1
|
Innate immune activation and modulatory factors of Helicobacter pylori towards phagocytic and nonphagocytic cells. Curr Opin Immunol 2023; 82:102301. [PMID: 36933362 DOI: 10.1016/j.coi.2023.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023]
Abstract
Helicobacter pylori is an intriguing obligate host-associated human pathogen with a specific host interaction biology, which has been shaped by thousands of years of host-pathogen coevolution. Molecular mechanisms of interaction of H. pylori with the local immune cells in the human system are less well defined than epithelial cell interactions, although various myeloid cells, including neutrophils and other phagocytes, are locally present or attracted to the sites of infection and interact with H. pylori. We have recently addressed the question of novel bacterial innate immune stimuli, including bacterial cell envelope metabolites, that can activate and modulate cell responses via the H. pylori Cag type IV secretion system. This review article gives an overview of what is currently known about the interaction modes and mechanisms of H. pylori with diverse human cell types, with a focus on bacterial metabolites and cells of the myeloid lineage including phagocytic and antigen-presenting cells.
Collapse
|
2
|
Li W, Yang Z, Hu J, Wang B, Rong H, Li Z, Sun Y, Wang Y, Zhang X, Wang M, Xu H. Evaluation of culturable 'last-resort' antibiotic resistant pathogens in hospital wastewater and implications on the risks of nosocomial antimicrobial resistance prevalence. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129477. [PMID: 35780736 DOI: 10.1016/j.jhazmat.2022.129477] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/02/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial resistance has been recognized as an important emerging environmental pollutant. 'Last-resort' antibiotics including tigecycline, polymyxin E, daptomycin, vancomycin and linezolid are the 'last line of defence' for antibiotic resistant pathogen infections. Therefore, the presence of 'last-resort' antibiotic resistant pathogens in hospital environments and the nosocomial transmission of 'last-resort' antibiotic resistance poses a grave threat to the well-being of patients. In this work, the extent of resistance to 'last-resort' antibiotics in culturable pathogens in hospital wastewater was investigated. Resistance to 'last-resort' antibiotics were quantified for 1384 culturable Enterobacteriaceae, Enterococcus, Staphylococcus, and Pseudomonas strains. With these investigations, several significant findings were made: (1) a very high level of resistance to 'last-resort' antibiotics was found; (2) multiple resistance to antibiotics, including 'last-resort' antibiotics, was prevalent; (3) a high level of 'last-resort' antibiotic resistance phenotype-genotype inconsistency was found, suggesting knowledge gap for resistance mechanisms; 4) tet(X4)-containing tigecycline-resistant Gram-positive pathogens were found for the first time; 5) wastewater treatment processes are effective in preventing the release of 'last-resort' antibiotic resistant pathogens to the environment. This investigation reveals the severe situation on 'last-resort' resistance in the hospital environment, and implies high risk for nosocomial transmission of 'last-resort' antibiotic resistant pathogens.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China; Division of Science and Technology, Ludong University, Yantai, Shandong 264025, China
| | - Zhongjun Yang
- Department of Stomatology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong 266035, China
| | - Jiamin Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Bianfang Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Hao Rong
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Ziyun Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Yuqing Sun
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Yunkun Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Xuhua Zhang
- Laboratory Medicine Center, The Second Hospital of Shandong University, Jinan, Shandong 250000, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China.
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
3
|
Kim HW, Woo HJ, Yang JY, Kim JB, Kim SH. Hesperetin Inhibits Expression of Virulence Factors and Growth of Helicobacter pylori. Int J Mol Sci 2021; 22:ijms221810035. [PMID: 34576198 PMCID: PMC8472136 DOI: 10.3390/ijms221810035] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a bacterium known to infect the human stomach. It can cause various gastrointestinal diseases including gastritis and gastric cancer. Hesperetin is a major flavanone component contained in citrus fruits. It has been reported to possess antibacterial, antioxidant, and anticancer effects. However, the antibacterial mechanism of hesperetin against H. pylori has not been reported yet. Therefore, the objective of this study was to determine the inhibitory effects of hesperetin on H. pylori growth and its inhibitory mechanisms. The results of this study showed that hesperetin inhibits the growth of H. pylori reference strains and clinical isolates. Hesperetin inhibits the expression of genes in replication (dnaE, dnaN, dnaQ, and holB) and transcription (rpoA, rpoB, rpoD, and rpoN) machineries of H. pylori. Hesperetin also inhibits the expression of genes related to H. pylori motility (flhA, flaA, and flgE) and adhesion (sabA, alpA, alpB, hpaA, and hopZ). It also inhibits the expression of urease. Hespereti n downregulates major virulence factors such as cytotoxin-associated antigen A (CagA) and vacuolating cytotoxin A (VacA) and decreases the translocation of CagA and VacA proteins into gastric adenocarcinoma (AGS) cells. These results might be due to decreased expression of the type IV secretion system (T4SS) and type V secretion system (T5SS) involved in translocation of CagA and VacA, respectively. The results of this study indicate that hesperetin has antibacterial effects against H. pylori. Thus, hesperetin might be an effective natural product for the eradication of H. pylori.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea; (H.W.K.); (J.-B.K.)
| | - Hyun Jun Woo
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea;
| | - Ji Yeong Yang
- Division of Crop Foundation, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Wanju 55365, Korea;
| | - Jong-Bae Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea; (H.W.K.); (J.-B.K.)
| | - Sa-Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea;
- Correspondence:
| |
Collapse
|
4
|
Lettl C, Haas R, Fischer W. Kinetics of CagA type IV secretion by Helicobacter pylori and the requirement for substrate unfolding. Mol Microbiol 2021; 116:794-807. [PMID: 34121254 DOI: 10.1111/mmi.14772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/02/2021] [Accepted: 06/12/2021] [Indexed: 12/27/2022]
Abstract
Type IV secretion of effector proteins is an important principle for interaction of human pathogens with their target cells. The corresponding secretion systems may transport a multitude of effector proteins that have to be deployed in the respective spatiotemporal context, or only a single translocated protein, as in the case of the CagA effector protein produced by the human gastric pathogen Helicobacter pylori. For a more detailed analysis of the kinetics and mode of action of CagA type IV secretion by H. pylori, we describe here, a novel, highly sensitive split luciferase-based translocation reporter which can be easily adapted to different end-point or real-time measurements. Using this reporter, we showed that H. pylori cells are able to rapidly inject a limited amount of their CagA supply into cultured gastric epithelial cells. We have further employed the reporter system to address the question whether CagA has to be unfolded prior to translocation by the type IV secretion system. We showed that protein domains co-translocated with CagA as protein fusions are more readily tolerated as substrates than in other secretion systems, but also provide evidence that unfolding of effector proteins is a prerequisite for their transport.
Collapse
Affiliation(s)
- Clara Lettl
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Medical Faculty, LMU Munich, Munich, Germany.,Partner Site Munich, German Center for Infection Research (DZIF), Munich, Germany
| | - Rainer Haas
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Medical Faculty, LMU Munich, Munich, Germany.,Partner Site Munich, German Center for Infection Research (DZIF), Munich, Germany
| | - Wolfgang Fischer
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Medical Faculty, LMU Munich, Munich, Germany.,Partner Site Munich, German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
5
|
Faass L, Stein SC, Hauke M, Gapp M, Albanese M, Josenhans C. Contribution of Heptose Metabolites and the cag Pathogenicity Island to the Activation of Monocytes/Macrophages by Helicobacter pylori. Front Immunol 2021; 12:632154. [PMID: 34093525 PMCID: PMC8174060 DOI: 10.3389/fimmu.2021.632154] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
The human gastric pathogen Helicobacter pylori activates human epithelial cells by a particular combination of mechanisms, including NOD1 and ALPK1-TIFA activation. These mechanisms are characterized by a strong participation of the bacterial cag pathogenicity island, which forms a type IV secretion system (CagT4SS) that enables the bacteria to transport proteins and diverse bacterial metabolites, including DNA, glycans, and cell wall components, into human host cells. Building on previous findings, we sought to determine the contribution of lipopolysaccharide inner core heptose metabolites (ADP-heptose) in the activation of human phagocytic cells by H. pylori. Using human monocyte/macrophage-like Thp-1 cells and human primary monocytes and macrophages, we were able to determine that a substantial part of early phagocytic cell activation, including NF-κB activation and IL-8 production, by live H. pylori is triggered by bacterial heptose metabolites. This effect was very pronounced in Thp-1 cells exposed to bacterial purified lysates or pure ADP-heptose, in the absence of other bacterial MAMPs, and was significantly reduced upon TIFA knock-down. Pure ADP-heptose on its own was able to strongly activate Thp-1 cells and human primary monocytes/macrophages. Comprehensive transcriptome analysis of Thp-1 cells co-incubated with live H. pylori or pure ADP-heptose confirmed a signature of ADP-heptose-dependent transcript activation in monocyte/macrophages. Bacterial enzyme-treated lysates (ETL) and pure ADP-heptose–dependent activation differentiated monocytes into macrophages of predominantly M1 type. In Thp-1 cells, the active CagT4SS was less required for the heptose-induced proinflammatory response than in epithelial cells, while active heptose biosynthesis or pure ADP-heptose was required and sufficient for their early innate response and NF-κB activation. The present data suggest that early activation and maturation of incoming and resident phagocytic cells (monocytes, macrophages) in the H. pylori–colonized stomach strongly depend on bacterial LPS inner core heptose metabolites, also with a significant contribution of an active CagT4SS.
Collapse
Affiliation(s)
- Larissa Faass
- Max von Pettenkofer Institute, Chair for Medical Microbiology and Hygiene, Ludwig Maximilians University Munich, Munich, Germany
| | - Saskia C Stein
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Martina Hauke
- Max von Pettenkofer Institute, Chair for Medical Microbiology and Hygiene, Ludwig Maximilians University Munich, Munich, Germany
| | - Madeleine Gapp
- Max von Pettenkofer Institute, Chair for Virology, Ludwig Maximilians University, Munich, Germany.,Gene Center and Department of Biochemistry, LMU Munich, Munich, Germany
| | - Manuel Albanese
- Max von Pettenkofer Institute, Chair for Virology, Ludwig Maximilians University, Munich, Germany.,Gene Center and Department of Biochemistry, LMU Munich, Munich, Germany
| | - Christine Josenhans
- Max von Pettenkofer Institute, Chair for Medical Microbiology and Hygiene, Ludwig Maximilians University Munich, Munich, Germany.,Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,German Center of Infection Research (DZIF), Partner site Munich, Munich, Germany.,DZIF, Partner site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
6
|
Evodiamine Inhibits Helicobacter pylori Growth and Helicobacter pylori-Induced Inflammation. Int J Mol Sci 2021; 22:ijms22073385. [PMID: 33806161 PMCID: PMC8036659 DOI: 10.3390/ijms22073385] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori (H. pylori) classified as a class I carcinogen by the World Health Organization (WHO) plays an important role in the progression of chronic gastritis and the development of gastric cancer. A major bioactive component of Evodia rutaecarpa, evodiamine, has been known for its anti-bacterial effect and anti-cancer effects. However, the inhibitory effect of evodiamine against H. pylori is not yet known and the inhibitory mechanisms of evodiamine against gastric cancer cells are yet to be elucidated concretely. In this study, therefore, anti-bacterial effect of evodiamine on H. pylori growth and its inhibitory mechanisms as well as anti-inflammatory effects and its mechanisms of evodiamine on H. pylori-induced inflammation were investigated in vitr. Results of this study showed the growth of the H. pylori reference strains and clinical isolates were inhibited by evodiamine. It was considered one of the inhibitory mechanisms that evodiamine downregulated both gene expressions of replication and transcription machineries of H. pylori. Treatment of evodiamine also induced downregulation of urease and diminished translocation of cytotoxin-associated antigen A (CagA) and vacuolating cytotoxin A (VacA) proteins into gastric adenocarcinoma (AGS) cells. This may be resulted from the reduction of CagA and VacA expressions as well as the type IV secretion system (T4SS) components and secretion system subunit protein A (SecA) protein which are involved in translocation of CagA and VacA into host cells, respectively. In particular, evodiamine inhibited the activation of signaling proteins such as the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and the mitogen-activated protein kinase (MAPK) pathway induced by H. pylori infection. It consequently might contribute to reduction of interleukin (IL)-8 production in AGS cells. Collectively, these results suggest anti-bacterial and anti-inflammatory effects of evodiamine against H. pylori.
Collapse
|
7
|
Marini RP, Patterson MM, Muthupalani S, Feng Y, Holcombe H, Swennes AG, Ducore R, Whary MM, Shen Z, Fox JG. Helicobacter suis and Helicobacter pylori infection in a colony of research macaques: characterization and clinical correlates. J Med Microbiol 2021; 70. [PMID: 33475481 DOI: 10.1099/jmm.0.001315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Introduction. Helicobacter suis (Helicobacter heilmannii type 1) commonly infects nonhuman primates but its clinical importance is in question.Aim. To characterize H. suis infection in a colony of rhesus macaques (Macaca mulatta) used in cognitive neuroscience research.Hypothesis/Gap Statement. Inquiries into the nature of Helicobacter suis in nonhuman primates are required to further define the organism's virulence and the experimental animal's gastric microbiome.Methodology. Animals with and without clinical signs of vomiting and abdominal pain (n=5 and n=16, respectively) were evaluated by histology, culture, PCR amplification and sequencing, fluorescent in situ hybridization (FISH) and serology. Three of the five animals with clinical signs, an index case and two others, were evaluated before and after antimicrobial therapy.Results. The index animal had endoscopically visible ulcers and multifocal, moderate, chronic lymphoplasmacytic gastritis with intraglandular and luminal spiral bacteria. Antimicrobial therapy in the index animal achieved histologic improvement, elimination of endoscopically visible ulcers, and evident eradication but clinical signs persisted. In the other treated animals, gastritis scores were not consistently altered, gastric bacteria persisted, but vomiting and abdominal discomfort abated.Nineteen of 21 animals were PCR positive for H. suis and five animals were also PCR positive for H. pylori. Organisms were detected by FISH in 17 of 21 animals: 16S rRNA sequences of two of these were shown to be H. suis. Mild to moderate lymphoplasmacytic gastritis was seen in antrum, body and cardia, with antral gastritis more likely to be moderate than that of the body.Conclusion. No clear association between the bacterial numbers of Helicobacter spp. and the degree of inflammation was observed. H. suis is prevalent in this colony of Macaca mulatta but its clinical importance remains unclear. This study corroborates many of the findings in earlier studies of H. suis infection in macaques but also identifies at least one animal in which gastritis and endoscopically visible gastric ulcers were strongly associated with H. suis infection. In this study, serology was an inadequate biomarker for endoscopic evaluation in diagnosis of H. suis infection.
Collapse
Affiliation(s)
- Robert P Marini
- The Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Ave, Bldg 16-825, Cambridge, MA, USA
| | - Mary M Patterson
- The Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Ave, Bldg 16-825, Cambridge, MA, USA
| | - Sureshkumar Muthupalani
- The Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Ave, Bldg 16-825, Cambridge, MA, USA
| | - Yan Feng
- The Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Ave, Bldg 16-825, Cambridge, MA, USA
| | - Hilda Holcombe
- The Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Ave, Bldg 16-825, Cambridge, MA, USA
| | - Alton G Swennes
- The Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Ave, Bldg 16-825, Cambridge, MA, USA
| | - Rebecca Ducore
- The Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Ave, Bldg 16-825, Cambridge, MA, USA
| | - Mark M Whary
- The Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Ave, Bldg 16-825, Cambridge, MA, USA
| | - Zeli Shen
- The Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Ave, Bldg 16-825, Cambridge, MA, USA
| | - James G Fox
- The Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Ave, Bldg 16-825, Cambridge, MA, USA
| |
Collapse
|
8
|
Helicobacter pylori Oncogenicity: Mechanism, Prevention, and Risk Factors. ScientificWorldJournal 2020; 2020:3018326. [PMID: 32765194 PMCID: PMC7374235 DOI: 10.1155/2020/3018326] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/04/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is the most common cause of gastric ulcer; however, its association with gastric cancer has been proved through a variety of studies. Importantly, H. pylori infection affects around half of the world's population leading to a variety of gastric problems and is mostly present in asymptomatic form. Although about 20% of people infected with H. pylori develop preneoplastic gastric lesions in later stages of their life, around 2% of infected individuals develop gastric cancer. Nevertheless, the outcome of H. pylori infection is determined by complex interaction between the host genetics, its environment, and virulence factors of infecting strain. There are several biomarkers/traits of H. pylori that have been linked with the onset of cancer. Among these, presence of certain major virulence factors including cytotoxin-associated gene A (CagA), vacuolating cytotoxin (VacA), and outer inflammatory protein A (OipA) plays a significant role in triggering gastric cancer. These factors of H. pylori make it a potent carcinogen. Therefore, eradication of H. pylori infection has shown positive effects on decreasing the risk of gastric cancer, but this has become a challenge due to the development of antibiotic resistance in H. pylori against the antibiotics of choice. Thus, the unmet need is to develop new and effective treatments for H. pylori infection, considering the antimicrobial resistance in different regions of the world. This review discusses the properties of H. pylori associated with increased risk of gastric cancer, antibiotic resistance pattern, and the possible role of eradication of H. pylori in preventing gastric cancer.
Collapse
|
9
|
Precancerous Gastric Lesions with Helicobacter pylori vacA +/ babA2 +/ oipA + Genotype Increase the Risk of Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7243029. [PMID: 32149129 PMCID: PMC7049835 DOI: 10.1155/2020/7243029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/25/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
Abstract
Objective The clinical outcomes of gastric diseases such as chronic gastritis, peptic ulcer, and gastric cancer have been attributed to the interplay of virulence factors of Helicobacter pylori (H. pylori), host genetic susceptibility, and host immune responses. This study investigated the presence of cagA, vacA, iceA2, babA2, and oipA genes and their association with clinical outcomes. Methods Chronic gastritis, atrophic gastritis, and intestinal metaplasia specimens were obtained from patients who underwent endoscopy and surgical resection between January 2017 and December 2018; specimens from gastric cancer patients treated between January 2014 and December 2018 were also added. H. pylori), host genetic susceptibility, and host immune responses. This study investigated the presence of cagA, vacA, iceA2, babA2, and oipA genes and their association with clinical outcomes. H. pylori), host genetic susceptibility, and host immune responses. This study investigated the presence of Results H. pylori), host genetic susceptibility, and host immune responses. This study investigated the presence of vacA, babA2, and oipA genes and their association with clinical outcomes. vacA, babA2, and oipA genes and their association with clinical outcomes. P=0.033, OR = 2.64; 95% CI = 1.44–4.82, P=0.033, OR = 2.64; 95% CI = 1.44–4.82, P=0.033, OR = 2.64; 95% CI = 1.44–4.82, H. pylori vacA+/babA2, and oipA genes and their association with clinical outcomes. P=0.033, OR = 2.64; 95% CI = 1.44–4.82, Conclusion In this present study, we reported on the virulence genes of H. pylori infection to reveal their association with increased risk of chronic gastritis, precancerous gastric lesions, and gastric cancer. Precancerous gastric lesions with H. pylori vacA+/babA2+/oipA+ genotype increased the risk of gastric cancer.H. pylori), host genetic susceptibility, and host immune responses. This study investigated the presence of H. pylori vacA+/babA2, and oipA genes and their association with clinical outcomes.
Collapse
|
10
|
Yang JY, Lee P, Kim JB. Effect of Evodiae fructus Methanol Extract on Virulence-Related Genes' Expression of Helicobacter pylori. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2019. [DOI: 10.15324/kjcls.2019.51.3.316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ji Yeong Yang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Korea
| | - Pyeongjae Lee
- School of Industrial Bio-pharmaceutical Science, Semyung University, Jecheon, Korea
| | - Jong-Bae Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Korea
| |
Collapse
|
11
|
Lee MH, Yang JY, Cho Y, Woo HJ, Kwon HJ, Kim DH, Park M, Moon C, Yeon MJ, Kim HW, Seo WD, Kim SH, Kim JB. Inhibitory Effects of Menadione on Helicobacter pylori Growth and Helicobacter pylori-Induced Inflammation via NF-κB Inhibition. Int J Mol Sci 2019; 20:ijms20051169. [PMID: 30866458 PMCID: PMC6429389 DOI: 10.3390/ijms20051169] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/19/2022] Open
Abstract
H. pylori is classified as a group I carcinogen by WHO because of its involvement in gastric cancer development. Several reports have suggested anti-bacterial effects of menadione, although the effect of menadione on major virulence factors of H. pylori and H. pylori-induced inflammation is yet to be elucidated. In this study, therefore, we demonstrated that menadione has anti-H. pylori and anti-inflammatory effects. Menadione inhibited growth of H. pylori reference strains and clinical isolates. Menadione reduced expression of vacA in H. pylori, and translocation of VacA protein into AGS (gastric adenocarcinoma cell) was also decreased by menadione treatment. This result was concordant with decreased apoptosis in AGS cells infected with H. pylori. Moreover, cytotoxin-associated protein A (CagA) translocation into H. pylori-infected AGS cells was also decreased by menadione. Menadione inhibited expression of several type IV secretion system (T4SS) components, including virB2, virB7, virB8, and virB10, that are responsible for translocation of CagA into host cells. In particular, menadione inhibited nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) activation and thereby reduced expression of the proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α in AGS as well as in THP-1 (monocytic leukemia cell) cell lines. Collectively, these results suggest the anti-bacterial and anti-inflammatory effects of menadione against H. pylori.
Collapse
Affiliation(s)
- Min Ho Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea.
- Forensic DNA Division, National Forensic Service, Wonju 26460, Korea.
| | - Ji Yeong Yang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea.
| | - Yoonjung Cho
- Forensic DNA Division, National Forensic Service, Wonju 26460, Korea.
| | - Hyun Jun Woo
- Department of Clinical Laboratory Science, College of Medical Sciences, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Hye Jin Kwon
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea.
| | - Do Hyun Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea.
| | - Min Park
- Department of Biomedical Laboratory Science, Daekyeung University, Gyeongsan 38547, Korea.
| | - Cheol Moon
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea.
| | - Min Ji Yeon
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung 25451, Korea.
| | - Hyun Woo Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea.
| | - Woo-Duck Seo
- National Institute of Crop Science (NICS), Rural Development Administration (RDA), Wanju-Gun 55365, Korea.
| | - Sa-Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea.
| | - Jong-Bae Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea.
| |
Collapse
|
12
|
Christgen SL, Becker DF. Role of Proline in Pathogen and Host Interactions. Antioxid Redox Signal 2019; 30:683-709. [PMID: 29241353 PMCID: PMC6338583 DOI: 10.1089/ars.2017.7335] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 11/14/2017] [Indexed: 01/20/2023]
Abstract
SIGNIFICANCE Proline metabolism has complex roles in a variety of biological processes, including cell signaling, stress protection, and energy production. Proline also contributes to the pathogenesis of various disease-causing organisms. Understanding the mechanisms of how pathogens utilize proline is important for developing new strategies against infectious diseases. Recent Advances: The ability of pathogens to acquire amino acids is critical during infection. Besides protein biosynthesis, some amino acids, such as proline, serve as a carbon, nitrogen, or energy source in bacterial and protozoa pathogens. The role of proline during infection depends on the physiology of the host/pathogen interactions. Some pathogens rely on proline as a critical respiratory substrate, whereas others exploit proline for stress protection. CRITICAL ISSUES Disruption of proline metabolism and uptake has been shown to significantly attenuate virulence of certain pathogens, whereas in other pathogens the importance of proline during infection is not known. Inhibiting proline metabolism and transport may be a useful therapeutic strategy against some pathogens. Developing specific inhibitors to avoid off-target effects in the host, however, will be challenging. Also, potential treatments that target proline metabolism should consider the impact on intracellular levels of Δ1-pyrroline-5-carboxylate, a metabolite intermediate that can have opposing effects on pathogenesis. FUTURE DIRECTIONS Further characterization of how proline metabolism is regulated during infection would provide new insights into the role of proline in pathogenesis. Biochemical and structural characterization of proline metabolic enzymes from different pathogens could lead to new tools for exploring proline metabolism during infection and possibly new therapeutic compounds.
Collapse
Affiliation(s)
- Shelbi L. Christgen
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| |
Collapse
|
13
|
Poursina F, Fagri J, Mirzaei N, Safaei HG. Overexpression of spoT gene in coccoid forms of clinical Helicobacter pylori isolates. Folia Microbiol (Praha) 2018; 63:459-465. [PMID: 29327293 DOI: 10.1007/s12223-017-0557-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/05/2017] [Indexed: 12/31/2022]
Abstract
Helicobacter pylori (H. pylori) can convert to coccoid form in unfavorable conditions or as a result of antibiotic treatment. In order to adapt to harsh environments, H. pylori requires a stringent response which, encoded by the spoT gene, has a bifunctional enzyme possessing both (p)ppGpp synthetic and degrading activity. Our goal in this study was to compare spoT gene expression in spiral and induced coccoid forms of H. pylori with use of amoxicillin. First, clinical isolate coccoid forms were induced with amoxicillin; then, the viability test was analyzed by flow cytometer. After RNA extraction, cDNA synthesis and designing a specific primer for spoT gene, evaluation of the desired gene expression in both forms were studied. Bacterial isolates exposed to amoxicillin at MIC and 1/2 MIC induced morphological conversion better and faster than other MIC concentration. The expression of spoT gene was significantly downregulated in spiral forms of H. pylori, while the gene expression was upregulated and + 30.3-fold changes was seen in coccoid forms of bacterium. To summarize, spoT gene is one of the key factors for antibiotic resistance and its enhanced expression in coccoid form can be a valuable diagnostic marker for recognition of H. pylori during morphological conversion.
Collapse
Affiliation(s)
- Farkhondeh Poursina
- Department of Microbiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jamshid Fagri
- Department of Microbiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Mirzaei
- Department of Microbiology, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | | |
Collapse
|
14
|
Cárdenas-Mondragón MG, Ares MA, Panunzi LG, Pacheco S, Camorlinga-Ponce M, Girón JA, Torres J, De la Cruz MA. Transcriptional Profiling of Type II Toxin-Antitoxin Genes of Helicobacter pylori under Different Environmental Conditions: Identification of HP0967-HP0968 System. Front Microbiol 2016; 7:1872. [PMID: 27920769 PMCID: PMC5118875 DOI: 10.3389/fmicb.2016.01872] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium that colonizes the human gastric mucosa and is responsible for causing peptic ulcers and gastric carcinoma. The expression of virulence factors allows the persistence of H. pylori in the stomach, which results in a chronic, sometimes uncontrolled inflammatory response. Type II toxin-antitoxin (TA) systems have emerged as important virulence factors in many pathogenic bacteria. Three type II TA systems have previously been identified in the genome of H. pylori 26695: HP0315-HP0316, HP0892-HP0893, and HP0894-HP0895. Here we characterized a heretofore undescribed type II TA system in H. pylori, HP0967-HP0968, which is encoded by the bicistronic operon hp0968-hp0967 and belongs to the Vap family. The predicted HP0967 protein is a toxin with ribonuclease activity whereas HP0968 is an antitoxin that binds to its own regulatory region. We found that all type II TA systems were expressed in H. pylori during early stationary growth phase, and differentially expressed in the presence of urea, nickel, and iron, although, the hp0968-hp0967 pair was the most affected under these environmental conditions. Transcription of hp0968-hp0967 was strongly induced in a mature H. pylori biofilm and when the bacteria interacted with AGS epithelial cells. Kanamycin and chloramphenicol considerably boosted transcription levels of all the four type II TA systems. The hp0968-hp0967 TA system was the most frequent among 317 H. pylori strains isolated from all over the world. This study is the first report on the transcription of type II TA genes in H. pylori under different environmental conditions. Our data show that the HP0967 and HP0968 proteins constitute a bona fide type II TA system in H. pylori, whose expression is regulated by environmental cues, which are relevant in the context of infection of the human gastric mucosa.
Collapse
Affiliation(s)
- María G Cárdenas-Mondragón
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, IMSS Mexico City, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, IMSS Mexico City, Mexico
| | - Leonardo G Panunzi
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280 Marseille, France
| | - Sabino Pacheco
- Departamento de Microbiología Molecular, Instituto de Biotecnología UNAM Cuernavaca, Mexico
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, IMSS Mexico City, Mexico
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla Puebla, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, IMSS Mexico City, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, IMSS Mexico City, Mexico
| |
Collapse
|
15
|
Vannini A, Roncarati D, Danielli A. The cag-pathogenicity island encoded CncR1 sRNA oppositely modulates Helicobacter pylori motility and adhesion to host cells. Cell Mol Life Sci 2016; 73:3151-68. [PMID: 26863876 PMCID: PMC11108448 DOI: 10.1007/s00018-016-2151-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 01/13/2016] [Accepted: 01/28/2016] [Indexed: 02/08/2023]
Abstract
Small regulatory RNAs (sRNAs) are emerging as key post-transcriptional regulators in many bacteria. In the human pathobiont Helicobacter pylori a plethora of trans- and cis-encoded sRNAs have been pinpointed by a global transcriptome study. However, only two have been studied in depth at the functional level. Here we report the characterization of CncR1, an abundant and conserved sRNA encoded by the virulence-associated cag pathogenicity island (cag-PAI) of H. pylori. Growth-phase dependent transcription of CncR1 is directed by the PcagP promoter, which resulted to be a target of the essential transcriptional regulator HsrA (HP1043). We demonstrate that the 213 nt transcript arising from this promoter ends at an intrinsic terminator, few bases upstream of the annotated cagP open reading frame, establishing CncR1 as the predominant gene product encoded by the cagP (cag15) locus. Interestingly, the deletion of the locus resulted in the deregulation en masse of σ(54)-dependent genes, linking CncR1 to flagellar functions. Accordingly, the enhanced motility recorded for cncR1 deletion mutants was complemented by ectopic reintroduction of the allele in trans. In silico prediction identified fliK, encoding a flagellar checkpoint protein, as likely regulatory target of CncR1. The interaction of CncR1 with the fliK mRNA was thus further investigated in vitro, demonstrating the formation of strand-specific interactions between the two RNA molecules. Accordingly, the full-length translational fusions of fliK with a lux reporter gene were induced in a cncR1 deletion mutant in vivo. These data suggest the involvement of CncR1 in the post-transcriptional modulation of H. pylori motility functions through down-regulation of a critical flagellar checkpoint factor. Concurrently, the cncR1 mutant revealed a decrease of transcript levels for several H. pylori adhesins, resulting in a phenotypically significant impairment of bacterial adhesion to a host gastric cell line. The data presented support a model in which the cag-PAI encoded CncR1 sRNA is able to oppositely modulate bacterial motility and adhesion to host cells.
Collapse
Affiliation(s)
- Andrea Vannini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Alberto Danielli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
16
|
Tharmalingam N, Park M, Lee MH, Woo HJ, Kim HW, Yang JY, Rhee KJ, Kim JB. Piperine treatment suppresses Helicobacter pylori toxin entry in to gastric epithelium and minimizes β-catenin mediated oncogenesis and IL-8 secretion in vitro. Am J Transl Res 2016; 8:885-898. [PMID: 27158376 PMCID: PMC4846933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/12/2016] [Indexed: 06/05/2023]
Abstract
Helicobacter pylori related gastric cancer initiation has been studied widely. The objective of our present study was to evaluate the effect of a single compound piperine on H. pylori infection and its anti-inflammatory and anti-cancer effects in vitro. Cytotoxicity was tested by Ez-cytox cell viability assay kit. Effects of piperine on H. pylori toxin gene expression and IL-8 expression in mammalian cells during infection were assessed by RT-PCR. Effects of piperine on toxin entry into host cells, E-cadherin cleavage by H. pylori, and the changes in H. pylori mediated β-catenin expression and IL-8 secretion were determined by immunoblotting. Piperine treatment restrained the entry of CagA and VacA into AGS cells. Piperine administration in H. pylori infection reduced E-cadherin cleavage in stomach epithelium. In addition, H. pylori induced β-catenin up-regulation was reduced. Piperine administration impaired IL-8 secretion in H. pylori-infected gastric epithelial cells. As we reported previously piperine restrained H. pylori motility. The possible reason behind the H. pylori inhibition mechanism of piperine could be the dwindled motility, which weakened H. pylori adhesion to gastric epithelial cells. The reduced adhesion decreased the toxin entry thereby secreting less amount of IL-8. In addition, piperine treatment suppressed H. pylori protease led to reduction of E-cadherin cleavage and β-catenin expression resulting in diminished β-catenin translocation into the nucleus thus decreasing the risk of oncogenesis. To our knowledge, this is the preliminary report of piperine mediated H. pylori infection control on gastric epithelial cells in-vitro.
Collapse
Affiliation(s)
- Nagendran Tharmalingam
- Division of Infectious Diseases, Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown UniversityProvidence, Rhode Island, United States of America
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei UniversityWonju, Republic of Korea
| | - Min Park
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei UniversityWonju, Republic of Korea
| | - Min Ho Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei UniversityWonju, Republic of Korea
| | - Hyun Jun Woo
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei UniversityWonju, Republic of Korea
| | - Hyun Woo Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei UniversityWonju, Republic of Korea
| | - Ji Yeong Yang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei UniversityWonju, Republic of Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei UniversityWonju, Republic of Korea
| | - Jong-Bae Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei UniversityWonju, Republic of Korea
| |
Collapse
|
17
|
Solnick JV, Eaton KA, Peek RM. Animal Models of Helicobacter pylori Infection. HELICOBACTER PYLORI RESEARCH 2016:273-297. [DOI: 10.1007/978-4-431-55936-8_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
18
|
Small-molecule inhibitors of the pseudaminic acid biosynthetic pathway: targeting motility as a key bacterial virulence factor. Antimicrob Agents Chemother 2014; 58:7430-40. [PMID: 25267679 DOI: 10.1128/aac.03858-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori is motile by means of polar flagella, and this motility has been shown to play a critical role in pathogenicity. The major structural flagellin proteins have been shown to be glycosylated with the nonulosonate sugar, pseudaminic acid (Pse). This glycan is unique to microorganisms, and the process of flagellin glycosylation is required for H. pylori flagellar assembly and consequent motility. As such, the Pse biosynthetic pathway offers considerable potential as an antivirulence drug target, especially since motility is required for H. pylori colonization and persistence in the host. This report describes screening the five Pse biosynthetic enzymes for small-molecule inhibitors using both high-throughput screening (HTS) and in silico (virtual screening [VS]) approaches. Using a 100,000-compound library, 1,773 hits that exhibited a 40% threshold inhibition at a 10 μM concentration were identified by HTS. In addition, VS efforts using a 1.6-million compound library directed at two pathway enzymes identified 80 hits, 4 of which exhibited reasonable inhibition at a 10 μM concentration in vitro. Further secondary screening which identified 320 unique molecular structures or validated hits was performed. Following kinetic studies and structure-activity relationship (SAR) analysis of selected inhibitors from our refined list of 320 compounds, we demonstrated that three inhibitors with 50% inhibitory concentrations (IC50s) of approximately 14 μM, which belonged to a distinct chemical cluster, were able to penetrate the Gram-negative cell membrane and prevent formation of flagella.
Collapse
|
19
|
A mutation burst during the acute phase of Helicobacter pylori infection in humans and rhesus macaques. Nat Commun 2014; 5:4165. [PMID: 24924186 DOI: 10.1038/ncomms5165] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/20/2014] [Indexed: 01/20/2023] Open
Abstract
The evolution rate and genetic changes that occur during chronic infection with Helicobacter pylori have been analysed, but little is known about the genomic changes during the initial, acute bacterial infection phase. Here we analyse the rate and pattern of genome evolution in H. pylori from the genomes of two input strains isolated from human volunteers with asymptomatic infection, and the genomes of two output strains collected 20 and 44 days after re-infection. Similarly, we analyse genome evolution in bacteria from the genome sequences of input and output strains sequentially taken after experimental infection of a rhesus macaque. The estimated mutation rate reveals a mutation burst during the acute infection phase that is over 10 times faster than the mutation rate during chronic infection, and orders of magnitude faster than mutation rates in any other bacteria. The elevated frequency of mutations in outer membrane protein genes suggests that the mutation burst facilitates rapid host adaptation of the bacteria.
Collapse
|
20
|
Vannini A, Roncarati D, Spinsanti M, Scarlato V, Danielli A. In depth analysis of the Helicobacter pylori cag pathogenicity island transcriptional responses. PLoS One 2014; 9:e98416. [PMID: 24892739 PMCID: PMC4043881 DOI: 10.1371/journal.pone.0098416] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/01/2014] [Indexed: 01/15/2023] Open
Abstract
The severity of symptoms elicited by the widespread human pathogen Helicobacter pylori is strongly influenced by the genetic diversity of the infecting strain. Among the most important pathogen factors that carry an increased risk for gastric cancer are specific genotypes of the cag pathogenicity island (cag-PAI), encoding a type IV secretion system (T4SS) responsible for the translocation of the CagA effector oncoprotein. To date, little is known about the regulatory events important for the expression of a functional cag-T4SS. Here we demonstrate that the cag-PAI cistrons are subjected to a complex network of direct and indirect transcriptional regulations. We show that promoters of cag operons encoding structural T4SS components display homogeneous transcript levels, while promoters of cag operons encoding accessory factors vary considerably in their basal transcription levels and responses. Most cag promoters are transcriptionally responsive to growth-phase, pH and other stress-factors, although in many cases in a pleiotropic fashion. Interestingly, transcription from the Pcagζ promoter controlling the expression of transglycolase and T4SS stabilizing factors, is triggered by co-culture with a gastric cell line, providing an explanation for the increased formation of the secretion system observed upon bacterial contact with host cells. Finally, we demonstrate that the highly transcribed cagA oncogene is repressed by iron limitation through a direct apo-Fur regulation mechanism. Together the results shed light on regulatory aspects of the cag-PAI, which may be involved in relevant molecular and etiological aspects of H. pylori pathogenesis.
Collapse
Affiliation(s)
- Andrea Vannini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Marco Spinsanti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
- * E-mail: (VS); (AD)
| | - Alberto Danielli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
- * E-mail: (VS); (AD)
| |
Collapse
|
21
|
Raghwan, Chowdhury R. Host cell contact induces fur-dependent expression of virulence factors CagA and VacA in Helicobacter pylori. Helicobacter 2014; 19:17-25. [PMID: 24020886 DOI: 10.1111/hel.12087] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Helicobacter pylori, a gram negative bacterium, colonizes the stomach in a majority of the world population. The two major virulence factors of H. pylori VacA and CagA, thought to be associated with chronic inflammation and disease, have been extensively studied, but the regulation of the expression of these virulence genes in H. pylori remains poorly understood. METHODS qRT-PCR was performed to quantify gene expression in unadhered and AGS-adhered H. pylori. Δfur mutant was constructed by splicing by overlap extension PCR and allelic exchange. RESULTS Adherence of H. pylori to the gastric epithelial cell line AGS strongly induces the expression of both cagA and vacA. Induction of cagA and vacA in the AGS cell-adhered H. pylori Δfur mutant strain was consistently lower than in the adhered parent strain. However, expression of the genes was similar between the wild-type and Δfur mutant strains in the unadhered state, suggesting that Fur has a role in the upregulation of cagA and vacA expression, especially in AGS-adhered H. pylori. Consistent with these results, microscopic observations revealed that infection of AGS cells with H. pylori Δfur mutant strain produced much less damage as compared to that produced by the wild-type H. pylori strain. CONCLUSIONS These results suggested that cagA and vacA gene expression is upregulated in H. pylori, especially by host cell contact, and Fur has a role in the upregulation.
Collapse
Affiliation(s)
- Raghwan
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | | |
Collapse
|
22
|
Yamada S, Kato S, Matsuhisa T, Makonkawkeyoon L, Yoshida M, Chakrabandhu T, Lertprasertsuk N, Suttharat P, Chakrabandhu B, Nishiumi S, Chongraksut W, Azuma T. Predominant mucosal IL-8 mRNA expression in non- cagA Thais is risk for gastric cancer. World J Gastroenterol 2013; 19:2941-2949. [PMID: 23704827 PMCID: PMC3660819 DOI: 10.3748/wjg.v19.i19.2941] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/17/2013] [Accepted: 04/10/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To study gastric mucosal interleukine-8 (IL-8) mRNA expression, the cytotoxin-associated gene A (cagA) mutation, and serum pepsinogen (PG) I/II ratio related risk in Thai gastric cancer.
METHODS: There were consent 134 Thai non-cancer volunteers who underwent endoscopic narrow band imaging examination, and 86 Thais advance gastric cancer patients who underwent endoscopic mucosal biopsies and gastric surgery. Tissue samples were taken by endoscopy with 3 points biopsies. The serum PG I, II, and Helicobacter pylori (H. pylori) immunoglobulin G (IgG) antibody for H. pylori were tested by enzyme-linked immunosorbent assay technique. The histopathology description of gastric cancer and non-cancer with H. pylori detection was defined with modified Sydney Score System. Gastric mucosal tissue H. pylori DNA was extracted and genotyped for cagA mutation. Tissue IL-8 and cyclooxygenase-2 (COX-2) mRNA expression were conducted by real time relative quantitation polymerase chain reaction. From 17 Japanese advance gastric cancer and 12 benign gastric tissue samples, all were tested for genetic expression with same methods as well as Thai gastric mucosal tissue samples. The multivariate analysis was used for the risk study. Correlation and standardized t-test were done for quantitative data, P value < 0.05 was considered as a statistically significant.
RESULTS: There is a high non cagA gene of 86.8 per cent in Thai gastric cancer although there are high yields of the East Asian type in the positive cagA. The H. pylori infection prevalence in this study is reported by combined histopathology and H. pylori IgG antibody test with 77.1% and 97.4% of sensitivity and specificity, respectively. The serum PG I/II ratio in gastric cancer is significantly lower than in the non-cancer group, P = 0.045. The serum PG I/II ratio of less than 3.0 and IL-8 mRNA expression ≥ 100 or log10≥ 2 are significant cut off risk differences between Thai cancer and non-cancer, P = 0.03 and P < 0.001, respectively. There is a significantly lower PGI/II ratio in Japanese than that in Thai gastric cancer, P = 0.026. Serum PG I/II ratio at cut off less than 3.0 and IL-8 mRNA expression Raw RQ > 100 or log10 > 2 are significantly difference between Thai cancer group when compared to non-cancer group, P = 0.013 and P < 0.001, respectively. In the correlation study, low PG I/II ratio does not associate with chronic atrophic gastritis severity score in Thais non-cancer cases. However, there is a trend, but not significant convert correlation between IL-8 mRNA expression level and low PG I/II ratio in Thai positive H. pylori infection. The high expression of IL-8 gene demonstrates a poorer prognosis by stage and histology.
CONCLUSION: Predominant gastric mucosal IL-8 mRNA expression level, H. pylori infection, and low PG I/II ratio are relative risks for Thai gastric cancer without correlation with cagA mutation.
Collapse
|
23
|
Xia R, Ren Y, Guo X, Xu H. Molecular diversity of class 2 integrons in antibiotic-resistant gram-negative bacteria found in wastewater environments in China. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:402-14. [PMID: 23264021 DOI: 10.1007/s10646-012-1034-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/11/2012] [Indexed: 05/14/2023]
Abstract
The molecular architecture of class 2 integrons among gram-negative bacteria from wastewater environments was investigated in Jinan, China. Out of the 391 antibiotic-resistant bacteria found, 38 isolates harboring class 2 integrons encoding potentially transferrable genes that could confer antibiotic resistance were found. These isolates were classified into 19 REP-PCR types. These strains were identified using 16S rRNA gene sequencing and found to be as follows: Proteus mirabilis (16), Escherichia coli (7), Providencia spp. (7), Proteus spp. (2), P. vulgaris (3), Shigella sp. (1), Citrobacter freundii (1), and Acinetobacter sp. (1). Their class 2 integron cassette arrays were amplified and then either analyzed using PCR-RFLP or sequenced. The typical array dfrA1-sat2-aadA1 was detected in 27 isolates. Six atypical arrays were observed, including three kinds of novel arrangements (linF2(∆attC1)-dfrA1(∆attC2)-aadA1-orf441 or linF2(∆attC1)-dfrA1(∆attC2)-aadA1, dfrA1-catB2-sat2-aadA1, and estX(Vr)-sat2-aadA1) and a hybrid with the 3'CS of class 1 integrons (dfrA1-sat2-aadA1-qacH), and dfrA1-sat1. Twenty-four isolates were also found to carry class 1 integrons with 10 types of gene cassette arrays. Several non-integron-associated antibiotic resistance genes were found, and their transferability was investigated. Results showed that water sources in the Jinan region harbored a diverse community of both typical and atypical class 2 integrons, raising concerns about the overuse of antibiotics and their careless disposal into the environment.
Collapse
Affiliation(s)
- Ruirui Xia
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | | | | | | |
Collapse
|
24
|
Barrozo RM, Cooke CL, Hansen LM, Lam AM, Gaddy JA, Johnson EM, Cariaga TA, Suarez G, Peek RM, Cover TL, Solnick JV. Functional plasticity in the type IV secretion system of Helicobacter pylori. PLoS Pathog 2013; 9:e1003189. [PMID: 23468628 PMCID: PMC3585145 DOI: 10.1371/journal.ppat.1003189] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 12/20/2012] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori causes clinical disease primarily in those individuals infected with a strain that carries the cytotoxin associated gene pathogenicity island (cagPAI). The cagPAI encodes a type IV secretion system (T4SS) that injects the CagA oncoprotein into epithelial cells and is required for induction of the pro-inflammatory cytokine, interleukin-8 (IL-8). CagY is an essential component of the H. pylori T4SS that has an unusual sequence structure, in which an extraordinary number of direct DNA repeats is predicted to cause rearrangements that invariably yield in-frame insertions or deletions. Here we demonstrate in murine and non-human primate models that immune-driven host selection of rearrangements in CagY is sufficient to cause gain or loss of function in the H. pylori T4SS. We propose that CagY functions as a sort of molecular switch or perhaps a rheostat that alters the function of the T4SS and “tunes” the host inflammatory response so as to maximize persistent infection. Helicobacter pylori is a bacterium that colonizes the stomach of about half the world's population, most of whom are asymptomatic. However, some strains of H. pylori express a bacterial secretion system, a sort of molecular syringe that injects a bacterial protein inside the gastric cells and causes inflammation that can lead to peptic ulcer disease or gastric cancer. One of the essential components of the H. pylori secretion system is CagY, which is unusual because it contains a series of repetitive amino acid motifs that are encoded by a very large number of direct DNA repeats. Here we have shown that DNA recombination in cagY changes the protein motif structure and alters the function of the secretion system—turning it on or off. Using mouse and non-human primate models, we have demonstrated that CagY is a molecular switch that “tunes” the host inflammatory response, and likely contributes to persistent infection. Determining the mechanism by which CagY functions will enhance our understanding of the effects of H. pylori on human health, and could lead to novel applications for the modulation of host cell function.
Collapse
Affiliation(s)
- Roberto M. Barrozo
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Cara L. Cooke
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Lori M. Hansen
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Anna M. Lam
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Jennifer A. Gaddy
- Department of Medicine, Vanderbilt University, School of Medicine, Nashville, Tennessee, United States of America
| | - Elizabeth M. Johnson
- Department of Medicine, Vanderbilt University, School of Medicine, Nashville, Tennessee, United States of America
| | - Taryn A. Cariaga
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Giovanni Suarez
- Department of Medicine, Vanderbilt University, School of Medicine, Nashville, Tennessee, United States of America
| | - Richard M. Peek
- Department of Medicine, Vanderbilt University, School of Medicine, Nashville, Tennessee, United States of America
| | - Timothy L. Cover
- Department of Medicine, Vanderbilt University, School of Medicine, Nashville, Tennessee, United States of America
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Jay V. Solnick
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Medicine, University of California Davis, School of Medicine, Davis, California, United States of America
- Department of Microbiology and Immunology, University of California Davis, School of Medicine, Davis, California, United States of America
- California National Primate Research Center, University of California Davis, Davis School of Medicine, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Mutations to essential orphan response regulator HP1043 of Helicobacter pylori result in growth-stage regulatory defects. Infect Immun 2013; 81:1439-49. [PMID: 23429531 DOI: 10.1128/iai.01193-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Helicobacter pylori establishes lifelong infections of the gastric mucosa, a niche considered hostile to most microbes. While responses to gastric acidity and local inflammation are understood, little is known as to how they are integrated into homeostatic control of cell division and growth-stage gene expression. Here we investigate the essential orphan response regulator HP1043, a member of the OmpR/PhoB subfamily of transcriptional regulators that is unique to the Epsilonproteobacteria and that lacks phosphorylation domains. To test the hypothesis that conformational changes in the homodimer might lead to defects in gene expression, we sought mutations that might alter DNA-binding efficiency. Two introduced mutations (C215S, C221S) C terminal to the DNA-binding domain of HP1043 (HP1043CC11) resulted in a 2-fold higher affinity for its own promoter by footprinting. Modeling studies with the crystal structure of HP1043 suggested that C215S might affect the helix-turn-helix domain. Genomic replacement of the hp1043 allele with the hp1043CC11 mutant allele resulted in a 2-fold decrease in protein levels, despite a dramatic increase in mRNA. The mutations did not affect in vitro growth rates or colonization efficiency in a mouse model. Proteomic profiling (CC11 mutant strain versus wild type) identified many expression differences, and quantitative PCR further revealed that 11 out of 12 examined genes had lost growth-stage regulation and that 6 of the genes contained HP1043 binding consensus sequences within the promoter regions (fur, cagA, cag23, flhA, flip, and napA). Our studies show that mutations that affect DNA-binding affinity can be used to identify new members of the HP1043 regulon.
Collapse
|
26
|
Poursina F, Faghri J, Moghim S, Zarkesh-Esfahani H, Nasr-Esfahani B, Fazeli H, Hasanzadeh A, Safaei HG. Assessment of cagE and babA mRNA expression during morphological conversion of Helicobacter pylori from spiral to coccoid. Curr Microbiol 2012; 66:406-13. [PMID: 23263256 DOI: 10.1007/s00284-012-0280-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 11/13/2012] [Indexed: 12/31/2022]
Abstract
Helicobacter pylori (H. Pylori) is an actively dividing spiral bacterium that changes to coccoid morphology under stressful environments. The infectivity of the coccoids is still controversial. The aim of this study was to determine the viability and expression of two important virulence genes (babA and cagE), in antibiotic-induced coccoid forms. Three strains of H. pylori, the standard 26695 and two clinical isolates (p1, p2) were converted to coccoid form by amoxicillin. Coccoids were identified according to Gram-staining and microscopic morphology. The viability of the cells was analyzed by flow cytometry. The expression of cagE and babA in coccoid forms were evaluated and compared to the spirals by quantitative PCR assay. The coccoid forms were developed after 72 h exposure of H. pylori to ½ MIC of amoxicillin, and the conversion form was completed (100 %) at 144 h in all of three isolates. Flow cytometry analyses showed that the majority of the induced coccoids (90-99.9 %) were viable. Expression of cagE and babA was seen in coccoids; however, in lower rate (cagE, ~3-fold and babA, ~10-fold) than these in spiral forms. Coccoid forms of two clinical isolates significantly expressed higher rate of cagE and babA than standard 26695 strain (P = 0.01). These results suggest that the induced coccoid form of H. pylori is not a passive entity but can actively infect the human by expression of the virulence genes for long time in stomach and probably play a role in chronic and severe disease.
Collapse
Affiliation(s)
- Farkhondeh Poursina
- Department of Microbiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kienesberger S, Perez-Perez GI, Rivera-Correa JL, Tosado-Acevedo R, Li H, Dubois A, Gonzalez-Martinez JA, Dominguez-Bello MG, Blaser MJ. Serologic host response to Helicobacter pylori and Campylobacter jejuni in socially housed Rhesus macaques (Macaca mulatta). Gut Pathog 2012; 4:9. [PMID: 22920270 PMCID: PMC3499398 DOI: 10.1186/1757-4749-4-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/17/2012] [Indexed: 01/01/2023] Open
Abstract
Background Helicobacter pylori are successful colonizers of the human gastric mucosa. Colonization increases the risk of peptic ulcer disease and adenocarcinoma. However, potential benefits of H. pylori colonization include protection against early-onset asthma and against gastrointestinal infections. Campylobacter jejuni are a leading cause of bacterial diarrhea and complications include Guillain-Barré syndrome. Here, we describe the development of reliable serological assays to detect antibodies against those two bacteria in Rhesus macaques and investigated their distribution within a social group of monkeys. Methods Two cohorts of monkeys were analyzed. The first cohort consisted of 30 monkeys and was used to establish an enzyme-linked immunosorbent assay (ELISA) for H. pylori antibodies detection. To evaluate colonization of those macaques, stomach biopsies were collected and analyzed for the presence of H. pylori by histology and culture. C. jejuni ELISAs were established using human serum with known C. jejuni antibody status. Next, plasma samples of the 89 macaques (Cohort 2) were assayed for antibodies and then statistically analyzed. Results An H. pylori IgG ELISA, which was 100% specific and 93% sensitive, was established. In contrast, the IgA ELISA was only 82% specific and 61% sensitive. The CagA IgG assay was 100% sensitive and 61% of the macaques were positive. In cohort 2, 62% macaques were H. pylori sero-positive and 52% were CagA positive. The prevalence of H. pylori IgG and CagA IgG increased with monkey age as described for humans. Of the 89 macaques 52% showed IgG against C. jejuni but in contrast to H. pylori, the sero-prevalence was not associated with increasing age. However, there was a drop in the IgG (but not in IgA) mean values between infant and juvenile macaques, similar to trends described in humans. Conclusions Rhesus macaques have widespread exposure to H. pylori and C. jejuni, reflecting their social conditions and implying that Rhesus macaques might provide a model to study effects of these two important human mucosal bacteria on a population.
Collapse
|
28
|
Ta LH, Hansen LM, Sause WE, Shiva O, Millstein A, Ottemann KM, Castillo AR, Solnick JV. Conserved transcriptional unit organization of the cag pathogenicity island among Helicobacter pylori strains. Front Cell Infect Microbiol 2012; 2:46. [PMID: 22919637 PMCID: PMC3417554 DOI: 10.3389/fcimb.2012.00046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/17/2012] [Indexed: 12/14/2022] Open
Abstract
The Helicobacter pyloricag pathogenicity island (cag PAI) encodes a type IV secretion system that is more commonly found in strains isolated from patients with gastroduodenal disease than from those with asymptomatic gastritis. Genome-wide organization of the transcriptional units in H. pylori strain 26695 was recently established using RNA sequence analysis (Sharma et al., 2010). Here we used quantitative reverse-transcription polymerase chain reaction of open reading frames and intergenic regions to identify putative cag PAI operons in H. pylori; these operons were analyzed further by transcript profiling after deletion of selected promoter regions. Additionally, we used a promoter-trap system to identify functional cag PAI promoters. The results demonstrated that expression of genes on the H. pyloricag PAI varies by nearly five orders of magnitude and that the organization of cag PAI genes into transcriptional units is conserved among several H. pylori strains, including, 26695, J99, G27, and J166. We found evidence for 20 transcripts within the cag PAI, many of which likely overlap. Our data suggests that there are at least 11 operons: cag1-4, cag3-4, cag10-9, cag8-7, cag6-5, cag11-12, cag16-17, cag19-18, cag21-20, cag23-22, and cag25-24, as well as five monocistronic genes (cag4, cag13, cag14, cag15, and cag26). Additionally, the location of four of our functionally identified promoters suggests they are directing expression of, in one case, a truncated version of cag26 and in the other three, transcripts that are antisense to cag7, cag17, and cag23. We verified expression of two of these antisense transcripts, those antisense to cag17 and cag23, by reverse-transcription polymerase chain reaction. Taken together, our results suggest that the cag PAI transcriptional profile is generally conserved among H. pylori strains, 26695, J99, G27, and J166, and is likely complex.
Collapse
Affiliation(s)
- Linda H Ta
- Departments of Medicine and Microbiology & Immunology, Center for Comparative Medicine, University of California Davis, Davis, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Johnson EM, Gaddy JA, Cover TL. Alterations in Helicobacter pylori triggered by contact with gastric epithelial cells. Front Cell Infect Microbiol 2012; 2:17. [PMID: 22919609 PMCID: PMC3417513 DOI: 10.3389/fcimb.2012.00017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 02/06/2012] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori lives within the mucus layer of the human stomach, in close proximity to gastric epithelial cells. While a great deal is known about the effects of H. pylori on human cells and the specific bacterial products that mediate these effects, relatively little work has been done to investigate alterations in H. pylori that may be triggered by bacterial contact with human cells. In this review, we discuss the spectrum of changes in bacterial physiology and morphology that occur when H. pylori is in contact with gastric epithelial cells. Several studies have reported that cell contact causes alterations in H. pylori gene transcription. In addition, H. pylori contact with gastric epithelial cells promotes the formation of pilus-like structures at the bacteria–host cell interface. The formation of these structures requires multiple genes in the cag pathogenicity island, and these structures are proposed to have an important role in the type IV secretion system-dependent process through which CagA enters host cells. Finally, H. pylori contact with epithelial cells can promote bacterial replication and the formation of microcolonies, phenomena that are facilitated by the acquisition of iron and other nutrients from infected cells. In summary, the gastric epithelial cell surface represents an important niche for H. pylori, and upon entry into this niche, the bacteria alter their behavior in a manner that optimizes bacterial proliferation and persistent colonization of the host.
Collapse
Affiliation(s)
- Elizabeth M Johnson
- Department of Medicine, Vanderbilt University School of Medicine Nashville, TN, USA
| | | | | |
Collapse
|
30
|
Rogers AB. Gastric Helicobacter spp. in animal models: pathogenesis and modulation by extragastric coinfections. Methods Mol Biol 2012; 921:175-188. [PMID: 23015504 DOI: 10.1007/978-1-62703-005-2_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Animal models are used to study complex host, microbial, and environmental influences associated with gastric Helicobacter infection. Evidence that gastric helicobacters are pathogenic in animals first came from ferrets. Felids, nonhuman primates, and many other species also harbor stomach helicobacters. Today, mice are preferred by most researchers for scientific investigation because of cost-efficiencies, rapid reproduction, choice of laboratory reagents, and availability of genetically engineered models. Infection with Helicobacter felis or H. pylori Sydney strain-1 in appropriate mouse strains produces disease with remarkable similarities to H. pylori in humans. Due to recent advances in genetic engineering, in vivo imaging, and system-wide genomics and proteomics, these models will become even more widespread in the future. Recently, it has been shown that extragastric infections can dramatically affect the severity of disease induced by gastric Helicobacter spp. through heterologous immunity. These models provide proof-of-principle for the "African enigma" wherein gastric cancer is underrepresented in low-lying tropical countries with concurrently high H. pylori and internal parasite prevalence. Helicobacter gastritis and carcinogenesis in mouse models may be augmented or ameliorated by other infectious agents depending on the character of the invoked immune response. Knowledge gained from the Human Microbiome Project and other investigations is certain to shed new light on the influence of extragastric bacterial, viral, fungal, and parasitic coinfections on H. pylori-associated peptic ulcer disease and gastric adenocarcinoma.
Collapse
Affiliation(s)
- Arlin B Rogers
- Lineberger Comprehensive Cancer Center and Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
31
|
Kim SH, Park M, Woo H, Tharmalingam N, Lee G, Rhee KJ, Eom YB, Han SI, Seo WD, Kim JB. Inhibitory effects of anthocyanins on secretion of Helicobacter pylori CagA and VacA toxins. Int J Med Sci 2012; 9:838-42. [PMID: 23155357 PMCID: PMC3498748 DOI: 10.7150/ijms.5094] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/25/2012] [Indexed: 01/20/2023] Open
Abstract
Anthocyanins have been studied as potential antimicrobial agents against Helicobacter pylori. We investigated whether the biosynthesis and secretion of cytotoxin-associated protein A (CagA) and vacuolating cytotoxin A (VacA) could be suppressed by anthocyanin treatment in vitro. H. pylori reference strain 60190 (CagA(+)/VacA(+)) was used in this study to investigate the inhibitory effects of anthocyanins; cyanidin 3-O-glucoside (C3G), peonidin 3-O-glucoside (Peo3G), pelargonidin 3-O-glucoside (Pel3G), and malvidin 3-O-glucoside (M3G) on expression and secretion of H. pylori toxins. Anthocyanins were added to bacterial cultures and Western blotting was used to determine secretion of CagA and VacA. Among them, we found that C3G inhibited secretion of CagA and VacA resulting in intracellular accumulation of CagA and VacA. C3G had no effect on cagA and vacA expression but suppressed secA transcription. As SecA is involved in translocation of bacterial proteins, the down-regulation of secA expression by C3G offers a mechanistic explanation for the inhibition of toxin secretion. To our knowledge, this is the first report suggesting that C3G inhibits secretion of the H. pylori toxins CagA and VacA via suppression of secA transcription.
Collapse
Affiliation(s)
- Sa-Hyun Kim
- Department of Biomedical Laboratory Science, College of Health Science, Yonsei University, Wonju, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
In vivo expression of Helicobacter pylori virulence genes in patients with gastritis, ulcer, and gastric cancer. Infect Immun 2011; 80:594-601. [PMID: 22124657 DOI: 10.1128/iai.05845-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The best-studied Helicobacter pylori virulence factor associated with development of peptic ulcer disease or gastric cancer (GC) rather than asymptomatic nonatrophic gastritis (NAG) is the cag pathogenicity island (cagPAI), which encodes a type IV secretion system (T4SS) that injects the CagA oncoprotein into host epithelial cells. Here we used real-time reverse transcription-PCR (RT-PCR) to measure the in vivo expression of genes on the cagPAI and of other virulence genes in patients with NAG, duodenal ulcer (DU), or GC. In vivo expression of H. pylori virulence genes was greater overall in gastric biopsy specimens of patients with GC than in those of patients with NAG or DU. However, since in vitro expression of cagA was not greater in H. pylori strains from patients with GC than in those from patients with NAG or DU, increased expression in GC in vivo is likely a result of environmental conditions in the gastric mucosa, though it may in turn cause more severe pathology. Increased expression of virulence genes in GC may represent a stress response to elevated pH or other environmental conditions in the stomach of patients with GC, which may be less hospitable to H. pylori colonization than the acidic environment in patients with NAG or DU.
Collapse
|
33
|
Kennedy CL, Najdovska M, Jones GW, McLeod L, Hughes NR, Allison C, Ooi CH, Tan P, Ferrero RL, Jones SA, Dev A, Sievert W, Bhathal PS, Jenkins BJ. The molecular pathogenesis of STAT3-driven gastric tumourigenesis in mice is independent of IL-17. J Pathol 2011; 225:255-64. [PMID: 21710691 DOI: 10.1002/path.2933] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/04/2011] [Accepted: 05/09/2011] [Indexed: 12/22/2022]
Abstract
Chronic activation of the gastric mucosal adaptive immune response is a characteristic trait of gastric cancer. It has recently emerged that a new class of T helper (Th) cells, defined by their ability to produce interleukin (IL)-17A (Th17), is associated with a host of inflammatory responses, including gastritis. However, the role of these Th17 cells in the pathogenesis of gastric cancer is less clear. To formally address this, we employed gp130(F/F) mice, which spontaneously develop gastric inflammation-associated tumours akin to human intestinal-type gastric cancer. At the molecular level, these tumours demonstrate hyper-activation of the latent transcription factor signal transducer and activator of transcription (STAT)3 via the IL-6 cytokine family member, IL-11. In gp130(F/F) mice, the generation of Th17 cells, as well as the gastric expression of IL-17a and other Th17-related factors (Rorγt, IL-23), were augmented compared to wild-type gp130(+/+) mice. Consistent with a role for IL-6 and STAT3 in regulating IL-17A, increased Th17 generation and gastric expression of Th17-related factors in gp130(F/F) mice were reduced to wild-type levels in gp130(F/F) :Stat3(-/+) mice displaying normalized STAT3 activity, and also in gp130(F/F) :IL-6(-/-) mice. Importantly, genetic ablation of IL-17A in gp130(F/F) :IL-17a(-/-) mice did not suppress the initiation and growth of gastric tumours. Furthermore, IL-17A and RORC gene expression was strongly increased in human gastric biopsies from patients with gastritis, but not gastric cancer. Collectively, our data suggest that increased expression of Th17-related factors does not correlate with the molecular pathogenesis of gastric tumourigenesis.
Collapse
Affiliation(s)
- Catherine L Kennedy
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fischer W. Assembly and molecular mode of action of the Helicobacter pylori Cag type IV secretion apparatus. FEBS J 2011; 278:1203-12. [PMID: 21352490 DOI: 10.1111/j.1742-4658.2011.08036.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacterial type IV secretion systems (T4SS) form supramolecular protein complexes that are capable of transporting DNA or protein substrates across the bacterial cell envelope and, in many cases, also across eukaryotic target cell membranes. Because of these characteristics, they are often used by pathogenic bacteria for the injection of host cell-modulating virulence factors. One example is the human pathogen Helicobacter pylori, which uses the Cag-T4SS to induce a pro-inflammatory response and multiple cytoskeletal and gene regulatory effects in gastric epithelial cells. Work in recent years has shown that the Cag-T4SS exhibits marked differences in relation to other systems, both with respect to the composition of its secretion apparatus and the molecular details of its secretion mechanisms. This review describes the molecular properties of the Cag-T4SS and compares these with prototypical systems of this family of protein transporters.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität, München, Germany.
| |
Collapse
|
35
|
Peek RM, Fiske C, Wilson KT. Role of innate immunity in Helicobacter pylori-induced gastric malignancy. Physiol Rev 2010; 90:831-58. [PMID: 20664074 DOI: 10.1152/physrev.00039.2009] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori colonizes the majority of persons worldwide, and the ensuing gastric inflammatory response is the strongest singular risk factor for peptic ulceration and gastric cancer. However, only a fraction of colonized individuals ever develop clinically significant outcomes. Disease risk is combinatorial and can be modified by bacterial factors, host responses, and/or specific interactions between host and microbe. Several H. pylori constituents that are required for colonization or virulence have been identified, and their ability to manipulate the host innate immune response will be the focus of this review. Identification of bacterial and host mediators that augment disease risk has profound ramifications for both biomedical researchers and clinicians as such findings will not only provide mechanistic insights into inflammatory carcinogenesis but may also serve to identify high-risk populations of H. pylori-infected individuals who can then be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Richard M Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, and Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37232-2279, USA.
| | | | | |
Collapse
|
36
|
Okoli AS, Wilkins MR, Raftery MJ, Mendz GL. Response of Helicobacter hepaticus to Bovine Bile. J Proteome Res 2010; 9:1374-84. [DOI: 10.1021/pr900915f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Arinze S. Okoli
- School of Medical Sciences, The University of New South Wales, School of Biotechnology & Biomolecular Sciences, The Universtiy of New South Wales, Bioanalytical Mass Spectrometry Facility, The University of New South Wales, and School of Medicine, Sydney, The University of Notre Dame, New South Wales, Australia
| | - Marc R. Wilkins
- School of Medical Sciences, The University of New South Wales, School of Biotechnology & Biomolecular Sciences, The Universtiy of New South Wales, Bioanalytical Mass Spectrometry Facility, The University of New South Wales, and School of Medicine, Sydney, The University of Notre Dame, New South Wales, Australia
| | - Mark J. Raftery
- School of Medical Sciences, The University of New South Wales, School of Biotechnology & Biomolecular Sciences, The Universtiy of New South Wales, Bioanalytical Mass Spectrometry Facility, The University of New South Wales, and School of Medicine, Sydney, The University of Notre Dame, New South Wales, Australia
| | - George L. Mendz
- School of Medical Sciences, The University of New South Wales, School of Biotechnology & Biomolecular Sciences, The Universtiy of New South Wales, Bioanalytical Mass Spectrometry Facility, The University of New South Wales, and School of Medicine, Sydney, The University of Notre Dame, New South Wales, Australia
| |
Collapse
|
37
|
Windle HJ, Brown PA, Kelleher DP. Proteomics of bacterial pathogenicity: therapeutic implications. Proteomics Clin Appl 2010; 4:215-27. [PMID: 21137045 DOI: 10.1002/prca.200900145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/13/2009] [Accepted: 10/19/2009] [Indexed: 01/04/2023]
Abstract
Identification of the molecular mechanisms of host-pathogen interaction is becoming a key focus of proteomics. Analysis of these interactions holds promise for significant developments in the identification of new therapeutic strategies to combat infectious diseases, a process that will also benefit parallel improvements in molecular diagnostics, biomarker identification and drug discovery. This review highlights recent advances in functional proteomics initiatives in infectious disease with emphasis on studies undertaken within physiologically relevant parameters that enable identification of the infectious proteome rather than that of the vegetative state. Deciphering the molecular details of what constitutes physiologically relevant host-pathogen interactions remains an underdeveloped aspect of research into infectious disease. The magnitude of this deficit will be largely influenced by the ease with which model systems can be established to investigate such interactions. As the selective pressures exerted by the host on an infecting pathogen are numerous, the adequacy of certain model systems should be considered carefully.
Collapse
Affiliation(s)
- Henry J Windle
- Institute of Molecular Medicine, Trinity College, University of Dublin, Dublin, Ireland.
| | | | | |
Collapse
|
38
|
Fischer W, Prassl S, Haas R. Virulence Mechanisms and Persistence Strategies of the Human Gastric Pathogen Helicobacter pylori. Curr Top Microbiol Immunol 2009; 337:129-71. [DOI: 10.1007/978-3-642-01846-6_5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Peek RM. Helicobacter pylori infection and disease: from humans to animal models. Dis Model Mech 2009; 1:50-5. [PMID: 19048053 DOI: 10.1242/dmm.000364] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Informative and tractable animal models that are colonized by well-defined microbial pathogens represent ideal systems for the study of complex human diseases. Helicobacter pylori colonization of the stomach is a strong risk factor for peptic ulceration and distal gastric cancer. However, gastritis has no adverse consequences for most hosts and emerging evidence suggests that H. pylori prevalence is inversely related to gastroesophageal reflux disease and allergic disorders. These observations indicate that eradication may not be appropriate for certain populations due to the potentially beneficial effects conferred by persistent gastric inflammation. Animal models have provided an invaluable resource with which to study H. pylori pathogenesis and carcinogenesis, and have permitted the development of a focused approach to selectively target human populations at high-risk of disease.
Collapse
Affiliation(s)
- Richard M Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
40
|
Recombination-based in vivo expression technology identifies Helicobacter pylori genes important for host colonization. Infect Immun 2008; 76:5632-44. [PMID: 18794279 DOI: 10.1128/iai.00627-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Here we undertook to identify colonization and gastric disease-promoting factors of the human gastric pathogen Helicobacter pylori as genes that were induced in response to the stomach environment. Using recombination-based in vivo expression technology (RIVET), we identified six promoters induced in the host compared to laboratory conditions. Three of these promoters, designated Pivi10, Pivi66, and Pivi77, regulate genes that H. pylori may use to interact with other microbes or the host. Pivi10 likely regulates the mobA, mobB, and mobD genes, which have potential roles in horizontal gene transfer through plasmid mobilization. Pivi66 occurs in the cytotoxin-associated gene pathogenicity island, a genomic region known to be associated with more severe disease outcomes, and likely regulates cagZ, virB11, and virD4. Pivi77 likely regulates HP0289, an uncharacterized paralogue of the vacA cytotoxin gene. We assessed the roles of a subset of these genes in colonization by creating deletion mutants and analyzing them in single-strain and coinfection experiments. We found that a mobABD mutant was defective for murine host colonization and that a cagZ mutant outcompeted the wild-type strain in a coinfection analysis. Our work supports the conclusion that RIVET is a valuable tool for identifying H. pylori factors with roles in host colonization.
Collapse
|
41
|
Abstract
Macaques have served as models for more than 70 human infectious diseases of diverse etiologies, including a multitude of agents—bacteria, viruses, fungi, parasites, prions. The remarkable diversity of human infectious diseases that have been modeled in the macaque includes global, childhood, and tropical diseases as well as newly emergent, sexually transmitted, oncogenic, degenerative neurologic, potential bioterrorism, and miscellaneous other diseases. Historically, macaques played a major role in establishing the etiology of yellow fever, polio, and prion diseases. With rare exceptions (Chagas disease, bartonellosis), all of the infectious diseases in this review are of Old World origin. Perhaps most surprising is the large number of tropical (16), newly emergent (7), and bioterrorism diseases (9) that have been modeled in macaques. Many of these human diseases (e.g., AIDS, hepatitis E, bartonellosis) are a consequence of zoonotic infection. However, infectious agents of certain diseases, including measles and tuberculosis, can sometimes go both ways, and thus several human pathogens are threats to nonhuman primates including macaques. Through experimental studies in macaques, researchers have gained insight into pathogenic mechanisms and novel treatment and vaccine approaches for many human infectious diseases, most notably acquired immunodeficiency syndrome (AIDS), which is caused by infection with human immunodeficiency virus (HIV). Other infectious agents for which macaques have been a uniquely valuable resource for biomedical research, and particularly vaccinology, include influenza virus, paramyxoviruses, flaviviruses, arenaviruses, hepatitis E virus, papillomavirus, smallpox virus, Mycobacteria, Bacillus anthracis, Helicobacter pylori, Yersinia pestis, and Plasmodium species. This review summarizes the extensive past and present research on macaque models of human infectious disease.
Collapse
Affiliation(s)
- Murray B Gardner
- Center for Comparative Medicine, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
42
|
Characterization of a Helicobacter hepaticus putA mutant strain in host colonization and oxidative stress. Infect Immun 2008; 76:3037-44. [PMID: 18458068 DOI: 10.1128/iai.01737-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Helicobacter hepaticus is a gram-negative, spiral-shaped microaerophilic bacterium associated with chronic intestinal infection leading to hepatitis and colonic and hepatic carcinomas in susceptible strains of mice. In the closely related human pathogen Helicobacter pylori, L-proline is a preferred respiratory substrate and is found at significantly high levels in the gastric juice of infected patients. A previous study of the proline catabolic PutA flavoenzymes from H. pylori and H. hepaticus revealed that Helicobacter PutA generates reactive oxygen species during proline oxidation by transferring electrons from reduced flavin to molecular oxygen. We further explored the preference for proline as a respiratory substrate and the potential impact of proline metabolism on the redox environment in Helicobacter species during host infection by disrupting the putA gene in H. hepaticus. The resulting putA knockout mutant strain was characterized by oxidative stress analysis and mouse infection studies. The putA mutant strain of H. hepaticus exhibited increased proline levels and resistance to oxidative stress relative to that of the wild-type strain, consistent with proline's role as an antioxidant. The significant increase in stress resistance was attributed to higher proline content, as no upregulation of antioxidant genes was observed for the putA mutant strain. The wild-type and putA mutant H. hepaticus strains displayed similar levels of infection in mice, but in mice challenged with the putA mutant strain, significantly reduced inflammation was observed, suggesting a role for proline metabolism in H. hepaticus pathogenicity in vivo.
Collapse
|
43
|
Protein subassemblies of the Helicobacter pylori Cag type IV secretion system revealed by localization and interaction studies. J Bacteriol 2008; 190:2161-71. [PMID: 18178731 DOI: 10.1128/jb.01341-07] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Type IV secretion systems are possibly the most versatile protein transport systems in gram-negative bacteria, with substrates ranging from small proteins to large nucleoprotein complexes. In many cases, such as the cag pathogenicity island of Helicobacter pylori, genes encoding components of a type IV secretion system have been identified due to their sequence similarities to prototypical systems such as the VirB system of Agrobacterium tumefaciens. The Cag type IV secretion system contains at least 14 essential apparatus components and several substrate translocation and auxiliary factors, but the functions of most components cannot be inferred from their sequences due to the lack of similarities. In this study, we have performed a comprehensive sequence analysis of all essential or auxiliary Cag components, and we have used antisera raised against a subset of components to determine their subcellular localization. The results suggest that the Cag system contains functional analogues to all VirB components except VirB5. Moreover, we have characterized mutual stabilization effects and performed a comprehensive yeast two-hybrid screening for potential protein-protein interactions. Immunoprecipitation studies resulted in identification of a secretion apparatus subassembly at the outer membrane. Combining these data, we provide a first low-resolution model of the Cag type IV secretion apparatus.
Collapse
|
44
|
Functional analysis of the M.HpyAIV DNA methyltransferase of Helicobacter pylori. J Bacteriol 2007; 189:8914-21. [PMID: 17921292 DOI: 10.1128/jb.00108-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A large number of genes encoding restriction-modification (R-M) systems are found in the genome of the human pathogen Helicobacter pylori. R-M genes comprise approximately 10% of the strain-specific genes, but the relevance of having such an abundance of these genes is not clear. The type II methyltransferase (MTase) M.HpyAIV, which recognizes GANTC sites, was present in 60% of the H. pylori strains analyzed, whereof 69% were resistant to restriction enzyme digestion, which indicated the presence of an active MTase. H. pylori strains with an inactive M.HpyAIV phenotype contained deletions in regions of homopolymers within the gene, which resulted in premature translational stops, suggesting that M.HpyAIV may be subjected to phase variation by a slipped-strand mechanism. An M.HpyAIV gene mutant was constructed by insertional mutagenesis, and this mutant showed the same viability and ability to induce interleukin-8 in epithelial cells as the wild type in vitro but had, as expected, lost the ability to protect its self-DNA from digestion by a cognate restriction enzyme. The M.HpyAIV from H. pylori strain 26695 was overexpressed in Escherichia coli, and the protein was purified and was able to bind to DNA and protect GANTC sites from digestion in vitro. A bioinformatic analysis of the number of GANTC sites located in predicted regulatory regions of H. pylori strains 26695 and J99 resulted in a number of candidate genes. katA, a selected candidate gene, was further analyzed by quantitative real-time reverse transcription-PCR and shown to be significantly down-regulated in the M.HpyAIV gene mutant compared to the wild-type strain. This demonstrates the influence of M.HpyAIV methylation in gene expression.
Collapse
|
45
|
Scott DR, Marcus EA, Wen Y, Oh J, Sachs G. Gene expression in vivo shows that Helicobacter pylori colonizes an acidic niche on the gastric surface. Proc Natl Acad Sci U S A 2007; 104:7235-40. [PMID: 17438279 PMCID: PMC1855417 DOI: 10.1073/pnas.0702300104] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Helicobacter pylori is a gastric-dwelling pathogen responsible, with acid secretion, for peptic ulcer and a 20-fold increase in the risk of gastric cancer. Several transcriptomes have been described after short-term exposure to acidity in vitro, but there are no data identifying the effects of chronic gastric exposure on bacterial gene expression. Comparison of the in vivo to the in vitro transcriptome at pH 7.4 identified several groups of genes of known function that increased expression >2-fold, and three of these respond both to acidity in vitro and to gastric infection. Almost all known acid acclimation genes are highly up-regulated. These include ureA, ureB, and rocF and the pH-gated urea channel, ureI. There is also up-regulation of two groups of motility and chemotaxis genes and for pathogenicity island genes, especially cagA, a predictor for pathogenicity. Most of these genes interact with HP0166, the response element of the pH-sensing two-component histidine kinase, HP0165/HP0166, ArsRS. Based on the pH profile of survival of ureI deletion mutants in vitro and their inability to survive in gastric acidity, the habitat of the organism at the gastric surface is acidic with a pH < or = 4.0. Hence, the pH of the habitat of H. pylori on the surface of the stomach largely determines the regulation of these specific groups of genes.
Collapse
Affiliation(s)
- David R. Scott
- Departments of *Physiology and
- Veterans Administration Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073; and
- To whom correspondence may be addressed. E-mail: or
| | - Elizabeth A. Marcus
- Departments of *Physiology and
- Veterans Administration Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073; and
| | - Yi Wen
- Departments of *Physiology and
- Veterans Administration Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073; and
| | - Jane Oh
- Department of Internal Medicine, Ewha Womans University, Dongdaemun Hospital, 70 Chongro 6-ka, Chongro-ku, Seoul 110-783, Korea
| | - George Sachs
- Departments of *Physiology and
- Medicine, David Geffen School of Medicine, University of California, 405 Hilgard Avenue, Los Angeles, CA 90024
- Veterans Administration Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073; and
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
46
|
Ye F, Brauer T, Niehus E, Drlica K, Josenhans C, Suerbaum S. Flagellar and global gene regulation in Helicobacter pylori modulated by changes in DNA supercoiling. Int J Med Microbiol 2007; 297:65-81. [PMID: 17276136 DOI: 10.1016/j.ijmm.2006.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 11/13/2006] [Accepted: 11/17/2006] [Indexed: 12/20/2022] Open
Abstract
In Helicobacter pylori, a host-adapted bacterium with a small genome and few dedicated transcriptional regulators, promoter structure, and gene organization suggested a role for DNA topology in the transcriptional regulation of flagellar genes. H. pylori DNA supercoiling, monitored by a reporter plasmid, was relaxed by novobiocin, an inhibitor of DNA gyrase. A decrease in negative supercoiling coincided with lowered transcription of the late flagellin gene flaA. Targeted mutagenesis that either increased or decreased promoter spacer length in the flaA sigma(28) promoter lowered flaA transcript levels, expression of FlaA protein, and flagella formation. It also changed the promoter response to decreased superhelicity. Supercoiling of reporter plasmid DNA in H. pylori varied with growth phase in liquid culture. H. pylori sigma(28) promoters of various spacer length, as well as other supercoiling-sensitive genes, were differentially transcribed during the growth phases, consistent with supercoiling being associated with growth phase regulation. Genome-wide transcript analysis of wild-type H. pylori under conditions of reduced supercoiling identified flagellar, housekeeping, and virulence genes, the expression of which correlated with supercoiling change and/or growth phase. These data indicate that global supercoiling changes may help coordinate temporal (growth phase-related) regulation of flagellar biosynthesis and other cellular functions in Helicobacter.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- DNA, Bacterial/metabolism
- DNA, Superhelical/metabolism
- Flagella/genetics
- Flagella/ultrastructure
- Gene Expression Profiling
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Helicobacter pylori/genetics
- Helicobacter pylori/physiology
- Helicobacter pylori/ultrastructure
- Hydro-Lyases/biosynthesis
- Hydro-Lyases/genetics
- Microscopy, Electron, Transmission
- Novobiocin/pharmacology
- Oligonucleotide Array Sequence Analysis
- Oxidoreductases/biosynthesis
- Oxidoreductases/genetics
- Plasmids/metabolism
- Promoter Regions, Genetic
- RNA, Bacterial/analysis
- RNA, Bacterial/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Sequence Deletion
- Topoisomerase II Inhibitors
- Transcription, Genetic
Collapse
Affiliation(s)
- Fang Ye
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hanover, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Ye CL, Yang ZB, Huang W, Mao XQ, Zhang SL, Huang J. Preparation of egg yolk immunoglubin against recombinant vacuolating cytotoxin A- Helicobacter pylori adhesin A in Helicobacter pylori. Shijie Huaren Xiaohua Zazhi 2006; 14:2186-2191. [DOI: 10.11569/wcjd.v14.i22.2186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To prepare a highly specific and efficient egg yolk immunoglubin (IgY) against recombinant vacuolating cytotoxin A-Helicobacter pylori adhesin A (VacA-HpaA) from the yolk of hen's eggs.
METHODS: Recombinant bacteria of pQE30-VacA-HpaA-DH5α was cultured in large numbers to get VacA-HpaA fusion protein. The recombinant protein was purified by Ni2+-NTA column chromatography and used to immunize the hens. The VacA-HpaA IgY was extracted from the yolk of hen's eggs by water-dilution methods. In order to evaluate the relationship between IgY titer and immune time, the titer of IgY was detected by enzyme-linked immunosorbent assay (ELISA). IgY was purified and concentrated by deposition technique with ammonium sulfate. The purity of IgY was analyzed by SDS-PAGE, and protein content of IgY was checked by Bradford method. The specificities of VacA-HpaA IgY to the antigens of VacA and HpaA were identified by Western blotting.
RESULTS: The recombinant protein was mainly expressed as inclusion body. The content of fusion protein was 0.72 g/L. VacA-HpaA IgY from eggs' yolk of hens immunized with the fusion protein could react with the fusion protein. The titer of VacA-HpaA IgY was increased with the immune time. After purification and concentration, the purity of VacA-HpaA IgY was about 60%; the titer was 1∶128 000; And the concentration of IgY was 22 g/L. Western blot exhibited the protein bands with molecular weight of 27 000 and 30 `000. The titer of VacA-HpaA IgY to VacA and HpaA were 1∶3200 and 1∶6400 (P < 0.01).
CONCLUSION: VacA-HpaA-IgY with high concentration, purity, and specificity is successfully prepared.
Collapse
|
48
|
Busler VJ, Torres VJ, McClain MS, Tirado O, Friedman DB, Cover TL. Protein-protein interactions among Helicobacter pylori cag proteins. J Bacteriol 2006; 188:4787-800. [PMID: 16788188 PMCID: PMC1482994 DOI: 10.1128/jb.00066-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many Helicobacter pylori isolates contain a 40-kb region of chromosomal DNA known as the cag pathogenicity island (PAI). The risk for development of gastric cancer or peptic ulcer disease is higher among humans infected with cag PAI-positive H. pylori strains than among those infected with cag PAI-negative strains. The cag PAI encodes a type IV secretion system that translocates CagA into gastric epithelial cells. To identify Cag proteins that are expressed by H. pylori during growth in vitro, we compared the proteomes of a wild-type H. pylori strain and an isogenic cag PAI deletion mutant using two-dimensional difference gel electrophoresis (2D-DIGE) in multiple pH ranges. Seven Cag proteins were identified by this approach. We then used a yeast two-hybrid system to detect potential protein-protein interactions among 14 Cag proteins. One heterotypic interaction (CagY/7 with CagX/8) and two homotypic interactions (involving H. pylori VirB11/ATPase and Cag5) were similar to interactions previously reported to occur among homologous components of the Agrobacterium tumefaciens type IV secretion system. Other interactions involved Cag proteins that do not have known homologues in other bacterial species. Biochemical analysis confirmed selected interactions involving five of the proteins that were identified by 2D-DIGE. Protein-protein interactions among Cag proteins are likely to have an important role in the assembly of the H. pylori type IV secretion apparatus.
Collapse
Affiliation(s)
- Valerie J Busler
- Department of Microbiology and Immunology, Division of Infectious Diseases, A2200 Medical Center North, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|