1
|
Khan AA, Taylor MC, Fortes Francisco A, Jayawardhana S, Atherton RL, Olmo F, Lewis MD, Kelly JM. Animal models for exploring Chagas disease pathogenesis and supporting drug discovery. Clin Microbiol Rev 2024; 37:e0015523. [PMID: 39545730 PMCID: PMC11629624 DOI: 10.1128/cmr.00155-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
SUMMARYInfections with the parasitic protozoan Trypanosoma cruzi cause Chagas disease, which results in serious cardiac and/or digestive pathology in 30%-40% of individuals. However, symptomatic disease can take decades to become apparent, and there is a broad spectrum of possible outcomes. The complex and long-term nature of this infection places a major constraint on the scope for experimental studies in humans. Accordingly, predictive animal models have been a mainstay of Chagas disease research. The resulting data have made major contributions to our understanding of parasite biology, immune responses, and disease pathogenesis and have provided a platform that informs and facilitates the global drug discovery effort. Here, we provide an overview of available animal models and illustrate how they have had a key impact across the field.
Collapse
Affiliation(s)
- Archie A. Khan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin C. Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Amanda Fortes Francisco
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Shiromani Jayawardhana
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Richard L. Atherton
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Francisco Olmo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael D. Lewis
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - John M. Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
2
|
Chauhan R, Tiwari M, Chaudhary A, Sharan Thakur R, Pande V, Das J. Chemokines: A key driver for inflammation in protozoan infection. Int Rev Immunol 2023; 43:211-228. [PMID: 37980574 DOI: 10.1080/08830185.2023.2281566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Accepted: 10/16/2023] [Indexed: 11/21/2023]
Abstract
Chemokines belong to the group of small proteins within the cytokine family having strong chemo-attractant properties. In most cases, the strong immuno-modulatory role of chemokines is crucial for generating the immune response against pathogens in various protozoan diseases. In this review, we have given a brief update on the classification, characterization, homeostasis, transcellular migration, and immuno-modulatory role of chemokines. Here we will evaluate the potential role of chemokines and their regulation in various protozoan diseases. There is a significant direct relationship between parasitic infection and the recruitment of effector cells of the immune response. Chemokines play an indispensable role in mediating several defense mechanisms against infection, such as leukocyte recruitment and the generation of innate and cell-mediated immunity that aids in controlling/eliminating the pathogen. This process is controlled by the chemotactic movement of chemokines induced as a primary host immune response. We have also addressed that chemokine expressions during infection are time-dependent and orchestrated in a systematic pattern that ultimately assists in generating a protective immune response. Taken together, this review provides a systematic understanding of the complexity of chemokines profiles during protozoan disease conditions and the rationale of targeting chemokines for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Rubika Chauhan
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Mrinalini Tiwari
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Amrendra Chaudhary
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Reva Sharan Thakur
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Veena Pande
- Biotechnology Department, Kumaun University, Nainital, India
| | - Jyoti Das
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
3
|
Vellozo NS, Matos-Silva TC, Lopes MF. Immunopathogenesis in Trypanosoma cruzi infection: a role for suppressed macrophages and apoptotic cells. Front Immunol 2023; 14:1244071. [PMID: 37662946 PMCID: PMC10469960 DOI: 10.3389/fimmu.2023.1244071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
During Trypanosoma cruzi infection, macrophages phagocytose parasites and remove apoptotic cells through efferocytosis. While macrophage 1 (M1) produces proinflammatory cytokines and NO and fights infection, M2 macrophages are permissive host cells that express arginase 1 and play a role in tissue repair. The regulation of M1 and M2 phenotypes might either induce or impair macrophage-mediated immunity towards parasite control or persistence in chronic Chagas disease. Here, we highlight a key role of macrophage activation in early immune responses to T. cruzi that prevent escalating parasitemia, heart parasitism, and mortality during acute infection. We will discuss the mechanisms of macrophage activation and deactivation, such as T cell cytokines and efferocytosis, and how to improve macrophage-mediated immunity to prevent parasite persistence, inflammation, and the development of chagasic cardiomyopathy. Potential vaccines or therapy must enhance early T cell-macrophage crosstalk and parasite control to restrain the pathogenic outcomes of parasite-induced inflammation in the heart.
Collapse
Affiliation(s)
| | | | - Marcela F. Lopes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Gómez I, López MC, Egui A, Palacios G, Carrilero B, Benítez C, Simón M, Segovia M, Carmelo E, Thomas MC. Differential expression profile of genes involved in the immune response associated to progression of chronic Chagas disease. PLoS Negl Trop Dis 2023; 17:e0011474. [PMID: 37440604 PMCID: PMC10368263 DOI: 10.1371/journal.pntd.0011474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Patients with chronic Chagas disease present marked clinical and immunological heterogeneity. During the disease, multiple immune mechanisms are activated to fight the parasite. The purpose of this study was to investigate the expression patterns of genes involved in relevant immunological processes throughout the disease in patients with chronic Chagas disease. METHODOLOGY/PRINCIPAL FINDINGS High-throughput RT-qPCR with QuantStudio 12K Flex real-time PCR system was used to evaluate the expression of 106 immune-related genes in PBMC from a cohort of cardiac Chagas disease patients (CCC I), asymptomatic patients (IND) and healthy donors (HD) after being stimulated with T. cruzi soluble antigens. Principal component analysis (PCA), cluster analysis and volcano plots were used to identify differentially expressed genes. In addition, gene set enrichment analysis (GSEA) was employed to identify the enriched immunological pathways in which these genes are involved. PCA revealed the existence of a statistically divergent expression profile of the 36 genes correlated with PC1 between CCC I patients and HD (p < 0.0001). Differential gene expression analysis revealed upregulation of 41 genes (expression fold-change > 1.5) and downregulation of 14 genes (expression fold-change < 0.66) (p = 8.4x10-13 to p = 0.007) in CCC I patients versus HD. Furthermore, significant differences in the expression level of specific genes have been identified between CCC I and IND patients (8 up and 1 downregulated). GSEA showed that several upregulated genes in CCC I patients participate in immunological pathways such as antigen-dependent B cell activation, stress induction of HSP regulation, NO2-dependent IL12 pathway in NK cells, cytokines-inflammatory response and IL-10 anti-inflammatory signaling. CONCLUSIONS Cardiac Chagas disease patients show an antigen-specific differential gene expression profile in which several relevant immunological pathways seem to be activated. Assessment of gene expression profiles reveal unique insights into the immune response that occurs along chronic Chagas disease.
Collapse
Affiliation(s)
- Inmaculada Gómez
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| | | | - Adriana Egui
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| | - Génesis Palacios
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Bartolomé Carrilero
- Unidad Regional de Medicina Tropical, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Celia Benítez
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| | - Marina Simón
- Unidad Regional de Medicina Tropical, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Manuel Segovia
- Unidad Regional de Medicina Tropical, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Emma Carmelo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Spain
| | - M Carmen Thomas
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| |
Collapse
|
5
|
CCR5 maintains macrophages in the bone marrow and drives hematopoietic failure in a mouse model of severe aplastic anemia. Leukemia 2021; 35:3139-3151. [PMID: 33744909 DOI: 10.1038/s41375-021-01219-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022]
Abstract
Severe aplastic anemia (SAA) is an acquired, T cell-driven bone marrow (BM) failure disease characterized by elevated interferon gamma (IFNγ), loss of hematopoietic stem cells (HSCs), and altered BM microenvironment, including dysfunctional macrophages (MΦs). T lymphocytes are therapeutic targets for treating SAA, however, the underlying mechanisms driving SAA development and how innate immune cells contribute to disease remain poorly understood. In a murine model of SAA, increased beta-chemokines correlated with disease and were partially dependent on IFNγ. IFNγ was required for increased expression of the chemokine receptor CCR5 on MΦs. CCR5 antagonism in murine SAA improved survival, correlating with increased platelets and significantly increased platelet-biased CD41hi HSCs. T cells are key drivers of disease, however, T cell-specific CCR5 expression and T cell-derived CCL5 were not necessary for disease. CCR5 antagonism reduced BM MΦs and diminished their expression of Tnf and Ccl5, correlating with reduced frequencies of IFNγ-secreting BM T cells. Mechanistically, CCR5 was intrinsically required for maintaining BM MΦs during SAA. Ccr5 expression was significantly increased in MΦs from aged mice and humans, relative to young counterparts. Our data identify CCR5 signaling as a key axis promoting the development of IFNγ-dependent BM failure, particularly relevant in aging where Ccr5 expression is elevated.
Collapse
|
6
|
Ellwanger JH, Kaminski VDL, Rodrigues AG, Kulmann-Leal B, Chies JAB. CCR5 and CCR5Δ32 in bacterial and parasitic infections: Thinking chemokine receptors outside the HIV box. Int J Immunogenet 2020; 47:261-285. [PMID: 32212259 DOI: 10.1111/iji.12485] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022]
Abstract
The CCR5 molecule was reported in 1996 as the main HIV-1 co-receptor. In that same year, the CCR5Δ32 genetic variant was described as a strong protective factor against HIV-1 infection. These findings led to extensive research regarding the CCR5, culminating in critical scientific advances, such as the development of CCR5 inhibitors for the treatment of HIV infection. Recently, the research landscape surrounding CCR5 has begun to change. Different research groups have realized that, since CCR5 has such important effects in the chemokine system, it could also affect other different physiological systems. Therefore, the effect of reduced CCR5 expression due to the presence of the CCR5Δ32 variant began to be further studied. Several studies have investigated the role of CCR5 and the impacts of CCR5Δ32 on autoimmune and inflammatory diseases, various types of cancer, and viral diseases. However, the role of CCR5 in diseases caused by bacteria and parasites is still poorly understood. Therefore, the aim of this article is to review the role of CCR5 and the effects of CCR5Δ32 on bacterial (brucellosis, osteomyelitis, pneumonia, tuberculosis and infection by Chlamydia trachomatis) and parasitic infections (toxoplasmosis, leishmaniasis, Chagas disease and schistosomiasis). Basic information about each of these infections was also addressed. The neglected role of CCR5 in fungal disease and emerging studies regarding the action of CCR5 on regulatory T cells are briefly covered in this review. Considering the "renaissance of CCR5 research," this article is useful for updating researchers who develop studies involving CCR5 and CCR5Δ32 in different infectious diseases.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Valéria de Lima Kaminski
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Andressa Gonçalves Rodrigues
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Bruna Kulmann-Leal
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| |
Collapse
|
7
|
Gibaldi D, Vilar-Pereira G, Pereira IR, Silva AA, Barrios LC, Ramos IP, Mata Dos Santos HA, Gazzinelli R, Lannes-Vieira J. CCL3/Macrophage Inflammatory Protein-1α Is Dually Involved in Parasite Persistence and Induction of a TNF- and IFNγ-Enriched Inflammatory Milieu in Trypanosoma cruzi-Induced Chronic Cardiomyopathy. Front Immunol 2020; 11:306. [PMID: 32194558 PMCID: PMC7063958 DOI: 10.3389/fimmu.2020.00306] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/06/2020] [Indexed: 12/21/2022] Open
Abstract
CCL3, a member of the CC-chemokine family, has been associated with macrophage recruitment to heart tissue and parasite control in the acute infection of mouse with Trypanosoma cruzi, the causative agent of Chagas disease. Here, we approached the participation of CCL3 in chronic chagasic cardiomyopathy (CCC), the main clinical form of Chagas disease. We induced CCC in C57BL/6 (ccl3+/+) and CCL3-deficient (ccl3−/−) mice by infection with the Colombian Type I strain. In ccl3+/+ mice, high levels of CCL3 mRNA and protein were detected in the heart tissue during the acute and chronic infection. Survival was not affected by CCL3 deficiency. In comparison with ccl3+/+, chronically infected ccl3−/− mice presented reduced cardiac parasitism and inflammation due to CD8+ cells and macrophages. Leukocytosis was decreased in infected ccl3−/− mice, paralleling the accumulation of CD8+ T cells devoid of activated CCR5+ LFA-1+ cells in the spleen. Further, T. cruzi-infected ccl3−/−mice presented reduced frequency of interferon-gamma (IFNγ)+ cells and numbers of parasite-specific IFNγ-producing cells, while the T. cruzi antigen-specific cytotoxic activity was increased. Stimulation of CCL3-deficient macrophages with IFNγ improved parasite control, in a milieu with reduced nitric oxide (NOx) and tumor necrosis factor (TNF), but similar interleukin-10 (IL-10), concentrations. In comparison with chronically T. cruzi-infected ccl3+/+ counterparts, ccl3−/− mice did not show enlarged heart, loss of left ventricular ejection fraction, QTc prolongation and elevated CK-MB activity. Compared with ccl3+/+, infected ccl3−/− mice showed reduced concentrations of TNF, while IL-10 levels were not affected, in the heart milieu. In spleen of ccl3+/+ NI controls, most of the CD8+ T-cells expressing the CCL3 receptors CCR1 or CCR5 were IL-10+, while in infected mice these cells were mainly TNF+. Lastly, selective blockage of CCR1/CCR5 (Met-RANTES therapy) in chronically infected ccl3+/+ mice reversed pivotal electrical abnormalities (bradycardia, prolonged PR, and QTc interval), in correlation with reduced TNF and, mainly, CCL3 levels in the heart tissue. Therefore, in the chronic T. cruzi infection CCL3 takes part in parasite persistence and contributes to form a CD8+ T-cell and macrophage-enriched cardiac inflammation. Further, increased levels of CCL3 create a scenario with abundant IFNγ and TNF, associated with cardiomyocyte injury, heart dysfunction and QTc prolongation, biomarkers of severity of Chagas' heart disease.
Collapse
Affiliation(s)
- Daniel Gibaldi
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Isabela Resende Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Andrea Alice Silva
- Laboratório Multiusuário de Apoio à Pesquisa em Nefrologia e Ciências Médicas, Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Leda Castaño Barrios
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Isalira Peroba Ramos
- Laboratório de Cardiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ricardo Gazzinelli
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
8
|
CD43 sialoglycoprotein modulates cardiac inflammation and murine susceptibility to Trypanosoma cruzi infection. Sci Rep 2019; 9:8628. [PMID: 31197200 PMCID: PMC6565700 DOI: 10.1038/s41598-019-45138-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
CD43 (leukosialin) is a large sialoglycoprotein abundantly expressed on the surface of most cells from the hematopoietic lineage. CD43 is directly involved in the contact between cells participating in a series of events such as signaling, adherence and host parasite interactions. In this study we examined the role of CD43 in the immune response against Trypanosoma cruzi, the protozoan parasite that causes Chagas’ disease, a potential life-threatening illness endemic in 21 Latin American countries according to the WHO. The acute stage of infection is marked by intense parasitemia and cardiac tissue parasitism, resulting in the recruitment of inflammatory cells and acute damage to the heart tissue. We show here that CD43−/− mice were more resistant to infection due to increased cytotoxicity of antigen specific CD8+ T cells and reduced inflammatory infiltration in the cardiac tissue, both contributing to lower cardiomyocyte damage. In addition, we demonstrate that the induction of acute myocarditis involves the engagement of CD43 cytoplasmic tripeptide sequence KRR to ezrin-radixin-moiesin cytoskeletal proteins. Together, our results show the participation of CD43 in different events involved in the pathogenesis of T. cruzi infection, contributing to a better overall understanding of the mechanisms underlying the pathogenesis of acute chagasic cardiomyopathy.
Collapse
|
9
|
Roffe E, Dos Santos LI, Santos MO, Henriques PM, Teixeira-Carvalho A, Martins-Filho OA, Rocha MOC, Eloi-Santos SM, Correa-Oliveira R, Antonelli LRV. Increased frequencies of circulating CCR5 + memory T cells are correlated to chronic chagasic cardiomyopathy progression. J Leukoc Biol 2019; 106:641-652. [PMID: 31087713 DOI: 10.1002/jlb.ma1118-472r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/03/2019] [Accepted: 04/22/2019] [Indexed: 01/01/2023] Open
Abstract
The infection with the protozoan parasite Trypanosoma cruzi causes Chagas disease, a neglected tropical disease in Latin America and an imported emerging disease worldwide. Chronic Chagasic cardiomyopathy (CCC), a progressive inflammatory and fibrosing disease, is the most prominent clinical form of Chagas disease, culminating in heart failure and high rates of sudden death. CCC pathogenesis is influenced by both host and parasite factors and is proposed to be mostly immune-driven. Chemokines are crucial players in orchestrating immune cell recruitment to infected tissues and inflammation. Herein, we investigated inflammatory chemokine receptor expression on circulating T cells in patients stratified by CCC severity. Compared to asymptomatic individuals, we found increased percentages of effector CD4+ T cells and central memory CD4+ and CD8+ T cells expressing CCR5 in patients with structural cardiopathy, but normal global ventricular function and no symptoms of chronic heart failure. Even naïve T cells expressed CCR5 in these patients. In contrast, reduced frequencies of CD4+ and CD8+ effector T cells expressing CXCR3 were observed in patients presenting with severe heart disease. Patients with increased left ventricular diameter, heart enlargement, and insufficiency had higher frequencies of CCR5+ effector and effector memory CD8+ T cells. Moreover, the percentage of effector CCR5+ CD8+ T cells was increased in patients with a reduced ejection fraction. Our results show that high expression CCR5 and low expression of CXCR3 on circulating T cells are associated with worse prognosis, possibly reflecting immune-mediated cardiac remodeling of CCC.
Collapse
Affiliation(s)
- Ester Roffe
- Laboratório de Imunologia Celular e Molecular, Instituto René Rachou, Fundação Oswaldo Cruz-Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Luara I Dos Santos
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz-Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Maykon O Santos
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz-Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Priscilla M Henriques
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz-Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Andrea Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Olindo A Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Manoel O C Rocha
- Universidade Federal de Minas Gerais, Departamento de Clínica Médica, Curso de Pós-Graduação em Infectologia e Medicina Tropical, Belo Horizonte, Minas Gerais, Brazil
| | - Silvana M Eloi-Santos
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-Fiocruz, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Propedêutica Complementar, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Correa-Oliveira
- Laboratório de Imunologia Celular e Molecular, Instituto René Rachou, Fundação Oswaldo Cruz-Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Lis R V Antonelli
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz-Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
10
|
Chevillard C, Nunes JPS, Frade AF, Almeida RR, Pandey RP, Nascimento MS, Kalil J, Cunha-Neto E. Disease Tolerance and Pathogen Resistance Genes May Underlie Trypanosoma cruzi Persistence and Differential Progression to Chagas Disease Cardiomyopathy. Front Immunol 2018; 9:2791. [PMID: 30559742 PMCID: PMC6286977 DOI: 10.3389/fimmu.2018.02791] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/13/2018] [Indexed: 01/01/2023] Open
Abstract
Chagas disease is caused by infection with the protozoan Trypanosoma cruzi and affects over 8 million people worldwide. In spite of a powerful innate and adaptive immune response in acute infection, the parasite evades eradication, leading to a chronic persistent infection with low parasitism. Chronically infected subjects display differential patterns of disease progression. While 30% develop chronic Chagas disease cardiomyopathy (CCC)-a severe inflammatory dilated cardiomyopathy-decades after infection, 60% of the patients remain disease-free, in the asymptomatic/indeterminate (ASY) form, and 10% develop gastrointestinal disease. Infection of genetically deficient mice provided a map of genes relevant for resistance to T. cruzi infection, leading to the identification of multiple genes linked to survival to infection. These include pathogen resistance genes (PRG) needed for intracellular parasite destruction, and genes involved in disease tolerance (protection against tissue damage and acute phase death-DTG). All identified DTGs were found to directly or indirectly inhibit IFN-γ production or Th1 differentiation. We hypothesize that the absolute need for DTG to control potentially lethal IFN-γ PRG activity leads to T. cruzi persistence and establishment of chronic infection. IFN-γ production is higher in CCC than ASY patients, and is the most highly expressed cytokine in CCC hearts. Key DTGs that downmodulate IFN-γ, like IL-10, and Ebi3/IL27p28, are higher in ASY patients. Polymorphisms in PRG and DTG are associated with differential disease progression. We thus hypothesize that ASY patients are disease tolerant, while an imbalance of DTG and IFN-γ PRG activity leads to the inflammatory heart damage of CCC.
Collapse
Affiliation(s)
| | - João Paulo Silva Nunes
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Amanda Farage Frade
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
- Department of Bioengineering, Brazil University, São Paulo, Brazil
| | - Rafael Ribeiro Almeida
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Ramendra Pati Pandey
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Marilda Savóia Nascimento
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Jorge Kalil
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| |
Collapse
|
11
|
Horta AL, Figueiredo VP, Leite ALJ, Costa GDP, Menezes APDJ, Ramos CDO, Pedrosa TCF, Bezerra FS, Vieira PMDA, Talvani A. The β-blocker carvedilol and the benznidazole modulate the cardiac immune response in the acute infection induced by Colombian strain of the Trypanosoma cruzi. Mem Inst Oswaldo Cruz 2018; 113:e180271. [PMID: 30365644 PMCID: PMC6193372 DOI: 10.1590/0074-02760180271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The infection led by Trypanosoma cruzi persists in mammalian tissues causing an inflammatory imbalance. Carvedilol (Cv), a non-selective beta blocker drug indicated to treat heart failure and antihypertensive has shown to promote antioxidant and immunomodulatory properties which might improve the inflammation induced by T. cruzi. OBJECTIVES Evaluate the role of Cv on the inflammatory response of C57BL/6 mice acutely infected with the Colombian strain of T. cruzi. METHODS Animals were infected with the Colombian strain of T. cruzi and treated with Cv (25 mg/kg/day), benznidazole (Bz) (100 mg/kg/day) or their combination. On the 28th day of infection and 23 days of treatment, the euthanasia occurred, and the heart preserved for histopathological, oxidative stress (SOD, catalase, TBARs, carbonylated proteins) and plasma (CCL2, CCL5, TNF, IL-10) analyses. Parasitaemia and survival were assessed along the infection. FINDINGS Cv decreased TBARs, but increased the mortality rate, the parasitaemia and the levels of CCL2, CCL5, catalase and the inflammatory infiltrate in the cardiac tissue. Bz led the reduction of the inflammatory infiltrate and circulating levels of oxidative stress and inflammatory mediators in the infected mice. MAIN CONCLUSIONS Our data suggest that Cv, in this experimental model using the Colombian strain of T. cruzi, caused damage to the host.
Collapse
Affiliation(s)
- Aline Luciano Horta
- Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Ciências Biológicas, Ouro Preto, MG, Brasil
| | - Vivian Paulino Figueiredo
- Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Ciências Biológicas, Ouro Preto, MG, Brasil
| | - Ana Luisa Junqueira Leite
- Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Ciências Biológicas, Ouro Preto, MG, Brasil
| | - Guilherme de Paula Costa
- Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Ciências Biológicas, Ouro Preto, MG, Brasil
| | - Ana Paula de Jesus Menezes
- Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Ciências Biológicas, Ouro Preto, MG, Brasil
| | - Camila de Oliveira Ramos
- Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Ciências Biológicas, Ouro Preto, MG, Brasil
| | - Tamiles Caroline Fernandes Pedrosa
- Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Ciências Biológicas, Ouro Preto, MG, Brasil
| | - Frank Silva Bezerra
- Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Saúde e Nutrição, Ouro Preto, MG, Brasil
| | - Paula Melo de Abreu Vieira
- Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Ciências Biológicas, Ouro Preto, MG, Brasil
| | - André Talvani
- Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Saúde e Nutrição, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Biomas Tropicais, Ouro Preto, MG, Brasil
| |
Collapse
|
12
|
DeBerge M, Zhang S, Glinton K, Grigoryeva L, Hussein I, Vorovich E, Ho K, Luo X, Thorp EB. Efferocytosis and Outside-In Signaling by Cardiac Phagocytes. Links to Repair, Cellular Programming, and Intercellular Crosstalk in Heart. Front Immunol 2017; 8:1428. [PMID: 29163503 PMCID: PMC5671945 DOI: 10.3389/fimmu.2017.01428] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/13/2017] [Indexed: 12/24/2022] Open
Abstract
Phagocytic sensing and engulfment of dying cells and extracellular bodies initiate an intracellular signaling cascade within the phagocyte that can polarize cellular function and promote communication with neighboring non-phagocytes. Accumulating evidence links phagocytic signaling in the heart to cardiac development, adult myocardial homeostasis, and the resolution of cardiac inflammation of infectious, ischemic, and aging-associated etiology. Phagocytic clearance in the heart may be carried out by professional phagocytes, such as macrophages, and non-professional cells, including myofibrolasts and potentially epithelial cells. During cardiac development, phagocytosis initiates growth cues for early cardiac morphogenesis. In diseases of aging, including myocardial infarction, heightened levels of cell death require efficient phagocytic debridement to salvage further loss of terminally differentiated adult cardiomyocytes. Additional risk factors, including insulin resistance and other systemic risk factors, contribute to inefficient phagocytosis, altered phagocytic signaling, and delayed cardiac inflammation resolution. Under such conditions, inflammatory presentation of myocardial antigen may lead to autoimmunity and even possible rejection of transplanted heart allografts. Increased understanding of these basic mechanisms offers therapeutic opportunities.
Collapse
Affiliation(s)
- Matthew DeBerge
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Shuang Zhang
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kristofor Glinton
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Luba Grigoryeva
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Islam Hussein
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Esther Vorovich
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Karen Ho
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Xunrong Luo
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Edward B Thorp
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
13
|
da Silva MV, Ferreira França FB, Mota CM, de Macedo Júnior AG, Ramos ELP, Santiago FM, Mineo JR, Mineo TWP. Dectin-1 Compromises Innate Responses and Host Resistance against Neospora caninum Infection. Front Immunol 2017; 8:245. [PMID: 28326085 PMCID: PMC5339258 DOI: 10.3389/fimmu.2017.00245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/20/2017] [Indexed: 12/29/2022] Open
Abstract
Neospora caninum is an intracellular protozoan parasite that has drawn increasing interest due to its association with worldwide repetitive bovine abortions, which cause billionaire losses to the meat and dairy industries annually. Innate immunity plays an important role in infection control, and N. caninum activates the production of inflammatory mediators through toll-like receptors, NOD-like receptors, and mitogen-activated protein kinase signaling pathways. Advances in the knowledge of initial host–parasite interactions are desirable for the design of control measures against the infection, obliterating its pathogenesis. In that sense, we here aimed to describe the role of the innate C-type lectin receptor Dectin-1 during the infection by N. caninum. With that intent, we observed that the absence of Dectin-1, observed in genetically depleted (Dectin-1−/−) mice or competitively inhibited by an inert agonist [laminarin (LAM)], rescued 50% of the mice infected with lethal doses of N. caninum. Dectin-1−/− and LAM-treated mice also presented a reduction in the parasite load during acute and chronic phases, associated with decreased inflammatory scores in the central nervous system. Among all the cell phenotypes that migrated to the initial site of infection, dendritic cells and macrophages gained subpopulations with high Dectin-1 surface expression. The impairment of the receptor in these cells led to a decreased parasite burden, as well as augmented production of IL-12p40. We also found that Dectin-1+ cells produced less reactive oxygen species (ROS) at the initial site of the infection, while mice deficient in NADPH oxidase isoform 2 (NOX2−/−) were not able to control parasite replication and produce IL-12p40, even upon LAM treatment. Interestingly, the absence of functional Dectin-1 did not alter the susceptibility of mice against closely related Toxoplasma gondii. In conclusion, the gathered data suggest that Dectin-1 is involved in the parasite-induced downmodulation of ROS, and other key molecules triggered for the control of N. caninum infection and are a promising target for future development of protocols intended for intervention against neosporosis.
Collapse
Affiliation(s)
- Murilo Vieira da Silva
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo", Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia , Uberlândia , Brazil
| | - Flávia Batista Ferreira França
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo", Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia , Uberlândia , Brazil
| | - Caroline Martins Mota
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo", Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia , Uberlândia , Brazil
| | - Arlindo Gomes de Macedo Júnior
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo", Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia , Uberlândia , Brazil
| | - Eliézer Lucas Pires Ramos
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo", Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia , Uberlândia , Brazil
| | - Fernanda Maria Santiago
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo", Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia , Uberlândia , Brazil
| | - José Roberto Mineo
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo", Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia , Uberlândia , Brazil
| | - Tiago Wilson Patriarca Mineo
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo", Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia , Uberlândia , Brazil
| |
Collapse
|
14
|
de Oliveira AP, Ayo CM, Mimura KKO, Oliani SM, Bernardo CR, Camargo AVS, Ronchi LS, Borim AA, de Campos Júnior E, Brandão de Mattos CC, Castiglioni L, Bestetti RB, Cavasini CE, de Mattos LC. Plasma concentrations of CCL3 and CCL4 in the cardiac and digestive clinical forms of chronic Chagas disease. Cytokine 2016; 91:51-56. [PMID: 28002786 DOI: 10.1016/j.cyto.2016.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 10/13/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
Abstract
The aim of this study was to investigate the plasma levels of the CCL3 and CCL4 chemokines in patients with the cardiac and digestive clinical forms of chronic Chagas disease and in cardiac patients with and without left ventricular systolic dysfunction (LVSD). Plasma samples from 75 patients were evaluated by enzyme-linked immunosorbent assay (ELISA) to confirm infection by T. cruzi. Plasma levels of the CCL3 and CCL4 chemokines were measured using Milliplex® MAP assay (Millipore). There were no significant differences in the levels of CCL3 and CCL4 between patients with the digestive and cardiac clinical forms of Chagas disease. Moreover, no significant differences were found between patients without LVSD and those with LVSD. Higher CCL3 and CCL4 plasma levels were found in patients with LVSD compared to those with the digestive form of the disease. The CCL3 and CCL4 chemokines might not be involved in differential susceptibility to the digestive and cardiac clinical forms of chronic Chagas disease, and it seems they do not influence the development of LVSD.
Collapse
Affiliation(s)
- Amanda Priscila de Oliveira
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil
| | - Christiane Maria Ayo
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil
| | - Kallyne Kioko Oliveira Mimura
- Immunomorphology Laboratory, Biology Department, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Sonia Maria Oliani
- Immunomorphology Laboratory, Biology Department, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Cássia Rubia Bernardo
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil
| | - Ana Vitória Silveira Camargo
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil
| | - Luís Sérgio Ronchi
- Surgery Department, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil; Hospital de Base, Fundação Faculdade Regional de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
| | - Aldenis Albaneze Borim
- Surgery Department, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil; Hospital de Base, Fundação Faculdade Regional de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
| | - Eumildo de Campos Júnior
- Surgery Department, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil; Hospital de Base, Fundação Faculdade Regional de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
| | - Cinara Cássia Brandão de Mattos
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil
| | - Lilian Castiglioni
- Department of Epidemiology and Public Health, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil
| | - Reinaldo Bulgarelli Bestetti
- Department of Cardiology and Cardiovascular Surgery, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil; Hospital de Base, Fundação Faculdade Regional de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
| | - Carlos Eugênio Cavasini
- Center for the Investigation of Microorganisms, Department of Dermatological, Infectious and Parasitic Diseases, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil
| | - Luiz Carlos de Mattos
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil.
| |
Collapse
|
15
|
Doxycycline and Benznidazole Reduce the Profile of Th1, Th2, and Th17 Chemokines and Chemokine Receptors in Cardiac Tissue from Chronic Trypanosoma cruzi-Infected Dogs. Mediators Inflamm 2016; 2016:3694714. [PMID: 27688600 PMCID: PMC5023831 DOI: 10.1155/2016/3694714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/14/2016] [Accepted: 08/04/2016] [Indexed: 12/14/2022] Open
Abstract
Chemokines (CKs) and chemokine receptors (CKR) promote leukocyte recruitment into cardiac tissue infected by the Trypanosoma cruzi. This study investigated the long-term treatment with subantimicrobial doses of doxycycline (Dox) in association, or not, with benznidazole (Bz) on the expression of CK and CKR in cardiac tissue. Thirty mongrel dogs were infected, or not, with the Berenice-78 strain of T. cruzi and grouped according their treatments: (i) two months after infection, Dox (50 mg/kg) 2x/day for 12 months; (ii) nine months after infection, Bz (3,5 mg/kg) 2x/day for 60 days; (iii) Dox + Bz; and (iv) vehicle. After 14 months of infection, hearts were excised and processed for qPCR analysis of Th1 (CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL11), Th2 (CCL1, CCL17, CCL24, and CCL26), Th17 (CCL20) CKs, Th1 (CCR5, CCR6, and CXCR3), and Th2/Th17 (CCR3, CCR4, and CCR8) CKR, as well as IL-17. T. cruzi infection increases CCL1, CCL2, CCL4, CCL5, CCL17, CXCL10, and CCR5 expression in the heart. Dox, Bz, or Dox + Bz treatments cause a reversal of CK and CKR and reduce the expression of CCL20, IL-17, CCR6, and CXCR3. Our data reveal an immune modulatory effect of Dox with Bz, during the chronic phase of infection suggesting a promising therapy for cardiac protection.
Collapse
|
16
|
de Oliveira AP, Ayo CM, Bestetti RB, Brandão de Mattos CC, Cavasini CE, de Mattos LC. The role of CCR5 in Chagas disease - a systematic review. INFECTION GENETICS AND EVOLUTION 2016; 45:132-137. [PMID: 27539514 DOI: 10.1016/j.meegid.2016.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/01/2016] [Accepted: 08/12/2016] [Indexed: 01/08/2023]
Abstract
Chagas disease is an infection caused by the protozoan Trypanosoma cruzi. The clinical manifestations result from the chronic forms of the disease: indeterminate, cardiac, digestive or mixed. The pathogenesis of this disease is related to the genetic variability of both the parasite and the host with polymorphisms of genes involved in immune response possibly being involved in the variable clinical course. Cytokines play a key role in regulating immune response, in particular chemokines exert a crucial role in the control of leukocyte migration during the host's response to infectious processes. Furthermore, inflammatory cytokines and chemokines have been implicated in the generation of inflammatory infiltrates and tissue damage. The involvement of the CC Chemokine Receptor 5 (CCR5) in leukocyte migration to sites of inflammation has been elucidated and this receptor has been investigated in Chagas disease. Here we review the role of CCR5 in T. cruzi infection as well as its importance in the pathogenesis of the Chagas disease.
Collapse
Affiliation(s)
- Amanda P de Oliveira
- Laboratório de Imunogenética, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil
| | - Christiane M Ayo
- Laboratório de Imunogenética, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil
| | - Reinaldo B Bestetti
- Departamento de Cardiologia e Cirurgia Cardiovascular, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil
| | - Cinara C Brandão de Mattos
- Laboratório de Imunogenética, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil
| | - Carlos E Cavasini
- Centro de Investigação de Microrganismos, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil
| | - Luiz C de Mattos
- Laboratório de Imunogenética, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil.
| |
Collapse
|
17
|
Kim JH, Patil AM, Choi JY, Kim SB, Uyangaa E, Hossain FMA, Park SY, Lee JH, Eo SK. CCR5 ameliorates Japanese encephalitis via dictating the equilibrium of regulatory CD4(+)Foxp3(+) T and IL-17(+)CD4(+) Th17 cells. J Neuroinflammation 2016; 13:223. [PMID: 27439902 PMCID: PMC5050958 DOI: 10.1186/s12974-016-0656-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 07/10/2016] [Indexed: 12/30/2022] Open
Abstract
Background CCR5 is a CC chemokine receptor involved in the migration of effector leukocytes including macrophages, NK, and T cells into inflamed tissues. Also, the role of CCR5 in CD4+Foxp3+ regulatory T cell (Treg) homing has recently begun to grab attention. Japanese encephalitis (JE) is defined as severe neuroinflammation of the central nervous system (CNS) following infection with mosquito-borne flavivirus JE virus. However, the potential contribution of CCR5 to JE progression via mediating CD4+Foxp3+ Treg homing has not been investigated. Methods Infected wild-type (Ccr5+/+) and CCR5-deficient (Ccr5−/−) mice were examined daily for mortality and clinical signs, and neuroinflammation in the CNS was evaluated by infiltration of inflammatory leukocytes and cytokine expression. In addition, viral burden, NK- and JEV-specific T cell responses were analyzed. Adoptive transfer of CCR5+CD4+Foxp3+ Tregs was used to evaluate the role of Tregs in JE progression. Results CCR5 ablation exacerbated JE without altering viral burden in the extraneural and CNS tissues, as manifested by increased CNS infiltration of Ly-6Chi monocytes and Ly-6Ghi granulocytes. Compared to Ccr5+/+ mice, Ccr5−/− mice unexpectedly showed increased responses of IFN-γ+NK and CD8+ T cells in the spleen, but not CD4+ T cells. More interestingly, CCR5-ablation resulted in a skewed response to IL-17+CD4+ Th17 cells and correspondingly reduced CD4+Foxp3+ Tregs in the spleen and brain, which was closely associated with exacerbated JE. Our results also revealed that adoptive transfer of sorted CCR5+CD4+Foxp3+ Tregs into Ccr5−/− mice could ameliorate JE progression without apparently altering the viral burden and CNS infiltration of IL-17+CD4+ Th17 cells, myeloid-derived Ly-6Chi monocytes and Ly-6Ghi granulocytes. Instead, adoptive transfer of CCR5+CD4+Foxp3+ Tregs into Ccr5−/− mice resulted in increased expression of anti-inflammatory cytokines (IL-10 and TGF-β) in the spleen and brain, and transferred CCR5+ Tregs were found to produce IL-10. Conclusions CCR5 regulates JE progression via governing timely and appropriate CNS infiltration of CD4+Foxp3+ Tregs, thereby facilitating host survival. Therefore, this critical and extended role of CCR5 in JE raises possible safety concerns regarding the use of CCR5 antagonists in human immunodeficiency virus (HIV)-infected individuals who inhabit regions in which both HIV and flaviviruses, such as JEV and West Nile virus, are endemic.
Collapse
Affiliation(s)
- Jin Hyoung Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Ajit Mahadev Patil
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Seong Bum Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Erdenebelig Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Ferdaus Mohd Altaf Hossain
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Sang-Youel Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea.,Department of Bioactive Material Sciences, Graduate School, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea.,Department of Bioactive Material Sciences, Graduate School, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea. .,Department of Bioactive Material Sciences, Graduate School, Chonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
18
|
Penitente AR, Leite ALJ, de Paula Costa G, Shrestha D, Horta AL, Natali AJ, Neves CA, Talvani A. Enalapril in Combination with Benznidazole Reduces Cardiac Inflammation and Creatine Kinases in Mice Chronically Infected with Trypanosoma cruzi. Am J Trop Med Hyg 2015; 93:976-82. [PMID: 26350447 DOI: 10.4269/ajtmh.15-0237] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/03/2015] [Indexed: 12/31/2022] Open
Abstract
The protozoan Trypanosoma cruzi triggers an inflammatory process in mammalian heart causing events such as fibrosis, changes in the architecture and functionality in this organ. Enalapril, an angiotensin II-converting enzyme inhibitor, is a drug prescribed to ameliorate this heart dysfunction, and appears to exert a potential role in immune system regulation. Our aim was to evaluate the chronic cardiac inflammatory parameters after therapeutic treatment with enalapril and benznidazole in C57BL/6 mice infected with the VL-10 strain of T. cruzi. After infection, animals were treated with oral doses of enalapril (25 mg/kg), benznidazole (100 mg/kg), or both during 30 days. Morphometric parameters and levels of chemokines (CCL2, CCL5), IL-10, creatine kinases (CKs), and C-reactive protein were evaluated in the heart and serum at the 120th day of infection. Enalapril alone or in combination with benznidazole did not change the number of circulating parasites, but reduced cardiac leukocyte recruitment and total collagen in the cardiac tissue. Interestingly, the combination therapy (enalapril/benznidazole) also reduced the levels of chemokines, CK and CK-MB, and C-reactive proteins in chronic phase. In conclusion, during the chronic experimental T. cruzi infection, the combination therapy using enalapril plus benznidazole potentiated their immunomodulatory effects, resulting in a low production of biomarkers of cardiac lesions.
Collapse
Affiliation(s)
- Arlete Rita Penitente
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Departamento de Biologia Geral, Universidade Federal de Viçosa, Minas Gerais, Brazil; Programa de Pós-Graduação em Biologia Celular e Estrutural, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Ana Luísa Junqueira Leite
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Departamento de Biologia Geral, Universidade Federal de Viçosa, Minas Gerais, Brazil; Programa de Pós-Graduação em Biologia Celular e Estrutural, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Guilherme de Paula Costa
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Departamento de Biologia Geral, Universidade Federal de Viçosa, Minas Gerais, Brazil; Programa de Pós-Graduação em Biologia Celular e Estrutural, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Deena Shrestha
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Departamento de Biologia Geral, Universidade Federal de Viçosa, Minas Gerais, Brazil; Programa de Pós-Graduação em Biologia Celular e Estrutural, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Aline Luciano Horta
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Departamento de Biologia Geral, Universidade Federal de Viçosa, Minas Gerais, Brazil; Programa de Pós-Graduação em Biologia Celular e Estrutural, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Antônio J Natali
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Departamento de Biologia Geral, Universidade Federal de Viçosa, Minas Gerais, Brazil; Programa de Pós-Graduação em Biologia Celular e Estrutural, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Clóvis A Neves
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Departamento de Biologia Geral, Universidade Federal de Viçosa, Minas Gerais, Brazil; Programa de Pós-Graduação em Biologia Celular e Estrutural, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Andre Talvani
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; Departamento de Biologia Geral, Universidade Federal de Viçosa, Minas Gerais, Brazil; Programa de Pós-Graduação em Biologia Celular e Estrutural, Universidade Federal de Viçosa, Minas Gerais, Brazil
| |
Collapse
|
19
|
Caldas S, Caldas IS, Cecílio AB, Diniz LDEF, Talvani A, Ribeiro I, Bahia MT. Therapeutic responses to different anti- Trypanosoma cruzi drugs in experimental infection by benznidazole-resistant parasite stock. Parasitology 2014; 141:1628-1637. [PMID: 25045804 DOI: 10.1017/s0031182014000882] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study describes the role of parasite clearance time induced by benznidazole, fexinidazole and posaconazole treatments upon mice infection with a benznidazole-resistant Trypanosoma cruzi strain in the pathological outcomes. Trypanosoma cruzi-infected mice were treated with different drugs and parasite clearance time was detected by blood and tissue qPCR, to determine the dynamic relationship between the efficacy of the treatments and the intensity of heart lesion/serum inflammatory mediators. Our results indicate that anti-T. cruzi treatments were able to reduce parasite replication and consequently induce immunomodulatory effects, where the degree of the immunopathology prevention was related to the time of parasite clearance induced by different treatments. Nevertheless, in benznidazole and posaconazole treatments, parasite rebounding was detected with parasitism reaching levels similar to infected and non-treated mice; the time for parasitic rebound being earlier among benznidazole-treated mice. In parallel, an increase of cardiac lesions and plasma chemokine levels was also detected and was more accentuated in benznidazole-treated animals. Interestingly, in the presence of parasitological cure (fexinidazole treatment), basal levels of these inflammatory mediators were evidenced as well as an absence of cardiac inflammation or fibrosis. Overall, our data indicate that all treatments have positive effects on the clinical evolution of T. cruzi infection, with success in preventing cardiac alterations being drug-dependent.
Collapse
Affiliation(s)
- Sérgio Caldas
- Laboratório de Doença de Chagas, Departamento de Ciências Biológicas and Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Universitário, Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil
- Fundação Ezequiel Dias, Rua Conde Pereira Carneiro, 80, Gameleira, Belo Horizonte, Minas Gerais, Brazil
| | - Ivo Santana Caldas
- Laboratório de Doença de Chagas, Departamento de Ciências Biológicas and Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Universitário, Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil
- Departamento de Patologia e Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Alzira Batista Cecílio
- Fundação Ezequiel Dias, Rua Conde Pereira Carneiro, 80, Gameleira, Belo Horizonte, Minas Gerais, Brazil
| | - Lívia DE Figueiredo Diniz
- Laboratório de Doença de Chagas, Departamento de Ciências Biológicas and Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Universitário, Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil
| | - André Talvani
- Laboratório de Doença de Chagas, Departamento de Ciências Biológicas and Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Universitário, Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil
| | - Isabela Ribeiro
- Drugs for Neglected Disease initiative (DNDi), 1202 Geneva, Switzerland
| | - Maria Terezinha Bahia
- Laboratório de Doença de Chagas, Departamento de Ciências Biológicas and Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Universitário, Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil
| |
Collapse
|
20
|
Multi-step pathogenesis and induction of local immune response by systemic Candida albicans infection in an intravenous challenge mouse model. Int J Mol Sci 2014; 15:14848-67. [PMID: 25153636 PMCID: PMC4159886 DOI: 10.3390/ijms150814848] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/11/2014] [Accepted: 07/25/2014] [Indexed: 11/26/2022] Open
Abstract
Different murine species differ in their susceptibility to systemic infection with Candida albicans, giving rise to varied host immune responses, and this is compounded by variations in virulence of the different yeast strains used. Hence, this study was aimed at elucidating the pathogenesis of a clinical C. albicans isolate (HVS6360) in a murine intravenous challenge model by examining the different parameters which included the counts of red blood cells and associated components as well as the organ-specific expression profiles of cytokines and chemokines. Kidneys and brains of infected mice have higher fungal recovery rates as compared to other organs and there were extensive yeast infiltration with moderate to severe inflammation seen in kidney and brain tissues. Red blood cells (RBCs) and haemoglobin (Hb) counts were reduced throughout the infection period. Pattern recognition receptors (PRRs), chemokines and cytokine transcription profiles were varied among the different organs (kidney, spleen and brain) over 72 h post infections. Transcription of most of the PRRs, cytokines and chemokines were suppressed at 72 h post infection in spleen while continuous expression of PRRs, cytokines and chemokines genes were seen in brain and kidney. Reduction in red blood cells and haemoglobin counts might be associated with the action of extracellular haemolysin enzyme and haeme oxygenase of C. albicans in conjunction with iron scavenging for the fungal growth. Renal cells responsible for erythropoietin production may be injured by the infection and hence the combined effect of haemolysis plus lack of erythropoietin-induced RBC replenishment leads to aggravated reduction in RBC numbers. The varied local host immune profiles among target organs during systemic C. albicans infection could be of importance for future work in designing targeted immunotherapy through immunomodulatory approaches.
Collapse
|
21
|
Blanco JR, Ochoa-Callejero L. Could CCR5 be a potential target against infections? Expert Rev Anti Infect Ther 2014; 10:411-4. [DOI: 10.1586/eri.12.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
de Souza SM, Vieira PMDA, Roatt BM, Reis LES, da Silva Fonseca K, Nogueira NC, Reis AB, Tafuri WL, Carneiro CM. Dogs infected with the blood trypomastigote form of Trypanosoma cruzi display an increase expression of cytokines and chemokines plus an intense cardiac parasitism during acute infection. Mol Immunol 2013; 58:92-7. [PMID: 24317279 DOI: 10.1016/j.molimm.2013.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/05/2013] [Accepted: 11/09/2013] [Indexed: 02/06/2023]
Abstract
The recent increase in immigration of people from areas endemic for Chagas disease (Trypanosoma cruzi) to the United States and Europe has raised concerns about the transmission via blood transfusion and organ transplants in these countries. Infection by these pathways occurs through blood trypomastigotes (BT), and these forms of T. cruzi are completely distinct of metacyclic trypomastigotes (MT), released by triatomine vector, in relation to parasite-host interaction. Thus, research comparing infection with these different infective forms is important for explaining the potential impacts on the disease course. Here, we investigated tissue parasitism and relative mRNA expression of cytokines, chemokines, and chemokine receptors in the heart during acute infection by MT or BT forms in dogs. BT-infected dogs presented a higher cardiac parasitism, increased relative mRNA expression of pro-inflammatory and immunomodulatory cytokines and of the chemokines CCL3/MIP-1α, CCL5/RANTES, and the chemokine receptor CCR5 during the acute phase of infection, as compared to MT-infected dogs. These results suggest that infection with BT forms may lead to an increased immune response, as revealed by the cytokines ratio, but this kind of immune response was not able to control the cardiac parasitism. Infection with the MT form presented an increase in the relative mRNA expression of IL-12p40 as compared to that of IL-10 or TGF-β1. Correlation analysis showed increased relative mRNA expression of IFN-γ as well as IL-10, which may be an immunomodulatory response, as well as an increase in the correlation of CCL5/RANTES and its CCR5 receptor. Our findings revealed a difference between inoculum sources of T. cruzi, as vectorial or transfusional routes of T. cruzi infection may trigger distinct parasite-host interactions during the acute phase, which may influence immunopathological aspects of Chagas disease.
Collapse
Affiliation(s)
- Sheler Martins de Souza
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Paula Melo de Abreu Vieira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Bruno Mendes Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Levi Eduardo Soares Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Kátia da Silva Fonseca
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Nívia Carolina Nogueira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Washington Luiz Tafuri
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Cláudia Martins Carneiro
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
23
|
Xu MJ, Zhou DH, Nisbet AJ, Huang SY, Fan YF, Zhu XQ. Characterization of mouse brain microRNAs after infection with cyst-forming Toxoplasma gondii. Parasit Vectors 2013; 6:154. [PMID: 23718711 PMCID: PMC3668261 DOI: 10.1186/1756-3305-6-154] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/19/2013] [Indexed: 01/31/2023] Open
Abstract
Background The obligate intracellular parasite Toxoplasma gondii can interfere with host cell signaling pathways, alter host defense systems and cell cycle control, and establish a chronic infection in the central nervous system. T. gondii infection may alter the expression profile of host microRNAs (miRNAs) which have key regulatory functions at the post-transcriptional level. Methods Using high-throughput sequencing and real-time quantitative PCR technology, we compared the miRNA expression profiles of uninfected mouse brains with brains from mice at 14 days and 21 days after infection with cyst-forming T. gondii (Type II). Results A total of 51.30 million raw reads were obtained from all samples and 495 (14d infected mouse sample), 511 (14d sham-infected control), 504 (21d infected mouse sample) and 514 (21d sham-infected control) miRNA candidates identified. Among these, 414 miRNAs were consistent across all the studied groups, 17 were specific to the 14d infected group and 32 were specific to the 21d infected group. In addition, 9 miRNAs were common to both the 14d- and 21d-infected groups. Enrichment analysis for the targets of these miRNAs showed a high percentage of “protein tag” functions. Immune related targets including chemokines, cytokines, growth factors and interleukins were also found. Conclusions These results not only showed that the miRNA expression of the host can be changed by the invasion of cyst-forming T. gondii, but also indicated that the host attempts to respond using two tactics: marking proteins with “protein tags” and adaptation of immune related systems.
Collapse
|
24
|
Cutrullis RA, Petray PB, Schapachnik E, Sánchez R, Postan M, González MN, Martín V, Corral RS. Elevated serum levels of macrophage migration inhibitory factor are associated with progressive chronic cardiomyopathy in patients with Chagas disease. PLoS One 2013; 8:e57181. [PMID: 23451183 PMCID: PMC3579792 DOI: 10.1371/journal.pone.0057181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/18/2013] [Indexed: 12/27/2022] Open
Abstract
Clinical symptoms of chronic Chagas disease occur in around 30% of the individuals infected with Trypanosoma cruzi and are characterized by heart inflammation and dysfunction. The pathogenesis of chronic chagasic cardiomyopathy (CCC) is not completely understood yet, partially because disease evolution depends on complex host-parasite interactions. Macrophage migration inhibitory factor (MIF) is a pleiotropic proinflammatory cytokine that promotes numerous pathophysiological processes. In the current study, we investigated the link between MIF and CCC progression. Immunohistochemical analysis demonstrated MIF overexpression in the hearts from chronically T. cruzi-infected mice, particularly those showing intense inflammatory infiltration. We also found that MIF exogenously added to parasite-infected murine macrophage cultures is capable of enhancing the production of TNF-α and reactive oxygen species, both with pathogenic roles in CCC. Thus, the integrated action of MIF and other cytokines and chemokines may account for leukocyte influx to the infected myocardium, accompanied by enhanced local production of multiple inflammatory mediators. We further examined by ELISA the level of MIF in the sera from chronic indeterminate and cardiomyopathic chagasic patients, and healthy subjects. CCC patients displayed significantly higher MIF concentrations than those recorded in asymptomatic T. cruzi-infected and uninfected individuals. Interestingly, increased MIF levels were associated with severe progressive Chagas heart disease, in correlation with elevated serum concentration of high sensitivity C-reactive protein and also with several echocardiographic indicators of left ventricular dysfunction, one of the hallmarks of CCC. Our present findings represent the first evidence that enhanced MIF production is associated with progressive cardiac impairment in chronic human infection with T. cruzi, strengthening the relationship between inflammatory response and parasite-driven pathology. These observations contribute to unravel the elements involved in the pathogenesis of CCC and may also be helpful for the design of novel therapies aimed to control long-term morbidity in chagasic patients.
Collapse
Affiliation(s)
- Romina A. Cutrullis
- Servicio de Parasitología-Chagas, Hospital de Niños ‘Dr. Ricardo Gutiérrez’, Buenos Aires, Argentina
| | - Patricia B. Petray
- Servicio de Parasitología-Chagas, Hospital de Niños ‘Dr. Ricardo Gutiérrez’, Buenos Aires, Argentina
| | - Edgardo Schapachnik
- Servicio de Cardiología, Hospital General de Agudos ‘Dr. Cosme Argerich’, Buenos Aires, Argentina
| | - Rubén Sánchez
- Servicio de Cardiología, Hospital General de Agudos ‘Dr. José María Ramos Mejía’, Buenos Aires, Argentina
| | - Miriam Postan
- Instituto Nacional de Parasitología ‘Dr. Mario Fatala Chabén’/ANLIS/Malbrán, Buenos Aires, Argentina
| | - Mariela N. González
- Instituto Nacional de Parasitología ‘Dr. Mario Fatala Chabén’/ANLIS/Malbrán, Buenos Aires, Argentina
| | - Valentina Martín
- Laboratorio de Inmunología, Centro de Salud y Medio Ambiente (CESyMA), Escuela de Ciencia y Tecnología (ECyT), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Ricardo S. Corral
- Servicio de Parasitología-Chagas, Hospital de Niños ‘Dr. Ricardo Gutiérrez’, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
25
|
Machado FS, Dutra WO, Esper L, Gollob K, Teixeira MM, Factor SM, Weiss LM, Nagajyothi F, Tanowitz HB, Garg NJ. Current understanding of immunity to Trypanosoma cruzi infection and pathogenesis of Chagas disease. Semin Immunopathol 2012; 34:753-70. [PMID: 23076807 PMCID: PMC3498515 DOI: 10.1007/s00281-012-0351-7] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/21/2012] [Indexed: 02/06/2023]
Abstract
Chagas disease caused by Trypanosoma cruzi remains an important neglected tropical disease and a cause of significant morbidity and mortality. No longer confined to endemic areas of Latin America, it is now found in non-endemic areas due to immigration. The parasite may persist in any tissue, but in recent years, there has been increased recognition of adipose tissue both as an early target of infection and a reservoir of chronic infection. The major complications of this disease are cardiomyopathy and megasyndromes involving the gastrointestinal tract. The pathogenesis of Chagas disease is complex and multifactorial involving many interactive pathways. The significance of innate immunity, including the contributions of cytokines, chemokines, reactive oxygen species, and oxidative stress, has been emphasized. The role of the components of the eicosanoid pathway such as thromboxane A(2) and the lipoxins has been demonstrated to have profound effects as both pro- and anti-inflammatory factors. Additionally, we discuss the vasoconstrictive actions of thromboxane A(2) and endothelin-1 in Chagas disease. Human immunity to T. cruzi infection and its role in pathogen control and disease progression have not been fully investigated. However, recently, it was demonstrated that a reduction in the anti-inflammatory cytokine IL-10 was associated with clinically significant chronic chagasic cardiomyopathy.
Collapse
Affiliation(s)
- Fabiana S. Machado
- Departments of Biochemistry and Immunology and Morphology, Institute for Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Program in Health Sciences: Infectious Diseases and Tropical Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walderez O. Dutra
- Departments of Biochemistry and Immunology and Morphology, Institute for Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Departments of Microbiology and Immunology and Pathology, Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX
| | - Lisia Esper
- Departments of Biochemistry and Immunology and Morphology, Institute for Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Program in Health Sciences: Infectious Diseases and Tropical Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Kenneth Gollob
- Departments of Biochemistry and Immunology and Morphology, Institute for Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Santa Casa Hospital, Belo Horizonte, Brazil
- SRI International, Biosciences Division, Menlo Park, CA
- National Institute of Science and Technology in Tropical Diseases, Belo Horizonte, MG, Brazil
| | - Mauro M. Teixeira
- Departments of Biochemistry and Immunology and Morphology, Institute for Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Program in Health Sciences: Infectious Diseases and Tropical Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Stephen M. Factor
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Fnu Nagajyothi
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
| | - Herbert B. Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Nisha J. Garg
- Departments of Microbiology and Immunology and Pathology, Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
26
|
Larena M, Regner M, Lobigs M. The chemokine receptor CCR5, a therapeutic target for HIV/AIDS antagonists, is critical for recovery in a mouse model of Japanese encephalitis. PLoS One 2012; 7:e44834. [PMID: 23028638 PMCID: PMC3448613 DOI: 10.1371/journal.pone.0044834] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/09/2012] [Indexed: 11/19/2022] Open
Abstract
Japanese encephalitis is a severe central nervous system (CNS) inflammatory disease caused by the mosquito-borne flavivirus, Japanese encephalitis virus (JEV). In the current study we have investigated the immune responses against JEV in mice lacking expression of the chemokine receptor CCR5, which functions in activation and chemotaxis of leukocytes during infection. We show that CCR5 serves as a host antiviral factor against Japanese encephalitis, with CCR5 deficiency markedly increasing mortality, and viral burden in the CNS. Humoral immune responses, which are essential in recovery from JEV infection, were of similar magnitude in CCR5 sufficient and deficient mice. However, absence of CCR5 resulted in a multifaceted deficiency of cellular immune responses characterized by reduced natural killer and CD8⁺ T cell activity, low splenic cellularity, and impaired trafficking of leukocytes to the brain. Interestingly, adoptive transfer of immune spleen cells, depleted of B lymphocytes, increased resistance of CCR5-deficient recipient mice against JEV regardless of whether the cells were obtained from CCR5-deficient or wild-type donor mice, and only when transferred at one but not at three days post-challenge. This result is consistent with a mechanism by which CCR5 expression enhances lymphocyte activation and thereby promotes host survival in Japanese encephalitis.
Collapse
Affiliation(s)
- Maximilian Larena
- Department of Emerging Pathogens and Vaccines, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Matthias Regner
- Department of Emerging Pathogens and Vaccines, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Mario Lobigs
- Department of Emerging Pathogens and Vaccines, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
27
|
Caldas S, Caldas IS, Diniz LDF, Lima WGD, Oliveira RDP, Cecílio AB, Ribeiro I, Talvani A, Bahia MT. Real-time PCR strategy for parasite quantification in blood and tissue samples of experimental Trypanosoma cruzi infection. Acta Trop 2012; 123:170-7. [PMID: 22609548 DOI: 10.1016/j.actatropica.2012.05.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 04/30/2012] [Accepted: 05/08/2012] [Indexed: 01/23/2023]
Abstract
The lack of an accurate diagnosis has been a serious obstacle to the advancement of the anti-Trypanosoma cruzi chemotherapy and long-term infection can result in different health risks to human. PCRs are alternative methods, more sensitive than conventional parasitological techniques, which due to their low sensitivities are considered unsuitable for these purposes. The aim of this study was to investigate a sensitive diagnostic strategy to quantify blood and cardiac tissues parasites based on real-time PCR tools during acute and chronic phases of murine Chagas disease, as well as to monitor the evolution of infection in those mice under specific treatment. In parallel, fresh blood examination, immunological analysis and quantification of cardiac inflammation were also performed to confront and improve real-time PCR data. Similar profiles of parasitemia curves were observed in both quantification techniques during the acute phase of the infection. In contrast, parasites could be quantified only by real-time PCR at 60 and 120 days of infection. In cardiac tissue, real-time PCR detected T. cruzi DNA in 100% of infected mice, and using this tool a significant Pearson correlation between parasite load in peripheral blood and in cardiac tissue during acute and chronic phases was observed. Levels of serum CCL2, CCL5 and nitric oxide were coincident with parasite load but focal and diffuse mononuclear infiltrates was observed, even with significant (p<0.05) reduction of parasitism after 60 days of infection. Later, this methodology was used to monitor the evolution of infection in animals treated with itraconazole (Itz). Itz-treatment induced a reduction of parasite load in both blood and cardiac muscle at the treatment period, but after the end of chemotherapy an increase of parasitism was detected. Interestingly, inflammatory mediators levels and heart inflammation intensity had similar evolution to the parasite load, in the group of animals treated. Taken together, our data show that real-time PCR strategy used was suitable for studies of murine T. cruzi infection and may prove useful in investigations involving experimental chemotherapy of the disease and the benefits of treatment in relation to parasitism and inflammatory response.
Collapse
|
28
|
Chang LY, Lin YC, Kang CW, Hsu CY, Chu YY, Huang CT, Day YJ, Chen TC, Yeh CT, Lin CY. The indispensable role of CCR5 for in vivo suppressor function of tumor-derived CD103+ effector/memory regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:567-74. [PMID: 22664873 DOI: 10.4049/jimmunol.1200266] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD103 is a marker for identification of effector/memory regulatory T cells (Tregs). CD103(+) Tregs are potent suppressors of tissue inflammation in several infectious diseases, autoimmune diseases, and cancers. However, the underlying mechanisms for this potent suppression ability remain unclear. The current study was designed to clarify this issue. Unexpectedly, we found both CD103(+) and CD103(-) Tregs had similar suppression capacity in vitro. We then chose a murine tumor model for investigation of the in vivo behavior of these Tregs. The suppression ability in vivo against the anti-tumor ability of CD8(+) T cells was restricted to CD103(+) Tregs although both Tregs had equal in vitro suppression ability. In addition, CD103(+) Tregs expressed significantly higher levels of CCR5 than those of CD103(-) Tregs and accumulated more in tumors than did CD103(-) Tregs. Furthermore, blockade of CCR5 signaling, either by CCR5(-/-)CD103(+) Tregs or by CCL5 knockdown tumor, could reduce the migration of CD103(+) Tregs into tumors and impair their in vivo suppression ability. In conclusion, these results indicate that the potent in vivo suppression ability of CD103(+) Tregs is due to the tissue-migration ability through CCR5 expression.
Collapse
Affiliation(s)
- Li-Yuan Chang
- College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Silva RR, Shrestha-Bajracharya D, Almeida-Leite CM, Leite R, Bahia MT, Talvani A. Short-term therapy with simvastatin reduces inflammatory mediators and heart inflammation during the acute phase of experimental Chagas disease. Mem Inst Oswaldo Cruz 2012; 107:513-21. [DOI: 10.1590/s0074-02762012000400012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 02/02/2012] [Indexed: 01/29/2023] Open
Affiliation(s)
| | | | | | | | | | - Andre Talvani
- Universidade Federal de Ouro Preto; Universidade Federal de Ouro Preto, Brasil
| |
Collapse
|
30
|
Silverio JC, Pereira IR, Cipitelli MDC, Vinagre NF, Rodrigues MM, Gazzinelli RT, Lannes-Vieira J. CD8+ T-cells expressing interferon gamma or perforin play antagonistic roles in heart injury in experimental Trypanosoma cruzi-elicited cardiomyopathy. PLoS Pathog 2012; 8:e1002645. [PMID: 22532799 PMCID: PMC3330123 DOI: 10.1371/journal.ppat.1002645] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 03/01/2012] [Indexed: 12/12/2022] Open
Abstract
In Chagas disease, CD8(+) T-cells are critical for the control of Trypanosoma cruzi during acute infection. Conversely, CD8(+) T-cell accumulation in the myocardium during chronic infection may cause tissue injury leading to chronic chagasic cardiomyopathy (CCC). Here we explored the role of CD8(+) T-cells in T. cruzi-elicited heart injury in C57BL/6 mice infected with the Colombian strain. Cardiomyocyte lesion evaluated by creatine kinase-MB isoenzyme activity levels in the serum and electrical abnormalities revealed by electrocardiogram were not associated with the intensity of heart parasitism and myocarditis in the chronic infection. Further, there was no association between heart injury and systemic anti-T. cruzi CD8(+) T-cell capacity to produce interferon-gamma (IFNγ) and to perform specific cytotoxicity. Heart injury, however, paralleled accumulation of anti-T. cruzi cells in the cardiac tissue. In T. cruzi infection, most of the CD8(+) T-cells segregated into IFNγ(+) perforin (Pfn)(neg) or IFNγ(neg)Pfn(+) cell populations. Colonization of the cardiac tissue by anti-T. cruzi CD8(+)Pfn(+) cells paralleled the worsening of CCC. The adoptive cell transfer to T. cruzi-infected cd8(-/-) recipients showed that the CD8(+) cells from infected ifnγ(-/-)pfn(+/+) donors migrate towards the cardiac tissue to a greater extent and caused a more severe cardiomyocyte lesion than CD8(+) cells from ifnγ(+/+)pfn(-/-) donors. Moreover, the reconstitution of naïve cd8(-/-) mice with CD8(+) cells from naïve ifnγ(+/+)pfn(-/-) donors ameliorated T. cruzi-elicited heart injury paralleled IFNγ(+) cells accumulation, whereas reconstitution with CD8(+) cells from naïve ifnγ(-/-)pfn(+/+) donors led to an aggravation of the cardiomyocyte lesion, which was associated with the accumulation of Pfn(+) cells in the cardiac tissue. Our data support a possible antagonist effect of CD8(+)Pfn(+) and CD8(+)IFNγ(+) cells during CCC. CD8(+)IFNγ(+) cells may exert a beneficial role, whereas CD8(+)Pfn(+) may play a detrimental role in T. cruzi-elicited heart injury.
Collapse
Affiliation(s)
| | - Isabela Resende Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | | | | | - Ricardo Tostes Gazzinelli
- Laboratório de Imunoparasitologia, Instituto Rene Rachou, Fiocruz, Minas Gerais, Brazil
- Departamento de Imunologia e Bioquímica, ICB, UFMG, Minas Gerais, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
31
|
B-Cell Response during Protozoan Parasite Infections. J Parasitol Res 2012; 2012:362131. [PMID: 22315659 PMCID: PMC3270435 DOI: 10.1155/2012/362131] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/06/2011] [Indexed: 02/03/2023] Open
Abstract
In this review, we discuss how protozoan parasites alter immature and mature B cell compartment. B1 and marginal zone (MZ) B cells, considered innate like B cells, are activated during protozoan parasite infections, and they generate short lived plasma cells providing a prompt antibody source. In addition, protozoan infections induce massive B cell response with polyclonal activation that leads to hypergammaglobulnemia with serum antibodies specific for the parasites and self and/or non related antigens. To protect themselves, the parasites have evolved unique ways to evade B cell immune responses inducing apoptosis of MZ and conventional mature B cells. As a consequence of the parasite induced-apoptosis, the early IgM response and an already establish humoral immunity are affected during the protozoan parasite infection. Moreover, some trypanosomatides trigger bone marrow immature B cell apoptosis, influencing the generation of new mature B cells. Simultaneously with their ability to release antibodies, B cells produce cytokines/quemokines that influence the characteristic of cellular immune response and consequently the progression of parasite infections.
Collapse
|
32
|
Machado FS, Tyler KM, Brant F, Esper L, Teixeira MM, Tanowitz HB. Pathogenesis of Chagas disease: time to move on. Front Biosci (Elite Ed) 2012; 4:1743-58. [PMID: 22201990 DOI: 10.2741/495] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas disease. The contributions of parasite and immune system for disease pathogenesis remain unresolved and controversial. The possibility that Chagas disease was an autoimmune progression triggered by T. cruzi infection led some to question the benefit of treating chronically T. cruzi-infected persons with drugs. Furthermore, it provided the rationale for not investing in research aimed at a vaccine which might carry a risk of inducing autoimmunity or exacerbating inflammation. This viewpoint was adopted by cash-strapped health systems in the developing economies where the disease is endemic and has been repeatedly challenged by researchers and clinicians in recent years and there is now a considerable body of evidence and broad consensus that parasite persistence is requisite for pathogenesis and that antiparasitic immunity can be protective against T. cruzi pathogenesis without eliciting autoimmune pathology. Thus, treatment of chronically infected patients is likely to yield positive outcomes and efforts to understand immunity and vaccine development should be recognized as a priority area of research for Chagas disease.
Collapse
Affiliation(s)
- Fabiana S Machado
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Belo Horizonte, Brazil
| | | | | | | | | | | |
Collapse
|
33
|
Dietrich I, McEwan WA, Hosie MJ, Willett BJ. Restriction of the felid lentiviruses by a synthetic feline TRIM5-CypA fusion. Vet Immunol Immunopathol 2011; 143:235-42. [PMID: 21813188 PMCID: PMC4261132 DOI: 10.1016/j.vetimm.2011.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Gene therapy approaches to the treatment of HIV infection have targeted both viral gene expression and the cellular factors that are essential for virus replication. However, significant concerns have been raised regarding the potential toxic effects of such therapies, the emergence of resistant viral variants and unforeseen biological consequences such as enhanced susceptibility to unrelated pathogens. Novel restriction factors formed by the fusion of the tripartite motif protein (TRIM5) and cyclophilin A (CypA), or "TRIMCyps", offer an effective antiviral defence strategy with a very low potential for toxicity. In order to investigate the potential therapeutic utility of TRIMCyps in gene therapy for AIDS, a synthetic fusion protein between feline TRIM5 and feline CypA was generated and transduced into cells susceptible to infection with feline immunodeficiency virus (FIV). The synthetic feline TRIMCyp was highly efficient at preventing infection with both HIV and FIV and the cells resisted productive infection with FIV from either the domestic cat or the puma. Feline TRIMCyp and FIV infection of the cat offers a unique opportunity to evaluate TRIMCyp-based approaches to genetic therapy for HIV infection and the treatment of AIDS.
Collapse
Affiliation(s)
- Isabelle Dietrich
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, United Kingdom
| | - William A. McEwan
- Division of Protein and Nucleic Acid Chemistry, MRC-Laboratory of Molecular Biology, Hills Road, Cambridge CB1 0QH, United Kingdom
| | - Margaret J. Hosie
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, United Kingdom
| | - Brian J. Willett
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, United Kingdom
| |
Collapse
|
34
|
Sullivan NL, Eickhoff CS, Zhang X, Giddings OK, Lane TE, Hoft DF. Importance of the CCR5-CCL5 axis for mucosal Trypanosoma cruzi protection and B cell activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:1358-68. [PMID: 21715689 PMCID: PMC3150841 DOI: 10.4049/jimmunol.1100033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Trypanosoma cruzi is an intracellular parasite and the causative agent of Chagas disease. Previous work has shown that the chemokine receptor CCR5 plays a role in systemic T. cruzi protection. We evaluated the importance of CCR5 and CCL5 for mucosal protection against natural oral and conjunctival T. cruzi challenges. T. cruzi-immune CCR5(-/-) and wild-type C57BL/6 mice were generated by repeated infectious challenges with T. cruzi. CCR5(-/-) and wild-type mice developed equivalent levels of cellular, humoral, and protective mucosal responses. However, CCR5(-/-)-immune mice produced increased levels of CCL5 in protected gastric tissues, suggesting compensatory signaling through additional receptors. Neutralization of CCL5 in CCR5(-/-)-immune mice resulted in decreased mucosal inflammatory responses, reduced T. cruzi-specific Ab-secreting cells, and significantly less mucosal T. cruzi protection, confirming an important role for CCL5 in optimal immune control of T. cruzi replication at the point of initial mucosal invasion. To investigate further the mechanism responsible for mucosal protection mediated by CCL5-CCR5 signaling, we evaluated the effects of CCL5 on B cells. CCL5 enhanced proliferation and IgM secretion in highly purified B cells triggered by suboptimal doses of LPS. In addition, neutralization of endogenous CCL5 inhibited B cell proliferation and IgM secretion during stimulation of highly purified B cells, indicating that B cell production of CCL5 has important autocrine effects. These findings demonstrate direct effects of CCL5 on B cells, with significant implications for the development of mucosal adjuvants, and further suggest that CCL5 may be important as a general B cell coactivator.
Collapse
Affiliation(s)
- Nicole L Sullivan
- Department of Molecular Microbiology and Immunology, Saint Louis University Medical Center, St. Louis, MO 63104, USA
| | | | | | | | | | | |
Collapse
|
35
|
Dziennis S, Mader S, Akiyoshi K, Ren X, Ayala P, Burrows GG, Vandenbark AA, Herson PS, Hurn PD, Offner H. Therapy with recombinant T-cell receptor ligand reduces infarct size and infiltrating inflammatory cells in brain after middle cerebral artery occlusion in mice. Metab Brain Dis 2011; 26:123-33. [PMID: 21472429 PMCID: PMC3111858 DOI: 10.1007/s11011-011-9241-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/23/2011] [Indexed: 01/06/2023]
Abstract
Stroke induces a biphasic effect on the peripheral immune response that involves early activation of peripheral leukocytes followed by severe immunosuppression and atrophy of the spleen. Peripheral immune cells, including T lymphocytes, migrate to the brain and exacerbate the developing infarct. Recombinant T-cell receptor (TCR) Ligand (RTL)551 is designed as a partial TCR agonist for myelin oligodendrocyte glycoprotein (MOG)-reactive T cells and has demonstrated the capacity to limit infarct volume and inflammation in brain when administered to mice undergoing middle cerebral artery occlusion (MCAO). The goal of this study was to determine if RTL551 could retain protection when given within the therapeutically relevant 4 h time window currently in clinical practice for stroke patients. RTL551 was administered subcutaneously 4 h after MCAO, with repeated doses every 24 h until the time of euthanasia. Cell numbers were assessed in the brain, blood, spleen and lymph nodes and infarct size was measured after 24 and 96 h reperfusion. RTL551 reduced infarct size in both cortex and striatum at 24 h and in cortex at 96 h after MCAO and inhibited the accumulation of inflammatory cells in brain at both time points. At 24 h post-MCAO, RTL551 reduced the frequency of the activation marker, CD44, on T-cells in blood and in the ischemic hemisphere. Moreover, RTL551 reduced expression of the chemokine receptors, CCR5 in lymph nodes and spleen, and CCR7 in the blood and lymph nodes. These data demonstrate effective treatment of experimental stroke with RTL551 within a therapeutically relevant 4 h time window through immune regulation of myelin-reactive inflammatory T-cells.
Collapse
MESH Headings
- Animals
- Blood/immunology
- Blood/metabolism
- Brain/immunology
- Brain/metabolism
- Disease Models, Animal
- Humans
- Hyaluronan Receptors/immunology
- Hyaluronan Receptors/metabolism
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/therapy
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Myelin Proteins/agonists
- Myelin Proteins/immunology
- Myelin-Oligodendrocyte Glycoprotein
- Receptors, Antigen, T-Cell/agonists
- Receptors, Antigen, T-Cell/immunology
- Receptors, CCR5/immunology
- Receptors, CCR5/metabolism
- Receptors, CCR7/immunology
- Receptors, CCR7/metabolism
- Recombinant Fusion Proteins/therapeutic use
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocytes/immunology
- Time Factors
- Treatment Outcome
Collapse
Affiliation(s)
- Suzan Dziennis
- Department of Anesthesiology & Peri-Operative Medicine, Oregon Health & Science University, Portland, OR, 97239
| | - Sarah Mader
- Department of Anesthesiology & Peri-Operative Medicine, Oregon Health & Science University, Portland, OR, 97239
| | - Kozaburo Akiyoshi
- Department of Anesthesiology & Peri-Operative Medicine, Oregon Health & Science University, Portland, OR, 97239
| | - Xuefang Ren
- Department of Anesthesiology & Peri-Operative Medicine, Oregon Health & Science University, Portland, OR, 97239
| | - Patricia Ayala
- Department of Anesthesiology & Peri-Operative Medicine, Oregon Health & Science University, Portland, OR, 97239
| | - Gregory G. Burrows
- Department of Anesthesiology & Peri-Operative Medicine, Oregon Health & Science University, Portland, OR, 97239
| | - Arthur A. Vandenbark
- Neuroimmunology Research, Veterans Affairs Medical Center; Portland, Oregon, 97239
- Department of Neurology, Oregon Health & Science University, Portland, OR, 97239
- Department of Biochemistry and Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, 97239
| | - Paco S. Herson
- Department of Anesthesiology & Peri-Operative Medicine, Oregon Health & Science University, Portland, OR, 97239
| | - Patricia D. Hurn
- Department of Anesthesiology & Peri-Operative Medicine, Oregon Health & Science University, Portland, OR, 97239
| | - Halina Offner
- Neuroimmunology Research, Veterans Affairs Medical Center; Portland, Oregon, 97239
- Department of Anesthesiology & Peri-Operative Medicine, Oregon Health & Science University, Portland, OR, 97239
- Department of Neurology, Oregon Health & Science University, Portland, OR, 97239
| |
Collapse
|
36
|
Talvani A, Teixeira MM. Inflammation and Chagas disease some mechanisms and relevance. ADVANCES IN PARASITOLOGY 2011; 76:171-94. [PMID: 21884892 DOI: 10.1016/b978-0-12-385895-5.00008-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chagas cardiomyopathy is caused by infection with flagellated protozoan Trypanosoma cruzi. In patients, there is a fine balance between control of the replication and the intensity of the inflammatory response so that the host is unable to eliminate the parasite resulting in the parasite persisting as a lifelong infection in most individuals. However, the parasite persists in such a way that it causes no or little disease. This chapter reviews our understanding of many of the mediators of inflammation and cells which are involved in the inflammatory response of mammals to T. cruzi infection. Particular emphasis is given to the role of chemokines, endothelin and lipid mediators. Understanding the full range of mediators and cells present and how they interact with each other in Chagas disease may shed light on how we modulate disease pathogenesis and define new approaches to treat or prevent the disease.
Collapse
|
37
|
Gupta S, Dhiman M, Wen JJ, Garg NJ. ROS signalling of inflammatory cytokines during Trypanosoma cruzi infection. ADVANCES IN PARASITOLOGY 2011; 76:153-70. [PMID: 21884891 DOI: 10.1016/b978-0-12-385895-5.00007-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inflammation is a host defence activated by exogenous (e.g. pathogen-derived, pollutants) or endogenous (e.g. reactive oxygen species-ROS) danger signals. Mostly, endogenous molecules (or their derivatives) have well-defined intracellular function but become danger signal when released or exposed following stress or injury. In this review, we discuss the potential role of ROS in chronic evolution of inflammatory cardiovascular diseases, using our experiences working on chagasic cardiomyopathy as a focus-point.
Collapse
Affiliation(s)
- Shivali Gupta
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, USA
| | | | | | | |
Collapse
|
38
|
Roffê E, Oliveira F, Souza ALS, Pinho V, Souza DG, Souza PRS, Russo RC, Santiago HC, Romanha AJ, Tanowitz HB, Valenzuela JG, Teixeira MM. Role of CCL3/MIP-1alpha and CCL5/RANTES during acute Trypanosoma cruzi infection in rats. Microbes Infect 2010; 12:669-76. [PMID: 20452453 PMCID: PMC3166703 DOI: 10.1016/j.micinf.2010.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 03/30/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Abstract
Chagas' disease is caused by Trypanosoma cruzi infection and is characterized by chronic fibrogenic inflammation and heart dysfunction. Chemokines are produced during infection and drive tissue inflammation. In rats, acute infection is characterized by intense myocarditis and regression of inflammation after control of parasitism. We investigated the role of CCL3 and CCL5 during infection by using DNA vaccination encoding for each chemokine separately or simultaneously. MetRANTES treatment was used to evaluate the role of CCR1 and CCR5, the receptors for CCL3 and CCL5. Vaccination with CCL3 or CCL5 increased heart parasitism and decreased local IFN-gamma production, but did not influence intensity of inflammation. Simultaneous treatment with both plasmids or treatment with MetRANTES enhanced cardiac inflammation, fibrosis and parasitism. In conclusion, chemokines CCL3 and CCL5 are relevant, but not essential, for control of T. cruzi infection in rats. On the other hand, combined blockade of these chemokines or their receptors enhanced tissue inflammation and fibrosis, clearly contrasting with available data in murine models of T. cruzi infection. These data reinforce the important role of chemokines during T. cruzi infection but suggest that caution must be taken when expanding the therapeutic modulation of the chemokine system in mice to the human infection.
Collapse
Affiliation(s)
- Ester Roffê
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sorce S, Bonnefont J, Julien S, Marq-Lin N, Rodriguez I, Dubois-Dauphin M, Krause KH. Increased brain damage after ischaemic stroke in mice lacking the chemokine receptor CCR5. Br J Pharmacol 2010; 160:311-21. [PMID: 20423342 DOI: 10.1111/j.1476-5381.2010.00697.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The chemokine receptor CCR5 is well known for its function in immune cells; however, it is also expressed in the brain, where its specific role remains to be elucidated. Because genetic factors may influence the risk of developing cerebral ischaemia or affect its clinical outcome, we have analysed the role of CCR5 in experimental stroke. EXPERIMENTAL APPROACH Permanent cerebral ischaemia was performed by occlusion of the middle cerebral artery in wild-type and CCR5-deficient mice. Locomotor behaviour, infarct size and histochemical alterations were analysed at different time points after occlusion. KEY RESULTS The cerebral vasculature was comparable in wild-type and CCR5-deficient mice. However, the size of the infarct and the motor deficits after occlusion were markedly increased in CCR5-deficient mice as compared with wild type. No differences between wild-type and CCR5-deficient mice were elicited by occlusion with respect to the morphology and abundance of astrocytes and microglia. Seven days after occlusion the majority of CCR5-deficient mice displayed neutrophil invasion in the infarct region, which was not observed in wild type. As compared with wild type, the infarct regions of CCR5-deficient mice were characterized by increased neuronal death. CONCLUSIONS AND IMPLICATIONS Lack of CCR5 increased the severity of brain injury following occlusion of the middle cerebral artery. This is of particular interest with respect to the relatively frequent occurrence of CCR5 deficiency in the human population (1-2% of the Caucasian population) and the advent of CCR5 inhibitors as novel drugs.
Collapse
Affiliation(s)
- S Sorce
- Department of Pathology and Immunology, University of Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
40
|
Paiva CN, Figueiredo RT, Kroll-Palhares K, Silva AA, Silvério JC, Gibaldi D, Pyrrho ADS, Benjamim CF, Lannes-Vieira J, Bozza MT. CCL2/MCP-1 controls parasite burden, cell infiltration, and mononuclear activation during acuteTrypanosoma cruziinfection. J Leukoc Biol 2009; 86:1239-46. [DOI: 10.1189/jlb.0309187] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
41
|
Lannes-Vieira J, Silverio JC, Pereira IR, Vinagre NF, Carvalho CME, Paiva CN, Silva AAD. Chronic Trypanosoma cruzi-elicited cardiomyopathy: from the discovery to the proposal of rational therapeutic interventions targeting cell adhesion molecules and chemokine receptors - how to make a dream come true. Mem Inst Oswaldo Cruz 2009; 104 Suppl 1:226-35. [DOI: 10.1590/s0074-02762009000900029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 06/01/2009] [Indexed: 01/13/2023] Open
|
42
|
Scharfstein J, Gomes JDAS, Correa-Oliveira R. Back to the future in Chagas disease: from animal models to patient cohort studies, progress in immunopathogenesis research. Mem Inst Oswaldo Cruz 2009; 104 Suppl 1:187-98. [DOI: 10.1590/s0074-02762009000900025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 06/17/2009] [Indexed: 11/22/2022] Open
|
43
|
White SN, Mousel MR, Reynolds JO, Lewis GS, Herrmann-Hoesing LM. Common promoter deletion is associated with 3.9-fold differential transcription of ovine CCR5 and reduced proviral level of ovine progressive pneumonia virus. Anim Genet 2009; 40:583-9. [PMID: 19397512 DOI: 10.1111/j.1365-2052.2009.01882.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemokine (C-C motif) Receptor 5 (CCR5) is a chemokine receptor that regulates immune cell recruitment in inflammation and serves as a coreceptor for human immunodeficiency virus (HIV). A human CCR5 coding deletion (termed delta-32) results in strong resistance to HIV infection, and sequence variants in CCR5 regulatory regions have been implicated in delayed progression to acquired immune deficiency syndrome. Both ovine progressive pneumonia virus (OPPV), also known as maedi-visna, and HIV are macrophage-tropic lentiviruses, have similar genomic structures, and cause lifelong persistent host infection, suggesting CCR5 may have a role in regulating OPPV provirus levels. Therefore, the ovine CCR5 genomic sequence was determined, and sequence variants were obtained from the open reading frame and surrounding regulatory sites. One CCR5 variant contained a 4-base deletion within a binding site for octamer transcription factors in the promoter region. A test for differential transcription from each allele in heterozygous animals showed a 3.9-fold transcription difference (P < 0.0001). OPPV proviral levels were also measured in 351 naturally exposed Rambouillet, Polypay and Columbia sheep. Deletion homozygotes showed reduced OPPV proviral levels among these animals (P < 0.01). The association of this CCR5 promoter deletion with OPPV levels will need to be validated in additional populations before the deletion can be recommended for widespread use in marker-assisted selection. However, because of the large impact on transcription and because CCR5 has roles in inflammation, recruitment of effector cells, and cell-mediated immunity, this deletion may play a role in the control of infections of many diverse pathogens of sheep.
Collapse
Affiliation(s)
- S N White
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99164, USA.
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Melo RCN. Acute heart inflammation: ultrastructural and functional aspects of macrophages elicited by Trypanosoma cruzi infection. J Cell Mol Med 2009; 13:279-94. [PMID: 18624767 PMCID: PMC3823355 DOI: 10.1111/j.1582-4934.2008.00388.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 05/24/2008] [Indexed: 01/08/2023] Open
Abstract
The heart is the main target organ of the parasite Trypanosoma cruzi, the causal agent of Chagas' disease, a significant public health issue and still a major cause of morbidity and mortality in Latin America. During the acute disease, tissue damage in the heart is related to the intense myocardium parasitism. To control parasite multiplication, cells of the monocytic lineage are highly mobilized. In response to inflammatory and immune stimulation, an intense migration and extravasation of monocytes occurs from the bloodstream into heart. Monocyte differentiation leads to the formation of tissue phagocytosing macrophages, which are strongly activated and direct host defence. Newly elicited monocyte-derived macrophages both undergo profound physiological changes and display morphological heterogeneity that greatly differs from originally non-inflammatory macrophages, and underlie their functional activities as potent inflammatory cells. Thus, activated macrophages play a critical role in the outcome of parasite infection. This review covers functional and ultrastructural aspects of heart inflammatory macrophages triggered by the acute Chagas' disease, including recent discoveries on morphologically distinct, inflammation-related organelles, termed lipid bodies, which are actively formed in vivo within macrophages in response to T. cruzi infection. These findings are defining a broader role for lipid bodies as key markers of macrophage activation during innate immune responses to infectious diseases and attractive targets for novel anti-inflammatory therapies. Modulation of macrophage activation may be central in providing therapeutic benefits for Chagas' disease control.
Collapse
Affiliation(s)
- Rossana C N Melo
- Department of Biology, Federal University of Juiz de Fora, MG, Brazil.
| |
Collapse
|
46
|
Kroll-Palhares K, Silvério JC, Silva AAD, Michailowsky V, Marino AP, Silva NM, Carvalho CME, Pinto LMDO, Gazzinelli RT, Lannes-Vieira J. TNF/TNFR1 signaling up-regulates CCR5 expression by CD8+ T lymphocytes and promotes heart tissue damage during Trypanosoma cruzi infection: beneficial effects of TNF-alpha blockade. Mem Inst Oswaldo Cruz 2008; 103:375-85. [PMID: 18660993 DOI: 10.1590/s0074-02762008000400011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 06/09/2008] [Indexed: 12/28/2022] Open
Abstract
In Chagas disease, understanding how the immune response controls parasite growth but also leads to heart damage may provide insight into the design of new therapeutic strategies. Tumor necrosis factor-alpha (TNF-alpha) is important for resistance to acute Trypanosoma cruzi infection; however, in patients suffering from chronic T. cruzi infection, plasma TNF-alpha levels correlate with cardiomyopathy. Recent data suggest that CD8-enriched chagasic myocarditis formation involves CCR1/CCR5-mediated cell migration. Herein, the contribution of TNF-alpha, especially signaling through the receptor TNFR1/p55, to the pathophysiology of T. cruzi infection was evaluated with a focus on the development of myocarditis and heart dysfunction. Colombian strain-infected C57BL/6 mice had increased frequencies of TNFR1/p55+ and TNF-alpha+ splenocytes. Although TNFR1-/- mice exhibited reduced myocarditis in the absence of parasite burden, they succumbed to acute infection. Similar to C57BL/6 mice, Benznidazole-treated TNFR1-/- mice survived acute infection. In TNFR1-/- mice, reduced CD8-enriched myocarditis was associated with defective activation of CD44+CD62Llow/- and CCR5+ CD8+ lymphocytes. Also, anti-TNF-alpha treatment reduced the frequency of CD8+CCR5+ circulating cells and myocarditis, though parasite load was unaltered in infected C3H/HeJ mice. TNFR1-/- and anti-TNF-alpha-treated infected mice showed regular expression of connexin-43 and reduced fibronectin deposition, respectively. Furthermore, anti-TNF-alpha treatment resulted in lower levels of CK-MB, a cardiomyocyte lesion marker. Our results suggest that TNF/TNFR1 signaling promotes CD8-enriched myocarditis formation and heart tissue damage, implicating the TNF/TNFR1 signaling pathway as a potential therapeutic target for control of T. cruzi-elicited cardiomyopathy.
Collapse
Affiliation(s)
- Karina Kroll-Palhares
- Laboratório de Auto-Imunidade e Imuno-Regulação, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Medeiros GA, Silvério JC, Marino APMP, Roffê E, Vieira V, Kroll-Palhares K, Carvalho CE, Silva AA, Teixeira MM, Lannes-Vieira J. Treatment of chronically Trypanosoma cruzi-infected mice with a CCR1/CCR5 antagonist (Met-RANTES) results in amelioration of cardiac tissue damage. Microbes Infect 2008; 11:264-73. [PMID: 19100857 DOI: 10.1016/j.micinf.2008.11.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 11/14/2008] [Accepted: 11/27/2008] [Indexed: 11/28/2022]
Abstract
The comprehension of the molecular mechanisms leading to Trypanosoma cruzi-elicited heart dysfunction might contribute to design novel therapeutic strategies aiming to ameliorate chronic Chagas disease cardiomyopathy. In C3H/He mice infected with the low virulence T. cruzi Colombian strain, the persistent cardiac inflammation composed mainly of CCR5(+) T lymphocytes parallels the expression of CC-chemokines in a pro-inflammatory IFN-gamma and TNF-alpha milieu. The chronic myocarditis is accompanied by increased frequency of peripheral CCR5(+)LFA-1(+) T lymphocytes. The treatment of chronically T. cruzi-infected mice with Met-RANTES, a selective CCR1/CCR5 antagonist, led to a 20-30% decrease in CD4(+) cell numbers as well as IL-10, IL-13 and TNF-alpha expression. Further, Met-RANTES administration impaired the re-compartmentalization of the activated CD4(+)CCR5(+) lymphocytes. Importantly, Met-RANTES treatment resulted in significant reduction in parasite load and fibronectin deposition in the heart tissue. Moreover, Met-RANTES treatment significantly protected T. cruzi-infected mice against connexin 43 loss in heart tissue and CK-MB level enhancement, markers of heart dysfunction. Thus, our results corroborate that therapeutic strategies based on the modulation of CCR1/CCR5-mediated cell migration and/or effector function may contribute to cardiac tissue damage limitation during chronic Chagas disease.
Collapse
Affiliation(s)
- Gabriela A Medeiros
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz -Fiocruz, Av. Brasil 4365, Rio de Janeiro 21045-900, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Faure E. Could FIV zoonosis responsible of the breakdown of the pathocenosis which has reduced the European CCR5-Delta32 allele frequencies? Virol J 2008; 5:119. [PMID: 18925940 PMCID: PMC2575341 DOI: 10.1186/1743-422x-5-119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 10/16/2008] [Indexed: 02/04/2023] Open
Abstract
Background In Europe, the north-south downhill cline frequency of the chemokine receptor CCR5 allele with a 32-bp deletion (CCR5-Δ32) raises interesting questions for evolutionary biologists. We had suggested first that, in the past, the European colonizers, principally Romans, might have been instrumental of a progressively decrease of the frequencies southwards. Indeed, statistical analyses suggested strong negative correlations between the allele frequency and historical parameters including the colonization dates by Mediterranean civilisations. The gene flows from colonizers to native populations were extremely low but colonizers are responsible of the spread of several diseases suggesting that the dissemination of parasites in naive populations could have induced a breakdown rupture of the fragile pathocenosis changing the balance among diseases. The new equilibrium state has been reached through a negative selection of the null allele. Results Most of the human diseases are zoonoses and cat might have been instrumental in the decrease of the allele frequency, because its diffusion through Europe was a gradual process, due principally to Romans; and that several cat zoonoses could be transmitted to man. The possible implication of a feline lentivirus (FIV) which does not use CCR5 as co-receptor is discussed. This virus can infect primate cells in vitro and induces clinical signs in macaque. Moreover, most of the historical regions with null or low frequency of CCR5-Δ32 allele coincide with historical range of the wild felid species which harbor species-specific FIVs. Conclusion We proposed the hypothesis that the actual European CCR5 allelic frequencies are the result of a negative selection due to a disease spreading. A cat zoonosis, could be the most plausible hypothesis. Future studies could provide if CCR5 can play an antimicrobial role in FIV pathogenesis. Moreover, studies of ancient DNA could provide more evidences regarding the implications of zoonoses in the actual CCR5-Δ32 distribution.
Collapse
Affiliation(s)
- Eric Faure
- LATP, CNRS-UMR 6632, IFR48 Infectiopole, Evolution biologique et modélisation, Université de Provence, Marseille, France.
| |
Collapse
|
49
|
de la Tribonnière X, Yazdanpanah Y, Reynes J. [CCR5 antagonists: a new class of antiretrovirals]. Med Mal Infect 2008; 38 Suppl 1:S1-6. [PMID: 18455055 DOI: 10.1016/s0399-077x(08)70537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Inhibition of CCR5 co-receptor which is also a chemokine receptor, is a new way for inhibition of HIV-1 replication. Small antagonist molecules exert non competitive inhibition of the HIV co-receptor CCR5, which is essential for HIV entry. The CCR5 antagonists aplaviroc (GlaxoSmithKine), vicriviroc (Schering-Plough), and maraviroc (Pfizer) have reached phases III of clinical development. The development of aplaviroc was stopped because of its hepatotoxicity in some of the HIV-infected patients. In ACTG 5211 and MOTIVATE trials, treatment-experienced subjects who added respectively vicriviroc and maraviroc demonstrated substantially greater reductions in plasma HIV-1 RNA levels than those who received the placebo ; maraviroc currently having obtained European authorization. The place of this new class in the strategies of initial, switch or rescue treatment remains to be clarified. The limitations of the use of these small molecules depend on their mechanism of action : obligation for monitoring the evolution of coreceptor usage, risk of failure by emergence of pre-existing strains with CXCR4 (X4) tropism or by resistant strains with CCR5 tropism, potential risks related to blocking of the physiological functions of this chemokine receptor.
Collapse
Affiliation(s)
- X de la Tribonnière
- Service des Maladies Infectieuses et du Voyageur, Centre hospitalier Gustave Dron, Tourcoing, France.
| | | | | |
Collapse
|
50
|
Klein R. A Moving Target: The Multiple Roles of CCR5 in Infectious Diseases. J Infect Dis 2008; 197:183-6. [DOI: 10.1086/524692] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|