoplasmosis, a zoonotic infection; (2) One health approach and toxoplasmosis; (3) human toxoplasmosis; (4) animal toxoplasmosis; (5) toxoplasmosis diagnosis, as immunological, parasitological and molecular diagnosis; (6) T. gondii outbreaks caused by infected meat, milk and dairy products, as well as, vegetables and water consume; (7) studies in experimental models; (8) genetic characterization of T. gondii strains; (9) extracellular vesicles and miRNA; and (10) future perspectives on T. gondii and toxoplasmosis. The vast prevalence of toxoplasmosis in both humans and animals and the dispersion and resistence of T. gondii parasites in environment highlight the importance of the one health approach in diagnostic and control of the disease. Here the different aspects of the one health approach are presented and discussed.
Collapse
Affiliation(s)
- Rosangela Aparecida Müller de Barros
- Unidade de Medicina Tropical, Departamento de Patologia, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil.; Programa em Doenças Infecciosas, Centro de Doenças Infecciosas, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil..
| | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Sao Paulo, SP, Brazil..
| | | | - Monica Leszkowicz Mazuz
- Parasitology Division, Kimron Veterinary Institute, Israeli Veterinary Service and Animal Health, Ministry of Agriculture and Rural Development Beit Dagan, 5025000, Israel..
| | | | - Blima Fux
- Unidade de Medicina Tropical, Departamento de Patologia, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil.; Programa em Doenças Infecciosas, Centro de Doenças Infecciosas, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil..
| |
Collapse
|
2
|
Toxoplasma Cathepsin Protease B and Aspartyl Protease 1 Are Dispensable for Endolysosomal Protein Digestion. mSphere 2020; 5:5/1/e00869-19. [PMID: 32051238 PMCID: PMC7021471 DOI: 10.1128/msphere.00869-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Roughly one-third of the human population is chronically infected with the intracellular single-celled parasite Toxoplasma gondii, but little is known about how this organism persists inside people. Previous research suggested that a parasite proteolytic enzyme, termed cathepsin protease L, is important for Toxoplasma persistence; however, it remained possible that other associated proteolytic enzymes could also be involved in the long-term survival of the parasite during infection. Here, we show that two proteolytic enzymes associated with cathepsin protease L play dispensable roles and are dependent on cathepsin L to reach maturity, which differs from the corresponding enzymes in humans. These findings establish a divergent hierarchy of proteases and help focus attention principally on cathepsin protease L as a potential target for interrupting Toxoplasma chronic infection. The lysosome-like vacuolar compartment (VAC) is a major site of proteolysis in the intracellular parasite Toxoplasma gondii. Previous studies have shown that genetic ablation of a VAC-residing cysteine protease, cathepsin protease L (CPL), resulted in the accumulation of undigested protein in the VAC and loss of parasite viability during the chronic stage of infection. However, since the maturation of another VAC localizing protease, cathepsin protease B (CPB), is dependent on CPL, it remained unknown whether these defects result directly from ablation of CPL or indirectly from a lack of CPB maturation. Likewise, although a previously described cathepsin D-like aspartyl protease 1 (ASP1) could also play a role in proteolysis, its definitive residence and function in the Toxoplasma endolysosomal system were not well defined. Here, we demonstrate that CPB is not necessary for protein turnover in the VAC and that CPB-deficient parasites have normal growth and viability in both the acute and chronic stages of infection. We also show that ASP1 depends on CPL for correct maturation, and it resides in the T. gondii VAC, where, similar to CPB, it plays a dispensable role in protein digestion. Taken together with previous work, our findings suggest that CPL is the dominant protease in a hierarchy of proteolytic enzymes within the VAC. This unusual lack of redundancy for CPL in T. gondii makes it a single exploitable target for disrupting chronic toxoplasmosis. IMPORTANCE Roughly one-third of the human population is chronically infected with the intracellular single-celled parasite Toxoplasma gondii, but little is known about how this organism persists inside people. Previous research suggested that a parasite proteolytic enzyme, termed cathepsin protease L, is important for Toxoplasma persistence; however, it remained possible that other associated proteolytic enzymes could also be involved in the long-term survival of the parasite during infection. Here, we show that two proteolytic enzymes associated with cathepsin protease L play dispensable roles and are dependent on cathepsin L to reach maturity, which differs from the corresponding enzymes in humans. These findings establish a divergent hierarchy of proteases and help focus attention principally on cathepsin protease L as a potential target for interrupting Toxoplasma chronic infection.
Collapse
|
3
|
Xue Q. Pathogen proteases and host protease inhibitors in molluscan infectious diseases. J Invertebr Pathol 2019; 166:107214. [PMID: 31348922 DOI: 10.1016/j.jip.2019.107214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/11/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
The development of infectious diseases represents an outcome of dynamic interactions between the disease-producing agent's pathogenicity and the host's self-defense mechanism. Proteases secreted by pathogenic microorganisms and protease inhibitors produced by host species play an important role in the process. This review aimed at summarizing major findings in research on pathogen proteases and host protease inhibitors that had been proposed to be related to the development of mollusk diseases. Metalloproteases and serine proteases respectively belonging to Family M4 and Family S8 of the MEROPS system are among the most studied proteases that may function as virulence factors in mollusk pathogens. On the other hand, a mollusk-specific family (Family I84) of novel serine protease inhibitors and homologues of the tissue inhibitor of metalloprotease have been studied for their potential in the molluscan host defense. In addition, research at the genomic and transcriptomic levels showed that more proteases of pathogens and protease inhibitor of hosts are likely involved in mollusk disease processes. Therefore, the pathological significance of interactions between pathogen proteases and host protease inhibitors in the development of molluscan infectious diseases deserves more research efforts.
Collapse
Affiliation(s)
- Qinggang Xue
- Zhejiang Key Lab of Aquatic Germplasm Resources, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
4
|
Evaluation of Toxoplasma gondii propagated in specific pathogen free embryonated chicken egg, for diagnosis of toxoplasmosis in equids and human. J Parasit Dis 2019; 43:498-505. [PMID: 31406416 DOI: 10.1007/s12639-019-01117-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is a worldwide distribution infects a wide variety of mammals, including humans. The present study aimed to detect the efficacy of soluble and whole T. gondii antigens propagated in specific pathogen-free of embryonated chicken egg (SPF-ECE) used to improve the potency of serological assays for diagnosis of toxoplasmosis in equids and human. Total of 220 serum samples from 170 equids (90 donkeys and 55 horses and 25 mules) and 50 humans were collected from different governorates in Egypt during the period from October 2017 to March 2018. Crude T. gondii tachyzoites antigens from low or high passages propagated in mice or SPF-ECE was used for modifying some serological tests. The experiment showed that the mortality rate of T. gondii for 103 and 104 low passages were 6/8 (75%) and 7/8 (88%) dead embryos but, lower mortality rate in high passage T. gondii were 4/8 (50%) and 5/8 (63%) dead embryos, respectively. No mortality or inflammatory signs were observed in control of negative groups. In equids sera were examined by S-ELISA using soluble T. gondii antigen propagated in SPF-ECE showed the highest positive results 26 (28.8%), followed by LAT 37 (22%) and MAGPT 36 (21.17%). While, W-ELISA and IFAT used whole T. gondii antigen prepared in SPF-ECE were 35 (20.58%) and 28 (19.41%) showed highly positive results than the same test used the whole antigen prepared in mice. The highest seroprevalence of T. gondii in human and donkeys were 19/50 (38%). and 26/90 (28.88%), more than mules were 6/25 (24%) and horses were 9/55 (16.3%) examined by S-ELISA respectively. SPF-ECE is considered an appropriate experimental model for isolation and propagation of T. gondii tachyzoites, and their soluble antigens used in serological tests (S-ELISA, LAT, and MAGPT) have sensitivity and specificity more than the whole antigen and provided reliable diagnostic tools for detection of toxoplasmosis in human and equids.
Collapse
|
5
|
Siqueira-Neto JL, Debnath A, McCall LI, Bernatchez JA, Ndao M, Reed SL, Rosenthal PJ. Cysteine proteases in protozoan parasites. PLoS Negl Trop Dis 2018; 12:e0006512. [PMID: 30138453 PMCID: PMC6107107 DOI: 10.1371/journal.pntd.0006512] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cysteine proteases (CPs) play key roles in the pathogenesis of protozoan parasites, including cell/tissue penetration, hydrolysis of host or parasite proteins, autophagy, and evasion or modulation of the host immune response, making them attractive chemotherapeutic and vaccine targets. This review highlights current knowledge on clan CA cysteine proteases, the best-characterized group of cysteine proteases, from 7 protozoan organisms causing human diseases with significant impact: Entamoeba histolytica, Leishmania species (sp.), Trypanosoma brucei, T. cruzi, Cryptosporidium sp., Plasmodium sp., and Toxoplasma gondii. Clan CA proteases from three organisms (T. brucei, T. cruzi, and Plasmodium sp.) are well characterized as druggable targets based on in vitro and in vivo models. A number of candidate inhibitors are under development. CPs from these organisms and from other protozoan parasites should be further characterized to improve our understanding of their biological functions and identify novel targets for chemotherapy.
Collapse
Affiliation(s)
- Jair L. Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Laura-Isobel McCall
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Jean A. Bernatchez
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Momar Ndao
- National Reference Centre for Parasitology, The Research Institute of the McGill University Health Center, Montreal, Canada
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sharon L. Reed
- Departments of Pathology and Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Philip J. Rosenthal
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
6
|
Benns HJ, Tate EW, Child MA. Activity-Based Protein Profiling for the Study of Parasite Biology. Curr Top Microbiol Immunol 2018; 420:155-174. [PMID: 30105424 DOI: 10.1007/82_2018_123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Parasites exist within most ecological niches, often transitioning through biologically and chemically complex host environments over the course of their parasitic life cycles. While the development of technologies for genetic engineering has revolutionised the field of functional genomics, parasites have historically been less amenable to such modification. In light of this, parasitologists have often been at the forefront of adopting new small-molecule technologies, repurposing drugs into biological tools and probes. Over the last decade, activity-based protein profiling (ABPP) has evolved into a powerful and versatile chemical proteomic platform for characterising the function of enzymes. Central to ABPP is the use of activity-based probes (ABPs), which covalently modify the active sites of enzyme classes ranging from serine hydrolases to glycosidases. The application of ABPP to cellular systems has contributed vastly to our knowledge on the fundamental biology of a diverse range of organisms and has facilitated the identification of potential drug targets in many pathogens. In this chapter, we provide a comprehensive review on the different forms of ABPP that have been successfully applied to parasite systems, and highlight key biological insights that have been enabled through their application.
Collapse
Affiliation(s)
- Henry J Benns
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Matthew A Child
- Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK.
| |
Collapse
|
7
|
Chaparro JD, Cheng T, Tran UP, Andrade RM, Brenner SBT, Hwang G, Cohn S, Hirata K, McKerrow JH, Reed SL. Two key cathepsins, TgCPB and TgCPL, are targeted by the vinyl sulfone inhibitor K11777 in in vitro and in vivo models of toxoplasmosis. PLoS One 2018; 13:e0193982. [PMID: 29565998 PMCID: PMC5863946 DOI: 10.1371/journal.pone.0193982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 02/19/2018] [Indexed: 01/03/2023] Open
Abstract
Although toxoplasmosis is one of the most common parasitic infections worldwide, therapeutic options remain limited. Cathepsins, proteases that play key roles in the pathogenesis of toxoplasmosis and many other protozoan infections, are important potential therapeutic targets. Because both TgCPB and TgCPL play a role in T. gondii invasion, we evaluated the efficacy of the potent, irreversible vinyl sulfone inhibitor, K11777 (N-methyl-piperazine-Phe-homoPhe-vinylsulfone-phenyl). The inhibitor’s toxicity and pharmacokinetic profile have been well-studied because of its in vitro and in vivo activity against a number of parasites. We found that it inhibited both TgCPB (EC50 = 114 nM) and TgCPL (EC50 = 71 nM) in vitro. K11777 also inhibited invasion of human fibroblasts by RH tachyzoites by 71% (p = 0.003) and intracellular replication by >99% (p<0.0001). In vivo, a single dose of K11777 led to 100% survival of chicken embryos in an model of acute toxoplasmosis (p = 0.015 Cox regression analysis). Therefore, K11777 shows promise as a novel therapeutic agent in the treatment of toxoplasmosis, and may prove to be a broadly effective anti-parasitic agent.
Collapse
Affiliation(s)
- Juan D. Chaparro
- Department of Pediatrics, Division of Infectious Diseases, Rady Children's Hospital, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Timmy Cheng
- Department of Pathology, University of California, San Diego School of Medicine, La Jolla, California, United States of America
| | - Uyen Phuong Tran
- Department of Pathology, University of California, San Diego School of Medicine, La Jolla, California, United States of America
| | - Rosa M. Andrade
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine School of Medicine, Irvine, California, United States of America
| | - Sara B. T. Brenner
- Department of Pathology, University of California, San Diego School of Medicine, La Jolla, California, United States of America
| | - Grace Hwang
- Department of Pathology, University of California, San Diego School of Medicine, La Jolla, California, United States of America
| | - Shara Cohn
- Department of Pathology, University of California, San Diego School of Medicine, La Jolla, California, United States of America
| | - Ken Hirata
- Department of Pathology, University of California, San Diego School of Medicine, La Jolla, California, United States of America
| | - James H. McKerrow
- Department of Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, California, United States of America
| | - Sharon L. Reed
- Department of Pathology, University of California, San Diego School of Medicine, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Toxoplasma gondii: One Organism, Multiple Models. Trends Parasitol 2016; 33:113-127. [PMID: 27988095 DOI: 10.1016/j.pt.2016.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 12/13/2022]
Abstract
Toxoplasma gondii is an intensely studied protozoan parasite. It is also used as a model organism to research additional clinically relevant human and veterinary parasites due to ease of in vitro culture and genetic manipulation. Recently, it has been developed as a model of inflammatory bowel disease, due to their similar pathologies. However, researchers vary widely in how they use T. gondii, which makes study comparisons and interpretation difficult. The aim of this review is to provide researchers with a tool to: (i) determine the appropriateness of the different T. gondii models to their research, (ii) interpret results from the wide range of study conditions, and (iii) consider new advances in technology which could improve or refine their experimental setup.
Collapse
|
9
|
Bahrami S, Rezaie A, Boroomand Z, Namavari M, Ghavami S. Embryonated pigeon eggs as a model to investigate Neospora caninum infection. Lab Anim 2016; 51:191-203. [DOI: 10.1177/0023677216652373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has been shown that embryonated chicken eggs can be used as animal models for experimental infections. The aim of the present study was to investigate pigeon embryonated eggs as animal models for experimental neosporosis. An infection with Neospora caninum Nc1 isolate was conducted in chicken and pigeon embryonated eggs to evaluate LD50. After calculation of LD50, 2LD50 of tachyzoites were injected into the eggs. Macroscopic changes of each embryo were observed, and immunohistochemistry (IHC) and molecular methods were used to investigate the parasitic distribution in the tissues. In the present study, histopathological changes were considered, and sections of those used for histopathological examination including the heart, liver, brain and chorioallantoic (CA) membrane were also subjected to IHC. Pigeon embryos showed more macroscopic changes than chicken embryos. A hemorrhage of the CA membrane was the main gross lesion. Microscopic examination of tissues revealed acute neosporosis due to hemorrhage, necrosis and infiltration of mononuclear inflammatory cells. Based on IHC and molecular results, the parasite DNA was detected in the liver, heart and CA membrane. As with chicken embryonated eggs, these results reinforce the susceptibility of pigeon embryonated eggs to N. caninum, and provide new insights into using an inexpensive and available animal model for N. caninum research. The results of the present study suggest that pigeon embryos may be a good choice for studying the biology of N. caninum in living organisms.
Collapse
Affiliation(s)
- Somayeh Bahrami
- Department of Parasitology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Annahita Rezaie
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zahra Boroomand
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Sepideh Ghavami
- Department of Parasitology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
10
|
Setasimy A, Namavari M. Use of chicken embryonated eggs for evaluating the virulence of Toxoplasma gondii. J Parasit Dis 2015; 40:1223-1225. [PMID: 27876920 DOI: 10.1007/s12639-015-0656-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 01/31/2015] [Indexed: 11/30/2022] Open
Abstract
The objective of the present study was to examine the virulence of Toxoplasma gondii RH strain tachyzoites in embryonated eggs after continuous passage in Vero cell line. The first T. gondii tachyzoites was considered low passage (no passage) and then passaged for 80 times on Vero as high passage. Groups of 9-day-old embryonated eggs with ten eggs in each group were inoculated with 102,103 and 104 of low or high-passage T. gondii tachyzoites, and any mortality was recorded. Suitable samples from different tissues (liver, heart, and brain) of the dead embryos were collected for histopathological study. In this study, the mortality in group 103 and 104 was observed, but there was no significant differences in mortality rate in T. gondii low passage and high passage. This finding exactly correspond to previous studies that were performed in mice as animal model for T. gondii RH strain. Thus on base of this study we could introduce the embryonated eggs as an appropriate animal model to evaluate the virulence of T. gondii tachyzoites.
Collapse
Affiliation(s)
- A Setasimy
- Islamic Azad University Fars Science and Research Branch, Shiraz, Iran
| | - M Namavari
- Razi Vaccine and Serum Research Institute, Shiraz, Iran
| |
Collapse
|
11
|
Auranofin is highly efficacious against Toxoplasma gondii in vitro and in an in vivo experimental model of acute toxoplasmosis. PLoS Negl Trop Dis 2014; 8:e2973. [PMID: 25079790 PMCID: PMC4117455 DOI: 10.1371/journal.pntd.0002973] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 05/12/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The mainstay of toxoplasmosis treatment targets the folate biosynthetic pathways and has not changed for the last 50 years. The activity of these chemotherapeutic agents is restricted to one lifecycle stage of Toxoplasma gondii, they have significant toxicity, and the impending threat of emerging resistance to these agents makes the discovery of new therapies a priority. We now demonstrate that auranofin, an orally administered gold containing compound that was FDA approved for treatment of rheumatoid arthritis, has activity against Toxoplasma gondii in vitro (IC50 = 0.28 µM) and in vivo (1 mg/kg). METHODS/PRINCIPAL FINDINGS Replication within human foreskin fibroblasts of RH tachyzoites was inhibited by auranofin. At 0.4 µM, auranofin inhibited replication, as measured by percent infected fibroblasts at 24 hrs, (10.94% vs. 24.66% of controls; p = 0.0003) with no effect on parasite invasion (16.95% vs. 12.91% p = 0.4331). After 18 hrs, 62% of extracellular parasites treated with auranofin were non-viable compared to control using an ATP viability assay (p = 0.0003). In vivo, a previously standardized chicken embryo model of acute toxoplasmosis was used. Fourteen day old chicken embryos were injected through the chorioallantoic vein with 1×104 tachyzoites of the virulent RH strain. The treatment group received one dose of auranofin at the time of inoculation (1 mg/kg estimated body weight). On day 5, auranofin-treated chicken embryos were 100% protected against death (p = 0.0002) and had a significantly reduced parasite load as determined by histopathology, immunohistochemistry and by the number of parasites quantified by real-time PCR. CONCLUSIONS These results reveal in vitro and in vivo activity of auranofin against T. gondii, suggesting that it may be an effective alternative treatment for toxoplasmosis.
Collapse
|
12
|
Oryan A, Silver IA, Sadoughifar R. Caprine besnoitiosis: an emerging threat and its relationship to some other infections of ungulates by Besnoitia species. Res Vet Sci 2014; 97:1-7. [PMID: 24975324 DOI: 10.1016/j.rvsc.2014.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 06/03/2014] [Accepted: 06/08/2014] [Indexed: 11/17/2022]
Abstract
Caprine besnoitiosis, caused by the cyst-forming protozoal apicomplexan Besnoitia caprae appears to be endemic in Kenya, Nigeria and Iran, but has yet to be detected in other parts of the world. The infection causes an important parasitic disease of goats in affected developing countries. Bovine besnoitiosis, is a widespread disease of cattle in Africa, Asia (but not Iran) and southern Europe. Recent epidemiological data confirm that the incidence and geographical range of bovine besnoitiosis in Europe is increasing, which is why growing attention has been given to the condition during the past decade. This paper reviews pertinent information on the biology, epidemiology, pathology, clinical signs, diagnosis and control of caprine besnoitiosis, together with its similarities to, and differences from, bovine besnoitiosis. The serious economic consequences of besnoitiosis on goat breeding and local meat and hide industries is also considered.
Collapse
Affiliation(s)
- A Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - I A Silver
- Centre for Clinical and Comparative Anatomy, School of Veterinary Science, Bristol, United Kingdom.
| | - R Sadoughifar
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
13
|
Plasma thyroid hormones and corticosterone levels in blood of chicken embryos and post hatch chickens exposed during incubation to 1800 MHz electromagnetic field. Int J Occup Med Environ Health 2014; 27:114-22. [DOI: 10.2478/s13382-014-0222-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 12/04/2013] [Indexed: 11/21/2022] Open
Abstract
Abstract
Collapse
|
14
|
Experimental Neospora caninum infection in domestic bird's embryonated eggs. J Parasit Dis 2013; 39:241-4. [PMID: 26064008 DOI: 10.1007/s12639-013-0327-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022] Open
Abstract
To date, there are no reports regarding comparison between different bird species in Neospora. caninum infection. In the present study 70 embryonated eggs from quail, partridge, broiler and egg laying chickens were divided into 7 groups equally. Six groups in each species were inoculated with different dilutions (10, 10(2), 10(3), 10(4), 10(5), and 10(6)) of tachyzoites/embryonated egg in the chorioallantoic membrane and the seventh group was considered as control. The mortality rates and clinical signs were studied. All the egg laying chickens and some of the broiler chickens and quails showed neurologic signs like. The results revealed that the mortality rate was dose dependent in broiler chicken embryonated eggs. But mortality rate was dose independent in egg laying chickens and quail. Partridge revealed 100 % mortality rate in all doses. The LD50 in broiler chicken embryonated was 10(2.3). In conclusion, LD50 in the broiler chickens is the lowest between different animal models which shows that the broiler chicken embryonated egg is the best animal model for experimental inducing of neosporosis. Partridge is the most susceptible bird to N. caninum infection. These results reinforce that there is genetic susceptibility to N. caninum in chickens like mice and provide new insights to reach an inexpensive and available animal model for N. caninum infection.
Collapse
|
15
|
Zhao G, Zhou A, Lv G, Meng M, Sun M, Bai Y, Han Y, Wang L, Zhou H, Cong H, Zhao Q, Zhu XQ, He S. Toxoplasma gondii cathepsin proteases are undeveloped prominent vaccine antigens against toxoplasmosis. BMC Infect Dis 2013; 13:207. [PMID: 23651838 PMCID: PMC3659040 DOI: 10.1186/1471-2334-13-207] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/01/2013] [Indexed: 12/31/2022] Open
Abstract
Background Toxoplasma gondii, an obligate intracellular apicomplexan parasite, infects a wide range of warm-blooded animals including humans. T. gondii expresses five members of the C1 family of cysteine proteases, including cathepsin B-like (TgCPB) and cathepsin L-like (TgCPL) proteins. TgCPB is involved in ROP protein maturation and parasite invasion, whereas TgCPL contributes to proteolytic maturation of proTgM2AP and proTgMIC3. TgCPL is also associated with the residual body in the parasitophorous vacuole after cell division has occurred. Both of these proteases are potential therapeutic targets in T. gondii. The aim of this study was to investigate TgCPB and TgCPL for their potential as DNA vaccines against T. gondii. Methods Using bioinformatics approaches, we analyzed TgCPB and TgCPL proteins and identified several linear-B cell epitopes and potential Th-cell epitopes in them. Based on these results, we assembled two single-gene constructs (TgCPB and TgCPL) and a multi-gene construct (pTgCPB/TgCPL) with which to immunize BALB/c mice and test their effectiveness as DNA vaccines. Results TgCPB and TgCPL vaccines elicited strong humoral and cellular immune responses in mice, both of which were Th-1 cell mediated. In addition, all of the vaccines protected the mice against infection with virulent T. gondii RH tachyzoites, with the multi-gene vaccine (pTgCPB/TgCPL) providing the highest level of protection. Conclusions T. gondii CPB and CPL proteases are strong candidates for development as novel DNA vaccines.
Collapse
Affiliation(s)
- Guanghui Zhao
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, P R China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dou Z, Coppens I, Carruthers VB. Non-canonical maturation of two papain-family proteases in Toxoplasma gondii. J Biol Chem 2012; 288:3523-34. [PMID: 23250753 DOI: 10.1074/jbc.m112.443697] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Proteases regulate key events during infection by the pervasive intracellular parasite Toxoplasma gondii. Understanding how parasite proteases mature from an inactive zymogen to an active enzyme is expected to inform new strategies for blocking their actions. Herein, we show that T. gondii cathepsin B protease (TgCPB) does not undergo self-maturation but instead requires the expression of a second papain-family cathepsin protease, TgCPL. Using recombinant enzymes we also show that TgCPL is capable of partially maturing TgCPB in vitro. Consistent with this interrelationship, antibodies with validated specificity detected TgCPB in the lysosome-like vacuolar compartment along with TgCPL. Our findings also establish that TgCPB does not localize to the rhoptries as previously reported. Accordingly, rhoptry morphology and rhoptry protein maturation are normal in TgCPB knock-out parasites. Finally, we show that although maturation of TgCPL is independent of TgCPB, it may involve an additional protease(s) in conjunction with self-maturation.
Collapse
Affiliation(s)
- Zhicheng Dou
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
17
|
Li H, Child MA, Bogyo M. Proteases as regulators of pathogenesis: examples from the Apicomplexa. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1824:177-85. [PMID: 21683169 PMCID: PMC3232290 DOI: 10.1016/j.bbapap.2011.06.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 11/20/2022]
Abstract
The diverse functional roles that proteases play in basic biological processes make them essential for virtually all organisms. Not surprisingly, proteolysis is also a critical process required for many aspects of pathogenesis. In particular, obligate intracellular parasites must precisely coordinate proteolytic events during their highly regulated life cycle inside multiple host cell environments. Advances in chemical, proteomic and genetic tools that can be applied to parasite biology have led to an increased understanding of the complex events centrally regulated by proteases. In this review, we outline recent advances in our knowledge of specific proteolytic enzymes in two medically relevant apicomplexan parasites: Plasmodium falciparum and Toxoplasma gondii. Efforts over the last decade have begun to provide a map of key proteotolyic events that are essential for both parasite survival and propagation inside host cells. These advances in our molecular understanding of proteolytic events involved in parasite pathogenesis provide a foundation for the validation of new networks and enzyme targets that could be exploited for therapeutic purposes. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Hao Li
- Departments of Pathology and Microbiology and Immunology and Graduate program in Chemical and Systems Biology, Stanford University, 300 Pasteur Dr. Stanford, CA. 94305
| | - Matthew A. Child
- Departments of Pathology and Microbiology and Immunology and Graduate program in Chemical and Systems Biology, Stanford University, 300 Pasteur Dr. Stanford, CA. 94305
| | - Matthew Bogyo
- Departments of Pathology and Microbiology and Immunology and Graduate program in Chemical and Systems Biology, Stanford University, 300 Pasteur Dr. Stanford, CA. 94305
| |
Collapse
|
18
|
Dou Z, Carruthers VB. Cathepsin proteases in Toxoplasma gondii. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:49-61. [PMID: 21660658 DOI: 10.1007/978-1-4419-8414-2_4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cysteine proteases are important for the growth and survival of apicomplexan parasites that infect humans. The apicomplexan Toxoplasma gondii expresses five members of the C1 family of cysteine proteases, including one cathepsin L-like (TgCPL), one cathepsin B-like (TgCPB) and three cathepsin C-like (TgCPC1, 2 and 3) proteases. Recent genetic, biochemical and structural studies reveal that cathepsins function in microneme and rhoptry protein maturation, host cell invasion, replication and nutrient acquisition. here, we review the key features and roles of T. gondii cathepsins and discuss the therapeutic potential for specific inhibitor development.
Collapse
Affiliation(s)
- Zhicheng Dou
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | |
Collapse
|
19
|
Histopathological and clinical investigations in Neospora caninum experimentally infected broiler chicken embryonated eggs. Vet Parasitol 2009; 166:185-90. [DOI: 10.1016/j.vetpar.2009.09.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 09/11/2009] [Accepted: 09/23/2009] [Indexed: 11/20/2022]
|
20
|
Dubey JP. Toxoplasma gondii infections in chickens (Gallus domesticus): prevalence, clinical disease, diagnosis and public health significance. Zoonoses Public Health 2009; 57:60-73. [PMID: 19744305 DOI: 10.1111/j.1863-2378.2009.01274.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chickens are considered one of the most important hosts in the epidemiology of Toxoplasma gondii infection because they are an efficient source of infection for cats that excrete the environmentally resistant oocysts and because humans may become infected with this parasite after eating undercooked infected chicken meat. The objective of this study is to review worldwide prevalence of T. gondii infection in chickens and to assess the role of infected chickens in the epidemiology of toxoplasmosis in humans. A very high prevalence of the parasite was found in chickens raised in backyards (up to 100%) and free-range organic (30-50%) establishments.
Collapse
Affiliation(s)
- J P Dubey
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705-2350, USA.
| |
Collapse
|
21
|
Huang R, Que X, Hirata K, Brinen LS, Lee JH, Hansell E, Engel J, Sajid M, Reed S. The cathepsin L of Toxoplasma gondii (TgCPL) and its endogenous macromolecular inhibitor, toxostatin. Mol Biochem Parasitol 2009; 164:86-94. [PMID: 19111576 PMCID: PMC2663568 DOI: 10.1016/j.molbiopara.2008.11.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 11/20/2008] [Accepted: 11/24/2008] [Indexed: 10/21/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite of all vertebrates, including man. Successful invasion and replication requires the synchronized release of parasite proteins, many of which require proteolytic processing. Unlike most parasites, T. gondii has a limited number of Clan CA, family C1 cysteine proteinases with one cathepsin B (TgCPB), one cathepsin L (TgCPL) and three cathepsin Cs (TgCPC1, 2, 3). Previously, we characterized toxopain, the only cathepsin B enzyme, which localizes to the rhoptry organelle. Two cathepsin Cs are trafficked through dense granules to the parasitophorous vacuole where they degrade peptides. We now report the cloning, expression, and modeling of the sole cathepsin L gene and the identification of two new endogenous inhibitors. TgCPL differs from human cathepsin L with a pH optimum of 6.5 and its substrate preference for leucine (vs. phenylalanine) in the P2 position. This distinct preference is explained by homology modeling, which reveals a non-canonical aspartic acid (Asp 216) at the base of the predicted active site S2 pocket, which limits substrate access. To further our understanding of the regulation of cathepsins in T. gondii, we identified two genes encoding endogenous cysteine proteinase inhibitors (ICPs or toxostatins), which are active against both TgCPB and TgCPL in the nanomolar range. Over expression of toxostatin-1 significantly decreased overall cysteine proteinase activity in parasite lysates, but had no detectable effect on invasion or intracellular multiplication. These findings provide important insights into the proteolytic cascades of T. gondii and their endogenous control.
Collapse
Affiliation(s)
- Robert Huang
- Department of Medicine, University of California, San Diego, San Diego, California 92103
| | - Xuchu Que
- Department of Medicine, University of California, San Diego, San Diego, California 92103
| | - Ken Hirata
- Department of Pathology, University of California, San Diego, San Diego, California 92103
| | - Linda S. Brinen
- Departments of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Ji Hyun Lee
- Departments of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Elizabeth Hansell
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94143
| | - Juan Engel
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94143
| | - Mohammed Sajid
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94143
| | - Sharon Reed
- Department of Medicine, University of California, San Diego, San Diego, California 92103
- Department of Pathology, University of California, San Diego, San Diego, California 92103
| |
Collapse
|
22
|
Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80. EUKARYOTIC CELL 2009; 8:530-9. [PMID: 19218426 DOI: 10.1128/ec.00358-08] [Citation(s) in RCA: 396] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As with other organisms with a completed genome sequence, opportunities for performing large-scale studies, such as expression and localization, on Toxoplasma gondii are now much more feasible. We present a system for tagging genes endogenously with yellow fluorescent protein (YFP) in a Deltaku80 strain. Ku80 is involved in DNA strand repair and nonhomologous DNA end joining; previous studies in other organisms have shown that in its absence, random integration is eliminated, allowing the insertion of constructs with homologous sequences into the proper loci. We generated a vector consisting of YFP and a dihydrofolate reductase-thymidylate synthase selectable marker. The YFP is preceded by a ligation-independent cloning (LIC) cassette, which allows the insertion of PCR products containing complementary LIC sequences. We demonstrated that the Deltaku80 strain is more effective and efficient in integrating the YFP-tagged constructs into the correct locus than wild-type strain RH. We then selected several hypothetical proteins that were identified by a proteomic screen of excreted-secreted antigens and that displayed microarray expression profiles similar to known micronemal proteins, with the thought that these could potentially be new proteins with roles in cell invasion. We localized these hypothetical proteins by YFP fluorescence and showed expression by immunoblotting. Our findings demonstrate that the combination of the Deltaku80 strain and the pYFP.LIC constructs reduces both the time and cost required to determine localization of a new gene of interest. This should allow the opportunity for performing larger-scale studies of novel T. gondii genes.
Collapse
|
23
|
Furuta PI, Mineo TWP, Carrasco AOT, Godoy GS, Pinto AA, Machado RZ. Neospora caninuminfection in birds: experimental infections in chicken and embryonated eggs. Parasitology 2007; 134:1931-9. [PMID: 17686190 DOI: 10.1017/s0031182007003344] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SUMMARYNeospora caninumcauses economical impact in cattle-raising farms since it is implicated as the major cause of bovine abortions. Although infection by the parasite has been widely described in mammals, the role of birds in its life-cycle is still obscure. Therefore, this work aimed to evaluate the infection byN. caninumin different chicken models. Experimental infections were conducted in 7-day-old chicks, laying hens and embryonated eggs, where samples were analysed for parasite burden, IgG antibodies and lesions promoted. Chickens demonstrated an asymptomatic infection, although with seroconversion and systemic replication of the parasite. In laying hens, no signs of vertical transmission were observed. However, embryonated eggs inoculated by the allantoic cavity route demonstrated susceptibility to infection, with mortality rates around 50% independent of the inoculum dose. Additionally, dogs became infected after ingestion of different amounts of inoculated eggs, producing either oocysts or specific IgG antibodies. The results herein presented demonstrate that chickens may be intermediate hosts ofN. caninumand that embryonated eggs could be a useful model to study the parasite's biology.
Collapse
Affiliation(s)
- P I Furuta
- Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Campus de Jaboticabal, Jaboticabal, São Paulo State, Brazil
| | | | | | | | | | | |
Collapse
|
24
|
Meléndez-López SG, Herdman S, Hirata K, Choi MH, Choe Y, Craik C, Caffrey CR, Hansell E, Chávez-Munguía B, Chen YT, Roush WR, McKerrow J, Eckmann L, Guo J, Stanley SL, Reed SL. Use of recombinant Entamoeba histolytica cysteine proteinase 1 to identify a potent inhibitor of amebic invasion in a human colonic model. EUKARYOTIC CELL 2007; 6:1130-6. [PMID: 17513563 PMCID: PMC1951106 DOI: 10.1128/ec.00094-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cysteine proteinases are key virulence factors of the protozoan parasite Entamoeba histolytica. We have shown that cysteine proteinases play a central role in tissue invasion and disruption of host defenses by digesting components of the extracellular matrix, immunoglobulins, complement, and cytokines. Analysis of the E. histolytica genome project has revealed more than 40 genes encoding cysteine proteinases. We have focused on E. histolytica cysteine proteinase 1 (EhCP1) because it is one of two cysteine proteinases unique to invasive E. histolytica and is highly expressed and released. Recombinant EhCP1 was expressed in Escherichia coli and refolded to an active enzyme with a pH optimum of 6.0. We used positional-scanning synthetic tetrapeptide combinatorial libraries to map the specificity of the P1 to P4 subsites of the active site cleft. Arginine was strongly preferred at P2, an unusual specificity among clan CA proteinases. A new vinyl sulfone inhibitor, WRR483, was synthesized based on this specificity to target EhCP1. Recombinant EhCP1 cleaved key components of the host immune system, C3, immunoglobulin G, and pro-interleukin-18, in a time- and dose-dependent manner. EhCP1 localized to large cytoplasmic vesicles, distinct from the sites of other proteinases. To gain insight into the role of secreted cysteine proteinases in amebic invasion, we tested the effect of the vinyl sulfone cysteine proteinase inhibitors K11777 and WRR483 on invasion of human colonic xenografts. The resultant dramatic inhibition of invasion by both inhibitors in this human colonic model of amebiasis strongly suggests a significant role of secreted amebic proteinases, such as EhCP1, in the pathogenesis of amebiasis.
Collapse
Affiliation(s)
- Samuel G Meléndez-López
- Department of Pathology, University of California, San Diego, San Diego, California 92103-8416, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Que X, Engel JC, Ferguson D, Wunderlich A, Tomavo S, Reed SL. Cathepsin Cs are key for the intracellular survival of the protozoan parasite, Toxoplasma gondii. J Biol Chem 2006; 282:4994-5003. [PMID: 17164247 DOI: 10.1074/jbc.m606764200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine proteases play key roles in apicomplexan invasion, organellar biogenesis, and intracellular survival. We have now characterized five genes encoding papain family cathepsins from Toxoplasma gondii, including three cathepsin Cs, one cathepsin B, and one cathepsin L. Unlike endopeptidases cathepsin B and L, T. gondii cathepsin Cs are exopeptidases and remove dipeptides from unblocked N-terminal substrates of proteins or peptides. TgCPC1 was the most highly expressed cathepsin mRNA in tachyzoites (by real-time PCR), but three cathepsins, TgCPC1, TgCPC2, and TgCPB, were undetectable in in vivo bradyzoites. The specific cathepsin C inhibitor, Gly-Phe-dimethylketone, selectively inhibited the TgCPCs activity, reducing parasite intracellular growth and proliferation. The targeted disruption of TgCPC1 does not affect the invasion and growth of tachyzoites as TgCPC2 is then up-regulated and may substitute for TgCPC1. TgCPC1 and TgCPC2 localize to constitutive secretory vesicles of tachyzoites, the dense granules. T. gondii cathepsin Cs are required for peptide degradation in the parasitophorous vacuole as the degradation of the marker protein, Escherichia coli beta-lactamase, secreted into the parasitophorous vacuole of transgenic tachyzoites was completely inhibited by the cathepsin C inhibitor. Cathepsin C inhibitors also limited the in vivo infection of T. gondii in the chick embryo model of toxoplasmosis. Thus, cathepsin Cs are critical to T. gondii growth and differentiation, and their unique specificities could be exploited to develop novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Xuchu Que
- Departments of Pathology and Medicine, University of California, San Diego, California 92103-8416
| | - Juan C Engel
- Department of Pathology, University of California, San Francisco, Veterans Administration Medical Center, San Francisco, California 94121
| | - David Ferguson
- Nuffield Department of Pathology, Oxford University, Oxford OX3 9DU, United Kingdom, and the
| | - Annette Wunderlich
- Departments of Pathology and Medicine, University of California, San Diego, California 92103-8416
| | - Stanislas Tomavo
- Equipe de Parasitologie Moleculaire, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), CNRS UMR 8576, Universite des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cédex, France
| | - Sharon L Reed
- Departments of Pathology and Medicine, University of California, San Diego, California 92103-8416.
| |
Collapse
|
26
|
Carruthers VB. Proteolysis and Toxoplasma invasion. Int J Parasitol 2006; 36:595-600. [PMID: 16600244 DOI: 10.1016/j.ijpara.2006.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 02/02/2006] [Accepted: 02/09/2006] [Indexed: 10/24/2022]
Abstract
Apicomplexan parasites including Toxoplasma gondii cause widespread human and animal diseases, often with the most severe manifestations involving the central nervous system. The need for new therapeutic agents along with the fascinating biology of these parasites has fueled a keen interest in understanding how key steps in the life cycle are regulated. Proteolysis is intimately associated with cell and tissue invasion by these obligate intracellular parasites and recent studies have begun to identify the proteases involved in these processes. Based on clues from inhibitor experiments and cleavage site mapping studies, several groups are using emerging genome information, chemical proteomics and molecular genetics to identify and validate proteases that regulate secretory organelle biogenesis and invasion protein activity. These studies are revealing roles for an assortment of proteases including cathepsins, subtilases and rhomboids in cell and tissue invasion. The identification of highly selective inhibitors for these proteases has the potential to not only further dissect their roles in infection but also to ameliorate disease.
Collapse
Affiliation(s)
- Vern B Carruthers
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Room E5136, Baltimore, MD 21205, USA.
| |
Collapse
|