1
|
Al-Mansori A, Al-Sbiei A, Bashir GH, Qureshi MM, Tariq S, Altahrawi A, al-Ramadi BK, Fernandez-Cabezudo MJ. Effect of acetylcholinesterase inhibition on immune cells in the murine intestinal mucosa. Heliyon 2024; 10:e33849. [PMID: 39071679 PMCID: PMC11283160 DOI: 10.1016/j.heliyon.2024.e33849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
The gastrointestinal tract (GI) is the largest immune organ whose function is controlled by a complex network of neurons from the enteric nervous system (ENS) as well as the sympathetic and parasympathetic system. Evolving evidence indicates that cross-communication between gut-innervating neurons and immune cells regulates many essential physiological functions including protection against mucosal infections. We previously demonstrated that following paraoxon treatment, 70 % of the mice were able to survive an oral infection with S. typhimurium, a virulent strain of Salmonella enterica serovar Typhimurium. The present study aims to investigate the effect that rivastigmine, a reversible AChE inhibitor used for the treatment of neurodegenerative diseases, has on the murine immune defenses of the intestinal mucosa. Our findings show that, similar to what is observed with paraoxon, administration of rivastigmine promoted the release of secretory granules from goblet and Paneth cells, resulting in increased mucin layer. Surprisingly, however, and unlike paraoxon, rivastigmine treatment did not affect overall mortality of infected mice. In order to investigate the mechanistic basis for the differential effects observed between paraoxon and rivastigmine, we used multi-color flowcytometric analysis to characterize the immune cell landscape in the intraepithelial (IE) and lamina propria (LP) compartments of intestinal mucosa. Our data indicate that treatment with paraoxon, but not rivastigmine, led to an increase of resident CD3+CD8+ T lymphocytes in the ileal mucosa (epithelium and lamina propria) and CD11b- CD11c+ dendritic cells in the LP. Our findings indicate the requirement for persistent cholinergic pathway engagement to effect a change in the cellular landscape of the mucosal tissue that is necessary for protection against lethal bacterial infections. Moreover, optimal protection requires a collaboration between innate and adaptive mucosal immune responses in the intestine.
Collapse
Affiliation(s)
- Alreem Al-Mansori
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Ashraf Al-Sbiei
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Ghada H. Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Mohammed M. Qureshi
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Abeer Altahrawi
- Department of Pathology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Basel K. al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
2
|
Gong H, Yuan Q, Du M, Mao X. Polar lipid-enriched milk fat globule membrane supplementation in maternal high-fat diet promotes intestinal barrier function and modulates gut microbiota in male offspring. Food Funct 2023; 14:10204-10220. [PMID: 37909908 DOI: 10.1039/d2fo04026c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Intestinal development plays a critical role in physiology and disease in early life and has long-term effects on the health status throughout the lifespan. Maternal high-fat diet (HFD) fuels the inflammatory reaction and metabolic syndrome, disrupts intestinal barrier function, and alters gut microbiota in offspring. The aim of this study was to evaluate whether polar lipid-enriched milk fat globule membrane (MFGM-PL) supplementation in maternal HFD could promote intestinal barrier function and modulate gut microbiota in male offspring. Obese female rats induced by HFD were supplemented with MFGM-PL during pregnancy and lactation. The offspring were fed HFD for 11 weeks after weaning. MFGM-PL supplementation to dams fed HFD decreased the body weight gain and ameliorated abnormalities of serum insulin, lipids, and inflammatory cytokines in offspring at weaning. Maternal MFGM-PL supplementation promoted the intestinal barrier by increasing the expression of Ki-67, lysozyme, mucin 2, zonula occludens-1, claudin-3, and occludin. Additionally, MFGM-PL supplementation to HFD dams improved gut dysbiosis in offspring. MFGM-PL increased the relative abundance of Akkermansiaceae, Ruminococcaceae, and Blautia. Concomitantly, maternal MFGM-PL treatment increased short-chain fatty acids of colonic contents and G-protein-coupled receptor (GPR) 41 and GPR 43 expressions in the colon of offspring. Importantly, the beneficial effects of maternal MFGM-PL intervention persisted to offspring's adulthood, as evidenced by increased relative abundance of norank_f_Muribaculaceae, Peptostreptococcaceae and Romboutsia and modulated the taxonomic diversity of gut microbiota in adult offspring. In summary, maternal MFGM-PL supplementation improved intestinal development in the offspring of dams fed with HFD, which exerted long-term beneficial effects on offspring intestinal health.
Collapse
Affiliation(s)
- Han Gong
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Qichen Yuan
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Xueying Mao
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Cui C, Wang F, Zheng Y, Wei H, Peng J. From birth to death: The hardworking life of Paneth cell in the small intestine. Front Immunol 2023; 14:1122258. [PMID: 36969191 PMCID: PMC10036411 DOI: 10.3389/fimmu.2023.1122258] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Paneth cells are a group of unique intestinal epithelial cells, and they play an important role in host-microbiota interactions. At the origin of Paneth cell life, several pathways such as Wnt, Notch, and BMP signaling, affect the differentiation of Paneth cells. After lineage commitment, Paneth cells migrate downward and reside in the base of crypts, and they possess abundant granules in their apical cytoplasm. These granules contain some important substances such as antimicrobial peptides and growth factors. Antimicrobial peptides can regulate the composition of microbiota and defend against mucosal penetration by commensal and pathogenic bacteria to protect the intestinal epithelia. The growth factors derived from Paneth cells contribute to the maintenance of the normal functions of intestinal stem cells. The presence of Paneth cells ensures the sterile environment and clearance of apoptotic cells from crypts to maintain the intestinal homeostasis. At the end of their lives, Paneth cells experience different types of programmed cell death such as apoptosis and necroptosis. During intestinal injury, Paneth cells can acquire stem cell features to restore the intestinal epithelial integrity. In view of the crucial roles of Paneth cells in the intestinal homeostasis, research on Paneth cells has rapidly developed in recent years, and the existing reviews on Paneth cells have mainly focused on their functions of antimicrobial peptide secretion and intestinal stem cell support. This review aims to summarize the approaches to studying Paneth cells and introduce the whole life experience of Paneth cells from birth to death.
Collapse
Affiliation(s)
- Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fangke Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yao Zheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- *Correspondence: Jian Peng,
| |
Collapse
|
4
|
Schreiber R, Cabrita I, Kunzelmann K. Paneth Cell Secretion in vivo Requires Expression of Tmem16a and Tmem16f. GASTRO HEP ADVANCES 2022; 1:1088-1098. [PMID: 39131261 PMCID: PMC11308424 DOI: 10.1016/j.gastha.2022.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/03/2022] [Indexed: 08/13/2024]
Abstract
Background and Aims Paneth cells play a central role in intestinal innate immune response. These cells are localized at the base of small intestinal crypts of Lieberkuhn. The calcium-activated chloride channel TMEM16A and the phospholipid scramblase TMEM16F control intracellular Ca2+ signaling and exocytosis. We analyzed the role of TMEM16A and TMEM16F for Paneth cells secretion. Methods Mice with intestinal epithelial knockout of Tmem16a (Tmem16a-/-) and Tmem16f (Tmem16f-/-) were generated. Tissue structures and Paneth cells were analyzed, and Paneth cell exocytosis was examined in small intestinal organoids in vitro. Intracellular Ca2+ signals were measured and were compared between wild-type and Tmem16 knockout mice. Bacterial colonization and intestinal apoptosis were analyzed. Results Paneth cells in the crypts of Lieberkuhn from Tmem16a-/- and Tmem16f-/- mice demonstrated accumulation of lysozyme. Tmem16a and Tmem16f were localized in wild-type Paneth cells but were absent in cells from knockout animals. Paneth cell number and size were enhanced in the crypt base and mucus accumulated in intestinal goblet cells of knockout animals. Granule fusion and exocytosis on cholinergic and purinergic stimulation were examined online. Both were strongly compromised in the absence of Tmem16a or Tmem16f and were also blocked by inhibition of Tmem16a/f. Purinergic Ca2+ signaling was largely inhibited in Tmem16a knockout mice. Jejunal bacterial content was enhanced in knockout mice, whereas cellular apoptosis was inhibited. Conclusion The present data demonstrate the role of Tmem16 for exocytosis in Paneth cells. Inhibition or activation of Tmem16a/f is likely to affect microbial content and immune functions present in the small intestine.
Collapse
Affiliation(s)
- Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Regensburg, Bavaria, Germany
| | - Ines Cabrita
- Nephrologisches Forschungslabor, University of Cologne, Köln, NRW, Germany
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Regensburg, Bavaria, Germany
| |
Collapse
|
5
|
Interleukin-4 Promotes Tuft Cell Differentiation and Acetylcholine Production in Intestinal Organoids of Non-Human Primate. Int J Mol Sci 2021; 22:ijms22157921. [PMID: 34360687 PMCID: PMC8348364 DOI: 10.3390/ijms22157921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/23/2022] Open
Abstract
In the intestine, the innate immune system excludes harmful substances and invading microorganisms. Tuft cells are taste-like chemosensory cells found in the intestinal epithelium involved in the activation of group 2 innate lymphoid cells (ILC2). Although tuft cells in other tissues secrete the neurotransmitter acetylcholine (ACh), their function in the gut remains poorly understood. In this study, we investigated changes in the expression of genes and cell differentiation of the intestinal epithelium by stimulation with interleukin-4 (IL-4) or IL-13 in macaque intestinal organoids. Transcriptome analysis showed that tuft cell marker genes were highly expressed in the IL-4- and IL-13-treated groups compared with the control, and the gene expression of choline acetyltransferase (ChAT), a synthesis enzyme of ACh, was upregulated in IL-4- and IL-13-treated groups. ACh accumulation was observed in IL-4-induced organoids using high-performance liquid chromatography-mass spectrometry (HPLC/MS), and ACh strongly released granules from Paneth cells. This study is the first to demonstrate ACh upregulation by IL-4 induction in primates, suggesting that IL-4 plays a role in Paneth cell granule secretion via paracrine stimulation.
Collapse
|
6
|
Kayisoglu Ö, Schlegel N, Bartfeld S. Gastrointestinal epithelial innate immunity-regionalization and organoids as new model. J Mol Med (Berl) 2021; 99:517-530. [PMID: 33538854 PMCID: PMC8026474 DOI: 10.1007/s00109-021-02043-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/18/2020] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
The human gastrointestinal tract is in constant contact with microbial stimuli. Its barriers have to ensure co-existence with the commensal bacteria, while enabling surveillance of intruding pathogens. At the centre of the interaction lies the epithelial layer, which marks the boundaries of the body. It is equipped with a multitude of different innate immune sensors, such as Toll-like receptors, to mount inflammatory responses to microbes. Dysfunction of this intricate system results in inflammation-associated pathologies, such as inflammatory bowel disease. However, the complexity of the cellular interactions, their molecular basis and their development remains poorly understood. In recent years, stem cell-derived organoids have gained increasing attention as promising models for both development and a broad range of pathologies, including infectious diseases. In addition, organoids enable the study of epithelial innate immunity in vitro. In this review, we focus on the gastrointestinal epithelial barrier and its regional organization to discuss innate immune sensing and development.
Collapse
Affiliation(s)
- Özge Kayisoglu
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Oberduerrbacher Strasse 6, Wuerzburg, Germany
| | - Sina Bartfeld
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
7
|
Nakamura K, Yokoi Y, Fukaya R, Ohira S, Shinozaki R, Nishida T, Kikuchi M, Ayabe T. Expression and Localization of Paneth Cells and Their α-Defensins in the Small Intestine of Adult Mouse. Front Immunol 2020; 11:570296. [PMID: 33154750 PMCID: PMC7590646 DOI: 10.3389/fimmu.2020.570296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Paneth cells contribute to intestinal innate immunity by sensing bacteria and secreting α-defensin. In Institute of Cancer Research (ICR) mice, α-defensin termed cryptdin (Crp) in Paneth cells consists of six major isoforms, Crp1 to 6. Despite accumulating evidences that α-defensin functions in controlling the intestinal microbiota, topographical localization of Paneth cells in the small intestine in relation to functions of α-defensin remains to be determined. In this study, we examined the expression level of messenger RNA (mRNA) encoding six Crp-isoforms and Crp immunoreactivities using singly isolated crypts together with bactericidal activities of Paneth cell secretions from isolated crypts of duodenum, jejunum, and ileum. Here we showed that levels of Crp mRNAs in the single crypt ranged from 5 x 103 to 1 x 106 copies per 5 ng RNA. For each Crp isoform, the expression level in ileum was 4 to 50 times higher than that in duodenum and jejunum. Furthermore, immunohistochemical analysis of isolated crypts revealed that the average number of Paneth cell per crypt in the small intestine increased from proximal to distal, three to seven-fold, respectively. Both Crp1 and 4 expressed greater in ileal Paneth cells than those in duodenum or jejunum. Bactericidal activities in secretions of ileal Paneth cell exposed to bacteria were significantly higher than those of duodenum or jejunum. In germ-free mice, Crp expression in each site of the small intestine was attenuated and bactericidal activities released by ileal Paneth cells were decreased compared to those in conventional mice. Taken together, Paneth cells and their α-defensin in adult mouse appeared to be regulated topographically in innate immunity to control intestinal integrity.
Collapse
Affiliation(s)
- Kiminori Nakamura
- Innate Immunity Laboratory, Department of Cell Biological Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Innate Immunity Laboratory, Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Yuki Yokoi
- Innate Immunity Laboratory, Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Rie Fukaya
- Innate Immunity Laboratory, Department of Cell Biological Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Shuya Ohira
- Innate Immunity Laboratory, Department of Cell Biological Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Ryuga Shinozaki
- Innate Immunity Laboratory, Department of Cell Biological Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Takuto Nishida
- Innate Immunity Laboratory, Department of Cell Biological Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Mani Kikuchi
- Innate Immunity Laboratory, Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Tokiyoshi Ayabe
- Innate Immunity Laboratory, Department of Cell Biological Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Innate Immunity Laboratory, Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Burgueño JF, Abreu MT. Epithelial Toll-like receptors and their role in gut homeostasis and disease. Nat Rev Gastroenterol Hepatol 2020; 17:263-278. [PMID: 32103203 DOI: 10.1038/s41575-019-0261-4] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
The human gastrointestinal tract is colonized by trillions of microorganisms that interact with the host to maintain structural and functional homeostasis. Acting as the interface between the site of the highest microbial burden in the human body and the richest immune compartment, a single layer of intestinal epithelial cells specializes in nutrient absorption, stratifies microorganisms to limit colonization of tissues and shapes the responses of the subepithelial immune cells. In this Review, we focus on the expression, regulation and functions of Toll-like receptors (TLRs) in the different intestinal epithelial lineages to analyse how epithelial recognition of bacteria participates in establishing homeostasis in the gut. In particular, we elaborate on the involvement of epithelial TLR signalling in controlling crypt dynamics, enhancing epithelial barrier integrity and promoting immune tolerance towards the gut microbiota. Furthermore, we comment on the regulatory mechanisms that fine-tune TLR-driven immune responses towards pathogens and revisit the role of TLRs in epithelial repair after injury. Finally, we discuss how dysregulation of epithelial TLRs can lead to the generation of dysbiosis, thereby increasing susceptibility to colitis and tumorigenesis.
Collapse
Affiliation(s)
- Juan F Burgueño
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maria T Abreu
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
9
|
Cheng HY, Ning MX, Chen DK, Ma WT. Interactions Between the Gut Microbiota and the Host Innate Immune Response Against Pathogens. Front Immunol 2019; 10:607. [PMID: 30984184 PMCID: PMC6449424 DOI: 10.3389/fimmu.2019.00607] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
The mammalian intestine is colonized by over a trillion microbes that comprise the "gut microbiota," a microbial community which has co-evolved with the host to form a mutually beneficial relationship. Accumulating evidence indicates that the gut microbiota participates in immune system maturation and also plays a central role in host defense against pathogens. Here we review some of the mechanisms employed by the gut microbiota to boost the innate immune response against pathogens present on epithelial mucosal surfaces. Antimicrobial peptide secretion, inflammasome activation and induction of host IL-22, IL-17, and IL-10 production are the most commonly observed strategies employed by the gut microbiota for host anti-pathogen defense. Taken together, the body of evidence suggests that the host gut microbiota can elicit innate immunity against pathogens.
Collapse
Affiliation(s)
- Hong-Yu Cheng
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Meng-Xia Ning
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - De-Kun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Wen-Tao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| |
Collapse
|
10
|
Yokoi Y, Nakamura K, Yoneda T, Kikuchi M, Sugimoto R, Shimizu Y, Ayabe T. Paneth cell granule dynamics on secretory responses to bacterial stimuli in enteroids. Sci Rep 2019; 9:2710. [PMID: 30804449 PMCID: PMC6389922 DOI: 10.1038/s41598-019-39610-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
Paneth cells at the base of small intestinal crypts secrete granules containing α-defensins in response to bacteria and maintain the intestinal environment by clearing enteric pathogens and regulating the composition of the intestinal microbiota. However, Paneth cell secretory responses remain debatable and the mechanisms that regulate the secretion are not well understood. Although enteroids, three-dimensional cultures of small intestinal epithelial cells, have proven useful for analyzing intestinal epithelial cell functions including ion transport, their closed structures have imposed limitations to investigating interactions between Paneth cells and the intestinal microbiota. Here, we report that microinjection of bacteria or lipopolysaccharide (LPS) into the enteroid lumen provides an ex vivo system for studying Paneth cell secretion in real-time. The results show that Paneth cells released granules immediately when the apical surfaces of enteroid epithelial cells were exposed to LPS or live bacteria by microinjection. However, Paneth cells did not respond to LPS delivered in culture media to enteroid exterior basolateral surface, although they responded to basolateral carbamyl choline. In addition, Paneth cells replenished their granules after secretion, enabling responses to second stimulation. These findings provide new insight for apically-induced Paneth cell secretory responses in regulating the intestinal environment.
Collapse
Affiliation(s)
- Yuki Yokoi
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Kiminori Nakamura
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.,Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Tsukasa Yoneda
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Mani Kikuchi
- Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Rina Sugimoto
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Yu Shimizu
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Tokiyoshi Ayabe
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan. .,Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.
| |
Collapse
|
11
|
Enteric Virome Sensing-Its Role in Intestinal Homeostasis and Immunity. Viruses 2018; 10:v10040146. [PMID: 29570694 PMCID: PMC5923440 DOI: 10.3390/v10040146] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/18/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
Pattern recognition receptors (PRRs) sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis.
Collapse
|
12
|
Prandi S, Voigt A, Meyerhof W, Behrens M. Expression profiling of Tas2r genes reveals a complex pattern along the mouse GI tract and the presence of Tas2r131 in a subset of intestinal Paneth cells. Cell Mol Life Sci 2018; 75:49-65. [PMID: 28801754 PMCID: PMC11105753 DOI: 10.1007/s00018-017-2621-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022]
Abstract
The chemical variability of the intestinal lumen requires the presence of molecular receptors detecting the various substances naturally occurring in the diet and as a result of the activity of the microbiota. Despite their early discovery, intestinal bitter taste receptors (Tas2r) have not yet been assigned an unambiguous physiological function. Recently, using a CRE-recombinant approach we showed that the Tas2r131 gene is expressed in a subset of mucin-producing goblet cells in the colon of mice. Moreover, we also demonstrated that the expression of the Tas2r131 locus is not restricted to this region. In the present study we aimed at characterizing the presence of positive cells also in other gastrointestinal regions. Our results show that Tas2r131+ cells appear in the jejunum and the ileum, and are absent from the stomach and the duodenum. We identified the positive cells as a subpopulation of deep-crypt Paneth cells in the ileum, strengthening the notion of a defensive role for Tas2rs in the gut. To get a broader perspective on the expression of bitter taste receptors in the alimentary canal, we quantified the expression of all 35 Tas2r genes along the gastrointestinal tract by qRT-PCR. We discovered that the number and expression level of Tas2r genes profoundly vary along the alimentary canal, with the stomach and the colon expressing the largest subsets.
Collapse
Affiliation(s)
- Simone Prandi
- Department of Molecular Genetics, German Institute for Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Anja Voigt
- Department of Molecular Genetics, German Institute for Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute for Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Maik Behrens
- Department of Molecular Genetics, German Institute for Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
| |
Collapse
|
13
|
Qi C, Sun J, Li Y, Gu M, Goulette T, You X, Sela DA, Wang X, Xiao H. Peyer's patch-specificLactobacillus reuteristrains increase extracellular microbial DNA and antimicrobial peptide expression in the mouse small intestine. Food Funct 2018; 9:2989-2997. [DOI: 10.1039/c8fo00109j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Peyer's patch-specificL. reuterialters gut microbiota, promotes the release of bacterial extracellular DNA and increases antibacterial peptide expression in the small intestine crypts of mice.
Collapse
Affiliation(s)
- Ce Qi
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
- School of Food Science and Technology
| | - Jin Sun
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
- School of Food Science and Technology
| | - Ya Li
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
| | - Min Gu
- Department of Food Science
- University of Massachusetts
- Amherst 01003
- USA
| | - Tim Goulette
- Department of Food Science
- University of Massachusetts
- Amherst 01003
- USA
| | - Xiaomeng You
- Department of Food Science
- University of Massachusetts
- Amherst 01003
- USA
| | - David A. Sela
- Department of Food Science
- University of Massachusetts
- Amherst 01003
- USA
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
- School of Food Science and Technology
| | - Hang Xiao
- Department of Food Science
- University of Massachusetts
- Amherst 01003
- USA
| |
Collapse
|
14
|
Bile Acid Administration Elicits an Intestinal Antimicrobial Program and Reduces the Bacterial Burden in Two Mouse Models of Enteric Infection. Infect Immun 2017; 85:IAI.00942-16. [PMID: 28348052 DOI: 10.1128/iai.00942-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/20/2017] [Indexed: 12/18/2022] Open
Abstract
In addition to their chemical antimicrobial nature, bile acids are thought to have other functions in the homeostatic control of gastrointestinal immunity. However, those functions have remained largely undefined. In this work, we used ileal explants and mouse models of bile acid administration to investigate the role of bile acids in the regulation of the intestinal antimicrobial response. Mice fed on a diet supplemented with 0.1% chenodeoxycholic acid (CDCA) showed an upregulated expression of Paneth cell α-defensins as well as an increased synthesis of the type-C lectins Reg3b and Reg3g by the ileal epithelium. CDCA acted on several epithelial cell types, by a mechanism independent from farnesoid X receptor (FXR) and not involving STAT3 or β-catenin activation. CDCA feeding did not change the relative abundance of major commensal bacterial groups of the ileum, as shown by 16S analyses. However, administration of CDCA increased the expression of ileal Muc2 and induced a change in the composition of the mucosal immune cell repertoire, decreasing the proportion of Ly6G+ and CD68+ cells, while increasing the relative amount of IgGκ+ B cells. Oral administration of CDCA to mice attenuated infections with the bile-resistant pathogens Salmonella enterica serovar Typhimurium and Citrobacter rodentium, promoting lower systemic colonization and faster bacteria clearance, respectively. Our results demonstrate that bile acid signaling in the ileum triggers an antimicrobial program that can be potentially used as a therapeutic option against intestinal bacterial infections.
Collapse
|
15
|
Niño DF, Sodhi CP, Hackam DJ. Necrotizing enterocolitis: new insights into pathogenesis and mechanisms. Nat Rev Gastroenterol Hepatol 2016; 13:590-600. [PMID: 27534694 PMCID: PMC5124124 DOI: 10.1038/nrgastro.2016.119] [Citation(s) in RCA: 379] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Necrotizing enterocolitis (NEC) is the most frequent and lethal disease of the gastrointestinal tract of preterm infants. At present, NEC is thought to develop in the premature host in the setting of bacterial colonization, often after administration of non-breast milk feeds, and disease onset is thought to be due in part to a baseline increased reactivity of the premature intestinal mucosa to microbial ligands as compared with the full-term intestinal mucosa. The increased reactivity leads to mucosal destruction and impaired mesenteric perfusion and partly reflects an increased expression of the bacterial receptor Toll-like receptor 4 (TLR4) in the premature gut, as well as other factors that predispose the intestine to a hyper-reactive state in response to colonizing microorganisms. The increased expression of TLR4 in the premature gut reflects a surprising role for this molecule in the regulation of normal intestinal development through its effects on the Notch signalling pathway. This Review will examine the current approach to the diagnosis and treatment of NEC, provide an overview of our current knowledge regarding its molecular underpinnings and highlight advances made within the past decade towards the development of specific preventive and treatment strategies for this devastating disease.
Collapse
MESH Headings
- Animals
- Biological Factors/therapeutic use
- Biomarkers/metabolism
- Breast Feeding
- Disease Models, Animal
- Disease Susceptibility
- Enterocolitis, Necrotizing/diagnosis
- Enterocolitis, Necrotizing/etiology
- Enterocolitis, Necrotizing/prevention & control
- Gastrointestinal Microbiome/physiology
- Humans
- Infant, Newborn
- Infant, Premature
- Infant, Premature, Diseases/diagnosis
- Infant, Premature, Diseases/etiology
- Infant, Premature, Diseases/therapy
- Probiotics/therapeutic use
- Treatment Outcome
Collapse
Affiliation(s)
- Diego F Niño
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
- The Bloomberg Children's Center, 1800 Orleans Street, Baltimore, Maryland 21287, USA
| | - Chhinder P Sodhi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
- The Bloomberg Children's Center, 1800 Orleans Street, Baltimore, Maryland 21287, USA
| | - David J Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
- The Bloomberg Children's Center, 1800 Orleans Street, Baltimore, Maryland 21287, USA
| |
Collapse
|
16
|
Gokulan K, Khare S, Williams K, Foley SL. Transmissible Plasmid Containing Salmonella enterica Heidelberg Isolates Modulate Cytokine Production During Early Stage of Interaction with Intestinal Epithelial Cells. DNA Cell Biol 2016; 35:443-53. [PMID: 27082282 DOI: 10.1089/dna.2015.3142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The variation in cytokine production during bacterial invasion of human intestinal epithelial cells (IECs) is a contributing factor for progression of the infection. A few Salmonella enterica Heidelberg strains isolated from poultry products harbor transmissible plasmids (TPs), including those that encode a type-IV secretion system. Earlier, we showed that these TPs are responsible for increased virulence during infection. This study examines the potential role of these TPs in cytokine production in IECs. This study showed that S. Heidelberg strains containing TPs (we refer as virulent strains) caused decreased interleukin (IL)-10 production in IECs after 1 h infection. The virulent strains induced a high level of tumor necrosis factor-α production under identical conditions. The virulent strains of S. Heidelberg also altered the production of IL-2, IL-17, and granulocyte macrophage colony-stimulating factor compared to an avirulent strain. As a part of infection, bacteria cross the epithelial barrier and encounter intestinal macrophages. Hence, we examined the cytotoxic mechanism of strains of S. Heidelberg in macrophages. Scanning electron microscopy showed cell necrosis occurs during the early stage of infection. In conclusion, virulent S. Heidelberg strains were able to modify the host cytokine profile during the early stages of infection and also caused necrosis in macrophages.
Collapse
Affiliation(s)
- Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research , U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research , U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Katherine Williams
- Division of Microbiology, National Center for Toxicological Research , U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Steven L Foley
- Division of Microbiology, National Center for Toxicological Research , U.S. Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
17
|
Nakamura K, Sakuragi N, Takakuwa A, Ayabe T. Paneth cell α-defensins and enteric microbiota in health and disease. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2015; 35:57-67. [PMID: 27200259 PMCID: PMC4858879 DOI: 10.12938/bmfh.2015-019] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/25/2015] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides are major effectors of innate immunity of multicellular organisms including humans and play a critical role in host defense, and their importance is widely recognized. The epithelium of the intestine is the largest surface area exposed to the outer environment, including pathogens, toxins and foods. The Paneth cell lineage of intestinal epithelial cells produces and secretes α-defensin antimicrobial peptides and functions in innate enteric immunity by removing pathogens and living symbiotically with commensal microbiota to contribute to intestinal homeostasis. Paneth cells secrete α-defensins, HD5 and HD6 in humans and cryptdins in mice, in response to bacterial, cholinergic and other stimuli. The α-defensins have selective activities against bacteria, eliciting potent microbicidal activities against pathogenic bacteria but minimal or no bactericidal activity against commensal bacteria. Therefore, α-defensins regulate the composition of the intestinal microbiota in vivo and play a role in homeostasis of the entire intestine. Recently, relationships between dysbiosis, or abnormal composition of the intestinal microbiota, and diseases such as inflammatory bowel disease and lifestyle diseases including obesity and atherosclerosis have been reported. Because α-defensins regulate the composition of the intestinal microbiota, Paneth cells and their α-defensins may have a key role as one mechanism linking the microbiota and disease.
Collapse
Affiliation(s)
- Kiminori Nakamura
- Department of Cell Biological Science, Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Naoya Sakuragi
- Department of Cell Biological Science, Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Akiko Takakuwa
- Department of Cell Biological Science, Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan; Department of Nutrition, Faculty of Nursing and Nutrition, Tenshi College, 3-1-30 Higashi, Kita-13, Higashi-ku, Sapporo, Hokkaido 065-0013, Japan
| | - Tokiyoshi Ayabe
- Department of Cell Biological Science, Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
18
|
Sea Buckthorn Leaf Extract Protects Jejunum and Bone Marrow of (60)Cobalt-Gamma-Irradiated Mice by Regulating Apoptosis and Tissue Regeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:765705. [PMID: 26421051 PMCID: PMC4569787 DOI: 10.1155/2015/765705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/27/2015] [Indexed: 11/18/2022]
Abstract
A single dose (30 mg/kg body weight) of standardized sea buckthorn leaf extract (SBL-1), administered 30 min before whole body 60Co-gamma-irradiation (lethal dose, 10 Gy), protected >90% of mice population. The purpose of this study was to investigate the mechanism of action of SBL-1 on jejunum and bone marrow, quantify key bioactive compounds, and analyze chemical composition of SBL-1. Study with 9-week-old inbred male Swiss albino Strain ‘A' mice demonstrated that SBL-1 treatment before 60Co-gamma-irradiation (10 Gy) significantly (p < 0.05) countered radiation induced decreases in jejunum crypts (1.27-fold), villi number (1.41-fold), villus height (1.25-fold), villus cellularity (2.27-fold), cryptal Paneth cells (1.89-fold), and Bcl2 level (1.54-fold). It countered radiation induced increases in cryptal apoptotic cells (1.64-fold) and Bax levels (1.88-fold). It also countered radiation (2 Gy and 3 Gy) induced bone marrow apoptosis (1.59-fold and 1.85-fold) and micronuclei frequency (1.72-fold and 2.6-fold). SBL-1 rendered radiation protection by promoting cryptal stem cells proliferation, by regulating apoptosis, and by countering radiation induced chromosomal damage. Quercetin, Ellagic acid, Gallic acid, high contents polyphenols, tannins, and thiols detected in SBL-1 may have contributed to radiation protection by neutralization of radiation induced oxidative species, supporting stem cell proliferation and tissue regeneration.
Collapse
|
19
|
Farin HF, Karthaus WR, Kujala P, Rakhshandehroo M, Schwank G, Vries RGJ, Kalkhoven E, Nieuwenhuis EES, Clevers H. Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell-derived IFN-γ. ACTA ACUST UNITED AC 2014; 211:1393-405. [PMID: 24980747 PMCID: PMC4076587 DOI: 10.1084/jem.20130753] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Paneth cells (PCs) are terminally differentiated, highly specialized secretory cells located at the base of the crypts of Lieberkühn in the small intestine. Besides their antimicrobial function, PCs serve as a component of the intestinal stem cell niche. By secreting granules containing bactericidal proteins like defensins/cryptdins and lysozyme, PCs regulate the microbiome of the gut. Here we study the control of PC degranulation in primary epithelial organoids in culture. We show that PC degranulation does not directly occur upon stimulation with microbial antigens or bacteria. In contrast, the pro-inflammatory cytokine Interferon gamma (IFN-γ) induces rapid and complete loss of granules. Using live cell imaging, we show that degranulation is coupled to luminal extrusion and death of PCs. Transfer of supernatants from in vitro stimulated iNKT cells recapitulates degranulation in an IFN-γ-dependent manner. Furthermore, endogenous IFN-γ secretion induced by anti-CD3 antibody injection causes Paneth loss and release of goblet cell mucus. The identification of IFN-γ as a trigger for degranulation and extrusion of PCs establishes a novel effector mechanism by which immune responses may regulate epithelial status and the gut microbiome.
Collapse
Affiliation(s)
- Henner F Farin
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Centre Utrecht, 3584 CT Utrecht, Netherlands
| | - Wouter R Karthaus
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Centre Utrecht, 3584 CT Utrecht, Netherlands
| | - Pekka Kujala
- Antoni van Leeuwenhoek Hospital/Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Maryam Rakhshandehroo
- Section of Metabolic Diseases, Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands
| | - Gerald Schwank
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Centre Utrecht, 3584 CT Utrecht, Netherlands
| | - Robert G J Vries
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Centre Utrecht, 3584 CT Utrecht, Netherlands
| | - Eric Kalkhoven
- Section of Metabolic Diseases, Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands Netherlands Metabolomics Center, 2333 CC Leiden, Netherlands
| | - Edward E S Nieuwenhuis
- Department of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, Netherlands
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Centre Utrecht, 3584 CT Utrecht, Netherlands
| |
Collapse
|
20
|
Stockinger S, Albers T, Duerr CU, Ménard S, Pütsep K, Andersson M, Hornef MW. Interleukin-13-mediated paneth cell degranulation and antimicrobial peptide release. J Innate Immun 2014; 6:530-41. [PMID: 24556597 DOI: 10.1159/000357644] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/30/2013] [Indexed: 12/18/2022] Open
Abstract
Paneth cell-derived enteric antimicrobial peptides significantly contribute to antibacterial host defense and host-microbial homeostasis. Regulation occurs by enzymatic processing and release into the small intestinal lumen, but the stimuli involved are incompletely understood. Here, the capacity of various microbial and immune stimuli to induce antimicrobial peptide release from small intestinal tissue was systematically evaluated using antibacterial activity testing, immunostaining for Paneth cell granules and mass spectrometry. We confirmed the stimulatory activity of the muscarinic receptor agonist carbachol and the nucleotide-binding oligomerization domain ligand muramyl dipeptide. In contrast, no release of antibacterial activity was noted after treatment with the Toll-like receptor ligands poly(I:C), lipopolysaccharide or CpG, and the cytokines interleukin (IL)-15, IL-22, IL-28 and interferon-γ. Rapid Paneth cell degranulation and antimicrobial activity release, however, was observed after stimulation with the endogenous mediators IL-4 and IL-13. This process required phosphatidylinositol 3-kinase and was associated with protein kinase B phosphorylation in Paneth cells. Flow cytometric analysis confirmed expression of the IL-13 receptor α1 on isolated Paneth cells. Our findings identify a novel role of IL-13 as inducer of Paneth cell degranulation and enteric antimicrobial peptide release. IL-13 may thus contribute to mucosal antimicrobial host defense and host microbial homeostasis.
Collapse
Affiliation(s)
- Silvia Stockinger
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Paneth cells are highly specialized epithelial cells of the small intestine, where they coordinate many physiological functions. First identified more than a century ago on the basis of their readily discernible secretory granules by routine histology, these cells are located at the base of the crypts of Lieberkühn, tiny invaginations that line the mucosal surface all along the small intestine. Investigations over the past several decades determined that these cells synthesize and secrete substantial quantities of antimicrobial peptides and proteins. More recent studies have determined that these antimicrobial molecules are key mediators of host-microbe interactions, including homeostatic balance with colonizing microbiota and innate immune protection from enteric pathogens. Perhaps more intriguing, Paneth cells secrete factors that help sustain and modulate the epithelial stem and progenitor cells that cohabitate in the crypts and rejuvenate the small intestinal epithelium. Dysfunction of Paneth cell biology contributes to the pathogenesis of chronic inflammatory bowel disease.
Collapse
Affiliation(s)
- Hans C Clevers
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Uppsalalaan, Utrecht 3584CT, The Netherlands.
| | | |
Collapse
|
22
|
Andersson ML, Karlsson-Sjöberg JMT, Pütsep KLA. CRS-peptides: unique defense peptides of mouse Paneth cells. Mucosal Immunol 2012; 5:367-76. [PMID: 22535181 DOI: 10.1038/mi.2012.22] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The intestine is the most densely colonized site in both mice and man. Recent data suggest that the intestinal flora is, in part, controlled by antimicrobial substances secreted by the intestinal epithelium. The defense system of the small intestine includes a protective mucus layer, a high turnover of epithelial cells, and a regulated secretion of effector molecules, notably antimicrobial peptides. Human and mouse small intestines share many similarities in their intestinal defense micro-organization, including the secretion of the well-known α-defensins. Mice, however, produce an additional unique antimicrobial peptide family, the CRS (cryptdin-related sequences)-peptides, not found in man. This review comprises a detailed presentation of the peptide-based defense of the gut, with specific emphasis on the CRS-peptide family. The first part presents the current knowledge of the CRS-peptide family's biochemical characteristics and nomenclature, and the second part is devoted to the possible role of this family in the homeostasis of the gut.
Collapse
Affiliation(s)
- M L Andersson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
23
|
Expression and Structure/Function Relationships of Human Defensin 5. Appl Biochem Biotechnol 2012; 166:1703-10. [DOI: 10.1007/s12010-012-9571-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 01/18/2012] [Indexed: 12/22/2022]
|
24
|
Yu LCH, Wang JT, Wei SC, Ni YH. Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology. World J Gastrointest Pathophysiol 2012; 3:27-43. [PMID: 22368784 PMCID: PMC3284523 DOI: 10.4291/wjgp.v3.i1.27] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 10/04/2011] [Accepted: 02/08/2012] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract is the largest reservoir of commensal bacteria in the human body, providing nutrients and space for the survival of microbes while concurrently operating mucosal barriers to confine the microbial population. The epithelial cells linked by tight junctions not only physically separate the microbiota from the lamina propria, but also secrete proinflammatory cytokines and reactive oxygen species in response to pathogen invasion and metabolic stress and serve as a sentinel to the underlying immune cells. Accumulating evidence indicates that commensal bacteria are involved in various physiological functions in the gut and microbial imbalances (dysbiosis) may cause pathology. Commensal bacteria are involved in the regulation of intestinal epithelial cell turnover, promotion of epithelial restitution and reorganization of tight junctions, all of which are pivotal for fortifying barrier function. Recent studies indicate that aberrant bacterial lipopolysaccharide-mediated signaling in gut mucosa may be involved in the pathogenesis of chronic inflammation and carcinogenesis. Our perception of enteric commensals has now changed from one of opportunistic pathogens to active participants in maintaining intestinal homeostasis. This review attempts to explain the dynamic interaction between the intestinal epithelium and commensal bacteria in disease and health status.
Collapse
|
25
|
Ito T, Tanabe H, Ayabe T, Ishikawa C, Inaba Y, Maemoto A, Kono T, Ashida T, Fujiya M, Kohgo Y. Paneth Cells Regulate Both Chemotaxis of Immature Dendritic Cells and Cytokine Production from Epithelial Cells. TOHOKU J EXP MED 2012; 227:39-48. [DOI: 10.1620/tjem.227.39] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Takahiro Ito
- Division of Gastroenterology and Hematology/Oncology, Department of Internal Medicine, Asahikawa Medical University
| | - Hiroki Tanabe
- Division of Gastroenterology and Hematology/Oncology, Department of Internal Medicine, Asahikawa Medical University
| | - Tokiyoshi Ayabe
- Innate Immunity Laboratory, Department of Cellular Life Science, Faculty of Advanced Life Science, Hokkaido University
| | - Chisato Ishikawa
- Division of Gastroenterology and Hematology/Oncology, Department of Internal Medicine, Asahikawa Medical University
| | - Yuhei Inaba
- Division of Gastroenterology and Hematology/Oncology, Department of Internal Medicine, Asahikawa Medical University
| | | | - Toru Kono
- Division of Gastroenterologic and General Surgery, Department of Surgery, Asahikawa Medical University
| | | | - Mikihiro Fujiya
- Division of Gastroenterology and Hematology/Oncology, Department of Internal Medicine, Asahikawa Medical University
| | - Yutaka Kohgo
- Division of Gastroenterology and Hematology/Oncology, Department of Internal Medicine, Asahikawa Medical University
| |
Collapse
|
26
|
Beisner J, Stange EF, Wehkamp J. Innate antimicrobial immunity in inflammatory bowel diseases. Expert Rev Clin Immunol 2011; 6:809-18. [PMID: 20828289 DOI: 10.1586/eci.10.56] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel diseases are characterized by chronic intestinal inflammation at different sites. Data from animal models as well as human patients including gene-association studies suggest that different components of the innate barrier function are primarily defective. These recent advances support the evolving hypothesis that intestinal bacteria induce inflammation predominantly as a result of a weakened innate mucosal barrier in genetically predisposed individuals. This article discusses our current understanding of the primary events of disease. Together, these findings should result in new therapeutic avenues aimed at restoring antimicrobial barrier function to prevent a bacterial-triggered inflammatory response.
Collapse
Affiliation(s)
- Julia Beisner
- Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tübingen, Germany
| | | | | |
Collapse
|
27
|
Abstract
In about 70% of patients Crohn's disease (CD) affects the small intestine. This disease location is stable over time and associated with a genetic background different from isolated colonic disease. A characteristic feature of small intestinal host defense is the presence of Paneth cells at the bottom of the crypts of Lieberkühn. These cells produce different broad spectrum antimicrobial peptides (AMPs) most abundantly the α-defensins HD-5 and -6 (DEFA5 und DEFA6). In small intestinal Crohn's disease both these PC products are specifically reduced. As a functional consequence, ileal extracts from Crohn's disease patients are compromised in clearing bacteria and enteroadherent E. coli colonize the mucosa. Mechanisms for defective antimicrobial Paneth cell function are complex and include an association with a NOD2 loss of function mutation, a disturbance of the Wnt pathway transcription factor TCF7L2 (also known as TCF4), the autophagy factor ATG16L1, the endosomal stress protein XBP1, the toll-like receptor TLR9, the calcium mediated potassium channel KCNN4 as well as mutations or inactivation of HD5. Thus we conclude that small intestinal Crohn's disease is most likely a complex disease of the Paneth cell: Paneth's disease.
Collapse
Affiliation(s)
- Jan Wehkamp
- Robert-Bosch-Krankenhaus Stuttgart, Auerbachstr 110, 7076 Stuttgart, Germany.
| | | |
Collapse
|
28
|
Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol 2010; 10:131-44. [PMID: 20098461 DOI: 10.1038/nri2707] [Citation(s) in RCA: 907] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A single layer of epithelial cells lines the small and large intestines and functions as a barrier between commensal bacteria and the rest of the body. Ligation of Toll-like receptors (TLRs) on intestinal epithelial cells by bacterial products promotes epithelial cell proliferation, secretion of IgA into the gut lumen and expression of antimicrobial peptides. As described in this Review, this establishes a microorganism-induced programme of epithelial cell homeostasis and repair in the intestine. Dysregulation of this process can result in chronic inflammatory and over-exuberant repair responses, and it is associated with the development of colon cancer. Thus, dysregulated TLR signalling by intestinal epithelial cells may explain how colonic bacteria and inflammation promote colorectal cancer.
Collapse
|
29
|
Abstract
The primary function of the gastrointestinal tract is water, electrolyte, and nutrient transport. To perform this function, the epithelium lining the gastrointestinal tract is in close contact with the gastrointestinal lumen. Because the lumen is connected to the external environment and, depending on the site, has a high bacterial and antigen load, the epithelium must also prevent pathogenic agents within the gastrointestinal lumen from gaining access to internal tissues. This creates a unique challenge for the gastrointestinal tract to balance the requirements of forming a barrier to separate the intestinal lumen from underlying tissue while simultaneously setting up a system for moving water, electrolytes, and nutrients across the barrier. In the face of this, the epithelial cells of the gastrointestinal tract form a selectively permeable barrier that is tightly regulated. In addition, the intestinal mucosa actively participates in host defense by engaging the mucosal immune system. Complex tissue organization and diverse cellular composition are necessary to achieve such a broad range of functions. In this chapter, the structure and function of the gastrointestinal tract and their relevance to infectious diseases are discussed.
Collapse
|
30
|
Abstract
Paneth cells (PCs) are specialized epithelial cells predominantly found in the small intestinal crypts of Lieberkuehn. They produce different broad spectrum antimicrobial peptides most abundantly the alpha-defensins HD-5 and -6 (DEFA5 und DEFA6). Both these PC products show a specific reduction in small intestinal Crohn's disease (CD) - a form of inflammatory bowel disease (IBD). Their decrease is independent of current inflammation and an association with a NOD2 frameshift mutation has been demonstrated. More recently, another independent and even more frequent mechanism has been found which is linked to diminished levels of the Wnt pathway transcription factor TCF7L2 (also known as TCF4). Besides regulating the expression of HD-5 and HD-6 as TCF4 target genes, the Wnt pathway also orchestrates Paneth cell differentiation and maturation and controls stem cell maintenance in the small intestine. Besides NOD2 (which is predominantly expressed in PC) and ATG16L1 (inter alia important in the exocytosis of PC products), TCF4 is the third gene which is associated with small intestinal CD and Paneth cell antimicrobial function. Thus, Paneth cells seem to be key player emphazising a paramount importance of antimicrobial host defense in small intestinal CD pathogenesis.
Collapse
|
31
|
Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A 2008; 105:20858-63. [PMID: 19075245 DOI: 10.1073/pnas.0808723105] [Citation(s) in RCA: 757] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The intestinal epithelium is in direct contact with a vast microbiota, yet little is known about how epithelial cells defend the host against the heavy bacterial load. To address this question we studied Paneth cells, a key small intestinal epithelial lineage. We found that Paneth cells directly sense enteric bacteria through cell-autonomous MyD88-dependent toll-like receptor (TLR) activation, triggering expression of multiple antimicrobial factors. Paneth cells were essential for controlling intestinal barrier penetration by commensal and pathogenic bacteria. Furthermore, Paneth cell-intrinsic MyD88 signaling limited bacterial penetration of host tissues, revealing a role for epithelial MyD88 in maintaining intestinal homeostasis. Our findings establish that gut epithelia actively sense enteric bacteria and play an essential role in maintaining host-microbial homeostasis at the mucosal interface.
Collapse
|
32
|
Hume GE, Fowler EV, Doecke J, Simms LA, Huang N, Palmieri O, Griffiths LR, Florin THJ, Annese V, Radford-Smith GL. Novel NOD2 haplotype strengthens the association between TLR4 Asp299gly and Crohn's disease in an Australian population. Inflamm Bowel Dis 2008; 14:585-590. [PMID: 18213697 DOI: 10.1002/ibd.20362] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND The first major Crohn's disease (CD) susceptibility gene, NOD2, implicates the innate intestinal immune system and other pattern recognition receptors in the pathogenesis of this chronic, debilitating disorder. These include the Toll-like receptors, specifically TLR4 and TLR5. A variant in the TLR4 gene (A299G) has demonstrated variable association with CD. We aimed to investigate the relationship between TLR4 A299G and TLR5 N392ST, and an Australian inflammatory bowel disease cohort, and to explore the strength of association between TLR4 A299G and CD using global meta-analysis. METHODS Cases (CD = 619, ulcerative colitis = 300) and controls (n = 360) were genotyped for TLR4 A299G, TLR5 N392ST, and the 4 major NOD2 mutations. Data were interrogated for case-control analysis prior to and after stratification by NOD2 genotype. Genotype-phenotype relationships were also sought. Meta-analysis was conducted via RevMan. RESULTS The TLR4 A299G variant allele showed a significant association with CD compared to controls (P = 0.04) and a novel NOD2 haplotype was identified which strengthened this (P = 0.003). Furthermore, we identified that TLR4 A299G was associated with CD limited to the colon (P = 0.02). In the presence of the novel NOD2 haplotype, TLR4 A299G was more strongly associated with colonic disease (P < 0.001) and nonstricturing disease (P = 0.009). A meta-analysis of 11 CD cohorts identified a 1.5-fold increase in risk for the variant TLR4 A299G allele (P < 0.00001). CONCLUSIONS TLR 4 A299G appears to be a significant risk factor for CD, in particular colonic, nonstricturing disease. Furthermore, we identified a novel NOD2 haplotype that strengthens the relationship between TLR4 A299G and these phenotypes.
Collapse
Affiliation(s)
- Georgia E Hume
- Inflammatory Bowel Disease Laboratory, Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Defensins are antimicrobial peptides produced by professional phagocytes, Paneth cells, and intestinal epithelial cells. In addition to their potent antimicrobial activity, defensins can also modulate the function and movement of neutrophils, monocytes, T-lymphocytes, dendritic cells, and epithelial cells. Paneth cells are equipped with multiple defensins and antimicrobial proteins and usually reside in the small intestine. This review highlights the diverse functions of defensins and changes in defensin expression and Paneth cell proliferation in Crohn's disease, ulcerative colitis, and animal models of inflammatory bowel disease. Current data favor the hypothesis that defensins and Paneth cells may play important roles in the maintenance of intestinal immune homeostasis through 2 distinct mechanisms. The first mechanism is to act as effector molecules and cells against pathogenic microbes, while the second is to regulate host immune cell functions.
Collapse
Affiliation(s)
- Jishu Shi
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, Alabama 36849, USA.
| |
Collapse
|
34
|
Menendez A, Brett Finlay B. Defensins in the immunology of bacterial infections. Curr Opin Immunol 2007; 19:385-91. [PMID: 17702560 DOI: 10.1016/j.coi.2007.06.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 06/15/2007] [Accepted: 06/29/2007] [Indexed: 12/31/2022]
Abstract
Defensins are a component of the host response against bacterial infections. Multiple studies suggest a linked upregulation of beta-defensins and pro-inflammatory cytokines expression in various tissues, as well as the possibility of mutual induction. Recent data demonstrate the importance of nucleotide-binding oligomerization proteins for the expression of defensins, and associate low levels of alpha-defensins expression by intestinal Paneth cells with susceptibility to Crohn's disease of the ileum. A novel anti-toxin activity has been identified for several alpha- and theta-defensins, expanding the repertoire of the antimicrobial functions of defensins. It has been shown that bacterial proteins can inactivate the action of defensins, and that pathogen type III secretion systems (T3SS) manipulate defensins expression via T3SS-mediated inhibition of the NF-kappaB pathway.
Collapse
Affiliation(s)
- Alfredo Menendez
- Michael Smith Laboratories, The University of British Columbia, 301-2185 East Mall, Vancouver, BC, Canada V6T 1Z4
| | | |
Collapse
|
35
|
Tanabe H, Ayabe T, Maemoto A, Ishikawa C, Inaba Y, Sato R, Moriichi K, Okamoto K, Watari J, Kono T, Ashida T, Kohgo Y. Denatured human alpha-defensin attenuates the bactericidal activity and the stability against enzymatic digestion. Biochem Biophys Res Commun 2007; 358:349-355. [PMID: 17482139 DOI: 10.1016/j.bbrc.2007.04.132] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Accepted: 04/22/2007] [Indexed: 01/07/2023]
Abstract
alpha-Defensin is an antimicrobial peptide which plays an important role in innate immunity. Human defensin (HD)-5 is stored in the Paneth cells of the small intestine as a pro-form and is cleaved by trypsin, which is co-secreted from the Paneth cell granules. The mature HD-5 is protected from further digestion by the proteolysis enzyme. We generated both recombinant HD-5 and proHD-5, and the reduced form of each peptide in order to determine their physiological roles of the disulfide bonds. The reduced proHD-5 attenuated the bactericidal activity and the stability against the trypsin digestion. Human defensin was protected from the enzymatic degradation by disulfide bridges. We further purified the HD-5 with a disulfide variation in the small intestine of Crohn's disease patients. The HD-5 was sensitive to the trypsin treatment. These observations evidently predict that a defensin deficiency may be caused by a disulfide disorder in the disease.
Collapse
Affiliation(s)
- Hiroki Tanabe
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical College, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sundbom M, Elphick DA, Mahida YR, Cunliffe RN, Midtvedt T, Engstrand L, Rubio C, Axelsson LG. Alteration in human defensin-5 expression following gastric bypass surgery. J Clin Pathol 2007; 60:1029-34. [PMID: 17412868 PMCID: PMC1972438 DOI: 10.1136/jcp.2006.041871] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Roux-en-Y gastric bypass surgery provides a novel human model to investigate small bowel mucosal innate immunity, in which there is loss of gastric acid-mediated protection against orally-acquired microorganisms. AIM To study changes in jejunal mucosal immunoreactivity of human defensin (HD)-5, an antimicrobial peptide normally produced by Paneth cells. METHODS Mucosal samples were obtained from 18 female patients (24-54 years), from the same segment of jejunum during and after gastric bypass surgery. Samples were used for bacterial culture and immunohistochemistry using anti-HD-5 antibody. The number of immunoreactive cells per crypt and villus were determined and expressed as mean (SD). RESULTS No bacteria were cultured from any of the perioperative jejunal samples but colonies of bacteria normally present in the pharynx were identified during culture of all postoperative jejunal biopsy specimens (1->100 colonies). Paneth cell numbers per crypt were unchanged after gastric bypass (4.16 (0.71) vs 4.24 (0.78)). However, following surgery, there was an increase in HD-5-positive intermediate cells per crypt (0.25 (0.41) vs 1.12 (0.66), p<0.01), HD-5 staining enterocytes per crypt (0.03 (0.09) vs 1.38 (1.10), p<0.01), HD-5 staining material in the crypt lumen (crypt lumens: 5.0% (10.9%) vs 68.1% (27.9%), p<0.01) and HD-5 immunoreactivity coating the luminal surface of villus enterocytes (villi sampled: 15.0% (31.0%) vs 67.5% (42.0%), p<0.01). CONCLUSIONS Bacteria normally resident in the pharynx were present in the proximal jejunal mucosa following Roux-en-Y gastric bypass surgery. After gastric bypass, there was increased secretion of HD-5 and an increase in HD-5 expressing intermediate cells and enterocytes in the crypt. The increase in HD-5 expression in the jejunal mucosa following gastric bypass surgery is likely to be secondary to exposure to orally-acquired microorganisms.
Collapse
Affiliation(s)
- M Sundbom
- Department of Surgery, University Hospital, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Schüller S, Heuschkel R, Torrente F, Kaper JB, Phillips AD. Shiga toxin binding in normal and inflamed human intestinal mucosa. Microbes Infect 2007; 9:35-9. [PMID: 17208032 DOI: 10.1016/j.micinf.2006.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 10/05/2006] [Accepted: 10/09/2006] [Indexed: 12/01/2022]
Abstract
Shiga toxins are associated with haemolytic uraemic syndrome but human intestinal epithelium does not express the Gb3 receptor. We describe Gb3 expression and Shiga toxin binding in histologically normal intestine and demonstrate that the pattern is unaltered in inflammatory disease states. Gb3 expression and Shiga toxin binding were identified in Paneth cells in both normal and inflamed mucosae.
Collapse
Affiliation(s)
- Stephanie Schüller
- Centre for Paediatric Gastroenterology, Royal Free & University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | | | |
Collapse
|
38
|
Abstract
The neonatal adaptive immune system, relatively naïve to foreign antigens, requires synergy with the innate immune system to protect the intestine. Goblet cells provide mucins, Paneth cells produce antimicrobial peptides, and dendritic cells (DCs) present luminal antigens. Intracellular signaling by Toll-like receptors (TLRs) elicits chemokines and cytokines that modulate inflammation. Enteric neurons and lymphocytes provide paracrine and endocrine signaling. However, full protection requires human milk. Breast-feeding reduces enteric infection and may reduce chronic disease in later life. Although human milk contains significant secretory immunoglobulin A (sIgA), most of its protective factors are constitutively expressed. Multifunctional milk components are nutrients whose partial digestion products inhibit pathogens. Cytokines, cytokine receptors, TLR agonists and antagonists, hormones, anti-inflammatory agents, and nucleotides in milk modulate inflammation. Human milk is rich in glycans (complex carbohydrates): As prebiotics, indigestible glycans stimulate colonization by probiotic organisms, modulating mucosal immunity and protecting against pathogens. Through structural homology to intestinal cell surface receptors, glycans inhibit pathogen binding, the essential first step of pathogenesis. Bioactive milk components comprise an innate immune system of human milk whereby the mother protects her nursing infant. Interactions between human milk glycans, intestinal microflora, and intestinal mucosa surface glycans underlie ontogeny of innate mucosal immunity, pathobiology of enteric infection, and inflammatory bowel diseases.
Collapse
Affiliation(s)
- David S Newburg
- Pediatric Gastroenterology and Nutrition Unit, MassGeneral Hospital for Children and Harvard Medical School, Boston, Massachusetts, USA.
| | | |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW To review recently published studies presenting novel and relevant information on Paneth cells and their function. RECENT FINDINGS Paneth cells are secretory epithelial cells which are predominantly found in the small-intestinal crypts of Lieberkühn. Their most abundant products are alpha-defensins, which are endogenous antibiotics with activity against gram-negative and gram-positive bacteria, fungi, viruses and protozoa. The differentiation from stem-cell progenitors to Paneth cells is regulated by Wnt signalling via a complex gene programme, terminally including defensins. A disturbance of Paneth-cell differentiation and function may predispose to intestinal infections and appears to be a critical factor in the pathogenesis of ileal Crohn's disease, an inflammatory disease of the intestinal tract. SUMMARY It is conceivable that these recent findings together with a better understanding of underlying mechanisms involved in the regulation and biology of Paneth cells will open up new therapeutic avenues for preventing infection as well as for causally treating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Jan Wehkamp
- Robert Bosch Hospital and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
| | | |
Collapse
|
40
|
Froy O, Chapnik N. Circadian oscillation of innate immunity components in mouse small intestine. Mol Immunol 2006; 44:1954-60. [PMID: 17074393 DOI: 10.1016/j.molimm.2006.09.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 09/26/2006] [Accepted: 09/28/2006] [Indexed: 02/01/2023]
Abstract
The digestive system is a major port of entry for pathogens. To detect and combat pathogens, the innate immunity in the gut utilizes pattern recognition receptors, such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD) proteins, and broad-spectrum anti-bacterial polypeptides, such as defensins. We have previously shown that mouse enteric defensins (cryptdins) oscillate around the circadian cycle and peak at the end of the dark phase suggesting control by the biological clock. As the core mechanism of the biological clock has never been studied in the small intestine, our objective was to determine whether the biological clock is functional in mouse jejunum and examine whether mTlr and mNod2 mRNAs, similarly to cryptdins, oscillate throughout the circadian cycle. Mouse jejunum and Paneth-enriched crypt base cells were isolated around the circadian day and the levels of clock (mClock, mBmal1, mPer1, mPer2, mCry1) and innate immunity component (mTlr2, mTlr3, mTlr4, mTlr5, mTlr9, mNod2) genes were measured by real-time PCR. Analysis of mouse jejunum and Paneth-enriched crypt base cells revealed that all clock genes exhibited circadian oscillation. Similarly to cryptdins, mTlr2, mTlr3, mTlr4, mTlr5 displayed circadian rhythmicity in mouse jejunum. Although no circadian oscillation could be detected for mTlr9 and mNod2 in the whole jejunum, these genes oscillated in Paneth-enriched crypt base cells. In addition, mTlr3 exhibited the highest expression level. As the clock regulates intestinal motility and function, resetting of the clock in the small intestine may help not only to restore activity but also to gain better protection against pathogens.
Collapse
Affiliation(s)
- Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agricultural, Food and Environmental Quality, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | | |
Collapse
|
41
|
Rumio C, Besusso D, Arnaboldi F, Palazzo M, Selleri S, Gariboldi S, Akira S, Uematsu S, Bignami P, Ceriani V, Ménard S, Balsari A. Activation of smooth muscle and myenteric plexus cells of jejunum via Toll-like receptor 4. J Cell Physiol 2006; 208:47-54. [PMID: 16523497 DOI: 10.1002/jcp.20632] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The cell types of the gut expressing Toll-like receptor 4, which recognizes specifically bacterial lipopolysaccharides, as well as the functionality of this receptor, have remained controversial. We aimed to clarify these issues. Mouse and human intestinal specimens were stained immunohistochemically to detect Toll-like receptor 4 expression. Smooth muscle and myenteric plexus cells but not enterocytes revealed receptor expression. Murine intestinal smooth muscle and myenteric plexus cells but not enterocytes showed nuclear translocation of nuclear factor-kappaB after in vivo stimulation with lipopolysaccharide. Moreover, lipopolysaccharide added to human jejunum biopsies free of epithelial cells induced release of interleukin-8 (IL-8). We can conclude that Toll-like receptor 4 is not expressed in epithelial layer, but rather on smooth muscle and myenteric plexus cells and that expression is functional. The expression of Toll-like receptor 4 on smooth muscle and myenteric plexus cells is consistent with the possibility that these cells are involved in intestinal immune defense; the low or absent expression of Toll-like receptor 4 on enterocytes might explain the intestinal epithelium hyporesponsiveness to the abundance of LPS in the intestinal lumen.
Collapse
Affiliation(s)
- Cristiano Rumio
- Department of Human Morphology, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- D A Elphick
- Institute of Infection, Immunity, and Inflammation, C Floor, West Block, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | |
Collapse
|
43
|
Abstract
Crohn's disease (CD) is characterized by patchy transmural inflammation involving any part of the intestinal tract. Animal models have provided a great deal of insight into the pathogenesis of CD, but no animal model has recapitulated the full spectrum of manifestations witnessed in human disease. The defects in mucosal immunity in CD can be divided into those that involve the epithelial barrier, those that involve the innate immune response, and finally, defects in the adaptive immune response. Defects in the epithelial barrier in CD include an increase in intestinal permeability, increased adherence of bacteria, and decreased expression of defensins. Murine and human studies have demonstrated an increased expression of T-helper 1 (Th1) cytokines by lamina propria lymphocytes. This increased Th1 cytokine expression is driven by interleukin-12 (IL-12)/IL-23 and tumor necrosis factor-like 1A (TL1A) production by antigen-presenting cells, resulting in Tbet expression by CD4+ T cells. Another dimension of the inappropriate immune response in CD is T-cell and B-cell reactivity to luminal microbes. With the identification of the nucleotide-binding oligomerization domain 2 (NOD2) gene as a susceptibility gene, defects in the innate immune response are beginning to be explored. One may consider a model in which defective innate immune clearance of pathogens or commensal bacteria in CD leads to an inappropriate adaptive immune response to the commensal flora.
Collapse
Affiliation(s)
- Gena M Cobrin
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
44
|
Ouellette AJ. Paneth cell α-defensins: peptide mediators of innate immunity in the small intestine. ACTA ACUST UNITED AC 2005; 27:133-46. [PMID: 15931529 DOI: 10.1007/s00281-005-0202-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
Epithelial cells contribute to innate immunity by releasing antimicrobial peptides (AMPs) onto mucosal surfaces. In the small bowel, Paneth cells at the base of the crypts of Lieberkühn secrete alpha-defensins and additional AMPs at high levels in response to cholinergic stimulation and when exposed to bacterial antigens. The release of Paneth cell products into the crypt lumen is inferred to protect mitotically active crypt cells that renew the epithelial cell monolayer from colonization by potentially pathogenic microbes and to confer protection from enteric infection. The most compelling evidence for a Paneth cell role in enteric resistance to infection is evident from studies of mice transgenic for a human Paneth cell alpha-defensin, HD-5, which are completely immune to infection and systemic disease from orally administered Salmonella enterica serovar typhimurium. Cystic fibrosis mice are subject to small bowel bacterial overgrowth that is associated with impaired dissolution of released Paneth cell granules in the crypt lumen. Mutations that cause defects in the activation, secretion, dissolution, and bactericidal effects of Paneth cell AMPs may alter crypt innate immunity and contribute to immunopathology.
Collapse
Affiliation(s)
- Andre J Ouellette
- Department of Pathology and Laboratory Medicine and Microbiology and Molecular Genetics, School of Medicine, College of Health Sciences, University of California at Irvine, Irvine, CA 92697-4800, USA.
| |
Collapse
|