1
|
Iketani A, Takano M, Kasakura K, Iwatsuki M, Tsuji A, Matsuda K, Minegishi R, Hosono A, Nakanishi Y, Takahashi K. CCAAT/enhancer-binding protein α-dependent regulation of granule formation in mast cells by intestinal bacteria. Eur J Immunol 2024; 54:e2451094. [PMID: 38980255 DOI: 10.1002/eji.202451094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024]
Abstract
The antiallergic effects of gut microbiota have been attracting attention in recent years, but the underlying cellular and molecular mechanisms have not yet been fully understood. In this study, we aimed to investigate these mechanisms specifically focusing on mast cells. Mast cells retain intracellular granules containing various inflammatory mediators such as histamine, which are released outside the cells upon IgE and allergen stimulation. We previously reported that increased expression of the transcription factor, CCAAT/enhancer-binding protein α (C/EBPα), suppresses granule formation in mast cells and that Lacticaseibacillus casei JCM1134T (LC) upregulates C/EBPα levels. Here, granule formation in mouse bone marrow-derived mast cells was suppressed in a MyD88-dependent manner after LC treatment due to C/EBPα-dependent downregulation of the genes encoding serglycin (SRGN) and mast cell protease 4 (Mcpt4). Furthermore, C/EBPα expression was regulated by DNA methylation in the 5' region far upstream of the transcription start site. LC suppressed DNA methylation of specific CpG motifs in the 5' region of the C/EBPα gene. These results conclude that specific gut microbial components, such as those from LC, suppress granule formation in mast cells by inhibiting SRGN and Mcpt4 expression via reduced C/EBPα gene methylation.
Collapse
Affiliation(s)
- Ayaka Iketani
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, Japan
| | - Mai Takano
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, Japan
| | - Kazumi Kasakura
- Department of Bioresource Utilization Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, Japan
| | - Miono Iwatsuki
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Ayu Tsuji
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Kou Matsuda
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Remina Minegishi
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Akira Hosono
- Department of Bioresource Utilization Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, Japan
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Yusuke Nakanishi
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, Japan
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Kyoko Takahashi
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, Japan
- Department of Bioresource Utilization Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, Japan
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
2
|
Asgari B, Burke JR, Quigley BL, Bradford G, Hatje E, Kuballa A, Katouli M. Identification of Virulence Genes Associated with Pathogenicity of Translocating Escherichia coli with Special Reference to the Type 6 Secretion System. Microorganisms 2024; 12:1851. [PMID: 39338525 PMCID: PMC11433802 DOI: 10.3390/microorganisms12091851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Recent genomic characterisation of translocating Escherichia coli HMLN-1 isolated from mesenteric lymph nodes (MLNs) and blood of a patient with a fatal case of pancreatitis revealed the presence of a type 6 secretion system (T6SS) that was not present in non-translocating E. coli strains. This strain was also genomically similar to adherent-invasive E. coli (AIEC) LF82 pathotype. We aimed to identify the role of T6SS-1 in the pathogenesis of this strain and other pathogenic E. coli. The HMLN-1 strain was initially tested for the presence of six virulence genes (VGs) associated with AIEC strains and an iron sequestering system. Additionally, HMLN-1's interaction with a co-culture of Caco-2:HT29-MTX cells and its intra-macrophagic survival was evaluated. We subsequently screened a collection of 319 pathogenic E. coli strains isolated from patients with urinary tract infection (UTI), diarrhoea, inflammatory bowel disease (IBD) and septicaemia for the presence of T6SS-1 and its expression related to adhesion, invasion and translocation via the above co-culture of the intestinal cell lines. The results showed that HMLN-1 harboured four of the AIEC-associated VGs (dsbA, htrA, ompC and afaC). Screening of the pathogenic E. coli collection detected the presence of the T6SS-1 genes in septicaemic and UTI E. coli strains at a significantly higher level than diarrhoea and IBD strains (p < 0.0001). The high expression of T6SS-1 in E. coli HMLN-1 upon adhesion and invasion, as well as its high prevalence among extra-intestinal E. coli strains, suggests a role for T6SS-1 in the pathogenesis of translocating E. coli.
Collapse
Affiliation(s)
- Behnoush Asgari
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (B.A.); (J.R.B.); (B.L.Q.); (G.B.); (A.K.)
| | - Jarred R. Burke
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (B.A.); (J.R.B.); (B.L.Q.); (G.B.); (A.K.)
- Servatus Biopharmaceuticals, Coolum Beach, QLD 4573, Australia
| | - Bonnie L. Quigley
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (B.A.); (J.R.B.); (B.L.Q.); (G.B.); (A.K.)
- Thompson Institute, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| | - Georgia Bradford
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (B.A.); (J.R.B.); (B.L.Q.); (G.B.); (A.K.)
| | - Eva Hatje
- Centre for Immunology and Infection Control, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Anna Kuballa
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (B.A.); (J.R.B.); (B.L.Q.); (G.B.); (A.K.)
- School of Health, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| | - Mohammad Katouli
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (B.A.); (J.R.B.); (B.L.Q.); (G.B.); (A.K.)
| |
Collapse
|
3
|
Microtubules as a potential platform for energy transfer in biological systems: a target for implementing individualized, dynamic variability patterns to improve organ function. Mol Cell Biochem 2023; 478:375-392. [PMID: 35829870 DOI: 10.1007/s11010-022-04513-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023]
Abstract
Variability characterizes the complexity of biological systems and is essential for their function. Microtubules (MTs) play a role in structural integrity, cell motility, material transport, and force generation during mitosis, and dynamic instability exemplifies the variability in the proper function of MTs. MTs are a platform for energy transfer in cells. The dynamic instability of MTs manifests itself by the coexistence of growth and shortening, or polymerization and depolymerization. It results from a balance between attractive and repulsive forces between tubulin dimers. The paper reviews the current data on MTs and their potential roles as energy-transfer cellular structures and presents how variability can improve the function of biological systems in an individualized manner. The paper presents the option for targeting MTs to trigger dynamic improvement in cell plasticity, regulate energy transfer, and possibly control quantum effects in biological systems. The described system quantifies MT-dependent variability patterns combined with additional personalized signatures to improve organ function in a subject-tailored manner. The platform can regulate the use of MT-targeting drugs to improve the response to chronic therapies. Ongoing trials test the effects of this platform on various disorders.
Collapse
|
4
|
Fukatsu S, Horinouchi H, Nagata S, Kamei R, Tanaka D, Hong W, Kazami Y, Fujimori M, Itoh K, Momose Y, Kasakura K, Hosono A, Kaminogawa S, Hanazawa S, Nakanishi Y, Takahashi K. Post-translational suppression of the high affinity IgE receptor expression on mast cells by an intestinal bacterium. Immunobiology 2021; 226:152056. [PMID: 33535092 DOI: 10.1016/j.imbio.2021.152056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 12/27/2022]
Abstract
Mast cells, which express the high-affinity IgE receptor (FcεRI) on their surface, play a crucial role in inducing allergic inflammation. Since mast cells are activated by crosslinking of FcεRI with IgE and allergens, the cell surface expression level of FcεRI is an important factor in determining the sensitivity to allergens. Recently, the involvement of gut microbiota in the prevalence and regulation of allergy has attracted attention but the precise underlying mechanisms are not fully understood. In this study, the effect of intestinal bacteria on cell surface expression of FcεRI was examined. Bacteroides acidifaciens type A 43 specifically suppressed cell surface expression of FcεRI on mouse bone marrow-derived mast cells (BMMCs) without reduction in FcεRI α and β-chain mRNA and total protein expression. The suppressive effect required sustained exposure to this bacterium, with a corresponding reduction in Erk activation. Inhibition of Erk decreased cell surface distribution of FcεRI in BMMCs, at least in part, through facilitated endocytosis of FcεRI. These results indicate that B. acidifaciens type A 43 suppresses cell surface expression of FcεRI on mast cells in a post-translational manner via inhibition of Erk. The suppression of FcεRI expression on mast cells by specific bacteria might be the underlying mechanism involved in the regulation of allergy by gut microbiota.
Collapse
Affiliation(s)
- Sakino Fukatsu
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Japan
| | - Hikari Horinouchi
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Japan
| | - Shiho Nagata
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Japan
| | - Risa Kamei
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Japan
| | - Daichi Tanaka
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Japan
| | - Wonki Hong
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Japan
| | - Yui Kazami
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Japan
| | - Minami Fujimori
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Japan
| | - Kikuji Itoh
- Department of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Yoshika Momose
- Department of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Kazumi Kasakura
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Japan
| | - Akira Hosono
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Japan
| | - Shuichi Kaminogawa
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Japan
| | - Shigemasa Hanazawa
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Japan
| | - Yusuke Nakanishi
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Japan
| | - Kyoko Takahashi
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Japan.
| |
Collapse
|
5
|
Muehler A, Slizgi JR, Kohlhof H, Groeppel M, Peelen E, Vitt D. Clinical relevance of intestinal barrier dysfunction in common gastrointestinal diseases. World J Gastrointest Pathophysiol 2020; 11:114-130. [PMID: 33362939 PMCID: PMC7739114 DOI: 10.4291/wjgp.v11.i6.114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
The intestinal barrier is a complex and well-controlled physiological construct designed to separate luminal contents from the bowel wall. In this review, we focus on the intestinal barrier’s relationship with the host’s immune system interaction and the external environment, specifically the microbiome. The bowel allows the host to obtain nutrients vital to survival while protecting itself from harmful pathogens, luminal antigens, or other pro-inflammatory factors. Control over barrier function and the luminal milieu is maintained at the biochemical, cellular, and immunological level. However, disruption to this highly regulated environment can cause disease. Recent advances to the field have progressed the mechanistic understanding of compromised intestinal barrier function in the context of gastrointestinal pathology. There are numerous examples where bowel barrier dysfunction and the resulting interaction between the microbiome and the immune system has disease-triggering consequences. The purpose of this review is to summarize the clinical relevance of intestinal barrier dysfunction in common gastrointestinal and related diseases. This may help highlight the importance of restoring barrier function as a therapeutic mechanism of action in gastrointestinal pathology.
Collapse
|
6
|
Mancini NL, Rajeev S, Jayme TS, Wang A, Keita ÅV, Workentine ML, Hamed S, Söderholm JD, Lopes F, Shutt TE, Shearer J, McKay DM. Crohn's Disease Pathobiont Adherent-Invasive E coli Disrupts Epithelial Mitochondrial Networks With Implications for Gut Permeability. Cell Mol Gastroenterol Hepatol 2020; 11:551-571. [PMID: 32992049 PMCID: PMC7797367 DOI: 10.1016/j.jcmgh.2020.09.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Adherent-invasive Escherichia coli are implicated in inflammatory bowel disease, and mitochondrial dysfunction has been observed in biopsy specimens from patients with inflammatory bowel disease. As a novel aspect of adherent-invasive E coli-epithelial interaction, we hypothesized that E coli (strain LF82) would elicit substantial disruption of epithelial mitochondrial form and function. METHODS Monolayers of human colon-derived epithelial cell lines were exposed to E coli-LF82 or commensal E coli and RNA sequence analysis, mitochondrial function (adenosine triphosphate synthesis) and dynamics (mitochondrial network imaging, immunoblotting for fission and fusion proteins), and epithelial permeability (transepithelial resistance, flux of fluorescein isothiocyanate-dextran and bacteria) were assessed. RESULTS E coli-LF82 significantly affected epithelial expression of ∼8600 genes, many relating to mitochondrial function. E coli-LF82-infected epithelia showed swollen mitochondria, reduced mitochondrial membrane potential and adenosine triphosphate, and fragmentation of the mitochondrial network: events not observed with dead E coli-LF82, medium from bacterial cultures, or control E coli. Treatment with Mitochondrial Division Inhibitor 1 (Mdivi1, inhibits dynamin-related peptide 1, guanosine triphosphatase principally responsible for mitochondrial fission) or P110 (prevents dynamin-related peptide 1 binding to mitochondrial fission 1 protein) partially reduced E coli-LF82-induced mitochondrial fragmentation in the short term. E coli-LF82-infected epithelia showed loss of the long isoform of optic atrophy factor 1, which mediates mitochondrial fusion. Mitochondrial Division Inhibitor 1 reduced the magnitude of E coli-LF82-induced increased transepithelial flux of fluorescein isothiocyanate dextran. By 8 hours after infection, increased cytosolic cytochrome C and DNA fragmentation were apparent without evidence of caspase-3 or apoptosis inducing factor activation. CONCLUSIONS Epithelial mitochondrial fragmentation caused by E coli-LF82 could be targeted to maintain cellular homeostasis and mitigate infection-induced loss of epithelial barrier function. Data have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO series accession numbers GSE154121 and GSE154122 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154121).
Collapse
Affiliation(s)
- Nicole L Mancini
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Sruthi Rajeev
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Timothy S Jayme
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Arthur Wang
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Åsa V Keita
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Samira Hamed
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Johan D Söderholm
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Department of Surgery, County Council of Östergötland, Linköping, Sweden
| | - Fernando Lopes
- Institute of Parasitology, Faculty of Agriculture and Environmental Sciences, Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Timothy E Shutt
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, University of Calgary, Alberta, Canada
| | - Jane Shearer
- Department of Biochemistry and Molecular Biology, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Derek M McKay
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada.
| |
Collapse
|
7
|
Vernay T, Cannie I, Gaboriau F, Gall SDL, Tamanai-Shacoori Z, Burel A, Jolivet-Gougeon A, Loréal O, Bousarghin L. Bacteroides fragilis prevents Salmonella Heidelberg translocation in co-culture model mimicking intestinal epithelium. Benef Microbes 2020; 11:391-401. [PMID: 32720833 DOI: 10.3920/bm2020.0004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Salmonella Heidelberg is one of the most common serovar causing foodborne illnesses. To limit the development of digestive bacterial infection, food supplements containing probiotic bacteria can be proposed. Commensal non-toxigenic Bacteroides fragilis has recently been suggested as a next-generation probiotic candidate. By using an original triple co-culture model including Caco-2 cells (representing human enterocytes), HT29-MTX (representing mucus-secreting goblet cells), and M cells differentiated from Caco-2 by addition of Raji B lymphocytes, bacterial translocation was evaluated. The data showed that S. Heidelberg could translocate in the triple co-culture model with high efficiency, whereas for B. fragilis a weak translocation was obtained. When cells were exposed to both bacteria, S. Heidelberg translocation was inhibited. The cell-free supernatant of B. fragilis also inhibited S. Heidelberg translocation without impacting epithelial barrier integrity. This supernatant did not affect the growth of S. Heidelberg. The non-toxigenic B. fragilis confers health benefits to the host by reducting bacterial translocation. These results suggested that the multicellular model provides an efficient in vitro model to evaluate the translocation of pathogens and to screen for probiotics that have a potential inhibitory effect on this translocation.
Collapse
Affiliation(s)
- T Vernay
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - I Cannie
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - F Gaboriau
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - S David-Le Gall
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - Z Tamanai-Shacoori
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - A Burel
- Plateforme microscopie électronique MRic/ISFR Biosit/campus Santé, Rennes 1, 2 Avenue du Professeur Léon Bernard, 35000 Rennes, France
| | - A Jolivet-Gougeon
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - O Loréal
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - L Bousarghin
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| |
Collapse
|
8
|
Forkosh E, Kenig A, Ilan Y. Introducing variability in targeting the microtubules: Review of current mechanisms and future directions in colchicine therapy. Pharmacol Res Perspect 2020; 8:e00616. [PMID: 32608157 PMCID: PMC7327382 DOI: 10.1002/prp2.616] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Microtubules (MTs) are highly dynamic polymers that constitute the cellular cytoskeleton and play a role in multiple cellular functions. Variability characterizes biological systems and is considered a part of the normal function of cells and organs. Variability contributes to cell plasticity and is a mechanism for overcoming errors in cellular level assembly and function, and potentially the whole organ level. Dynamic instability is a feature of biological variability that characterizes the function of MTs. The dynamic behavior of MTs constitutes the basis for multiple biological processes that contribute to cellular plasticity and the timing of cell signaling. Colchicine is a MT-modifying drug that exerts anti-inflammatory and anti-cancer effects. This review discusses some of the functions of colchicine and presents a platform for introducing variability while targeting MTs in intestinal cells, the microbiome, the gut, and the systemic immune system. This platform can be used for implementing novel therapies, improving response to chronic MT-based therapies, overcoming drug resistance, exerting gut-based systemic immune responses, and generating patient-tailored dynamic therapeutic regimens.
Collapse
Affiliation(s)
- Esther Forkosh
- Department of MedicineHebrew University‐Hadassah Medical CentreJerusalemIsrael
| | - Ariel Kenig
- Department of MedicineHebrew University‐Hadassah Medical CentreJerusalemIsrael
| | - Yaron Ilan
- Department of MedicineHebrew University‐Hadassah Medical CentreJerusalemIsrael
| |
Collapse
|
9
|
Wang B, Li J, Wang S, Hao Y, Zhao X, Chen J. Lactobacillus plantarum ameliorates tumour necrosis factor-induced bacterial translocation in Caco-2 cells by regulation of TLR4 expression. J Med Microbiol 2019; 67:982-991. [PMID: 29877788 DOI: 10.1099/jmm.0.000762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose. Translocation of bacteria across the intestinal barrier is important in the pathogenesis of systemic sepsis. In inflammatory conditions, commensal bacteria exploit transcytotic pathways to cross the intestinal epithelium in a TLR4-dependent manner. The aim of this study was to test the hypothesis that Lactobacillus plantarum ameliorates tumour necrosis factor-induced bacterial translocation by regulation of Toll-like receptor-4 expression.Methodology. L. plantarum strains were investigated to determine their capacity to inhibit the initial adhesion of Escherichia coli B5 to Caco-2 cells. The inhibitory effects of L. plantarum on TNF-α-induced E. coli B5 translocation across Caco-2 cells were studied. Barrier function and integrity were simultaneously assessed by transepithelial electrical resistance, HRP permeability, LDH release and distribution of tight junctional proteins. Expression of TLR4 was assessed by RT-PCR.Results/Key findings. Pretreatment of monolayers with L. plantarum L2 led to a significant decrease in E. coli B5 adhesion and cell internalization (P<0.01). Exposure to TNF-α for six hours caused a significant increase in E. coli B5 translocation across Caco-2 cells, which was uncoupled from increases in paracellular permeability and disruption of tight junction proteins. Manipulations that induced bacterial translocation were associated with a marked increase in TLR4 mRNA expression and IL-8 secretion. L. plantarum L2 significantly abrogated TNF-α-induced bacterial translocation of E. coli B5, and also downregulated expression of TLR4 and IL-8 in intestinal epithelial cells.Conclusion. Live L. plantarum L2 can inhibit TNF-α-induced transcellular bacterial translocation via regulation of TLR4 expression.
Collapse
Affiliation(s)
- Bin Wang
- Jiangsu Academy of Science and Technology for Inspection and Quarantine, Nanjing, Jiangsu 210001, PR China.,Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 211106, PR China
| | - Jingjing Li
- Department of Ultrasound, Nanjing Hospital of Armed Police Force Corps, Nanjing, Jiangsu 210028, PR China
| | - Shuiming Wang
- Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 211106, PR China
| | - Yu Hao
- Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 211106, PR China
| | - Xiaoyan Zhao
- Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 211106, PR China
| | - Jun Chen
- Research Institute of General Surgery, Jinling Hospital, Nanjing, Jiangsu 210002, PR China
| |
Collapse
|
10
|
Xu C, Qiao L, Ma L, Yan S, Guo Y, Dou X, Zhang B, Roman A. Biosynthesis of Polysaccharides-Capped Selenium Nanoparticles Using Lactococcus lactis NZ9000 and Their Antioxidant and Anti-inflammatory Activities. Front Microbiol 2019; 10:1632. [PMID: 31402902 PMCID: PMC6676592 DOI: 10.3389/fmicb.2019.01632] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/02/2019] [Indexed: 11/18/2022] Open
Abstract
Lactococcus lactis (L. lactis) NZ9000, which has been genetically modified, is the most commonly used host strain for nisin regulated gene expression. Selenium (Se) is an essential trace element in the diet of humans and animals important for the maintenance of health and growth. Biosynthesized Se nanoparticles (SeNPs) that use microorganisms as a vehicle are uniquely advantages in terms of low costs, low toxicity and high bioavailability. This study was aimed at preparing novel functionalized SeNPs by L. lactis NZ9000 through eco-friendly and economic biotechnology methods. Moreover, its physicochemical characteristics, antioxidant and anti-inflammatory activities were investigated. L. lactis NZ9000 synthesized elemental red SeNPs when co-cultivated with sodium selenite under anaerobic conditions. Biosynthesized SeNPs by L. lactis NZ9000 were mainly capped with polysaccharides and significantly alleviated the increase of malondialdehyde (MDA) concentration, the decrease of glutathione peroxidase (GPx) and total superoxide dismutase (T-SOD) activity in porcine intestinal epithelial cells (IPEC-J2) challenged by hydrogen peroxide (H2O2). SeNPs also prevented the H2O2-caused reduction of transepithelial electrical resistance (TEER) and the increase of FITC-Dextran fluxes across IPEC-J2. Moreover, SeNPs attenuated the increase of reactive oxygen species (ROS), the reduction of adenosine triphosphate (ATP) and the mitochondrial membrane potential (MMP) and maintained intestinal epithelial permeability in IPEC-J2 cells exposed to H2O2. In addition, SeNPs pretreatment alleviated the cytotoxicity of Enterotoxigenic Escherichia coli (ETEC) K88 on IPEC-J2 cells and maintained the intestinal epithelial barrier integrity by up-regulating the expression of Occludin and Claudin-1 and modulating inflammatory cytokines. Biosynthesized SeNPs by L. lactis NZ9000 are a promising selenium supplement with antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Li Ma
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Shuqi Yan
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yu Guo
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Baohua Zhang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Alexandra Roman
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
11
|
Ilan-Ber T, Ilan Y. The role of microtubules in the immune system and as potential targets for gut-based immunotherapy. Mol Immunol 2019; 111:73-82. [DOI: 10.1016/j.molimm.2019.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022]
|
12
|
Xu C, Qiao L, Ma L, Guo Y, Dou X, Yan S, Zhang B, Roman A. Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate intestinal epithelial barrier dysfunction caused by oxidative stress via Nrf2 signaling-mediated mitochondrial pathway. Int J Nanomedicine 2019; 14:4491-4502. [PMID: 31417254 PMCID: PMC6593357 DOI: 10.2147/ijn.s199193] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Selenium (Se) can exert antioxidative activity and prevent the body from experiencing oxidative injury. Biogenic Se nanoparticles (SeNPs) synthesized by probiotics possess relatively strong chemical stability, high bioavailability, and low toxicity, this makes them potential Se supplements. Previously, we demonstrated that SeNPs synthesized by Lactobacillus casei ATCC 393 can alleviate hydrogen peroxide (H2O2)-induced human and porcine intestinal epithelial cells' oxidative damage. However, the antioxidant mechanism remains unclear. Methods: The possible antioxidant mechanism and protective effect of SeNPs on intestinal epithelial permeability and mitochondrial function were evaluated by establishing an H2O2-induced oxidative damage model of human colon mucosal epithelial cells (NCM460) and conducting Nrf2 inhibitor interference experiments. Mitochondrial membrane potential (MMP), mitochondrial DNA content, adenosine triphosphate (ATP), ROS, and protein expression levels of Nrf2-related genes were determined. Mitochondrial ultrastructure was visualized by transmission electron microscopy. Results: An amount of 4 μg Se/mL of SeNPs synthesized by L. casei ATCC 393 alleviated increase of ROS, reduced ATP and MMP, and maintained intestinal epithelial permeability in NCM460 cells challenged by H2O2. In addition, SeNPs improved the protein levels of Nrf2, HO-1, and NQO-1. Moreover, SeNPs attenuated the damage of mitochondrial ultrastructure caused by oxidative stress. Nrf2 inhibitor (ML385) abolished the regulatory effect of SeNPs on intracellular ROS production. Conclusion: Data suggest that biogenic SeNPs synthesized by L. casei ATCC 393 can protect the intestinal epithelial barrier function against oxidative damage by alleviating ROS-mediated mitochondrial dysfunction via Nrf2 signaling pathway. Biogenic SeNPs are an attractive candidate for potential Se supplement agent in preventing oxidative stress-related intestinal disease by targeting mitochondria.
Collapse
Affiliation(s)
- Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Li Ma
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Yu Guo
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Shuqi Yan
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Baohua Zhang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Alexandra Roman
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
13
|
Saxena A, Lopes F, McKay DM. Reduced intestinal epithelial mitochondrial function enhances in vitro interleukin-8 production in response to commensal Escherichia coli. Inflamm Res 2018; 67:829-837. [PMID: 30030553 DOI: 10.1007/s00011-018-1172-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/06/2018] [Accepted: 07/17/2018] [Indexed: 12/30/2022] Open
Abstract
Uncoupling of oxidative phosphorylation in epithelial mitochondria results in decreased epithelial barrier function as characterized by increased internalization of non-invasive Escherichia coli and their translocation across the epithelium. We hypothesized that the increased burden of intracellular commensal bacteria would activate the enterocyte, with the potential to promote inflammation. Treatment of human colon-derived epithelial cell lines in vitro with dinitrophenol (DNP) and commensal E. coli (strains F18, HB101) provoked increased production of interleukin (IL-8), which was not observed with conditioned medium from the bacteria, lipopolysaccharide or inert beads. The IL-8 response was inhibited by co-treatment with cytochalasin-D (blocks F-actin rearrangement), chloroquine (blocks phagosome acidification) and a MyD88 inhibitor (blocks TLR signaling), consistent with TLR-signaling mediating IL-8 synthesis subsequent to bacterial internalization. Use of the mitochondria-targeted antioxidant, mitoTEMPO, or U0126 to block ERK1/2 MAPK signalling inhibited DNP+E. coli-evoked IL-8 production. Mutations in the NOD2 (the intracellular sensor of bacteria) or ATG16L1 (autophagy protein) genes are susceptibility traits for Crohn's, and epithelia lacking either protein displayed enhanced IL-8 production in comparison to wild-type cells when exposed to DNP + E coli. Thus, metabolic stress perturbs the normal epithelial-bacterial interaction resulting in increased IL-8 production due to uptake of bacteria into the enterocyte: this potentially pro-inflammatory event is enhanced in cells lacking NOD2 or ATG16L1 that favor increased survival of bacteria within the enterocyte. We speculate that by increasing epithelial permeability and IL-8 production, reduced mitochondria function in the enteric epithelium would contribute to the initiation, pathophysiology, and reactivation of inflammatory disease in the gut.
Collapse
Affiliation(s)
- Alpana Saxena
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 1877 HSC, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Fernando Lopes
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 1877 HSC, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Derek M McKay
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 1877 HSC, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
14
|
Abstract
Approximately one-sixth of the worlds' population is infected with helminths and this class of parasite takes a major toll on domestic livestock. The majority of species of parasitic helminth that infect mammals live in the gut (the only niche for tapeworms) where they contact the hosts' epithelial cells. Here, the helminth-intestinal epithelial interface is reviewed in terms of the impact on, and regulation of epithelial barrier function, both intrinsic (epithelial permeability) and extrinsic (mucin, bacterial peptides, commensal bacteria) elements of the barrier. The data available on direct effects of helminths on epithelial permeability are scant, fragmentary and pales in comparison with knowledge of mobilization of immune reactions and effector cells in response to helminth parasites and how these impact intestinal barrier function. The interaction of helminth-host and helminth-host-bacteria is an important determinant of gut form and function and precisely defining these interactions will radically alter our understanding of normal gut physiology and pathophysiological reactions, revealing new approaches to infection with parasitic helminths, bacterial pathogens and idiopathic auto-inflammatory disease.
Collapse
Affiliation(s)
- Derek M McKay
- a Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology , Snyder Institute of Chronic Disease, Cumming School of Medicine, University of Calgary , Calgary , Alberta , Canada
| | - Adam Shute
- a Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology , Snyder Institute of Chronic Disease, Cumming School of Medicine, University of Calgary , Calgary , Alberta , Canada
| | - Fernando Lopes
- a Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology , Snyder Institute of Chronic Disease, Cumming School of Medicine, University of Calgary , Calgary , Alberta , Canada
| |
Collapse
|
15
|
Saxena A, Lopes F, Poon KKH, McKay DM. Absence of the NOD2 protein renders epithelia more susceptible to barrier dysfunction due to mitochondrial dysfunction. Am J Physiol Gastrointest Liver Physiol 2017; 313:G26-G38. [PMID: 28450277 DOI: 10.1152/ajpgi.00070.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/07/2017] [Accepted: 04/18/2017] [Indexed: 01/31/2023]
Abstract
Irregular mitochondria structure and reduced ATP in some patients with IBD suggest that metabolic stress contributes to disease. Loss-of-function mutation in the nucleotide-binding oligomerization domain (NOD)-2 gene is a major susceptibility trait for IBD. Hence, we assessed if loss of NOD2 further impairs the epithelial barrier function instigated by disruption of mitochondrial ATP synthesis via the hydrogen ionophore dinitrophenol (DNP). NOD2 protein (virtually undetectable in epithelia under basal conditions) was increased in T84 (human colon cell line) cells treated with noninvasive Escherichia coli + DNP (16 h). Increased intracellular bacteria in wild-type (WT) and NOD2 knockdown (KD) cells and colonoids from NOD2-/- mice were mediated by reactive oxygen species (ROS) and the MAPK ERK1/2 pathways as determined by cotreatment with the antioxidant mitoTEMPO and the ERK inhibitor U0126: ROS was upstream of ERK1/2 activation. Despite increased E. coli in DNP-treated NOD2 KD compared with WT cells, there were no differences in the internalization of fluorescent inert beads or dead E. coli particles. This suggests that lack of killing in the NOD2 KD cells was responsible for the increased numbers of viable intracellular bacteria; a conclusion supported by evidence of reduced autophagy in NOD2 KD T84 epithelia. Thus, in a two-hit hypothesis, decreased barrier function due to dysfunctional mitochondrial is amplified by lack of NOD2 in transporting enterocytes: subsequently, greater numbers of bacteria entering the mucosa would be a significant inflammatory threat especially since individuals with NOD2 mutations have compromised macrophage and Paneth cell responses to bacteria.NEW & NOTEWORTHY Increased internalization of bacteria by epithelia with dysfunctional mitochondria (reduced ATP) is potentiated if the cells lack nucleotide-binding oligomerization domain 2 (NOD2), mutations in which are inflammatory bowel disease-susceptibility traits. Uptake of bacteria was dependent on reactive oxygen species and MAP-kinase activity, and the increased viable intracellular bacteria in NOD2-/- cells likely reflect a reduced ability to recognize and kill bacteria. Thus a significant barrier defect occurs with NOD2 deficiency in conjunction with metabolic stress that could contribute to inflammation.
Collapse
Affiliation(s)
- Alpana Saxena
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fernando Lopes
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karen K H Poon
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derek M McKay
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
16
|
Wang B, Chen J, Wang S, Zhao X, Lu G, Tang X. Lactobacillus plantarum L9 but not Lactobacillus acidophilus LA reduces tumour necrosis factor induced bacterial translocation in Caco-2 cells. Benef Microbes 2017; 8:497-505. [PMID: 28441885 DOI: 10.3920/bm2016.0019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Translocation of bacteria across the intestinal barrier is important in the pathogenesis of systemic sepsis and multiple organ dysfunction syndromes. Inflammatory cytokines increase paracellular permeability that allows increased luminal bacteria to translocate across mucosal epithelium and further deteriorate the gut barrier. In order to reduce this risk, the prophylactic use of probiotics has been recently addressed. In this paper, we investigate the protective role toward tumour necrosis factor (TNF)-α induced non-pathogenic Escherichia coli translocation across Caco-2 monolayers of Lactobacillus strains. According to our experimental data, Lactobacillus plantarum L9 and Lactobacillus acidophilus LA have good capacities to adhere to Caco-2 cells. Addition of L. plantarum L9 and L. acidophilus LA to the enterocyte monolayer surface result in significant inhibition of E. coli adhesion and cell internalisation. However, L. plantarum L9 and L. acidophilus LA did not inhibit the growth of the non-pathogenic E. coli B5 after 24 h incubation. Exposure to TNF-α for 6 h caused a dramatic increase in E. coli B5 translocation across Caco-2 cells, which was uncoupled from increases in paracellular permeability. Pretreatment with L. plantarum L9 prevent TNF-α induced transcellular bacterial translocation and IL-8 production in Caco-2 cells. L. plantarum L9 also did not affect the integrity of the monolayers, as indicated by lactate dehydrogenase release, horseradish peroxidase permeability, and transepithelial electrical resistance. L. plantarum L9 showed the potential to protect enterocytes from an acute inflammatory response and therefore could be good potential prophylactic agents in counteracting bacterial translocation.
Collapse
Affiliation(s)
- B Wang
- 1 Jiangsu Academy of Science and Technology for Inspection and Quarantine, Nanjing, Jiangsu, 210001, China P.R.,2 Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu, 211106, China P.R
| | - J Chen
- 3 Research Institute of General Surgery, Jinling Hospital, Nanjing, Jiangsu, 210002, China P.R
| | - S Wang
- 2 Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu, 211106, China P.R
| | - X Zhao
- 2 Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu, 211106, China P.R
| | - G Lu
- 2 Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu, 211106, China P.R
| | - X Tang
- 2 Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu, 211106, China P.R
| |
Collapse
|
17
|
Severtsov AS, Shubkina AV. Predator—prey interaction between individuals: 2. Mechanisms of selection. BIOL BULL+ 2015. [DOI: 10.1134/s1062359015070092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Jiang XG, Jiang MX, Wang F. Abnormal epithelial cell energy metabolism influences pathogenesis of inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2015; 23:4393-4398. [DOI: 10.11569/wcjd.v23.i27.4393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Etiology and pathogenesis of inflammatory bowel disease (IBD) are not clear, but colonic mucosal damage is known to be a critical factor. In recent decades, many studies suggest that interfering with the energy metabolism of epithelial tissue could result in the widening of intestinal epithelial cell gap, increased bacterial translocation across the epithelium, decreased mucus secretion, and intestinal mucosal barrier dysfunction. Bacteria and antigens adhere to the intestinal mucosa, enter into the lamina propria, activate inflammation, and initiate the pathogenesis of IBD. The lack of energy fuel butyrate and mitochondrial dysfunction are the causes of abnormal energy metabolism of the intestinal epithelium. Improving energy metabolism and protection of mitochondrial function can alleviate the seriousness of IBD, reduce recurrence, and provides a new strategy for the treatment of IBD.
Collapse
|
19
|
Claudin-3 and occludin tissue content in the glands of colonic mucosa with and without a fecal stream. J Mol Histol 2015; 46:183-94. [PMID: 25649016 DOI: 10.1007/s10735-015-9610-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/28/2015] [Indexed: 02/07/2023]
Abstract
The synthesis of the proteins of the apical tight junctions (TJs) depends on a continuous supply of short-chain fatty acids (SCFAs) in colonic epithelium. No studies have evaluated the tissue contents of the TJs proteins in colon segments devoid of a fecal stream. To evaluate the contents of claudin-3 and occludin in the glands of colonic mucosa devoid of a fecal stream. Forty-five rats underwent a diversion of the fecal stream via a left side colostomy and distal mucous fistula. Three groups of 15 animals each were sacrificed at 6, 12 or 18 weeks after surgery. The presence and severity of colitis were defined by histology and inflammation grading scales, respectively. The expression of claudin-3 and occludin were evaluated by immunohistochemistry, and their contents were evaluated by computer-assisted image analysis. Mann-Whitney and Kruskal-Wallis tests were used to evaluate the results at a significance level of 5% (p < 0.05). The colonic epithelium without a fecal stream had a higher degree of inflammation. Colonic glands without a fecal stream showed a reduction in claudin-3 content independent of the time and reduction in occludin content after 12 weeks of intestinal exclusion. The content of claudin-3 and occludin were mainly reduced at the apical surfaces of the colon glands, whereas segments retaining the fecal stream were maintained. The content of claudin-3 was not reduced with time, although the levels of occludin were reduced after 6 weeks and did not vary thereafter. Deficiencies in SCFAs decreased the content of claudin-3 and occludin in colonic glands with the areas of worst inflammation, confirming the importance of an adequate supply of SCFAs in maintaining the integrity of TJ proteins.
Collapse
|
20
|
Becker HM, Apladas A, Scharl M, Fried M, Rogler G. Probiotic Escherichia coli Nissle 1917 and commensal E. coli K12 differentially affect the inflammasome in intestinal epithelial cells. Digestion 2014; 89:110-8. [PMID: 24503609 DOI: 10.1159/000357521] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/22/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND The probiotic bacterial strain Escherichia coli Nissle 1917 (EcN) is used for the treatment of ulcerative colitis (UC), diarrhea and constipation. Its beneficial effects in the treatment of UC have been demonstrated in several controlled clinical studies; however, the mechanism of action on the cellular level is still not completely clear. The intracellular pattern recognition receptor NLRP3 is expressed in intestinal epithelial cells (IEC), activates caspase-1 within the inflammasome complex and has been implicated to play a role in the etiology of inflammatory bowel diseases. METHODS Probiotic EcN and commensal E. coli K12 were applied to IEC in vitro. Inflammasome activation, interleukin (IL)-18 release and caspase-1 activation were determined by coimmunoprecipitation, Western blot and ELISA. Apoptosis was investigated by Western blot. RESULTS Incubation of Caco-2 cells with EcN resulted in lower inflammasome activation and subsequent secretion of mature IL-18 as compared to the commensal strain K12. Induction of apoptosis as determined by cleavage of caspase-3 and poly (ADP-ribose) polymerase were lower in EcN-stimulated cells. Autophagy was induced by both bacterial strains, but to a higher extent by K12. CONCLUSION These findings indicate that genetically very similar E. coli strains differ markedly in their ability to activate the inflammasome.
Collapse
Affiliation(s)
- Helen M Becker
- Division of Gastroenterology and Hepatology, University Hospital Zurich
| | | | | | | | | |
Collapse
|
21
|
Wang A, Keita ÅV, Phan V, McKay CM, Schoultz I, Lee J, Murphy MP, Fernando M, Ronaghan N, Balce D, Yates R, Dicay M, Beck PL, MacNaughton WK, Söderholm JD, McKay DM. Targeting mitochondria-derived reactive oxygen species to reduce epithelial barrier dysfunction and colitis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2516-27. [PMID: 25034594 DOI: 10.1016/j.ajpath.2014.05.019] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/05/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023]
Abstract
Epithelial permeability is often increased in inflammatory bowel diseases. We hypothesized that perturbed mitochondrial function would cause barrier dysfunction and hence epithelial mitochondria could be targeted to treat intestinal inflammation. Mitochondrial dysfunction was induced in human colon-derived epithelial cell lines or colonic biopsy specimens using dinitrophenol, and barrier function was assessed by transepithelial flux of Escherichia coli with or without mitochondria-targeted antioxidant (MTA) cotreatment. The impact of mitochondria-targeted antioxidants on gut permeability and dextran sodium sulfate (DSS)-induced colitis in mice was tested. Mitochondrial superoxide evoked by dinitrophenol elicited significant internalization and translocation of E. coli across epithelia and control colonic biopsy specimens, which was more striking in Crohn's disease biopsy specimens; the mitochondria-targeted antioxidant, MitoTEMPO, inhibited these barrier defects. Increased gut permeability and reduced epithelial mitochondrial voltage-dependent anion channel expression were observed 3 days after DSS. These changes and the severity of DSS-colitis were reduced by MitoTEMPO treatment. In vitro DSS-stimulated IL-8 production by epithelia was reduced by MitoTEMPO. Metabolic stress evokes significant penetration of commensal bacteria across the epithelium, which is mediated by mitochondria-derived superoxide acting as a signaling, not a cytotoxic, molecule. MitoTEMPO inhibited this barrier dysfunction and suppressed colitis in DSS-colitis, likely via enhancing barrier function and inhibiting proinflammatory cytokine production. These novel findings support consideration of MTAs in the maintenance of epithelial barrier function and the management of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Arthur Wang
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Åsa V Keita
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Department of Surgery, County Council of Östergötland, Linköping, Sweden
| | - Van Phan
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Catherine M McKay
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Ida Schoultz
- Nutrition-Gut-Brain Interactions Research Centre, the Faculty of Medicine, Örebro University, Örebro, Sweden
| | - Joshua Lee
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | - Maria Fernando
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Natalie Ronaghan
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Dale Balce
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robin Yates
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael Dicay
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Paul L Beck
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K MacNaughton
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Johan D Söderholm
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Department of Surgery, County Council of Östergötland, Linköping, Sweden
| | - Derek M McKay
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
22
|
Kasakura K, Takahashi K, Itoh T, Hosono A, Momose Y, Itoh K, Nishiyama C, Kaminogawa S. Commensal bacteria directly suppress in vitro degranulation of mast cells in a MyD88-independent manner. Biosci Biotechnol Biochem 2014; 78:1669-76. [PMID: 25273132 DOI: 10.1080/09168451.2014.930327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The intestine harbors a substantial number of commensal bacteria that provide considerable benefits to the host. Epidemiologic studies have identified associations between alterations in the composition of the intestinal microbiota and the development of allergic disease. However, the cellular and molecular mechanisms underlying these effects remain to be determined. Here, we show that heat-killed commensal bacteria suppressed degranulation of mast cells in vitro in a MyD88-independent manner. In particular, Enterococcus faecalis showed the strongest suppression of degranulation through partial inhibition of Ca(2+) signaling upon the high affinity IgE receptor (FcεRI) cross-linking.
Collapse
Affiliation(s)
- Kazumi Kasakura
- a College of Bioresource Sciences , Nihon University , Fujisawa , Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Absorption of proteoglycan via clathrin-mediated endocytosis in the small intestine of rats. Biosci Biotechnol Biochem 2013; 77:654-6. [PMID: 23470738 DOI: 10.1271/bbb.120773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanism underlying proteoglycan (PG) absorption in the intestine is not clear. Hence we analyzed the transport of salmon PG in the rat jejunum, ileum, and colon by the everted-sac method. The jejunum showed the largest capacity for PG transport. Jejunal transport of PG was also greater than that of chondroitin A and C. An inhibitor of clathrin-mediated endocytosis reduced jejunal PG transport. We conclude that intestinal PG transport is highest in the jejunum, and is partially dependent on clathrin-mediated endocytosis.
Collapse
|
24
|
Schoultz I, McKay CM, Graepel R, Phan VC, Wang A, Söderholm J, McKay DM. Indomethacin-induced translocation of bacteria across enteric epithelia is reactive oxygen species-dependent and reduced by vitamin C. Am J Physiol Gastrointest Liver Physiol 2012; 303:G536-45. [PMID: 22700821 PMCID: PMC3468559 DOI: 10.1152/ajpgi.00125.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The enteric epithelium must absorb nutrients and water and act as a barrier to the entry of luminal material into the body; this barrier function is a key component of innate immunity. Nonsteroidal anti-inflammatory drug (NSAID)-induced enteropathy occurs via inhibition of prostaglandin synthesis and perturbed epithelial mitochondrial activity. Here, the direct effect of NSAIDs [indomethacin, piroxicam (cyclooxygenase 1 and 2 inhibitors), and SC-560 (a cyclooxygenase 1 inhibitor)] on the barrier function of human T84 epithelial cell line monolayers was assessed by transepithelial electrical resistance (TER) and internalization and translocation of a commensal Escherichia coli. Exposure to E. coli in the presence and absence of drugs for 16 h reduced TER; however, monolayers cotreated with E. coli and indomethacin, but not piroxicam or SC-560, displayed significant increases in internalization and translocation of the bacteria. This was accompanied by increased reactive oxygen species (ROS) production, which was also increased in epithelia treated with E. coli only. Colocalization revealed upregulation of superoxide synthesis by mitochondria in epithelia treated with E. coli + indomethacin. Addition of antioxidants (vitamin C or a green tea polyphenol, epigallocathechin gallate) quenched the ROS and prevented the increase in E. coli internalization and translocation evoked by indomethacin, but not the drop in TER. Evidence of increased apoptosis was not observed in this model. The data implicate epithelial-derived ROS in indomethacin-induced barrier dysfunction and show that a portion of the bacteria likely cross the epithelium via a transcellular pathway. We speculate that addition of antioxidants as dietary supplements to NSAID treatment regimens would reduce the magnitude of decreased barrier function, specifically the transepithelial passage of bacteria.
Collapse
Affiliation(s)
- Ida Schoultz
- 1Gastrointestinal Research Group, Department of Physiology and Pharmacology, The Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; and
| | - Catherine M. McKay
- 1Gastrointestinal Research Group, Department of Physiology and Pharmacology, The Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; and
| | - Rabea Graepel
- 1Gastrointestinal Research Group, Department of Physiology and Pharmacology, The Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; and
| | - Van C. Phan
- 1Gastrointestinal Research Group, Department of Physiology and Pharmacology, The Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; and
| | - Arthur Wang
- 1Gastrointestinal Research Group, Department of Physiology and Pharmacology, The Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; and
| | - Johan Söderholm
- 2Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Derek M. McKay
- 1Gastrointestinal Research Group, Department of Physiology and Pharmacology, The Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; and
| |
Collapse
|
25
|
Dixit P, Jain DK, Rajpoot JS. Differential effect of oxidative stress on intestinal apparent permeability of drugs transported by paracellular and transcellular route. Eur J Drug Metab Pharmacokinet 2012; 37:203-9. [PMID: 22718103 DOI: 10.1007/s13318-012-0099-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 06/01/2012] [Indexed: 11/28/2022]
Abstract
Increased intestinal permeability of macromolecules is a common feature of oxidative stress-induced gastrointestinal diseases; how it affects the absorption of drugs is not investigated. Hence, it was proposed to study the influence of hydrogen peroxide-induced oxidative stress on permeability of atenolol and metoprolol using a modified everted rat intestine technique. Atenolol was chosen as a marker of paracellular drug transport and metoprolol was selected to represent transcellular drug transport. Wistar rats were used as a source of intestine, which was everted using a glass rod, mounted on permeability apparatus, having test drug (100 μg/ml in Krebs) in donor compartment. Samples were taken from receiver compartment every 5 min for 60 min, and analyzed by HPLC. For induction of oxidative stress isolated ileum was incubated in H₂O₂ (200 μM) containing Krebs for 15 min and then again permeability was estimated. Extent of oxidative stress was determined by estimating lipid peroxidation using thiobarbituric acid assay, which was found to be increased by 42 % in hydrogen peroxide treated rat intestine as compared to control group. The mean apparent permeability of atenolol and metoprolol was found to be 0.054 ± 0.024 × 10⁻⁴ and 0.84 ± 0.14 × 10⁻⁴ cm/s, respectively, in control group rat intestinal segments. After exposure to hydrogen peroxide, there was a significant increase in the mean permeability of atenolol (0.11 ± 0.01 × 10⁻⁴ cm/s), however, metoprolol permeability was unaltered (0.94 ± 0.047 × 10⁻⁴ cm/s). The marked increase in the apparent permeability of atenolol may be attributed to rupture of intestinal barrier. In conclusion, the present study reports the differential effect of oxidative stress-induced damage on drug transport across rat intestine.
Collapse
Affiliation(s)
- Pankaj Dixit
- College of Pharmacy, IPS Academy, Rajendranagar, A-B Road, Indore 452012, MP, India.
| | | | | |
Collapse
|
26
|
Smyth D, McKay CM, Gulbransen BD, Phan VC, Wang A, McKay DM. Interferon-gamma signals via an ERK1/2-ARF6 pathway to promote bacterial internalization by gut epithelia. Cell Microbiol 2012; 14:1257-70. [PMID: 22463716 DOI: 10.1111/j.1462-5822.2012.01796.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The barrier function of the epithelium lining the intestine is essential for health by preventing the free passage of colonic bacteria into the mucosa. Epithelia treated with interferon (IFN)-γ display increased bacteria transcytosis. Much is known of how IFNγ affects the tight junction and paracellular permeability, yet its role in modifying transcellular traffic of commensal bacteria remains poorly understood. Using immunoblotting, ELISA and immunolocalization, IFNγ was found to activate extracellular regulated kinase (ERK)1/2 in the human colon-like T84 epithelial cell line. Pharmacological inhibition of MEK/ERK1/2 signalling with U0126 significantly inhibited IFNγ-induced increases in the transcytosis of non-invasive Escherichia coli (strain HB101). IFNγ treatment enhanced epithelial internalization of E. coli, some of which subsequently escaped the enterocyte. Molecular analyses revealed that ERK1/2 inhibition prevented activation of the ADP-ribosylation factor (ARF)-6, a protein associated with endocytosis, and that siRNA knock-down of ARF6 expression reduced IFNγ-induced E. coli internalization into T84 cells. None of these interventions affected the drop in transepithelial resistance caused by IFNγ. Thus, increased transcellular passage may be a major component of IFNγ-induced increases in epithelial permeability, and ERK1/2 and ARF6 are presented as important molecules in IFNγ-evoked transcytosis of bacteria across gut epithelia.
Collapse
Affiliation(s)
- David Smyth
- Gastrointestinal Research Group, Department of Physiology & Pharmacology, The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Ohland CL, DeVinney R, MacNaughton WK. Escherichia coli-induced epithelial hyporesponsiveness to secretagogues is associated with altered CFTR localization. Cell Microbiol 2012; 14:447-59. [PMID: 22212348 DOI: 10.1111/j.1462-5822.2011.01744.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Both pathogenic and commensal strains of Escherichia coli colonize the human intestinal tract. Pathogenic strains differ only in the expression of virulence factors, many of which comprise a type III secretion system (TTSS). Little is known regarding the effect of E. coli on the intestinal epithelial response to the secretagogues that drive ion secretion, despite its importance in causing clinically significant diarrhoea. Using Ussing chambers to measure electrogenic ion transport of T84 intestinal epithelial cell monolayers, we found that all strains of E. coli tested (pathogenic, commensal, probiotic and lab strain) significantly reduced cAMP-dependent ion secretion after 4-8 h exposure. Enteropathogenic E. coli mutants lacking a functional TTSS caused similar hyposecretion while not causing significant apoptosis (as shown by caspase-3 cleavage) or necrosis (lactate dehydrogenase release), as did the commensal strain F18, indicating that epithelial cell death was not the cause of hyposecretion. Enteropathogenic E. coli and the TTSS mutant significantly reduced cell surface expression of the apical anion channel, cystic fibrosis transmembrane conductance regulator, which is likely the mechanism behind the pathogen-induced hyposecretion. However, F18 did not cause cystic fibrosis transmembrane conductance regulator mislocalization and the commensal-induced mechanism remains unclear.
Collapse
Affiliation(s)
- Christina L Ohland
- Department of Physiology and Pharmacology, Inflammation Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | | |
Collapse
|
28
|
Shubkina AV, Severtsov AS, Chepeleva KV. Factors influencing the hunting success of the predator: A model with sighthounds. BIOL BULL+ 2012. [DOI: 10.1134/s1062359012010074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Schoultz I, Söderholm JD, McKay DM. Is metabolic stress a common denominator in inflammatory bowel disease? Inflamm Bowel Dis 2011; 17:2008-18. [PMID: 21830276 DOI: 10.1002/ibd.21556] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 10/04/2010] [Indexed: 01/06/2023]
Abstract
The enteric epithelium represents the major boundary between the outside world and the body, and in the colon it is the interface between the host and a vast and diverse microbiota. A common feature of inflammatory bowel disease (IBD) is decreased epithelial barrier function, and while a cause-and-effect relationship can be debated, prolonged loss of epithelial barrier function (whether this means the ability to sense bacteria or exclude them) would contribute to inflammation. While there are undoubtedly individual nuances in IBD, we review data in support of metabolic stress--that is, perturbed mitochondrial function--in the enterocyte as a contributing factor to the initiation of inflammation and relapses in IBD. The postulate is presented that metabolic stress, which can arise as a consequence of a variety of stimuli (e.g., infection, bacterial dysbiosis, and inflammation also), will reduce epithelial barrier function and perturb the enterocyte-commensal flora relationship and suggest that means to negate enterocytic metabolic stress should be considered as a prophylactic or adjuvant therapy in IBD.
Collapse
Affiliation(s)
- Ida Schoultz
- Gastrointestinal Research Group, Department of Physiology & Pharmacology, The Calvin, Phoebe and Joan Snyder Institute of Infection Immunity and Inflammation, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
30
|
Al-Sadi R, Khatib K, Guo S, Ye D, Youssef M, Ma T. Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. Am J Physiol Gastrointest Liver Physiol 2011; 300:G1054-64. [PMID: 21415414 PMCID: PMC3119114 DOI: 10.1152/ajpgi.00055.2011] [Citation(s) in RCA: 297] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Defective intestinal epithelial tight junction (TJ) barrier has been shown to be an important pathogenic factor contributing to the development of intestinal inflammation. The expression of occludin is markedly decreased in intestinal permeability disorders, including in Crohn's disease, ulcerative colitis, and celiac disease, suggesting that the decrease in occludin expression may play a role in the increase in intestinal permeability. The purpose of this study was to delineate the involvement of occludin in intestinal epithelial TJ barrier by selective knock down of occludin in in vitro (filter-grown Caco-2 monolayers) and in vivo (recycling perfusion of mouse intestine) intestinal epithelial models. Our results indicated that occludin small-interfering RNA (siRNA) transfection causes an increase in transepithelial flux of various-sized probes, including urea, mannitol, inulin, and dextran, across the Caco-2 monolayers, without affecting the transepithelial resistance. The increase in relative flux rate was progressively greater for larger-sized probes, indicating that occludin depletion has the greatest effect on the flux of large macromolecules. siRNA-induced knock down of occludin in mouse intestine in vivo also caused an increase in intestinal permeability to dextran but did not affect intestinal tissue transepithelial resistance. In conclusion, these results show for the first time that occludin depletion in intestinal epithelial cells in vitro and in vivo leads to a selective or preferential increase in macromolecule flux, suggesting that occludin plays a crucial role in the maintenance of TJ barrier through the large-channel TJ pathway, the pathway responsible for the macromolecule flux.
Collapse
Affiliation(s)
- Rana Al-Sadi
- 1Department of Internal Medicine, University of New Mexico, Albuquerque; and
| | - Khaldun Khatib
- 1Department of Internal Medicine, University of New Mexico, Albuquerque; and
| | - Shuhong Guo
- 1Department of Internal Medicine, University of New Mexico, Albuquerque; and
| | - Dongmei Ye
- 1Department of Internal Medicine, University of New Mexico, Albuquerque; and
| | - Moustafa Youssef
- 1Department of Internal Medicine, University of New Mexico, Albuquerque; and
| | - Thomas Ma
- 1Department of Internal Medicine, University of New Mexico, Albuquerque; and ,2Albuquerque Veterans Affairs Medical Center, Albuquerque, New Mexico
| |
Collapse
|
31
|
Wallon C, Persborn M, Jönsson M, Wang A, Phan V, Lampinen M, Vicario M, Santos J, Sherman PM, Carlson M, Ericson AC, McKay DM, Söderholm JD. Eosinophils express muscarinic receptors and corticotropin-releasing factor to disrupt the mucosal barrier in ulcerative colitis. Gastroenterology 2011; 140:1597-607. [PMID: 21277851 DOI: 10.1053/j.gastro.2011.01.042] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 12/23/2010] [Accepted: 01/13/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Altered intestinal barrier function has been implicated in the pathophysiology of ulcerative colitis (UC) in genetic, functional, and epidemiological studies. Mast cells and corticotropin-releasing factor (CRF) regulate the mucosal barrier in human colon. Because eosinophils are often increased in colon tissues of patients with UC, we assessed interactions among mast cells, CRF, and eosinophils in the mucosal barrier of these patients. METHODS Transmucosal fluxes of protein antigens (horseradish peroxidase) and paracellular markers ((51)Cr-EDTA, fluorescein isothiocyanate-dextran 4000) were studied in noninflamed, colonic mucosal biopsy samples collected from 26 patients with UC and 53 healthy volunteers (controls); samples were mounted in Ussing chambers. We also performed fluorescence and electron microscopy of human tissue samples, assessed isolated eosinophils, and performed mechanistic studies using in vitro cocultured eosinophils (15HL-60), mast cells (HMC-1), and a colonic epithelial cell line (T84). RESULTS Colon tissues from patients with UC had significant increases in permeability to protein antigens compared with controls. Permeability was blocked by atropine (a muscarinic receptor antagonist), α-helical CRF(9-41) (a CRF receptor antagonist), and lodoxamide (a mast-cell stabilizer). Eosinophils were increased in number in UC tissues (compared with controls), expressed the most M2 and M3 muscarinic receptors of any mucosal cell type, and had immunoreactivity to CRF. In coculture studies, carbachol activation of eosinophils caused production of CRF and activation of mast cells, which increased permeability of T84 epithelial cells to macromolecules. CONCLUSIONS We identified a neuroimmune intercellular circuit (from cholinergic nerves, via eosinophils to mast cells) that mediates colonic mucosal barrier dysfunction in patients with UC. This circuit might exacerbate mucosal inflammation.
Collapse
Affiliation(s)
- Conny Wallon
- Department of Clinical and Experimental Medicine, Division of Surgery, Linköping University, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Anti-apoptotic PI3K/Akt signaling by sodium/glucose transporter 1 reduces epithelial barrier damage and bacterial translocation in intestinal ischemia. J Transl Med 2011; 91:294-309. [PMID: 20975661 DOI: 10.1038/labinvest.2010.177] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intestinal ischemia/reperfusion (I/R) causes mucosal barrier damage and bacterial translocation (BT), leading to septic complications. Previous in vitro studies showed that activation of sodium/glucose transporter 1 (SGLT1) prevented the epithelial apoptosis and permeability rise induced by microbial products. Our aim was to investigate whether luminal glucose uptake by SGLT1 protects against ischemia-induced epithelial cell death and barrier dysfunction, and to explore the glucose-mediated cellular survival pathways in vivo. Rat jejunum was luminally instilled with either vehicle, a pancaspase inhibitor ZVAD, or glucose prior to I/R challenge (occlusion of the superior mesenteric artery for 20 min and reperfusion for 60 min). Histopathology and apoptosis in the jejunum were examined by TUNEL staining and caspase-3 cleavage. Intestinal permeability was evaluated using in vivo assays measuring luminal-to-blood passage of fluorescein-dextran and portal drainage of enterally administered gadodiamide by magnetic resonance imaging. BT was determined by culturing liver and spleen homogenates. Immunofluorescent analysis and kinase assay were used to study PI3K/Akt signaling pathways. Intestinal I/R caused enterocyte apoptosis and villous destruction. Intestinal infusion with ZVAD decreased the I/R-triggered gut permeability rise and BT, suggesting that the barrier damage was partly dependent on cell apoptosis. Enteral instillation of glucose attenuated the epithelial apoptosis, barrier damage, and mucosal inflammation caused by I/R. Phloridzin (a SGLT1 inhibitor) reduced the protective effect of glucose in a dose-dependent manner. Enteral glucose increased the mucosal Akt kinase activity as evidenced by the augmented phosphorylation of exogenous GSK3. Enhanced membrane translocation and phosphorylation of Akt in epithelial cells were associated with elevated phosphorylation of mTOR, Bad, and FoxO1/3a following glucose uptake. Inhibition of PI3K/Akt signaling by LY294002 and wortmannin partially blocked the glucose-mediated rescue of cell apoptosis and barrier damage. In conclusion, SGLT1 glucose uptake alleviated I/R-induced barrier dysfunction and BT, partly by inhibiting epithelial apoptosis via activation of PI3K/Akt signaling.
Collapse
|
33
|
Salim SY, Söderholm JD. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm Bowel Dis 2011; 17:362-81. [PMID: 20725949 DOI: 10.1002/ibd.21403] [Citation(s) in RCA: 445] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 06/01/2010] [Indexed: 12/12/2022]
Abstract
The current paradigm of inflammatory bowel diseases (IBD), both Crohn's disease (CD) and ulcerative colitis (UC), involves the interaction between environmental factors in the intestinal lumen and inappropriate host immune responses in genetically predisposed individuals. The intestinal mucosal barrier has evolved to maintain a delicate balance between absorbing essential nutrients while preventing the entry and responding to harmful contents. In IBD, disruptions of essential elements of the intestinal barrier lead to permeability defects. These barrier defects exacerbate the underlying immune system, subsequently resulting in tissue damage. The epithelial phenotype in active IBD is very similar in CD and UC. It is characterized by increased secretion of chloride and water, leading to diarrhea, increased permeability via both the transcellular and paracellular routes, and increased apoptosis of epithelial cells. The main cytokine that seems to drive these changes is tumor necrosis factor alpha in CD, whereas interleukin (IL)-13 may be more important in UC. Therapeutic restoration of the mucosal barrier would provide protection and prevent antigenic overload due to intestinal "leakiness." Here we give an overview of the key players of the intestinal mucosal barrier and review the current literature from studies in humans and human systems on mechanisms underlying mucosal barrier dysfunction in IBD.
Collapse
Affiliation(s)
- Sa'ad Y Salim
- Department of Clinical and Experimental Medicine, Division of Surgery and Clinical Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | |
Collapse
|
34
|
Lewis K, Lutgendorff F, Phan V, Söderholm JD, Sherman PM, McKay DM. Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflamm Bowel Dis 2010; 16:1138-48. [PMID: 20024905 DOI: 10.1002/ibd.21177] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The gut microflora in some patients with Crohn's disease can be reduced in numbers of butyrate-producing bacteria and this could result in metabolic stress in the colonocytes. Thus, we hypothesized that the short-chain fatty acid, butyrate, is important in the maintenance and regulation of the barrier function of the colonic epithelium. METHODS Confluent monolayers of the human colon-derived T84 or HT-29 epithelial cell lines were exposed to dinitrophenol (DNP (0.1 mM), uncouples oxidative phosphorylation) + Escherichia coli (strain HB101, 10(6) cfu) +/- butyrate (3-50 mM). Transepithelial resistance (TER), and bacterial internalization and translocation were assessed over a 24-hour period. Epithelial ultrastructure was assessed by transmission electron microscopy. RESULTS Epithelia under metabolic stress display decreased TER and increased numbers of pseudopodia that is consistent with increased internalization and translocation of the E. coli. Butyrate (but not acetate) significantly reduced the bacterial translocation across DNP-treated epithelia but did not ameliorate the drop in TER in the DNP+E. coli exposed monolayers. Inhibition of bacterial transcytosis across metabolically stressed epithelia was associated with reduced I-kappaB phosphorylation and hence NF-kappaB activation. CONCLUSIONS Reduced butyrate-producing bacteria could result in increased epithelial permeability particularly in the context of concomitant exposure to another stimulus that reduces mitochondria function. We speculate that prebiotics, the substrate for butyrate synthesis, is a valuable prophylaxis in the regulation of epithelial permeability and could be of benefit in preventing relapses in IBD.
Collapse
Affiliation(s)
- Kimberley Lewis
- Gastrointestinal Research Group, Department of Physiology & Pharmacology, Calvin, Phoebe and Joan Snyder Institute of Infection, Inflammation and Immunology, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Maresca M, Fantini J. Some food-associated mycotoxins as potential risk factors in humans predisposed to chronic intestinal inflammatory diseases. Toxicon 2010; 56:282-94. [PMID: 20466014 DOI: 10.1016/j.toxicon.2010.04.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/30/2010] [Accepted: 04/25/2010] [Indexed: 12/19/2022]
Abstract
Mycotoxins are fungal metabolites able to affect the functions of numerous tissues and organs in animals and humans, including intestinal and immune systems. However, the potential link between exposure to some mycotoxins and human chronic intestinal inflammatory diseases, such as celiac and Crohn's diseases or ulcerative colitis, has not been investigated. Instead, several theories based on bacterial, immunological or neurological events have been elaborated to explain the etiology of these pathologies. Here we reviewed the literature on mycotoxin-induced intestinal dysfunctions and compared these perturbations to the impairments of intestinal functions typically observed in human chronic intestinal inflammatory diseases. Converging evidence based on various cellular and animal studies show that several mycotoxins induce intestinal alterations that are similar to those observed at the onset and during the progression of inflammatory bowel diseases. Although epidemiologic evidence is still required, existing data are sufficient to suspect a role of some food-associated mycotoxins in the induction and/or persistence of human chronic intestinal inflammatory diseases in genetically predisposed patients.
Collapse
Affiliation(s)
- Marc Maresca
- CRN2M, CNRS UMR 6231, INRA USC 2027, Laboratoire des Interactions Moléculaires et Systèmes Membranaires, Université d'Aix-Marseille 2 et Aix-Marseille 3, Faculté des Sciences de St-Jérôme, 13397 Marseille Cedex 20, France.
| | | |
Collapse
|
36
|
In vivo actin cross-linking induced by Vibrio cholerae type VI secretion system is associated with intestinal inflammation. Proc Natl Acad Sci U S A 2010; 107:4365-70. [PMID: 20150509 DOI: 10.1073/pnas.0915156107] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Type VI secretion systems (T6SSs) have recently been recognized as potential virulence determinants of many Gram-negative bacterial pathogens. Although mechanistic studies are lacking, T6SS-dependent phenotypes can be observed in various animal models of infection. Presumably translocation of T6SS effectors into target cells is involved in virulence, but few such effectors have been identified. A hallmark of T6SS function is the in vitro secretion of Hcp and VgrG proteins, which are thought to form part of an extracellular secretion apparatus. One well-characterized effector domain is the C-terminal actin cross-linking domain (ACD) of the VgrG-1 protein, constitutively secreted by the T6SS of Vibrio cholerae strain V52. Previous work indicated that translocation of VgrG-1 occurred only after endocytic uptake of bacteria into host cells. VgrG-1-induced actin cross-linking impaired phagocytic activity of host cells, eventually causing cell death. To determine whether V. cholerae T6SS is functional during animal infection, derivatives of V52 were used to infect infant mice. In this infection model a diarrheal response occurred, and actin cross-linking could be detected. These host responses were dependent on a functional T6SS and on the ACD of VgrG-1. Gene expression and histologic studies showed innate immune activation and immune cell infiltration in the intestinal lumen. The T6SS-dependent inflammatory response was also associated with increased recovery of V. cholerae from the intestine. We conclude that the T6SS of V52 induces an inflammatory diarrhea that facilitates replication of V. cholerae within the intestine.
Collapse
|
37
|
Abstract
All farm animals will experience some level of stress during their lives. Stress reduces the fitness of an animal, which can be expressed through failure to achieve production performance standards, or through disease and death. Stress in farm animals can also have detrimental effects on the quality of food products. However, although a common assumption of a potential effect of stress on food safety exists, little is actually known about how this interaction may occur. The aim of this review was to examine the current knowledge of the potential impact of stress in farm animals on food safety risk. Colonization of farm animals by enteric pathogens such as Escherichia coli O157:H7, Salmonella, and Campylobacter, and their subsequent dissemination into the human food chain are a major public health and economic concern for the food industries. This review shows that there is increasing evidence to demonstrate that stress can have a significant deleterious effect on food safety through a variety of potential mechanisms. However, as the impact of stress is difficult to precisely determine, it is imperative that the issue receives more research attention in the interests of optimizing animal welfare and minimizing losses in product yield and quality, as well as to food safety risks to consumers. While there is some evidence linking stress with pathogen carriage and shedding in farm animals, the mechanisms underlying this effect have not been fully elucidated. Understanding when pathogen loads on the farm are the highest or when animals are most susceptible to infection will help identifying times when intervention strategies for pathogen control may be most effective, and consequently, increase the safety of food of animal origin.
Collapse
Affiliation(s)
- Marcos H Rostagno
- Livestock Behavior Research Unit, Agricultural Research Service, U.S. Department of Agriculture, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
38
|
Dalle F, Wächtler B, L'Ollivier C, Holland G, Bannert N, Wilson D, Labruère C, Bonnin A, Hube B. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol 2009; 12:248-71. [PMID: 19863559 DOI: 10.1111/j.1462-5822.2009.01394.x] [Citation(s) in RCA: 248] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The human pathogenic fungus Candida albicans can cause systemic infections by invading epithelial barriers to gain access to the bloodstream. One of the main reservoirs of C. albicans is the gastrointestinal tract and systemic infections predominantly originate from this niche. In this study, we used scanning electron and fluorescence microscopy, adhesion, invasion and damage assays, fungal mutants and a set of fungal and host cell inhibitors to investigate the interactions of C. albicans with oral epithelial cells and enterocytes. Our data demonstrate that adhesion, invasion and damage by C. albicans depend not only on fungal morphology and activity, but also on the epithelial cell type and the differentiation stage of the epithelial cells, indicating that epithelial cells differ in their susceptibility to the fungus. C. albicans can invade epithelial cells by induced endocytosis and/or active penetration. However, depending on the host cell faced by the fungus, these routes are exploited to a different extent. While invasion into oral cells occurs via both routes, invasion into intestinal cells occurs only via active penetration.
Collapse
|
39
|
Magnetic resonance imaging detects intestinal barrier dysfunction in a rat model of acute mesenteric ischemia/reperfusion injury. Invest Radiol 2009; 44:329-35. [PMID: 19363446 DOI: 10.1097/rli.0b013e3181a16762] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To develop an in vivo intestinal permeability assay applying magnetic resonance imaging (MRI) to monitor real-time gut barrier defects in animal models of acute mesenteric ischemia/reperfusion (I/R) insult. MATERIALS AND METHODS Twenty Wistar rats were divided to 2 groups for I/R challenge or sham controls. I/R rats received occlusion of superior mesenteric artery for 20 minutes and reperfusion for 1 hour. Sham-operation controls received laparotomy without manipulation of artery. To assess gut permeability, a 10-cm jejunal sac was created distal to the ligament of Treitz in both groups of rats after laparotomy, and a contrast agent (gadodiamide) was injected into the lumen of the ligated intestinal sac. The signals produced by gadodamide in the liver, kidney, and plasma before and after the start of reperfusion were examined by 1.5 Tesla MRI (GE Signa Excite), and the increment of signal-to-noise ratio (SNR) in these organs that parallels the luminal-to-serosal flux rate of the probe was used as an indicator of gut permeability. At the end of procedures, jejunal tissues and mucosal scrapings were collected for histologic examination and Western blotting for epithelial tight junctional proteins. Moreover, liver and spleen homogenates were cultured on fresh blood agar plates to measure the bacterial colony-forming units per gram of tissue. RESULTS In I/R rats, disrupted villous structure and decreased epithelial tight junctional expression were seen in the jejunum associated with massive enteric bacterial translocation to the liver and spleen. The SNR in the liver of I/R rats was higher than sham controls (2.65 +/- 0.56 vs. 0.65 +/- 0.26, P < 0.01) at 15 minutes postreperfusion. Elevation of SNR in the kidney was also found in I/R rats compared with sham controls (11.61 +/- 2.07 vs. 3.06 +/- 1.15, P < 0.05). The plasma gadodiamide concentration in I/R rats was significantly increased compared with sham controls (0.220 +/- 0.044 vs. 0.006 +/- 0.004 mM, P < 0.01) at 15 minutes postreperfusion. CONCLUSIONS This novel MRI-based intestinal permeability assay has shown a significant increase in the signal intensity in liver, kidney, and plasma samples that correlated with mucosal barrier defects in experimental models of acute mesenteric I/R.
Collapse
|
40
|
Abstract
The epithelial lining of the gastrointestinal tract is the major interface between the external world (e.g., the gut lumen) and the body, and as such the proper maintenance and regulation of epithelial barrier function is a key determinant of digestive health and host well-being. Many enteropathies are associated with increased gut permeability, including inflammatory bowel disease (IBD). Maintaining the barrier function of the epithelium, independent of whether paracellular or transcellular permeation pathways are considered, is an energy-dependent process. Here we present an overview of the impact that metabolic stress (e.g., reductions in epithelial ATP synthesis) can have on permeability characteristics of epithelial monolayers and show that metabolic stress in the presence of a commensal flora results in a significant loss of epithelial integrity, and that this increase in epithelial permeability can be enhanced by the presence of tumor necrosis factor-alpha (TNFalpha). We speculate that the combination of these factors in vivo would result in significant perturbations in epithelial barrier function that could be of pathophysiological significance and contribute to the initiation of IBD or the induction of disease relapses.
Collapse
Affiliation(s)
- Kimberley Lewis
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
41
|
Pinton P, Nougayrède JP, Del Rio JC, Moreno C, Marin DE, Ferrier L, Bracarense AP, Kolf-Clauw M, Oswald IP. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression. Toxicol Appl Pharmacol 2009; 237:41-8. [PMID: 19289138 DOI: 10.1016/j.taap.2009.03.003] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 12/15/2022]
|
42
|
Donato KA, Zareie M, Jassem AN, Jandu N, Alingary N, Carusone SC, Johnson-Henry KC, Sherman PM. Escherichia albertii and Hafnia alvei are candidate enteric pathogens with divergent effects on intercellular tight junctions. Microb Pathog 2008; 45:377-85. [PMID: 18930803 DOI: 10.1016/j.micpath.2008.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 08/27/2008] [Accepted: 09/12/2008] [Indexed: 11/24/2022]
Abstract
Attaching-effacing lesion-inducing Escherichia albertii and the related, but non-attaching-effacing organism, Hafnia alvei, are both implicated as enteric pathogens in humans. However, effects of these bacteria on epithelial cells are not well-characterized. Related enteropathogens, including enterohemorrhagic Escherichia coli O157:H7, decrease epithelial barrier function by disrupting intercellular tight junctions in polarized epithelia. Therefore, this study assessed epithelial barrier function and tight junction protein distribution in polarized epithelia following bacterial infections. Polarized epithelial (MDCK-I and T84) cells grown on filter supports were infected apically with E. coli O157:H7, E. albertii, and H. alvei for 16h at 37 degrees C. All strains decreased transepithelial electrical resistance and increased permeability to a dextran probe in a host cell-dependent manner. Immunofluorescence microscopy showed that both E. coli O157:H7 and E. albertii, but not H. alvei, caused a redistribution of the tight junction protein zona occludens-1. In contrast to E. coli O157:H7, E. albertii and H. alvei did not redistribute claudin-1. Western blotting of whole cell protein extracts demonstrated that each bacterium caused differential changes in tight junction protein expression, dependent on the host cell. These findings demonstrate that E. albertii and H. alvei are candidate enteric pathogens that have both strain-specific and host epithelial cell-dependent effects.
Collapse
Affiliation(s)
- Kevin A Donato
- Cell Biology Program, Research Institute, Hospital for Sick Children, University of Toronto, Room 8409, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Manukyan GP, Ghazaryan KA, Ktsoyan ZA, Khachatryan ZA, Arakelova KA, Kelly D, Grant G, Aminov RI. Elevated systemic antibodies towards commensal gut microbiota in autoinflammatory condition. PLoS One 2008; 3:e3172. [PMID: 18779861 PMCID: PMC2525839 DOI: 10.1371/journal.pone.0003172] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 08/19/2008] [Indexed: 02/06/2023] Open
Abstract
Background Familial Mediterranean fever (FMF) is an autoinflammatory condition, which is characterized by acute, self-limiting episodes of fever and serositis and chronic subclinical inflammation in remission. Here we investigated the consequence of this condition on the level of systemic antibodies directed towards common intestinal bacteria. Methodology/Principal Findings The level of systemic antibodies towards the antigens of Bacteroides, Parabacteroides, Escherichia, Enteroccocus and Lactobaccilus was measured by ELISA in FMF patients at various stages of the disease and in healthy controls. The difference between remission and attack was not significant. IgG antibodies against the antigens of Bacteroides, Parabacteroides, Escherichia and Enteroccocus were significantly increased in FMF compared to control while IgA levels were not significantly affected. Western blot analyses demonstrated the IgG reactivity against multiple antigens of commensal bacteria in FMF. Serological expression cloning was performed to identify these antigens. No single dominant antigen was identified; the response was generalized and directed against a variety of proteins from Bacteroides, Parabacteroides, Escherichia, and other gut commensals. Conclusions/Significance This autoinflammatory syndrome is characterized by the increased systemic reactivity against commensal gut microbiota. This is probably the consequence of hypersensitivity of the inflammasome in FMF that triggers the inflammation and contributes to the excessive translocation of bacteria and bacterial antigens through the gut barrier.
Collapse
Affiliation(s)
- Gayane P. Manukyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | - Karine A. Ghazaryan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | - Zhanna A. Ktsoyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | | | - Karine A. Arakelova
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | - Denise Kelly
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - George Grant
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Rustam I. Aminov
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Keita AV, Salim SY, Jiang T, Yang PC, Franzén L, Söderkvist P, Magnusson KE, Söderholm JD. Increased uptake of non-pathogenic E. coli via the follicle-associated epithelium in longstanding ileal Crohn's disease. J Pathol 2008; 215:135-44. [PMID: 18348161 DOI: 10.1002/path.2337] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In Crohn's disease (CD), inflammation is driven by luminal commensal micro-organisms; however, mechanisms of early phases of inflammation need further clarification. The earliest observable lesions of recurrent CD are microscopic erosions at the specialized follicle-associated epithelium (FAE), which lines the Peyer's patches. Therefore, our aim was to investigate the mucosal barrier to non-pathogenic bacteria in FAE of CD. The FAE of macroscopically normal ileum from patients with longstanding CD, ulcerative colitis, and controls was studied in Ussing chambers regarding electrophysiology and permeability to 51Cr-EDTA, horseradish peroxidase, and non-pathogenic E. coli strains. Transepithelial passage routes and uptake into dendritic cells were studied by confocal and electron microscopy. FAE of CD showed increased numbers of adherent bacteria, after E. coli exposure in Ussing chambers, as well as spontaneously in non-exposed archival surgical tissues. Further, we found increased uptake of fluorescent E. coli K-12 and HB101 across FAE of CD, but not in ulcerative colitis. Microscopy demonstrated intercellular and transcellular uptake of E. coli in CD, but only transcellular in controls. FAE exposed to E. coli demonstrated changes in conductance and 51Cr-EDTA permeability, suggesting that bacteria affected the paracellular pathway in CD mucosa. Following bacterial uptake, CD mucosa also demonstrated an increased percentage of E. coli co-localizing with dendritic cells, and augmented tissue release of TNF-alpha. Our data present novel insights into the pathophysiology of CD by demonstrating a previously unrecognized defect of FAE barrier to bacteria in ileal CD, leading to increased load of commensal bacteria to the inductive sites of mucosal immunity.
Collapse
Affiliation(s)
- A V Keita
- Division of Surgery, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Maresca M, Yahi N, Younès-Sakr L, Boyron M, Caporiccio B, Fantini J. Both direct and indirect effects account for the pro-inflammatory activity of enteropathogenic mycotoxins on the human intestinal epithelium: Stimulation of interleukin-8 secretion, potentiation of interleukin-1β effect and increase in the transepithelial passage of commensal bacteria. Toxicol Appl Pharmacol 2008; 228:84-92. [DOI: 10.1016/j.taap.2007.11.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 11/08/2007] [Accepted: 11/12/2007] [Indexed: 10/22/2022]
|
46
|
Lewis K, Caldwell J, Phan V, Prescott D, Nazli A, Wang A, Soderhölm JD, Perdue MH, Sherman PM, McKay DM. Decreased epithelial barrier function evoked by exposure to metabolic stress and nonpathogenic E. coli is enhanced by TNF-alpha. Am J Physiol Gastrointest Liver Physiol 2008; 294:G669-78. [PMID: 18187519 DOI: 10.1152/ajpgi.00382.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A defect in mitochondrial activity contributes to many diseases. We have shown that monolayers of the human colonic T84 epithelial cell line exposed to dinitrophenol (DNP, uncouples oxidative phosphorylation) and nonpathogenic Escherichia coli (E. coli) (strain HB101) display decreased barrier function. Here the impact of DNP on macrophage activity and the effect of TNF-alpha, DNP, and E. coli on epithelial permeability were assessed. DNP treatment of the human THP-1 macrophage cell line resulted in reduced ATP synthesis, and, although hyporesponsive to LPS, the metabolically stressed macrophages produced IL-1beta, IL-6, and TNF-alpha. Given the role of TNF-alpha in inflammatory bowel disease (IBD) and the association between increased permeability and IBD, recombinant TNF-alpha (10 ng/ml) was added to the DNP (0.1 mM) + E. coli (10(6) colony-forming units), and this resulted in a significantly greater loss of T84 epithelial barrier function than that elicited by DNP + E. coli. This increased epithelial permeability was not due to epithelial death, and the enhanced E. coli translocation was reduced by pharmacological inhibitors of NF-kappabeta signaling (pyrrolidine dithiocarbamate, NF-kappabeta essential modifier-binding peptide, BAY 11-7082, and the proteosome inhibitor, MG132). In contrast, the drop in transepithelial electrical resistance was unaffected by the inhibitors of NF-kappabeta. Thus, as an integrative model system, our findings support the induction of a positive feedback loop that can severely impair epithelial barrier function and, as such, could contribute to existing inflammation or trigger relapses in IBD. Thus metabolically stressed epithelia display increased permeability in the presence of viable nonpathogenic E. coli that is exaggerated by TNF-alpha released by activated immune cells, such as macrophages, that retain this ability even if they themselves are experiencing a degree of metabolic stress.
Collapse
Affiliation(s)
- Kimberley Lewis
- Gastrointestinal Research Group, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Köhler H, Sakaguchi T, Hurley BP, Kase BA, Kase BJ, Reinecker HC, McCormick BA. Salmonella enterica serovar Typhimurium regulates intercellular junction proteins and facilitates transepithelial neutrophil and bacterial passage. Am J Physiol Gastrointest Liver Physiol 2007; 293:G178-87. [PMID: 17615177 DOI: 10.1152/ajpgi.00535.2006] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The establishment of tight junctions (TJ) between columnar epithelial cells defines the functional barrier, which enteroinvasive pathogens have to overcome. Salmonella enterica serovar Typhimurium (S. typhimurium) directly invades intestinal epithelial cells but it is not well understood how the pathogen is able to overcome the intestinal barrier and gains access to the circulation. Therefore, we sought to determine whether infection with S. typhimurium could regulate the molecular composition of the TJ and, if so, whether these modifications would influence bacterial translocation and polymorphonuclear leukocyte (PMN) movement across model intestinal epithelium. We found that infection of a model intestinal epithelium with S. typhimurium over 2 h resulted in an approximately 80% loss of transepithelial electrical resistance. Western blot analysis of epithelial cell lysates demonstrated that S. typhimurium regulated the distribution of the TJ complex proteins claudin-1, zonula occludens (ZO)-2, and E-cadherin in Triton X-100-soluble and insoluble fractions. In addition, S. typhimurium was specifically able to dephosphorylate occludin and degrade ZO-1. This TJ alteration in the epithelial monolayer resulted in 10-fold increase in bacterial translocation and a 75% increase in N-formylmethionin-leucyl-phenyalanine-induced PMN transepithelial migration. Our data demonstrate that infection with S. typhimurium is associated with the rapid targeting of the tight junctional complex and loss of barrier function. This results in enhanced bacterial translocation and initiation of PMN migration across the intestinal barrier. Therefore, the ability to regulate the molecular composition of TJs facilitates the pathogenicity of S. typhimurium by aiding its uptake and distribution within the host.
Collapse
Affiliation(s)
- Henrik Köhler
- Mucosal Immunology Laboratories, Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
McKay DM, Watson JL, Wang A, Caldwell J, Prescott D, Ceponis PMJ, Di Leo V, Lu J. Phosphatidylinositol 3'-kinase is a critical mediator of interferon-gamma-induced increases in enteric epithelial permeability. J Pharmacol Exp Ther 2007; 320:1013-22. [PMID: 17178936 DOI: 10.1124/jpet.106.113639] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The epithelial lining of mucosal surfaces acts as a barrier to regulate the entry of antigen and pathogens. Nowhere is this function of the contiguous epithelium more important than in the gut, which is continually exposed to a huge antigenic load and, in the colon, an immense commensal microbiota. We assessed the intracellular signaling events that underlie interferon (IFN) gamma-induced increases in epithelial permeability using monolayers of the human colonic T84 epithelial cell line. Confluent epithelial monolayers on semipermeable supports were treated with IFNgamma (20 ng/ml), and barrier function was assessed 48 h later by measuring transepithelial electrical resistance (TER: reflects passive ion flux), fluxes of (51)Cr-EDTA and horseradish peroxidase (HRP), and transcytosis of noninvasive, nonpathogenic Escherichia coli (strain HB101). Exposure to IFNgamma decreased barrier function as assessed by all four markers. The phosphatidylinositol 3'-kinase (PI-3K) inhibitors, LY294002 [2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride] and wortmannin, did not affect baseline permeability characteristics but completely blocked the drop in TER, increased fluxes of (51)Cr-EDTA and HRP, and significantly reduced E. coli transcytosis evoked by IFNgamma. In addition, use of the pan-protein kinase C (PKC) inhibitor, bisindolylmaleimide I (5 muM), but not rottlerin (blocks PKCdelta), partially ameliorated the drop in TER and inhibited increased E. coli transcytosis. Addition of the PI-3K and PKC inhibitors to epithelia 6 h after IFNgamma exposure still prevented the increase in paracellular permeability but not E. coli transcytosis. Thus, IFNgamma-induced increases in epithelial paracellular and transcellular permeability are critically dependent on PI-3K activity, which may represent an epithelial-specific target to treat immune-mediated loss of barrier function.
Collapse
Affiliation(s)
- Derek M McKay
- Intestinal Disease Research Programme, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Reddy BS, MacFie J, Gatt M, Macfarlane-Smith L, Bitzopoulou K, Snelling AM. Commensal bacteria do translocate across the intestinal barrier in surgical patients. Clin Nutr 2007; 26:208-15. [PMID: 17208338 DOI: 10.1016/j.clnu.2006.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 10/17/2006] [Accepted: 10/30/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND The "gut origin of sepsis" hypothesis proposes that enteric bacteria may cause sepsis at distant extra-intestinal sites. Whilst there is much circumstantial evidence to support this hypothesis, there is no conclusive proof in humans. The nature of translocating bacteria remains unclear. The aim of this study was to establish the origin of Escherichia coli (E. coli) cultured from mesenteric lymph nodes (MLN) and determine if they belonged to any recognized pathotypes known to cause infections in humans. METHODS MLN and faecal samples were obtained from 98 patients undergoing colonic resection. E. coli were isolated from 9/98 MLN samples. DNA fingerprints of MLN isolates were compared with faecal isolates from the same patient. MLN isolates were tested for adherence and invasion using HEp-2 epithelial cells, and screened for DNA markers indicative of different pathotypes of E. coli. MLN isolates were also tested for internalisation into Caco-2 cells. RESULTS All the nine E. coli cultured from MLNs were found to have identical DNA fingerprints to at least one and often several E. coli isolates cultured from faecal samples of the same patient. 8/9 (89%) MLN isolates were weakly adherent and 2/9 (22.2%) were invasive. 8/9 (89%) tested negative for DNA markers. All the nine MLN strains were internalised by Caco-2 cells. CONCLUSION This study confirms the gut origin of translocating bacteria. Most translocating E. coli do not belong to any recognised pathotype and are therefore normal commensal microflora. Our results suggest that bacterial translocation is more dependent upon the gut epithelium rather than the virulence properties of resident enteric bacteria.
Collapse
Affiliation(s)
- Bala S Reddy
- Combined Gastroenterology Research Unit, Scarborough Hospital, Woodlands Drive, Scarborough, YO12 6QL, UK
| | | | | | | | | | | |
Collapse
|
50
|
Veiga E, Cossart P. The role of clathrin-dependent endocytosis in bacterial internalization. Trends Cell Biol 2006; 16:499-504. [PMID: 16962776 PMCID: PMC7126422 DOI: 10.1016/j.tcb.2006.08.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 07/31/2006] [Accepted: 08/24/2006] [Indexed: 01/23/2023]
Abstract
Internalization of bacteria into mammalian host cells has been studied extensively in the past two decades. These studies have highlighted the amazingly diverse strategies used by bacterial pathogens to induce their entry in non-phagocytic cells. The roles of actin and of the whole cytoskeletal machinery have been investigated in great detail for several invasive organisms, such as Salmonella, Shigella, Yersinia and Listeria. Recent results using Listeria highlight a role for the endocytosis machinery in bacterial entry, suggesting that clathrin-dependent endocytic mechanisms are also involved in internalization of large particles. This contrasts with the generally accepted dogma but agrees with previous studies of bacterial and viral infections and also of phagocytosis.
Collapse
Affiliation(s)
- Esteban Veiga
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, F-75015 France
| | | |
Collapse
|