1
|
Kurtz SL, Baker RE, Boehm FJ, Lehman CC, Mittereder LR, Khan H, Rossi AP, Gatti DM, Beamer G, Sassetti CM, Elkins KL. Multiple genetic loci influence vaccine-induced protection against Mycobacterium tuberculosis in genetically diverse mice. PLoS Pathog 2024; 20:e1012069. [PMID: 38452145 PMCID: PMC10950258 DOI: 10.1371/journal.ppat.1012069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/19/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Mycobacterium tuberculosis (M.tb.) infection leads to over 1.5 million deaths annually, despite widespread vaccination with BCG at birth. Causes for the ongoing tuberculosis endemic are complex and include the failure of BCG to protect many against progressive pulmonary disease. Host genetics is one of the known factors implicated in susceptibility to primary tuberculosis, but less is known about the role that host genetics plays in controlling host responses to vaccination against M.tb. Here, we addressed this gap by utilizing Diversity Outbred (DO) mice as a small animal model to query genetic drivers of vaccine-induced protection against M.tb. DO mice are a highly genetically and phenotypically diverse outbred population that is well suited for fine genetic mapping. Similar to outcomes in people, our previous studies demonstrated that DO mice have a wide range of disease outcomes following BCG vaccination and M.tb. challenge. In the current study, we used a large population of BCG-vaccinated/M.tb.-challenged mice to perform quantitative trait loci mapping of complex infection traits; these included lung and spleen M.tb. burdens, as well as lung cytokines measured at necropsy. We found sixteen chromosomal loci associated with complex infection traits and cytokine production. QTL associated with bacterial burdens included a region encoding major histocompatibility antigens that are known to affect susceptibility to tuberculosis, supporting validity of the approach. Most of the other QTL represent novel associations with immune responses to M.tb. and novel pathways of cytokine regulation. Most importantly, we discovered that protection induced by BCG is a multigenic trait, in which genetic loci harboring functionally-distinct candidate genes influence different aspects of immune responses that are crucial collectively for successful protection. These data provide exciting new avenues to explore and exploit in developing new vaccines against M.tb.
Collapse
Affiliation(s)
- Sherry L. Kurtz
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Richard E. Baker
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Frederick J. Boehm
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Chelsea C. Lehman
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Lara R. Mittereder
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Hamda Khan
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Amy P. Rossi
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- College of Medicine, University of Cincinatti, Cincinatti, Ohio, United States of America
| | - Daniel M. Gatti
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Gillian Beamer
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Karen L. Elkins
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
2
|
Sarkar S, Mishra A, Periasamy S, Dyett B, Dogra P, Ball AS, Yeo LY, White JF, Wang Z, Cristini V, Jagannath C, Khan A, Soni SK, Drummond CJ, Conn CE. Prospective Subunit Nanovaccine against Mycobacterium tuberculosis Infection─Cubosome Lipid Nanocarriers of Cord Factor, Trehalose 6,6' Dimycolate. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37262346 DOI: 10.1021/acsami.3c04063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An improved vaccine is urgently needed to replace the now more than 100-year-old Bacillus Calmette-Guérin (BCG) vaccine against tuberculosis (TB) disease, which represents a significant burden on global public health. Mycolic acid, or cord factor trehalose 6,6' dimycolate (TDM), a lipid component abundant in the cell wall of the pathogen Mycobacterium tuberculosis (MTB), has been shown to have strong immunostimulatory activity but remains underexplored due to its high toxicity and poor solubility. Herein, we employed a novel strategy to encapsulate TDM within a cubosome lipid nanocarrier as a potential subunit nanovaccine candidate against TB. This strategy not only increased the solubility and reduced the toxicity of TDM but also elicited a protective immune response to control MTB growth in macrophages. Both pre-treatment and concurrent treatment of the TDM encapsulated in lipid monoolein (MO) cubosomes (MO-TDM) (1 mol %) induced a strong proinflammatory cytokine response in MTB-infected macrophages, due to epigenetic changes at the promoters of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) in comparison to the untreated control. Furthermore, treatment with MO-TDM (1 mol %) cubosomes significantly improved antigen processing and presentation capabilities of MTB-infected macrophages to CD4 T cells. The ability of MO-TDM (1 mol %) cubosomes to induce a robust innate and adaptive response in vitro was further supported by a mathematical modeling study predicting the vaccine efficacy in vivo. Overall, these results indicate a strong immunostimulatory effect of TDM when delivered through the lipid nanocarrier, suggesting its potential as a novel TB vaccine.
Collapse
Affiliation(s)
- Sampa Sarkar
- School of Science, STEM College, RMIT University, Melbourne 3001, Victoria, Australia
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Selvakannan Periasamy
- School of Science, STEM College, RMIT University, Melbourne 3001, Victoria, Australia
| | - Brendan Dyett
- School of Science, STEM College, RMIT University, Melbourne 3001, Victoria, Australia
| | - Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10021, United States
| | - Andrew S Ball
- School of Science, STEM College, RMIT University, Melbourne 3001, Victoria, Australia
| | - Leslie Y Yeo
- School of Engineering, STEM College, RMIT University, Melbourne 3001, Victoria, Australia
| | - Jacinta F White
- The Commonwealth Scientific and Industrial Research Organisation, Clayton 3169, Victoria, Australia
| | - Zhihui Wang
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10021, United States
- Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Department of Imaging Physics, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, United States
- Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York 10021, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Sarvesh K Soni
- School of Science, STEM College, RMIT University, Melbourne 3001, Victoria, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne 3001, Victoria, Australia
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Melbourne 3001, Victoria, Australia
| |
Collapse
|
3
|
Singh VK, Chau E, Mishra A, DeAnda A, Hegde VL, Sastry JK, Haviland D, Jagannath C, Godin B, Khan A. CD44 receptor targeted nanoparticles augment immunity against tuberculosis in mice. J Control Release 2022; 349:796-811. [PMID: 35914613 PMCID: PMC10478167 DOI: 10.1016/j.jconrel.2022.07.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023]
Abstract
We describe a role of CD44-mediated signaling during host-defense against tuberculosis (TB) using a mouse model of TB and studies in M. tuberculosis (Mtb) infected human macrophage (MФ). Liposomes targeting CD44 using thioaptamers (CD44TA-LIP) were designed and tested as new vaccines to boost host immunity in TB. CD44TA-LIP enhanced killing of Mtb in human MФ, which correlated with an increased production of pro-inflammatory cytokines IL-1β, TNF-α and IL-12. CD44TA-LIP activated MФ showed an enhanced MHC-II dependent antigen presentation to CD4 T-cells. Inhibition of cellular proliferation and cytoskeleton rearrangement pathways downstream of CD44 signaling abrogated CD44TA-LIP-induced antimicrobial effects. Blockade of inflammatory pathways also reduced antigen presentation by MФ and activation of CD4 T cells. Mtb infected MФ treated with CD44TA-LIP exhibited increased nitric oxide and HβD2 defensin peptide production. Among Mtb infected mice with increased lung and spleen loads of organisms, intranasal administration of CD44TA-LIP led to a ten-fold reduction of colony forming units of Mtb and elevated IFN-γ + CD4, effector, central and resident memory T cells. Biodistribution studies demonstrated that CD44TA-LIP preferentially accumulated in the lungs and were associated with CD11b + cells. CD44TA-LIP treated mice showed no weight loss or increased liver LDH levels. This study highlights the importance of CD44-mediated signaling in host-defense during TB and the therapeutic potential of CD44TA-LIP.
Collapse
Affiliation(s)
- Vipul K Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Eric Chau
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Alexandro DeAnda
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Venkatesh L Hegde
- Department of Thoracic Head & Neck Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Jagannadha K Sastry
- Department of Thoracic Head & Neck Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - David Haviland
- Flow Cytometry Core, Houston Methodist Research Institute, Houston, TX, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA.
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
4
|
Mishra A, Singh VK, Jagannath C, Subbian S, Restrepo BI, Gauduin MC, Khan A. Human Macrophages Exhibit GM-CSF Dependent Restriction of Mycobacterium tuberculosis Infection via Regulating Their Self-Survival, Differentiation and Metabolism. Front Immunol 2022; 13:859116. [PMID: 35634283 PMCID: PMC9134823 DOI: 10.3389/fimmu.2022.859116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
GM-CSF is an important cytokine that regulates the proliferation of monocytes/macrophages and its various functions during health and disease. Although growing evidences support the notion that GM-CSF could play a major role in immunity against tuberculosis (TB) infection, the mechanism of GM-CSF mediated protective effect against TB remains largely unknown. Here in this study we examined the secreted levels of GM-CSF by human macrophages from different donors along with the GM-CSF dependent cellular processes that are critical for control of M. tuberculosis infection. While macrophage of different donors varied in their ability to produce GM-CSF, a significant correlation was observed between secreted levels of GM-CSF, survial of macrophages and intra-macrophage control of Mycobacterium tuberculosis bacilli. GM-CSF levels secreted by macrophages negatively correlated with the intra-macrophage M. tuberculosis burden, survival of infected host macrophages positively correlated with their GM-CSF levels. GM-CSF-dependent prolonged survival of human macrophages also correlated with significantly decreased bacterial burden and increased expression of self-renewal/cell-survival associated genes such as BCL-2 and HSP27. Antibody-mediated depletion of GM-CSF in macrophages resulted in induction of significantly elevated levels of apoptotic/necrotic cell death and a simultaneous decrease in autophagic flux. Additionally, protective macrophages against M. tuberculosis that produced more GM-CSF, induced a stronger granulomatous response and produced significantly increased levels of IL-1β, IL-12 and IL-10 and decreased levels of TNF-α and IL-6. In parallel, macrophages isolated from the peripheral blood of active TB patients exhibited reduced capacity to control the intracellular growth of M. tuberculosis and produced significantly lower levels of GM-CSF. Remarkably, as compared to healthy controls, macrophages of active TB patients exhibited significantly altered metabolic state correlating with their GM-CSF secretion levels. Altogether, these results suggest that relative levels of GM-CSF produced by human macrophages plays a critical role in preventing cell death and maintaining a protective differentiation and metabolic state of the host cell against M. tuberculosis infection.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Vipul K. Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Selvakumar Subbian
- Department of Medicine, New Jersey Medical School, Public Health Research Institute, Newark, NJ, United States
| | - Blanca I. Restrepo
- University of Texas School of Public Health, Brownsville, TX, United States
| | - Marie-Claire Gauduin
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
5
|
Monroy-Mérida G, Guzmán-Beltrán S, Hernández F, Santos-Mendoza T, Bobadilla K. High Glucose Concentrations Impair the Processing and Presentation of Mycobacterium tuberculosis Antigens In Vitro. Biomolecules 2021; 11:1763. [PMID: 34944407 PMCID: PMC8698639 DOI: 10.3390/biom11121763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/20/2021] [Indexed: 01/04/2023] Open
Abstract
Type 2 diabetes is an established risk factor for tuberculosis, but the underlying mechanisms are largely unknown. We established an in vitro model to analyze the effect of high glucose concentrations in antigen processing and presentation in antigen-presenting cells. Human monocyte-derived macrophages (MDMs) were exposed to high (11 mM and 30 mM) and low (5.5 mM) glucose concentrations and infected with Mycobacterium tuberculosis (Mtb). Flow cytometry was used to analyze the effect of high glucose concentrations in histocompatibility complex (MHC) class II molecules (HLA-DR) and co-stimulatory molecules (CD80 and CD86), indispensable for an adequate antigenic presentation and CD4+ T cell activation. HLA-DR and CD86 were significantly decreased by high glucose concentrations compared with low glucose concentrations. Confocal microscopy was used to detect Rab 5 and Lamp-1, proteins involved in the kinetics of antigen processing as early markers, and Rab 7 and cathepsin D as late markers. We observed a delay in the dynamics of the acquisition of Rab 7 and cathepsin D in high glucose concentrations. Moreover, the kinetics of the formation M. tuberculosis peptide-MHC II complexes in MDMs was decreased under high glucose concentrations, reducing their capacity for T cell activation. These findings suggest that high glucose concentrations directly affect antigenic processing, and therefore antigenic presentation.
Collapse
Affiliation(s)
- Guadalupe Monroy-Mérida
- Laboratory of Immunopharmacology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (G.M.-M.); (T.S.-M.)
| | - Silvia Guzmán-Beltrán
- Department of Microbiology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico;
| | - Fernando Hernández
- Research Department of Virology and Micology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico;
| | - Teresa Santos-Mendoza
- Laboratory of Immunopharmacology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (G.M.-M.); (T.S.-M.)
| | - Karen Bobadilla
- Laboratory of Immunopharmacology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (G.M.-M.); (T.S.-M.)
| |
Collapse
|
6
|
Restrepo BI, Khan A, Singh VK, Erica de-Leon, Aguillón-Durán GP, Ledezma-Campos E, Canaday DH, Jagannath C. Human monocyte-derived macrophage responses to M. tuberculosis differ by the host's tuberculosis, diabetes or obesity status, and are enhanced by rapamycin. Tuberculosis (Edinb) 2021; 126:102047. [PMID: 33418150 PMCID: PMC7887072 DOI: 10.1016/j.tube.2020.102047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/17/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
Human macrophages play a major role in controlling tuberculosis (TB), but their anti-mycobacterial mechanisms remain unclear among individuals with metabolic alterations like obesity (TB protective) or diabetes (TB risk). To help discern this, we aimed to: i) Evaluate the impact of the host's TB status or their comorbidities on the anti-mycobacterial responses of their monocyte-derived macrophages (MDMs), and ii) determine if the autophagy inducer rapamycin, can enhance these responses. We used MDMs from newly diagnosed TB patients, their close contacts and unexposed controls. The MDMs from TB patients had a reduced capacity to activate T cells (surrogate for antigen presentation) or kill M. tuberculosis (Mtb) when compared to non-TB controls. The MDMs from obese participants had a higher antigen presenting capacity, whereas those from chronic diabetes patients displayed lower Mtb killing. The activation of MDMs with rapamycin led to an enhanced anti-mycobacterial activity irrespective of TB status but was not as effective in patients with diabetes. Further studies are warranted using MDMs from TB patients with or without metabolic comorbidities to: i) elucidate the mechanisms through which host factors affect Mtb responses, and ii) evaluate host directed therapy using autophagy-inducing drugs like rapamycin to enhance macrophage function.
Collapse
Affiliation(s)
- Blanca I Restrepo
- University of Texas Health Houston, School of Public Health, One West University Blvd, Brownsville, TX, USA; University of Texas Rio Grande Valley, School of Medicine, South Texas Diabetes and Obesity Institute, 1214 W Schunior, Edinburg, TX, USA.
| | - Arshad Khan
- Houston Methodist Research Institute, Houston, Weill-Cornell Medicine, TX, USA.
| | - Vipul K Singh
- Houston Methodist Research Institute, Houston, Weill-Cornell Medicine, TX, USA.
| | - Erica de-Leon
- University of Texas Health Houston, School of Public Health, One West University Blvd, Brownsville, TX, USA.
| | - Génesis P Aguillón-Durán
- University of Texas Health Houston, School of Public Health, One West University Blvd, Brownsville, TX, USA; Secretaria de Salud de Tamaulipas, Reynosa and Ciudad Victoria, Mexico.
| | | | - David H Canaday
- Division of Infectious Disease, Case Western Reserve University and Cleveland, VA, OH, USA.
| | | |
Collapse
|
7
|
Noli Truant S, De Marzi MC, Sarratea MB, Antonoglou MB, Meo AP, Iannantuono López LV, Fernández Lynch MJ, Todone M, Malchiodi EL, Fernández MM. egc Superantigens Impair Monocytes/Macrophages Inducing Cell Death and Inefficient Activation. Front Immunol 2020; 10:3008. [PMID: 32010128 PMCID: PMC6974467 DOI: 10.3389/fimmu.2019.03008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Bacterial superantigens (SAgs) are enterotoxins that bind to MHC-II and TCR molecules, activating as much as 20% of the T cell population and promoting a cytokine storm which enhances susceptibility to endotoxic shock, causing immunosuppression, and hindering the immune response against bacterial infection. Since monocytes/macrophages are one of the first cells SAgs find in infected host and considering the effect these cells have on directing the immune response, here, we investigated the effect of four non-classical SAgs of the staphylococcal egc operon, namely, SEG, SEI, SEO, and SEM on monocytic-macrophagic cells, in the absence of T cells. We also analyzed the molecular targets on APCs which could mediate SAg effects. We found that egc SAgs depleted the pool of innate immune effector cells and induced an inefficient activation of monocytic-macrophagic cells, driving the immune response to an impaired proinflammatory profile, which could be mediated directly or indirectly by interactions with MHC class II. In addition, performing surface plasmon resonance assays, we demonstrated that non-classical SAgs bind the gp130 molecule, which is also present in the monocytic cell surface, among other cells.
Collapse
Affiliation(s)
- Sofia Noli Truant
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mauricio C De Marzi
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina.,Instituto de Ecología y Desarrollo Sustentable (INEDES), UNLU-CONICET, Universidad Nacional de Luján, Luján, Argentina
| | - María B Sarratea
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María B Antonoglou
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana P Meo
- Hospital Dr. J. M. Ramos Mejía, Buenos Aires, Argentina
| | - Laura V Iannantuono López
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María J Fernández Lynch
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcos Todone
- Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina.,Instituto de Ecología y Desarrollo Sustentable (INEDES), UNLU-CONICET, Universidad Nacional de Luján, Luján, Argentina
| | - Emilio L Malchiodi
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisa M Fernández
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Garnica O, Das K, Devasundaram S, Dhandayuthapani S. Enhanced delivery of Mycobacterium tuberculosis antigens to antigen presenting cells using RVG peptide. Tuberculosis (Edinb) 2019; 116S:S34-S41. [PMID: 31064713 DOI: 10.1016/j.tube.2019.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 10/26/2022]
Abstract
Among the various strategies to improve vaccines against infectious diseases, targeting of antigens to dendritic cells (DCs), which are professional antigen presenting cells (APCs), has received increased attention in recent years. Here, we investigated whether a synthetic peptide region named RVG, originated from Rabies Virus Glycoprotein that binds to the α-7 subunit of the nicotinic acetylcholine receptors (AchR-α7) of APCs, could be used for the delivery of Mycobacterium tuberculosis (Mtb) peptide antigens to DCs and macrophages. Mouse bone marrow derived DCs (BMDCs) and human THP-1 macrophages stimulated with RVG fused peptide epitopes 85B241 and 85B96 (represent Ag85B241-256 and Ag85B96-111, respectively) from antigen 85B (Ag85B) of Mtb showed enhanced antigen presentation as compared to unfused peptide epitopes and BCG. Further, BMDCs stimulated with RVG fused 85B241 showed higher levels of IL-12 positive cells. Consistent with in vitro data, splenocytes of mice immunized with RVG-85B241 showed increased number of antigen specific IFN-γ, IL-2, and TNF-α producing cells in relation to splenocytes from mice immunized with 85B241 alone. These results suggest that RVG may be a promising tool to develop effective alternate vaccines against tuberculosis (TB).
Collapse
Affiliation(s)
- Omar Garnica
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Kishore Das
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Santhi Devasundaram
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA.
| |
Collapse
|
9
|
Schurz H, Kinnear CJ, Gignoux C, Wojcik G, van Helden PD, Tromp G, Henn B, Hoal EG, Möller M. A Sex-Stratified Genome-Wide Association Study of Tuberculosis Using a Multi-Ethnic Genotyping Array. Front Genet 2019; 9:678. [PMID: 30713548 PMCID: PMC6346682 DOI: 10.3389/fgene.2018.00678] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/06/2018] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a complex disease with a known human genetic component. Males seem to be more affected than females and in most countries the TB notification rate is twice as high in males than in females. While socio-economic status, behavior and sex hormones influence the male bias they do not fully account for it. Males have only one copy of the X chromosome, while diploid females are subject to X chromosome inactivation. In addition, the X chromosome codes for many immune-related genes, supporting the hypothesis that X-linked genes could contribute to TB susceptibility in a sex-biased manner. We report the first TB susceptibility genome-wide association study (GWAS) with a specific focus on sex-stratified autosomal analysis and the X chromosome. A total of 810 individuals (410 cases and 405 controls) from an admixed South African population were genotyped using the Illumina Multi Ethnic Genotyping Array, specifically designed as a suitable platform for diverse and admixed populations. Association testing was done on the autosome (8,27,386 variants) and X chromosome (20,939 variants) in a sex stratified and combined manner. SNP association testing was not statistically significant using a stringent cut-off for significance but revealed likely candidate genes that warrant further investigation. A genome wide interaction analysis detected 16 significant interactions. Finally, the results highlight the importance of sex-stratified analysis as strong sex-specific effects were identified on both the autosome and X chromosome.
Collapse
Affiliation(s)
- Haiko Schurz
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Craig J. Kinnear
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Chris Gignoux
- Colorado Center for Personalized Medicine, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Genevieve Wojcik
- Department of Genetics, Stanford University, Stanford, CA, United States
| | - Paul D. van Helden
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerard Tromp
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Cape Town, South Africa
| | - Brenna Henn
- Department of Anthropology, UC Davis Genome Center, University of California, Davis, Davis, CA, United States
| | - Eileen G. Hoal
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
10
|
Xu Z, Xia A, Li X, Zhu Z, Shen Y, Jin S, Lan T, Xie Y, Wu H, Meng C, Sun L, Yin Y, Chen X, Jiao X. Rapid loss of early antigen-presenting activity of lymph node dendritic cells against Ag85A protein following Mycobacterium bovis BCG infection. BMC Immunol 2018; 19:19. [PMID: 29940854 PMCID: PMC6019797 DOI: 10.1186/s12865-018-0258-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023] Open
Abstract
Background Control of Mycobacterium tuberculosis (Mtb) infection requires CD4+ T-cell responses and major histocompatibility complex class II (MHC II) presentation of Mtb antigens (Ags). Dendritic cells (DCs) are the most potent of the Ag-presenting cells and are central to the initiation of T-cell immune responses. Much research has indicated that DCs play an important role in anti-mycobacterial immune responses at early infection time points, but the kinetics of Ag presentation by these cells during these events are incompletely understood. Results In the present study, we evaluated in vivo dynamics of early Ag presentation by murine lymph-node (LN) DCs in response to Mycobacterium bovis bacillus Calmette–Guérin (BCG) Ag85A protein. Results showed that the early Ag-presenting activity of murine DCs induced by M. bovis BCG Ag85A protein in vivo was transient, appearing at 4 h and being barely detectable at 72 h. The transcription levels of CIITA, MHC II and the expression of MHC II molecule on the cell surface increased following BCG infection. Moreover, BCG was found to survive within the inguinal LN DC pool, representing a continuing source of mycobacterial Ag85A protein, with which LN DCs formed Ag85A peptide-MHCII complexes in vivo. Conclusions Our results demonstrate that a decrease in Ag85A peptide production as a result of the inhibition of Ag processing to is largely responsible for the short duration of Ag presentation by LN DCs during BCG infection in vivo.
Collapse
Affiliation(s)
- Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Aihong Xia
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Xin Li
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Zhaocheng Zhu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Yechi Shen
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China
| | - Shanshan Jin
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China
| | - Tian Lan
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China
| | - Yuqing Xie
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China
| | - Han Wu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China
| | - Chuang Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Lin Sun
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Yuelan Yin
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
11
|
Boillat-Blanco N, Tumbo AMN, Perreau M, Amelio P, Ramaiya KL, Mganga M, Schindler C, Gagneux S, Reither K, Probst-Hensch N, Pantaleo G, Daubenberger C, Portevin D. Hyperglycaemia is inversely correlated with live M. bovis BCG-specific CD4 + T cell responses in Tanzanian adults with latent or active tuberculosis. IMMUNITY INFLAMMATION AND DISEASE 2018; 6:345-353. [PMID: 29642283 PMCID: PMC5946156 DOI: 10.1002/iid3.222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/30/2018] [Accepted: 02/26/2018] [Indexed: 01/09/2023]
Abstract
Introduction The rising prevalence of Diabetes mellitus (DM) in high TB‐endemic countries may adversely affect sustainability of TB control since DM constitutes a risk factor for development of active tuberculosis (TB). The impact of DM on TB specific adaptive immune responses remains poorly addressed, particularly in people living in Sub‐Saharan countries. We performed a functional characterization of TB specific cellular immune response in Tanzanian subjects with active or latent Mycobacterium tuberculosis (Mtb) infection stratified by their diabetic status. Methods HIV negative active TB patients (≥18 years) with Xpert MTB/RIF positive pulmonary TB were included before starting TB treatment in Dar es Salaam, Tanzania between April and December 2013. HIV negative healthy controls latently infected with TB but without past TB history were also included. Active and latent TB patients were stratified in two groups according to their diabetic status. Peripheral Blood Mononuclear cells were stimulated with either live M. bovis BCG or Mtb‐specific peptide pools and analyzed by intracellular cytokine staining and polychromatic flow cytometry. Results Our results show a lower frequency of IFN‐γ CD4+ T cells in patients with active TB and DM compared to patients with active TB only after live M. bovis BCG (p = 0.04) but not after Mtb peptide pools re‐stimulation. Irrespective of TB status, level of glycaemia is selectively inversely correlated with IFN‐γ and TNF‐α CD4+ T cell production (p = 0.02 and p = 0.03) after live M. bovis BCG stimulation. Conclusions These results support the hypothesis that hyperglycaemia negatively impacts antigen processing and/or presentation of whole mycobacteria delaying secretion of key cytokines involved in TB immunity.
Collapse
Affiliation(s)
- Noémie Boillat-Blanco
- Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania.,Swiss Tropical and Public Health Institute, Basel, Switzerland.,Department of Sciences, University of Basel, Basel, Switzerland.,Infectious Diseases Service, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Matthieu Perreau
- Division of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland
| | - Patrizia Amelio
- Division of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland
| | - Kaushik L Ramaiya
- Shree Hindu Mandal Hospital and Muhimbili University of Health Sciences, Dar es Salaam, United Republic of Tanzania
| | - Maliwaza Mganga
- Kinondoni Municipal Council, National Tuberculosis Program, Dar es Salaam, United Republic of Tanzania
| | - Christian Schindler
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,Department of Sciences, University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,Department of Sciences, University of Basel, Basel, Switzerland
| | - Klaus Reither
- Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania.,Swiss Tropical and Public Health Institute, Basel, Switzerland.,Department of Sciences, University of Basel, Basel, Switzerland
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,Department of Sciences, University of Basel, Basel, Switzerland
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland
| | - Claudia Daubenberger
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,Department of Sciences, University of Basel, Basel, Switzerland
| | - Damien Portevin
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,Department of Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Ferraris DM, Miggiano R, Rossi F, Rizzi M. Mycobacterium tuberculosis Molecular Determinants of Infection, Survival Strategies, and Vulnerable Targets. Pathogens 2018; 7:E17. [PMID: 29389854 PMCID: PMC5874743 DOI: 10.3390/pathogens7010017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis, an ancient disease which, still today, represents a major threat for the world population. Despite the advances in medicine and the development of effective antitubercular drugs, the cure of tuberculosis involves prolonged therapies which complicate the compliance and monitoring of drug administration and treatment. Moreover, the only available antitubercular vaccine fails to provide an effective shield against adult lung tuberculosis, which is the most prevalent form. Hence, there is a pressing need for effective antitubercular drugs and vaccines. This review highlights recent advances in the study of selected M. tuberculosis key molecular determinants of infection and vulnerable targets whose structures could be exploited for the development of new antitubercular agents.
Collapse
Affiliation(s)
- Davide M Ferraris
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy.
| | - Riccardo Miggiano
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy.
| | - Franca Rossi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy.
| | - Menico Rizzi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy.
| |
Collapse
|
13
|
Abstract
Through thousands of years of reciprocal coevolution, Mycobacterium tuberculosis has become one of humanity's most successful pathogens, acquiring the ability to establish latent or progressive infection and persist even in the presence of a fully functioning immune system. The ability of M. tuberculosis to avoid immune-mediated clearance is likely to reflect a highly evolved and coordinated program of immune evasion strategies that interfere with both innate and adaptive immunity. These include the manipulation of their phagosomal environment within host macrophages, the selective avoidance or engagement of pattern recognition receptors, modulation of host cytokine production, and the manipulation of antigen presentation to prevent or alter the quality of T-cell responses. In this article we review an extensive array of published studies that have begun to unravel the sophisticated program of specific mechanisms that enable M. tuberculosis and other pathogenic mycobacteria to persist and replicate in the face of considerable immunological pressure from their hosts. Unraveling the mechanisms by which M. tuberculosis evades or modulates host immune function is likely to be of major importance for the development of more effective new vaccines and targeted immunotherapy against tuberculosis.
Collapse
|
14
|
Grace PS, Ernst JD. Suboptimal Antigen Presentation Contributes to Virulence of Mycobacterium tuberculosis In Vivo. THE JOURNAL OF IMMUNOLOGY 2015; 196:357-64. [PMID: 26573837 DOI: 10.4049/jimmunol.1501494] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/22/2015] [Indexed: 12/16/2022]
Abstract
Mycobacterium tuberculosis commonly causes persistent or chronic infection, despite the development of Ag-specific CD4 T cell responses. We hypothesized that M. tuberculosis evades elimination by CD4 T cell responses by manipulating MHC class II Ag presentation and CD4 T cell activation and tested this hypothesis by comparing activation of Ag85B-specific CD4 T cell responses to M. tuberculosis and M. bovis bacillus Calmette-Guérin (BCG) Pasteur in vivo and in vitro. We found that, although M. tuberculosis persists in lungs of immunocompetent mice, M. bovis BCG is cleared, and clearance is T cell dependent. We further discovered that M. tuberculosis-infected macrophages and dendritic cells activate Ag85B-specific CD4 T cells less efficiently and less effectively than do BCG-infected cells, in vivo and in vitro, despite higher production and secretion of Ag85B by M. tuberculosis. During BCG infection, activation of Ag85B-specific CD4 T cells requires fewer infected dendritic cells and fewer Ag-producing bacteria than during M. tuberculosis infection. When dendritic cells containing equivalent numbers of M. tuberculosis or BCG were transferred to mice, BCG-infected cells activated proliferation of more Ag85B-specific CD4 T cells than did M. tuberculosis-infected cells. Differences in Ag85B-specific CD4 T cell activation were attributable to differential Ag presentation rather than differential expression of costimulatory or inhibitory molecules. These data indicate that suboptimal Ag presentation contributes to persistent infection and that limiting Ag presentation is a virulence property of M. tuberculosis.
Collapse
Affiliation(s)
- Patricia S Grace
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Joel D Ernst
- Department of Pathology, New York University School of Medicine, New York, NY 10016; Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, NY 10016; and Department of Microbiology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
15
|
Liu H, Zhou J, Ma D, Lu X, Ming S, Shan G, Zhang X, Hou J, Chen Z, Zuo D. Mannan binding lectin attenuates double-stranded RNA-mediated TLR3 activation and innate immunity. FEBS Lett 2014; 588:866-72. [PMID: 24530528 DOI: 10.1016/j.febslet.2014.01.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/21/2014] [Indexed: 01/04/2023]
Abstract
Mannan binding lectin (MBL) functions as a pattern recognition molecule (PRM) which is able to initiate complement activation. Here, we characterize a previously unrecognized attribute of MBL as a double-stranded RNA (dsRNA) binding protein capable of modifying Toll like receptor 3 (TLR3) activation. MBL interacts with poly(I:C) and suppresses poly(I:C)-induced activation of TLR3 pathways and subsequent cytokine production. In addition, MBL binds to TLR3 directly. Surprisingly, disrupting the interaction between MBL and complement receptor 1 (CR1) or restraining the traffic of MBL to phagosome reversed the MBL limited TLR3 activation. We demonstrate the importance of MBL guided ligands intracellular localization, emphasizing the significance of understanding the dynamics of TLR agonists complexed with MBL or other PRMs inside the cell in immune defense.
Collapse
Affiliation(s)
- Hongzhi Liu
- Department of Immunology, Southern Medical University, Guangzhou 510515, China
| | - Jia Zhou
- Department of Immunology, Southern Medical University, Guangzhou 510515, China
| | - Di Ma
- Department of Immunology, Southern Medical University, Guangzhou 510515, China
| | - Xiao Lu
- Department of Immunology, Southern Medical University, Guangzhou 510515, China
| | - Siqi Ming
- Department of Immunology, Southern Medical University, Guangzhou 510515, China
| | - Guiqiu Shan
- Department of Immunology, Southern Medical University, Guangzhou 510515, China; Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, China
| | - Xiaoyong Zhang
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Jinlin Hou
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Zhengliang Chen
- Department of Immunology, Southern Medical University, Guangzhou 510515, China.
| | - Daming Zuo
- Department of Immunology, Southern Medical University, Guangzhou 510515, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
16
|
Khatri B, Whelan A, Clifford D, Petrera A, Sander P, Vordermeier HM. BCG Δzmp1 vaccine induces enhanced antigen specific immune responses in cattle. Vaccine 2014; 32:779-84. [PMID: 24394444 DOI: 10.1016/j.vaccine.2013.12.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/10/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
Abstract
Mycobacterium bovis (M. bovis) causes major economy and public health problem in numerous countries. In Great Britain, despite the use of a test-and-slaughter strategy, the incidence of bovine tuberculosis (bTB) in cattle has steadily risen in recent years. One strategy being considered to reduce the burden of bTB in cattle is the development of an efficient vaccine. The only current potentially available vaccine against tuberculosis, live attenuated M. bovis bacille Calmette-Guérin (BCG), has demonstrated variable efficacy in both humans and cattle and the development of improved vaccination strategies for cattle is a research priority. In this study we assessed the immunogenicity in cattle of two recombinant BCG strains, namely BCG Pasteur Δzmp1::aph and BCG Danish Δzmp1. By applying a recently defined predictive immune-correlate of protection (T cell memory responses measured by cultured ELISPOT), we have compared these two recombinant BCG with wild-type BCG Danish SSI. Our results demonstrated that both strains induced superior T cell memory responses compared to wild-type BCG. These data provide support for the prioritisation of testing BCG Danish Δzmp1 in vaccination/M. bovis challenge studies to determine its protective efficacy.
Collapse
Affiliation(s)
- Bhagwati Khatri
- Department of Bovine Tuberculosis, Animal Health and Veterinary Laboratories Agency, Surrey, United Kingdom.
| | - Adam Whelan
- Department of Bovine Tuberculosis, Animal Health and Veterinary Laboratories Agency, Surrey, United Kingdom
| | - Derek Clifford
- Department of Bovine Tuberculosis, Animal Health and Veterinary Laboratories Agency, Surrey, United Kingdom
| | - Agnese Petrera
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland; Nationales Zentrum für Mykobakterien (NZM), Gloriastrasse 30/32, 8006 Zurich, Switzerland
| | - H Martin Vordermeier
- Department of Bovine Tuberculosis, Animal Health and Veterinary Laboratories Agency, Surrey, United Kingdom
| |
Collapse
|
17
|
Bobadilla K, Sada E, Jaime ME, González Y, Ramachandra L, Rojas RE, Pedraza-Sánchez S, Michalak C, González-Noriega A, Torres M. Human phagosome processing of Mycobacterium tuberculosis antigens is modulated by interferon-γ and interleukin-10. Immunology 2013; 138:34-46. [PMID: 22924705 DOI: 10.1111/imm.12010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 07/24/2012] [Accepted: 08/22/2012] [Indexed: 01/14/2023] Open
Abstract
Intracellular pathogens, such as Mycobacterium tuberculosis, reside in the phagosomes of macrophages where antigenic processing is initiated. Mycobacterial antigen-MHC class II complexes are formed within the phagosome and are then trafficked to the cell surface. Interferon-γ (IFN-γ) and interleukin-10 (IL-10) influence the outcome of M. tuberculosis infection; however, the role of these cytokines with regard to the formation of M. tuberculosis peptide-MHC-II complexes remains unknown. We analysed the kinetics and subcellular localization of M. tuberculosis peptide-MHC-II complexes in M. tuberculosis-infected human monocyte-derived macrophages (MDMs) using autologous M. tuberculosis-specific CD4(+) T cells. The MDMs were pre-treated with either IFN-γ or IL-10 and infected with M. tuberculosis. Cells were mechanically homogenized, separated on Percoll density gradients and manually fractionated. The fractions were incubated with autologous M. tuberculosis -specific CD4(+) T cells. Our results demonstrated that in MDMs pre-treated with IFN-γ, M. tuberculosis peptide-MHC-II complexes were detected early mainly in the phagosomal fractions, whereas in the absence of IFN-γ, the complexes were detected in the endosomal fractions. In MDMs pre-treated with IL-10, the M. tuberculosis peptide-MHC-II complexes were retained in the endosomal fractions, and these complexes were not detected in the plasma membrane fractions. The results of immunofluorescence microscopy demonstrated the presence of Ag85B associated with HLA-DR at the cell surface only in the IFN-γ-treated MDMs, suggesting that IFN-γ may accelerate M. tuberculosis antigen processing and presentation at the cell membrane, whereas IL-10 favours the trafficking of Ag85B to vesicles that do not contain LAMP-1. Therefore, IFN-γ and IL-10 play a role in the formation and trafficking of M. tuberculosis peptide-MHC-II complexes.
Collapse
Affiliation(s)
- Karen Bobadilla
- Departamento de Microbiología, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Brzezinska M, Szulc I, Brzostek A, Klink M, Kielbik M, Sulowska Z, Pawelczyk J, Dziadek J. The role of 3-ketosteroid 1(2)-dehydrogenase in the pathogenicity of Mycobacterium tuberculosis. BMC Microbiol 2013; 13:43. [PMID: 23425360 PMCID: PMC3599626 DOI: 10.1186/1471-2180-13-43] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 02/17/2013] [Indexed: 12/23/2022] Open
Abstract
Background A growing body of evidence suggests that Mycobacterium tuberculosis (Mtb) uses the host’s cholesterol as a source of carbon and energy during infection. Strains defective in cholesterol transport or degradation exhibit attenuated growth in activated macrophages and diminished infectivity in animal models. The aim of this study was to evaluate intracellular replication of a cholesterol degradation-deficient Mtb mutant in human macrophages (MØ) in vitro and assess the functional responses of Mtb mutant-infected MØ. Results A mutant Mtb H37Rv strain containing an inactivated kstD gene (∆kstD), which encodes 3-ketosteroid 1(2)-dehydrogenase (KstD), was previously prepared using the homologous recombination-based gene-replacement technique. A control strain carrying the kstD gene complemented with an intact kstD was also previously constructed. In this study, human resting MØ were obtained after overnight differentiation of the human monocyte-macrophage cell line THP-1. Resting MØ were further activated with interferon-γ (IFN-γ). The ability of the kstD-defective Mtb mutant strain to replicate intracellularly in human MØ was evaluated using a colony-forming assay. Nitric oxide (NO) and reactive oxygen species (ROS) production by MØ infected with wild-type or ∆kstD strains was detected using Griess reagent and chemiluminescence methods, respectively. The production of tumor necrosis factor-α and interleukin-10 by MØ after infection with wild-type or mutant Mtb was examined using enzyme-linked immunosorbent assays. We found that replication of mutant Mtb was attenuated in resting MØ compared to the wild-type or complemented strains. Moreover, the mutant was unable to inhibit the NO and ROS production induced through Toll-like receptor 2 (TLR2) signaling in infected resting MØ. In contrast, mutant and wild-type Mtb behaved similarly in MØ activated with IFN-γ before and during infection. Conclusions The Mtb mutant ∆kstD strain, which is unable to use cholesterol as a source of carbon and energy, has a limited ability to multiply in resting MØ following infection, reflecting a failure of the ∆kstD strain to inhibit the TLR2-dependent bactericidal activity of resting MØ.
Collapse
Affiliation(s)
- Marta Brzezinska
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106 93-232, Lodz, Poland
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Sada-Ovalle I, Chávez-Galán L, Torre-Bouscoulet L, Nava-Gamiño L, Barrera L, Jayaraman P, Torres-Rojas M, Salazar-Lezama MA, Behar SM. The Tim3-galectin 9 pathway induces antibacterial activity in human macrophages infected with Mycobacterium tuberculosis. THE JOURNAL OF IMMUNOLOGY 2012. [PMID: 23180819 DOI: 10.4049/jimmunol.1200990] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T cell Ig and mucin domain 3 (Tim3) is an inhibitory molecule involved in immune tolerance, autoimmune responses, and antiviral immune evasion. However, we recently demonstrated that Tim3 and Galectin-9 (Gal9) interaction induces a program of macrophage activation that results in killing of Mycobacterium tuberculosis in the mouse model of infection. In this study, we sought to determine whether the Tim3-Gal9 pathway plays a similar role in human pulmonary TB. We identified that pulmonary TB patients have reduced expression of Tim3 on CD14(+) monocytes in vivo. By blocking Tim3 and Gal9 interaction in vitro, we show that these molecules contribute to the control of intracellular bacterial replication in human macrophages. The antimicrobial effect was partially dependent on the production of IL-1β. Our results establish that Tim3-Gal9 interaction activates human M. tuberculosis -infected macrophages and leads to the control of bacterial growth through the production of the proinflammatory cytokine IL-1β. Data presented in this study suggest that one of the potential pathways activated by Tim3/Gal9 is the secretion of IL-1β, which plays a crucial role in antimicrobial immunity by modulating innate inflammatory networks.
Collapse
Affiliation(s)
- Isabel Sada-Ovalle
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases, Mexico City 14080, Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yang D, Liu Q, Yang M, Wu H, Wang Q, Xiao J, Zhang Y. RNA-seq liver transcriptome analysis reveals an activated MHC-I pathway and an inhibited MHC-II pathway at the early stage of vaccine immunization in zebrafish. BMC Genomics 2012; 13:319. [PMID: 22805612 PMCID: PMC3583171 DOI: 10.1186/1471-2164-13-319] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 07/17/2012] [Indexed: 01/18/2023] Open
Abstract
Background Zebrafish (Danio rerio) is a prominent vertebrate model of human development and pathogenic disease and has recently been utilized to study teleost immune responses to infectious agents threatening the aquaculture industry. In this work, to clarify the host immune mechanisms underlying the protective effects of a putative vaccine and improve its immunogenicity in the future efforts, high-throughput RNA sequencing technology was used to investigate the immunization-related gene expression patterns of zebrafish immunized with Edwardsiella tarda live attenuated vaccine. Results Average reads of 18.13 million and 14.27 million were obtained from livers of zebrafish immunized with phosphate buffered saline (mock) and E. tarda vaccine (WED), respectively. The reads were annotated with the Ensembl zebrafish database before differential expressed genes sequencing (DESeq) comparative analysis, which identified 4565 significantly differentially expressed genes (2186 up-regulated and 2379 down-regulated in WED; p<0.05). Among those, functional classifications were found in the Gene Ontology database for 3891 and in the Kyoto Encyclopedia of Genes and Genomes database for 3467. Several pathways involved in acute phase response, complement activation, immune/defense response, and antigen processing and presentation were remarkably affected at the early stage of WED immunization. Further qPCR analysis confirmed that the genes encoding the factors involved in major histocompatibility complex (MHC)-I processing pathway were up-regulated, while those involved in MHC-II pathway were down-regulated. Conclusion These data provided insights into the molecular mechanisms underlying zebrafish immune response to WED immunization and might aid future studies to develop a highly immunogenic vaccine against gram-negative bacteria in teleosts.
Collapse
Affiliation(s)
- Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Mycobacterium tuberculosis is an old enemy of the human race, with evidence of infection observed as early as 5000 years ago. Although more host-restricted than Mycobacterium bovis, which can infect all warm-blooded vertebrates, M. tuberculosis can infect, and cause morbidity and mortality in, several veterinary species as well. As M. tuberculosis is one of the earliest described bacterial pathogens, the literature describing this organism is vast and overwhelming. This review strives to distill what is currently known about this bacterium and the disease it causes for the veterinary pathologist.
Collapse
Affiliation(s)
- K Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Dr, Athens, GA 30602-7388, USA.
| |
Collapse
|
22
|
Lim YJ, Choi JA, Choi HH, Cho SN, Kim HJ, Jo EK, Park JK, Song CH. Endoplasmic reticulum stress pathway-mediated apoptosis in macrophages contributes to the survival of Mycobacterium tuberculosis. PLoS One 2011; 6:e28531. [PMID: 22194844 PMCID: PMC3237454 DOI: 10.1371/journal.pone.0028531] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 11/09/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Apoptosis is thought to play a role in host defenses against intracellular pathogens, including Mycobacterium tuberculosis (Mtb), by preventing the release of intracellular components and the spread of mycobacterial infection. This study aims to investigate the role of endoplasmic reticulum (ER) stress mediated apoptosis in mycobacteria infected macrophages. METHODOLOGY/PRINCIPAL FINDINGS Here, we demonstrate that ER stress-induced apoptosis is associated with Mtb H37Rv-induced cell death of Raw264.7 murine macrophages. We have shown that Mtb H37Rv induced apoptosis are involved in activation of caspase-12, which resides on the cytoplasmic district of the ER. Mtb infection increase levels of other ER stress indicators in a time-dependent manner. Phosphorylation of eIF2α was decreased gradually after Mtb H37Rv infection signifying that Mtb H37Rv infection may affect eIF2α phosphorylation in an attempt to survive within macrophages. Interestingly, the survival of mycobacteria in macrophages was enhanced by silencing CHOP expression. In contrast, survival rate of mycobacteria was reduced by phosphorylation of the eIF2α. Futhermore, the levels of ROS, NO or CHOP expression were significantly increased by live Mtb H37Rv compared to heat-killed Mtb H37Rv indicating that live Mtb H37Rv could induce ER stress response. CONCLUSION/SIGNIFICANCE These findings indicate that eIF2α/CHOP pathway may influence intracellular survival of Mtb H37Rv in macrophages and only live Mtb H37Rv can induce ER stress response. The data support the ER stress pathway plays an important role in the pathogenesis and persistence of mycobacteria.
Collapse
Affiliation(s)
- Yun-Ji Lim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Ji-Ae Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Hong-Hee Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Soo-Na Cho
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jeong-Kyu Park
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Chang-Hwa Song
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, South Korea
- * E-mail:
| |
Collapse
|
23
|
Ferraris DM, Sbardella D, Petrera A, Marini S, Amstutz B, Coletta M, Sander P, Rizzi M. Crystal structure of Mycobacterium tuberculosis zinc-dependent metalloprotease-1 (Zmp1), a metalloprotease involved in pathogenicity. J Biol Chem 2011; 286:32475-82. [PMID: 21813647 PMCID: PMC3173161 DOI: 10.1074/jbc.m111.271809] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/20/2011] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, parasitizes host macrophages. The resistance of the tubercle bacilli to the macrophage hostile environment relates to their ability to impair phagosome maturation and its fusion with the lysosome, thus preventing the formation of the phago-lysosome and eventually arresting the process of phagocytosis. The M. tuberculosis zinc-dependent metalloprotease Zmp1 has been proposed to play a key role in the process of phagosome maturation inhibition and emerged as an important player in pathogenesis. Here, we report the crystal structure of wild-type Zmp1 at 2.6 Å resolution in complex with the generic zinc metalloprotease inhibitor phosphoramidon, which we demonstrated to inhibit the enzyme potently. Our data represent the first structural characterization of a bacterial member of the zinc-dependent M13 endopeptidase family and revealed a significant degree of conservation with eukaryotic enzymes. However, structural comparison of the Zmp1-phosphoramidon complex with homologous human proteins neprilysin and endothelin-converting enzyme-1 revealed unique features of the Zmp1 active site to be exploited for the rational design of specific inhibitors that may prove useful as a pharmacological tool for better understanding Zmp1 biological function.
Collapse
Affiliation(s)
- Davide M. Ferraris
- From the DISCAFF Department of Chemical, Food, Pharmaceutical and Pharmacological Sciences, University of Piemonte Orientale A. Avogadro, 28100 Novara, Italy
| | - Diego Sbardella
- the Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy
- the Interuniversity Consortium for Research on the Chemistry of Metals in Biological Systems, 70126 Bari, Italy, and
| | - Agnese Petrera
- the Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Stefano Marini
- the Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Beat Amstutz
- the Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Massimo Coletta
- From the DISCAFF Department of Chemical, Food, Pharmaceutical and Pharmacological Sciences, University of Piemonte Orientale A. Avogadro, 28100 Novara, Italy
- the Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Peter Sander
- the Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Menico Rizzi
- From the DISCAFF Department of Chemical, Food, Pharmaceutical and Pharmacological Sciences, University of Piemonte Orientale A. Avogadro, 28100 Novara, Italy
| |
Collapse
|
24
|
Pathogenesis, immunology, and diagnosis of latent Mycobacterium tuberculosis infection. Clin Dev Immunol 2010; 2011:814943. [PMID: 21234341 PMCID: PMC3017943 DOI: 10.1155/2011/814943] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 10/28/2010] [Indexed: 01/22/2023]
Abstract
Phagocytosis of tubercle bacilli by antigen-presenting cells in human lung alveoli initiates a complex infection process by Mycobacterium tuberculosis and a potentially protective immune response by the host. M. tuberculosis has devoted a large part of its genome towards functions that allow it to successfully establish latent or progressive infection in the majority of infected individuals. The failure of immune-mediated clearance is due to multiple strategies adopted by M. tuberculosis that blunt the microbicidal mechanisms of infected immune cells and formation of distinct granulomatous lesions that differ in their ability to support or suppress the persistence of viable M. tuberculosis. In this paper, current understanding of various immune processes that lead to the establishment of latent M. tuberculosis infection, bacterial spreading, persistence, reactivation, and waning or elimination of latent infection as well as new diagnostic approaches being used for identification of latently infected individuals for possible control of tuberculosis epidemic are described.
Collapse
|
25
|
Muraille E, Gounon P, Cazareth J, Hoebeke J, Lippuner C, Davalos-Misslitz A, Aebischer T, Muller S, Glaichenhaus N, Mougneau E. Direct visualization of peptide/MHC complexes at the surface and in the intracellular compartments of cells infected in vivo by Leishmania major. PLoS Pathog 2010; 6:e1001154. [PMID: 20976202 PMCID: PMC2954901 DOI: 10.1371/journal.ppat.1001154] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 09/17/2010] [Indexed: 12/22/2022] Open
Abstract
Protozoa and bacteria infect various types of phagocytic cells including macrophages, monocytes, dendritic cells and eosinophils. However, it is not clear which of these cells process and present microbial antigens in vivo and in which cellular compartments parasite peptides are loaded onto Major Histocompatibility Complex molecules. To address these issues, we have infected susceptible BALB/c (H-2d) mice with a recombinant Leishmania major parasite expressing a fluorescent tracer. To directly visualize the antigen presenting cells that present parasite-derived peptides to CD4+ T cells, we have generated a monoclonal antibody that reacts to an antigenic peptide derived from the parasite LACK antigen bound to I-Ad Major Histocompatibility Complex class II molecule. Immunogold electron microscopic analysis of in vivo infected cells showed that intracellular I-Ad/LACK complexes were present in the membrane of amastigote-containing phagosomes in dendritic cells, eosinophils and macrophages/monocytes. In both dendritic cells and macrophages, these complexes were also present in smaller vesicles that did not contain amastigote. The presence of I-Ad/LACK complexes at the surface of dendritic cells, but neither on the plasma membrane of macrophages nor eosinophils was independently confirmed by flow cytometry and by incubating sorted phagocytes with highly sensitive LACK-specific hybridomas. Altogether, our results suggest that peptides derived from Leishmania proteins are loaded onto Major Histocompatibility Complex class II molecules in the phagosomes of infected phagocytes. Although these complexes are transported to the cell surface in dendritic cells, therefore allowing the stimulation of parasite-specific CD4+ T cells, this does not occur in other phagocytic cells. To our knowledge, this is the first study in which Major Histocompatibility Complex class II molecules bound to peptides derived from a parasite protein have been visualized within and at the surface of cells that were infected in vivo.
Collapse
Affiliation(s)
- Eric Muraille
- Institut de Pharmacologie Moléculaire et Cellulaire, INSERM U924, Valbonne, France
- Université de Nice Sophia-Antipolis, Nice, France
| | | | - Julie Cazareth
- Institut de Pharmacologie Moléculaire et Cellulaire, INSERM U924, Valbonne, France
- Université de Nice Sophia-Antipolis, Nice, France
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Valbonne, France
| | - Johan Hoebeke
- UPR 9021 CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | - Toni Aebischer
- Parasitology laboratory, Robert Koch Institute, Berlin, Germany
| | - Sylviane Muller
- UPR 9021 CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Nicolas Glaichenhaus
- Institut de Pharmacologie Moléculaire et Cellulaire, INSERM U924, Valbonne, France
- Université de Nice Sophia-Antipolis, Nice, France
| | - Evelyne Mougneau
- Institut de Pharmacologie Moléculaire et Cellulaire, INSERM U924, Valbonne, France
- Université de Nice Sophia-Antipolis, Nice, France
| |
Collapse
|
26
|
Harding CV, Canaday D, Ramachandra L. Choosing and preparing antigen-presenting cells. CURRENT PROTOCOLS IN IMMUNOLOGY 2010; Chapter 16:16.1.1-16.1.30. [PMID: 20143315 DOI: 10.1002/0471142735.im1601s88] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The first issue in selecting a system for antigen-presentation experiments is to define the appropriate type of antigen-presenting cell (APC) to study. For some experiments, crude preparations such as splenocytes or peripheral blood mononuclear cells (PBMCs) may suffice to provide APC function for stimulating T cells. This unit develops approaches for preparation of more defined APC populations, including dendritic cells (DCs), macrophages, and B lymphocytes, the three types of "professional" APC. Each of these cell types exists in different stages of differentiation, maturation, and activation, or in some cases different lineages. For example, dendritic cells may be divided into subsets, including myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). Each APC type has an important antigen-presentation function, although they contribute to different aspects of the immune response. Therefore, selection of an APC type for study must include consideration of the stage or aspect of immune response that is to be modeled in the experiment.
Collapse
|
27
|
Hulseberg PD, Zozulya A, Chu HH, Triccas JA, Fabry Z, Sandor M. The same well-characterized T cell epitope SIINFEKL expressed in the context of a cytoplasmic or secreted protein in BCG induces different CD8+ T cell responses. Immunol Lett 2009; 130:36-42. [PMID: 20005257 DOI: 10.1016/j.imlet.2009.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 12/02/2009] [Indexed: 11/18/2022]
Abstract
Mycobacterium bovis BCG is still the most widely used vaccine against tuberculosis and CD8(+) T cells play important roles in fighting infection. We investigated how well antigen is processed and presented to CD8(+) T cells using the same well-characterized CD8(+) T cell epitope SIINFEKL expressed in either a cytoplasmic (GFP-OVA) or secreted (85B-OVA) context from BCG. We report that secreted SIINFEKL from 85B-OVA BCG is presented better than cytoplasmic SIINFEKL expressed by GFP-OVA BCG.
Collapse
Affiliation(s)
- Paul D Hulseberg
- Department of Pathology and Laboratory Sciences, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Mycobacterium tuberculosis is one of the most successful of human pathogens and has acquired the ability to establish latent or progressive infection and persist even in the presence of a fully functioning immune system. The ability of M. tuberculosis to avoid immune-mediated clearance is likely to reflect a highly evolved and coordinated program of immune evasion strategies, including some that interfere with antigen presentation to prevent or alter the quality of T-cell responses. Here, we review an extensive array of published studies supporting the view that antigen presentation pathways are targeted at many points by pathogenic mycobacteria. These studies show the multiple potential mechanisms by which M. tuberculosis may actively inhibit, subvert or otherwise modulate antigen presentation by major histocompatibility complex class I, class II and CD1 molecules. Unraveling the mechanisms by which M. tuberculosis evades or modulates antigen presentation is of critical importance for the development of more effective new vaccines based on live attenuated mycobacterial strains.
Collapse
Affiliation(s)
- Andres Baena
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
29
|
MHC molecules and microbial antigen processing in phagosomes. Curr Opin Immunol 2009; 21:98-104. [PMID: 19217269 DOI: 10.1016/j.coi.2009.01.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 01/16/2009] [Indexed: 11/19/2022]
Abstract
Macrophages and dendritic cells are phagocytic antigen presenting cells that internalize bacteria and other particulate antigens into phagosomes. The phagosome must then balance microbicidal and proteolytic degradation functions with the generation of antigenic peptides for presentation by class I and class II MHC molecules to CD8 and CD4 T cells, respectively. Understanding the host and bacterial factors that affect phagosomal antigen processing may help facilitate new strategies to eliminate pathogens.
Collapse
|
30
|
Autophagy in immunity against mycobacterium tuberculosis: a model system to dissect immunological roles of autophagy. Curr Top Microbiol Immunol 2009; 335:169-88. [PMID: 19802565 DOI: 10.1007/978-3-642-00302-8_8] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The recognition of autophagy as an immune mechanism has been affirmed in recent years. One of the model systems that has helped in the development of our current understanding of how autophagy and more traditional immunity systems cooperate in defense against intracellular pathogens is macrophage infection with Mycobacterium tuberculosis. M. tuberculosis is a highly significant human pathogen that latently infects billions of people and causes active disease in millions of patients worldwide. The ability of the tubercle bacillus to persist in human populations rests upon its macrophage parasitism. One of the initial reports on the ability of autophagy to act as a cell-autonomous innate immunity mechanism capable of eliminating intracellular bacteria was on M. tuberculosis. This model system has further contributed to the recognition of multiple connections between conventional immune regulators and autophagy. In this chapter, we will review how these studies have helped to establish the following principles: (1) autophagy functions as an innate defense mechanism against intracellular microbes; (2) autophagy is under the control of pattern recognition receptors (PRR) such as Toll-like receptors (TLR), and it acts as one of the immunological output effectors of PRR and TLR signaling; (3) autophagy is one of the effector functions associated with the immunity-regulated GTPases, which were initially characterized as molecules involved in cell-autonomous defense, but whose mechanism of function was unknown until recently; (4) autophagy is an immune effector of Th1/Th2 T cell response polarization-autophagy is activated by Th1 cytokines (which act in defense against intracellular pathogens) and is inhibited by Th2 cytokines (which make cells accessible to intracellular pathogens). Collectively, the studies employing the M. tuberculosis autophagy model system have contributed to the development of a more comprehensive view of autophagy as an immunological process. This work and related studies by others have led us to propose a model of how autophagy, an ancient innate immunity defense, became integrated over the course of evolution with other immune mechanisms of ever-increasing complexity.
Collapse
|
31
|
Wozniak KL, Levitz SM. Cryptococcus neoformans enters the endolysosomal pathway of dendritic cells and is killed by lysosomal components. Infect Immun 2008; 76:4764-71. [PMID: 18678670 PMCID: PMC2546838 DOI: 10.1128/iai.00660-08] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/02/2008] [Accepted: 07/21/2008] [Indexed: 12/22/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that primarily causes disease in immunocompromised individuals. Dendritic cells (DCs) can phagocytose C. neoformans, present cryptococcal antigen, and kill C. neoformans. However, early events following C. neoformans phagocytosis by DCs are not well defined. We hypothesized that C. neoformans traffics to the endosome and the lysosome following phagocytosis by DCs and is eventually killed in the lysosome. Murine bone marrow-derived DCs (BMDCs) or human monocyte-derived DCs (HDCs) were incubated with live, encapsulated C. neoformans yeast cells and opsonizing antibody. Following incubation, DCs were intracellularly stained with antibodies against EEA1 (endosome) and LAMP-1 (late endosome/lysosome). As assessed by confocal microscopy, C. neoformans trafficked to endosomal compartments of DCs within 10 min and to lysosomal compartments within 30 min postincubation. For HDCs, the studies were repeated using complement-sufficient autologous plasma for the opsonization of C. neoformans. These data showed results similar to those for antibody opsonization, with C. neoformans localized to endosomes within 20 min and to lysosomes within 60 min postincubation. Additionally, the results of live real-time imaging studies demonstrated that C. neoformans entered lysosomal compartments within 20 min following the initiation of phagocytosis. The results of scanning and transmission electron microscopy demonstrated conventional zipper phagocytosis of C. neoformans by DCs. Finally, lysosomal extracts were purified from BMDCs and incubated with C. neoformans to determine their potential to kill C. neoformans. The extracts killed C. neoformans in a dose-dependent manner. This study shows that C. neoformans enters into endosomal and lysosomal pathways following DC phagocytosis and can be killed by lysosomal components.
Collapse
Affiliation(s)
- Karen L Wozniak
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
32
|
Lu D, Garcia-Contreras L, Xu D, Kurtz SL, Liu J, Braunstein M, McMurray DN, Hickey AJ. Poly (lactide-co-glycolide) microspheres in respirable sizes enhance an in vitro T cell response to recombinant Mycobacterium tuberculosis antigen 85B. Pharm Res 2007; 24:1834-43. [PMID: 17657598 DOI: 10.1007/s11095-007-9302-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2007] [Accepted: 03/20/2007] [Indexed: 11/29/2022]
Abstract
PURPOSE To investigate the use of poly (lactide-co-glycolide) (PLGA) microparticles in respirable sizes as carriers for Antigen 85B (Ag85B), a secreted protein of Mycobacterium tuberculosis, with the ultimate goal of employing them in pulmonary delivery of tuberculosis vaccine. MATERIALS AND METHODS Recombinant Ag85B was expressed from two Escherichia coli strains and encapsulated by spray-drying in PLGA microspheres with/without adjuvants. These microspheres containing rAg85B were assessed for their ability to deliver antigen to macrophages for subsequent processing and presentation to the specific CD4 T-hybridoma cells DB-1. DB-1 cells recognize the Ag85B(97-112) epitope presented in the context of MHC class II and secrete IL-2 as the cytokine marker. RESULTS Microspheres suitable for aerosol delivery to the lungs (3.4-4.3 microm median diameter) and targeting alveolar macrophages were manufactured. THP-1 macrophage-like cells exposed with PLGA-rAg85B microspheres induced the DB-1 cells to produce IL-2 at a level that was two orders of magnitude larger than the response elicited by soluble rAg85B. This formulation demonstrated extended epitope presentation. CONCLUSIONS PLGA microspheres in respirable sizes were effective in delivering rAg85B in an immunologically relevant manner to macrophages. These results are a foundation for further investigation into the potential use of PLGA particles for delivery of vaccines to prevent M. tuberculosis infection.
Collapse
Affiliation(s)
- Dongmei Lu
- Molecular Pharmaceutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Basu SK, Kumar D, Singh DK, Ganguly N, Siddiqui Z, Rao KVS, Sharma P. Mycobacterium tuberculosis secreted antigen (MTSA-10) modulates macrophage function by redox regulation of phosphatases. FEBS J 2006; 273:5517-34. [PMID: 17212774 DOI: 10.1111/j.1742-4658.2006.05543.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Macrophages are the primary host cells for Mycobacterium tuberculosis (Mtb). Although macrophages can mount a strong inflammatory response to dispose of invading microbial pathogens, the immune dysfunction of the Mtb-infected macrophage constitutes the hallmark of mycobacterial pathogenesis. A 10-kDa, Mtb secretory antigen (MTSA-10), encoded by ORF Rv3874, is one of the predominant members of the 'region of difference 1' locus of Mtb genome that has been strongly implicated in mycobacterial virulence. In this study, we investigated the possible role of MTSA-10 in modulating the macrophage dysfunction in a mouse macrophage cell line J774.1. We found that recombinant MTSA-10 caused extensive protein dephosphorylation in J774.1 cells as revealed by two-dimensional gel electrophoresis analysis. We also observed that MTSA-10 treatment downregulated the reactive oxygen species levels in the cells leading to activation of cellular protein phosphatases putatively responsible for the dephosphorylation phenomenon. This implied a direct role of MTSA-10 in the disruption of host cell signaling, resulting in downregulation of transcription of several genes essential for macrophage function.
Collapse
Affiliation(s)
- Sandip K Basu
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|