1
|
Anbo M, Lubna MA, Moustafa DA, Paiva TO, Serioli L, Zor K, Sternberg C, Jeannot K, Ciofu O, Dufrêne YF, Goldberg JB, Jelsbak L. Serotype switching in Pseudomonas aeruginosa ST111 enhances adhesion and virulence. PLoS Pathog 2024; 20:e1012221. [PMID: 39621751 PMCID: PMC11637443 DOI: 10.1371/journal.ppat.1012221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/12/2024] [Accepted: 11/05/2024] [Indexed: 12/14/2024] Open
Abstract
Evolution of the highly successful and multidrug resistant clone ST111 in Pseudomonas aeruginosa involves serotype switching from O-antigen O4 to O12. How expression of a different O-antigen serotype alters pathogen physiology to enable global dissemination of this high-risk clone-type is not understood. Here, we engineered isogenic laboratory and clinical P. aeruginosa strains that express the different O-antigen gene clusters to assess the correlation of structural differences of O4 and O12 O-antigens to pathogen-relevant phenotypic traits. We show that serotype O12 is associated with enhanced adhesion, type IV pili dependent twitching motility, and tolerance to host defense molecules and serum. Moreover, we find that serotype O4 is less virulent compared to O12 in an acute murine pneumonia infection in terms of both colonization and survival rate. Finally, we find that these O-antigen effects may be explained by specific biophysical properties of the serotype repeat unit found in O4 and O12, and by differences in membrane stability between O4 and O12 expressing cells. The results demonstrate that differences in O-antigen sugar composition can affect P. aeruginosa pathogenicity traits, and provide a better understanding of the potential selective advantages that underlie serotype switching and emergence of serotype O12 ST111.
Collapse
Affiliation(s)
- Mikkel Anbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mahbuba Akter Lubna
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Dina A. Moustafa
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Telmo O. Paiva
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Laura Serioli
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Bioinnovation Institute Foundation, Copenhagen, Denmark
| | - Kinga Zor
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Bioinnovation Institute Foundation, Copenhagen, Denmark
| | - Claus Sternberg
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Katy Jeannot
- Laboratory of Bacteriology, Associated Laboratory to French National Reference Center for Antibiotic Resistance, Teaching hospital of Besançon, France
| | - Oana Ciofu
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Joanna B. Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Zhang R, Li M, Ma H, Wang Y, Xin B, Guo J. Performance of a novel annular electric field membrane bioreactor and its membrane fouling control in treating catering wastewater. CHEMOSPHERE 2024; 368:143756. [PMID: 39551193 DOI: 10.1016/j.chemosphere.2024.143756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
This study aimed to investigate the effects of different voltage and aeration conditions on catering wastewater treatment and membrane fouling in a novel annular electric field membrane bioreactor (AEMBR). The results indicated that the synergistic effect of annular electric field and aeration promoted the degradation of wastewater and the alleviation of membrane fouling. The treatment effect was optimal under a micro electric field of 0.5 V, with removal rates for COD, NH4+-N, TP, and oil ranging from 96.85% to 99.36%, 80.43%-83.01%, 95.46%-97.79%, and 98.83%-99.15%, respectively. Additionally, the fluorescence intensity of macromolecular proteins and small molecular acids decreased. Simultaneously, the average growth rate of transmembrane pressure (TMP) reduced by approximately 0.4 kPa/d. The species abundance and diversity of activated sludge increased, promoting the growth of dominant bacteria, all while maintaining low energy consumption. The aeration intensity had relatively little impact on system operation, and the force of the annular electric field was greater than the force of aeration. This study verified the optimal benefits under micro electric field conditions and provided a basis for the optimization of future process design to achieve a more efficient and economical wastewater treatment system.
Collapse
Affiliation(s)
- Rong Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China.
| | - Mengqian Li
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China.
| | - Huan Ma
- Powerchina Northwest Engineering Corporation, Xi 'an, 710065, PR China.
| | - Yanyan Wang
- Shaanxi Applied Physics-Chemistry Research Institute, Xi 'an, 710061, PR China.
| | - Beiyu Xin
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China.
| | - Jifeng Guo
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China.
| |
Collapse
|
3
|
Wang X, Lu Y, Yan Y, Wang R, Wang Y, Li H, Zhou L, Zheng G, Zhang Y. Pivotal role of intracellular oxidation by HOCl in simultaneously removing antibiotic resistance genes and enhancing dewaterability during conditioning of sewage sludge using Fe 2+/Ca(ClO) 2. WATER RESEARCH 2024; 254:121414. [PMID: 38461604 DOI: 10.1016/j.watres.2024.121414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Pre-acidification has been shown to be crucial in attenuating antibiotic resistance genes (ARGs) during the conditioning of sewage sludge. However, it is of great significance to develop alternative conditioning approaches that can effectively eliminate sludge-borne ARGs without relying on pre-acidification. This is due to the high investment costs and operational complexities associated with sludge pre-acidification. In this study, the effects of Fe2+/Ca(ClO)2 conditioning treatment on the enhancement of sludge dewaterability and the removal of ARGs were compared with other conditioning technologies. The dose effect and the associated mechanisms were also investigated. The findings revealed that Fe2+/Ca(ClO)2 conditioning treatment had the highest potential, even surpassing Fenton treatment with pre-acidification, in terms of eliminating the total ARGs. Moreover, the effectiveness of the treatment was found to be dose-dependent. This study also identified that the •OH radical reacted with extracellular polymeric substance (EPS) and extracellular ARGs, and the HOCl, the production of which was positively correlated with the dose of Fe2+/Ca(ClO)2, could infiltrate the EPS layer and diffuse into the cell of sludge flocs, inducing the oxidation of intracellular ARGs. Furthermore, this study observed a significant decrease in the predicted hosts of ARGs and MGEs in sludge conditioned with Fe2+/Ca(ClO)2, accompanied by a significant downregulation of metabolic pathways associated with ARG propagation, thereby contributing to the attenuation of sludge-borne ARGs. Based on these findings, it can be concluded that Fe2+/Ca(ClO)2 conditioning treatment holds great potential for the removal of sludge-borne ARGs while also enhancing sludge dewaterability, which mainly relies on the intracellular oxidation by HOCl.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Lu
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiwen Yan
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ru Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuhang Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Li
- Department of Civil Engineering, College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| |
Collapse
|
4
|
Volle C, Núñez ME, Spain EM, Hart BC, Wengen MB, Lane S, Criollo A, Mahoney CA, Ferguson MA. AFM Force Mapping Elucidates Pilus Deployment and Key Lifestyle-Dependent Surface Properties in Bdellovibrio bacteriovorus. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4233-4244. [PMID: 36926913 PMCID: PMC10062353 DOI: 10.1021/acs.langmuir.2c03134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Bdellovibrio bacteriovorus is known for predation of a wide variety of Gram-negative bacteria, making it of interest as an alternative or supplement to chemical antibiotics. However, a fraction of B. bacteriovorus follows a nonpredatory, "host-independent" (HI) life cycle. In this study, live predatory and HI B. bacteriovorus were captured on a surface and examined, in buffer, by collecting force maps using atomic force microscopy (AFM). The approach curves obtained on HI cells are similar to those on other Gram-negative cells, with a short nonlinear region followed by a linear region. In contrast, the approach curves obtained on predatory cells have a large nonlinear region, reflecting the unusual flexibility of the predatory cell. As the AFM tip is retracted, it shows virtually no adhesion to predatory B. bacteriovorus but has multiple adhesion events on HI cells and the 200-500+ nm region immediately surrounding them. Measured pull-off forces, pull-off distances, and effective spring constants are consistent with the multiple stretching events of Type IV pili, both on and especially adjacent to the cells. Exposure of the HI B. bacteriovorus to a pH-neutral 10% cranberry juice solution, which contains type A proanthocyanidins that are known to interfere with the adhesion of multiple types of pili, results in a substantial reduction in adhesion. Type IV pili are required for successful predation by B. bacteriovorus, but pili used in the predation process are located at the non-flagellated pole of the cell and can retract when not in use. Such pili are rarely observed under the conditions of this study, where the predator has not encountered a prey cell. In contrast, HI cells appear to have many pili distributed on and around the whole cell, presumably ready to be utilized for a variety of HI cell activities including attachment to surfaces.
Collapse
Affiliation(s)
- Catherine
B. Volle
- Departments
of Chemistry and Biology, Cornell College, Mount Vernon, Iowa 52314, United States
| | - Megan E. Núñez
- Department
of Chemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Eileen M. Spain
- Department
of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Bridget C. Hart
- Department
of Chemistry, State University of New York, New Paltz, New York 12561, United States
| | - Michael B. Wengen
- Department
of Chemistry, State University of New York, New Paltz, New York 12561, United States
| | - Sophia Lane
- Department
of Chemistry, State University of New York, New Paltz, New York 12561, United States
| | - Alexa Criollo
- Department
of Chemistry, State University of New York, New Paltz, New York 12561, United States
| | - Catherine A. Mahoney
- Department
of Chemistry, State University of New York, New Paltz, New York 12561, United States
| | - Megan A. Ferguson
- Department
of Chemistry, State University of New York, New Paltz, New York 12561, United States
| |
Collapse
|
5
|
Huang R, Pan H, Zheng X, Fan C, Si W, Bao D, Gao S, Tian J. Effect of Membrane Pore Size on Membrane Fouling of Corundum Ceramic Membrane in MBR. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4558. [PMID: 36901568 PMCID: PMC10001914 DOI: 10.3390/ijerph20054558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Ceramic membrane has emerged as a promising material to address the membrane fouling issue in membrane bioreactors (MBR). In order to optimize the structural property of ceramic membrane, four corundum ceramic membranes with the mean pore size of 0.50, 0.63, 0.80, and 1.02 μm were prepared, which were designated as C5, C7, C13, and C20, respectively. Long-term MBR experiments showed that the C7 membrane with medium pore size experienced the lowest trans-membrane pressure development rate. Both the decrease and increase of membrane pore size would lead to more severe membrane fouling in the MBR. It was also interesting that with the increase of membrane pore size, the relative proportion of cake layer resistance in total fouling resistance was gradually increased. The content of dissolved organic foulants (i.e., protein, polysaccharide and DOC) on the surface of C7 was quantified as the lowest among the different ceramic membranes. Microbial community analysis also revealed the C7 had a lower relative abundance of membrane fouling associated bacteria in its cake layer. The results clearly demonstrated that ceramic membrane fouling in MBR could be effectively alleviated through optimizing the membrane pore size, which was a key structural factor for preparation of ceramic membrane.
Collapse
Affiliation(s)
- Rui Huang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
- Guangdong GDH Water Co., Ltd., Shenzhen 518021, China
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hui Pan
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xing Zheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
| | - Chao Fan
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Wenyan Si
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Dongguan Bao
- Shanghai Hanyuan Engineering & Technology Co., Ltd., Shanghai 201400, China
| | - Shanshan Gao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
- Guangdong GDH Water Co., Ltd., Shenzhen 518021, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
6
|
Wang B, Wang C, Hu Y. Sorption behavior of Pb(II) onto polyvinyl chloride microplastics affects the formation and ecological functions of microbial biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155026. [PMID: 35390363 DOI: 10.1016/j.scitotenv.2022.155026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) are regarded as transport media for heavy metals in aquatic systems, whereas the effects of the heavy metal-enriched MPs on microbial biofilms are still unclear. In this study, Pb(II) sorption onto polyvinyl chloride (PVC) MPs and its effects on the formation and ecological functions of microbial biofilms were investigated. The results showed that the interaction between Pb(II) and PVC MPs was dominated by physisorption. The maximum sorption amount reached 1.25 mg/g. Afterward, microbial biofilms were exposed to the Pb(II)-enriched PVC particles. It is suggested that Pb(II)-enriched PVC exposure reduced productivities of polysaccharides and proteins in extracellular polymeric substances, which restricted the formation of microbial biofilms. Meanwhile, microbial community structure was reassembled accompanying the decline of capacities for nitrate and phosphate removal. Therefore, this study examines the ecological risk associated with the heavy metal-enriched MPs that can adversely affect microbial biofilms.
Collapse
Affiliation(s)
- Binliang Wang
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Chufan Wang
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Yiwei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China.
| |
Collapse
|
7
|
Chen F, Ma J, Zhu Y, Li X, Yu H, Sun Y. Biodegradation performance and anti-fouling mechanism of an ICME/electro-biocarriers-MBR system in livestock wastewater (antibiotic-containing) treatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128064. [PMID: 34922131 DOI: 10.1016/j.jhazmat.2021.128064] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Livestock wastewater is an important reservoir of antibiotic resistance genes (ARGs) and antibiotic residues. Membrane fouling is one of the most challenging problems confining the operation and application of membrane bioreactor (MBR). In this work, a novel iron-carbon micro-electrolysis (ICME)/electro-biocarriers-MBR system was established to explore the performance of pollutant removal and anti-fouling for an actual livestock wastewater. A light-weight porous ceramsite (bulk density 0.98 g/cm3) was used as the MBR biocarriers. The electrons generated from iron corrosion in the ICME tank traveled through external wires to the stainless steel membrane modules of MBR and the protons were transferred from the MBR tank to the ICME tank through a salt bridge, thus producing a spontaneous electric field. Under the optimized conditions, the system exhibited chemical oxygen demand removal of 76.0%, total suspended solids removal of 100%, antibiotic removal of 86.4%, NH4+-N removal of 91.1%, and ARGs reduction of 6-8 orders of magnitude. The quality of the final effluent can reach the national Class I-A discharge criteria. Adding ceramsite could not only effectively improve biodegradation performance but also alleviate membrane fouling through the migration and enrichment of microbial flora to the ceramsite. The self-generated electric field had no significant improvement effect on pollutant removal, but exhibited good anti-membrane fouling behavior which could be ascribed to (i) oxidization of membrane foulants by the electrochemical products (such as H2O2 and •OH radicals), and (ii) electrostatic repulsion of negatively charged foulants and bacterial cells. The bacterial community structure and diversity were studied using high-throughput pyrosequencing, and the results demonstrated the roles of electric field and biocarriers in enrichment of anti-fouling communities and repulsion of biofouling-creating communities.
Collapse
Affiliation(s)
- Fu Chen
- School of Public Administration, Hohai University, Nanjing 210098, China; Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221116, China.
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing 210098, China; Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221116, China
| | - Yanfeng Zhu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China
| | - Xiaoxiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haochen Yu
- School of Public Administration, Hohai University, Nanjing 210098, China; Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221116, China
| | - Yan Sun
- School of Public Administration, Hohai University, Nanjing 210098, China
| |
Collapse
|
8
|
Chen Z, He Q, Chen J, Zhang B, Liu C, Huangfu X. Distinct granulation pathways of aerobic granular sludge under poly aluminum chloride enhancement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150829. [PMID: 34627896 DOI: 10.1016/j.scitotenv.2021.150829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Aerobic granular sludge (AGS), a novel strategy for nutrient removal which exhibits compact structure, good settleability, and resilience against high organic load, has been considered as a highly potential wastewater treatment technology. However, the long start-up period for granulation prevented its widespread development. In this study, the distinct pathways of PAC-enhanced AGS granulation were systematically investigated. Four identical sequencing batch reactors (SBR) with different PAC dosages (with 0, 50, 100, 400 mg/L effective Al3+ respectively) were applied. It was observed that the presence of PAC accelerated granules formation, promoted mechanical strength as well as denitrification rate of granules, and thus notably enhanced removal efficacies of COD, NH4+-N, NO2- and NO3-. According to the dissolved oxygen (DO) distribution inside the sludge and the denitrification rate (SDNR) measurements, distinguishing structures of granules under different PAC addition were discovered. Comparatively, AGS under low PAC addition (i.e., 50 mg/L) resulted in the largest granule size, the biggest anaerobic zone and the highest denitrification rate. Presumably, for the system with the low PAC addition (50 mg/L), appropriate aluminum ions (Al3+) neutralized part of the negative charge on the microorganism surface, thereby promoting cells aggregation. In contrast, a high dosage of PAC (400 mg/L) induced excessive Al3+ absorbed on the cell surface after neutralization, which increased the repulsive force between microorganisms, leading to more cavities and channels existed inside the granules. Therefore, granules under low PAC dosage (i.e., 50 mg/L) presented large anaerobic zone and high denitrification rate, thus favored the best internal structure and nutrients removal efficiencies.
Collapse
Affiliation(s)
- Ziwei Chen
- Key Laboratory of Eco-Environment of Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Junyu Chen
- Key Laboratory of Eco-Environment of Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Bing Zhang
- Key Laboratory of Eco-Environment of Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Caihong Liu
- Key Laboratory of Eco-Environment of Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-Environment of Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
9
|
Zhao M, Hu L, Dai L, Wang Z, He J, Wang Z, Chen J, Hrynsphan D, Tatsiana S. Bamboo charcoal powder-based polyurethane as packing material in biotrickling filter for simultaneous removal of n-hexane and dichloromethane. BIORESOURCE TECHNOLOGY 2022; 345:126427. [PMID: 34838976 DOI: 10.1016/j.biortech.2021.126427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Bamboo charcoal powder-based polyurethane (BC-PU) was firstly applied in biotrickling filter to treat n-hexane and dichloromethane (DCM) simultaneously. Maximum elimination capacity of 12.68 g m-3h-1 n-hexane was achieved and exceed 30.28 g m-3h-1 DCM could be degraded. BTF respond quickly to the mixed shock loadings, and recovered to 76% and 100% respectively in less than 1 h. By increasing inlet loading (IL) of DCM from 6.20 g m-3h-1 to 28.36 g m-3h-1, the removal efficiency of n-hexane decreased from 73.4% to 55.9% corresponding to the IL of 19.96 g m-3h-1. N-hexane degradation was inhibited by high IL of DCM due to enzymes competition for active sites. The growth of key microorganisms Mycobacterium sp., Hyphomicrobium sp. was stimulated and colonized. BC-PU is an innovative and applicable bio-based material in the process of biological purification, which could be widely applied to treat hydrophobic pollutants in the pharmaceutical industry.
Collapse
Affiliation(s)
- Min Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Liyong Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Luyao Dai
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhaoyun Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jiamei He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zeyu Wang
- Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, China
| | - Jun Chen
- Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, China; College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310021, China.
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| |
Collapse
|
10
|
Liao G, Bin L, Tang B, Li P, Qiu B, Huang Z, Huang S, Fu F. Insights into the fouling layer of flat-sheet membrane and its development in an integrated oxidation ditch-membrane bioreactor. BIORESOURCE TECHNOLOGY 2022; 345:126466. [PMID: 34864179 DOI: 10.1016/j.biortech.2021.126466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
This work revealed the characteristics of fouling layer on the flat-sheet membranes and its development in an integrated oxidation-ditch membrane bioreactor. During the operation period (130 days), the reactor performed very well in removing pollutants. As the operation proceeded, membrane fouling occurred on the flat-sheet membranes and trans-membrane pressure showed a cyclical variation. The experimental results showed that the process of membrane fouling appeared successively in two different structures: biofilm (BF) and sludge fouling (SF). The substances causing membrane fouling were mainly organic foulants and a small amount of inorganic metal compounds, especially the protein-like and fulvic acid-like substances in loosely bound extracellular polymeric substances (LB-EPS). The analysis of microbial communities revealed that SF and BF had very different microbial properties. Although most membrane foulants could be removed by physical and chemical cleaning methods, the protein-like and fulvic acid-like substances in BF were contribute much to causing irreversible membrane fouling.
Collapse
Affiliation(s)
- Guohao Liao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Bangqiao Qiu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhaole Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
11
|
Hage M, Khelissa S, Akoum H, Chihib NE, Jama C. Cold plasma surface treatments to prevent biofilm formation in food industries and medical sectors. Appl Microbiol Biotechnol 2022; 106:81-100. [PMID: 34889984 PMCID: PMC8661349 DOI: 10.1007/s00253-021-11715-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 10/28/2022]
Abstract
Environmental conditions in food and medical fields enable the bacteria to attach and grow on surfaces leading to resistant bacterial biofilm formation. Indeed, the first step in biofilm formation is the bacterial irreversible adhesion. Controlling and inhibiting this adhesion is a passive approach to fight against biofilm development. This strategy is an interesting path in the inhibition of biofilm formation since it targets the first step of biofilm development. Those pathogenic structures are responsible for several foodborne diseases and nosocomial infections. Therefore, to face this public health threat, researchers employed cold plasma technologies in coating development. In this review, the different factors influencing the bacterial adhesion to a substrate are outlined. The goal is to present the passive coating strategies aiming to prevent biofilm formation via cold plasma treatments, highlighting antiadhesive elaborated surfaces. General aspects of surface treatment, including physico-chemical modification and application of cold plasma technologies, were also presented. KEY POINTS: • Factors surrounding pathogenic bacteria influence biofilm development. • Controlling bacterial adhesion prevents biofilm formation. • Materials can be coated via cold plasma to inhibit bacterial adhesion.
Collapse
Affiliation(s)
- Mayssane Hage
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France
- Laboratoire d'analyses Chimiques Et Microbiologiques, Faculté de Santé Publique - Université Libanaise, Saida, Lebanon
| | - Simon Khelissa
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France
| | - Hikmat Akoum
- Laboratoire d'analyses Chimiques Et Microbiologiques, Faculté de Santé Publique - Université Libanaise, Saida, Lebanon
| | - Nour-Eddine Chihib
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France
| | - Charafeddine Jama
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France.
| |
Collapse
|
12
|
Xiao X, Guo H, Ma F, You S, Geng M, Kong X. Biological mechanism of alleviating membrane biofouling by porous spherical carriers in a submerged membrane bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148448. [PMID: 34146804 DOI: 10.1016/j.scitotenv.2021.148448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/20/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
In this study, porous spherical carriers were fixed around the hollow fiber membrane module to mitigate membrane biofouling. Two MBRs (R1 without carriers, R2 with carriers) were operated for 31 days under identical operating conditions to investigate the effects of the carriers on the reactor performances, the production of extracellular polymeric substances (EPS), the level of N-acyl-homoserine lactones (AHLs), and the microbial communities. The results showed that the presence of carriers in MBR was conducive to nitrogen removal and decreased the total membrane filtration resistance by about 1.7 times. Slower transmembrane pressure (TMP) rise-up, thinner bio-cakes, lower EPS production, and fewer tryptophan and aromatic proteins substances on the membrane surface were observed in R2. The polysaccharides secretion of EPS in bio-cakes was mainly regulated by C4-HSL and 3OC6-HSL in the presence of carriers. The microbial community analysis revealed that carriers addition reduced the relative abundance of EPS and AHL producing bacteria in the membrane bio-cakes and enriched the accumulation of functional bacteria conducive to nutrient removal in the mixed liquor. This study provided an in-depth understanding for the application of porous spherical carriers to alleviate membrane biofouling.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Haijuan Guo
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, PR China..
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Mingyue Geng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiangzhen Kong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
13
|
Hou B, Zhang R, Liu X, Li Y, Liu P, Lu J. Study of membrane fouling mechanism during the phenol degradation in microbial fuel cell and membrane bioreactor coupling system. BIORESOURCE TECHNOLOGY 2021; 338:125504. [PMID: 34274582 DOI: 10.1016/j.biortech.2021.125504] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the feasibility of phenol degradation in microbial fuel cell (MFC) and membrane bioreactor (MBR) coupling system, and explored the mechanism of MBR membrane fouling. Four aspects were researched in open and closed circuit conditions: the degradation capacity of the coupling system, the increase of trans-membrane pressure (TMP), and the adhesion of phenol degradation products and microorganisms on the membrane. The results showed that the degradation of phenol and COD in the closed circuit coupling system was higher than that in the open circuit. The micro-electric field can inhibit the growth of TMP and keep dodecamethylcyclohexasiloxane away from the membrane, meanwhile can also reduce the abundance and species diversity of microorganisms. Nevertheless, the micro-electric field could not completely eliminate the membrane fouling due to the fact that the phenol degradation product of ethanethiol, microorganisms of Proteobacteria and Actinobacteria were more favorable on the membrane.
Collapse
Affiliation(s)
- Bin Hou
- School of the Environment and Safety Engineering, North University of China, Taiyuan 030051, China.
| | - Rong Zhang
- School of the Environment and Safety Engineering, North University of China, Taiyuan 030051, China.
| | - Xiaoyu Liu
- School of the Environment and Safety Engineering, North University of China, Taiyuan 030051, China.
| | - Ying Li
- School of the Environment and Safety Engineering, North University of China, Taiyuan 030051, China.
| | - Pengxiao Liu
- School of the Environment and Safety Engineering, North University of China, Taiyuan 030051, China.
| | - Jing Lu
- School of the Environment and Safety Engineering, North University of China, Taiyuan 030051, China.
| |
Collapse
|
14
|
|
15
|
Nasompag S, Siritongsuk P, Thammawithan S, Srichaiyapol O, Prangkio P, Camesano TA, Sinthuvanich C, Patramanon R. AFM Study of Nanoscale Membrane Perturbation Induced by Antimicrobial Lipopeptide C 14 KYR. MEMBRANES 2021; 11:membranes11070495. [PMID: 34208993 PMCID: PMC8307486 DOI: 10.3390/membranes11070495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Lipopeptides have been extensively studied as potential antimicrobial agents. In this study, we focused on the C14-KYR lipopeptide, a modified version of the KYR tripeptide with myristic acid at the N-terminus. Here, membrane perturbation of live E. coli treated with the parent KYR and C14-KYR peptides was compared at the nanoscale level using AFM imaging. AFM analyses, including average cellular roughness and force spectroscopy, revealed the severe surface disruption mechanism of C14-KYR. A loss of surface roughness and changes in topographic features included membrane shrinkage, periplasmic membrane separation from the cell wall, and cytosolic leakage. Additional evidence from synchrotron radiation FTIR microspectroscopy (SR-FTIR) revealed a marked structural change in the membrane component after lipopeptide attack. The average roughness of the E. coli cell before and after treatment with C14-KYR was 129.2 ± 51.4 and 223.5 ± 14.1 nm, respectively. The average rupture force of the cell treated with C14-KYR was 0.16 nN, four times higher than that of the untreated cell. Our study demonstrates that the mechanistic effect of the lipopeptide against bacterial cells can be quantified through surface imaging and adhesion force using AFM.
Collapse
Affiliation(s)
- Sawinee Nasompag
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand; (S.N.); (C.S.)
| | - Pawinee Siritongsuk
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (S.T.); (O.S.)
| | - Saengrawee Thammawithan
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (S.T.); (O.S.)
| | - Oranee Srichaiyapol
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (S.T.); (O.S.)
| | - Panchika Prangkio
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Terri A. Camesano
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| | - Chomdao Sinthuvanich
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand; (S.N.); (C.S.)
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (S.T.); (O.S.)
- Correspondence:
| |
Collapse
|
16
|
Zhang Y, Wayner CC, Wu S, Liu X, Ball WP, Preheim SP. Effect of Strain-Specific Biofilm Properties on the Retention of Colloids in Saturated Porous Media under Conditions of Stormwater Biofiltration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2585-2596. [PMID: 33523627 DOI: 10.1021/acs.est.0c06177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Filter performance can be affected by bacterial colonization of the filtration media, yet little is known about how naturally occurring bacteria modify the surface properties of filtration media to affect colloidal removal. We used sand columns and simulated stormwater conditions to study the retention of model colloidal particles, carboxyl-modified-latex (CML) beads, in porous media colonized by naturally occurring bacterial strains. Colloid retention varied substantially across identical columns colonized by different, in some cases closely related, bacterial strains in a cell density independent manner. Atomic force microscopy was applied to quantify the interaction energy between CML beads and each bacterial strain's biofilm surface. We found interaction energy between CML and each strain was significantly different, with adhesive energies between the biofilm and CML, presumed to be associated with polymer-surface bonding, a better predictor of CML retention than other strain characteristics. Overall, the findings suggest that interactions with biopolymers in naturally occurring bacterial biofilms strongly influence colloid retention in porous media. This work highlights the need for more investigation into the role of biofilm microbial community composition on colloid removal in porous media to improve biofilter design and operation.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Claire C Wayner
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Shanshan Wu
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Xitong Liu
- Department of Civil and Environmental Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street NW, Washington, District of Columbia 20052, United States
| | - William P Ball
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Sarah P Preheim
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
17
|
Valiei A, Lin N, Bryche JF, McKay G, Canva M, Charette PG, Nguyen D, Moraes C, Tufenkji N. Hydrophilic Mechano-Bactericidal Nanopillars Require External Forces to Rapidly Kill Bacteria. NANO LETTERS 2020; 20:5720-5727. [PMID: 32573246 DOI: 10.1021/acs.nanolett.0c01343] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanopillars have been shown to mechanically damage bacteria, suggesting a promising strategy for future antibacterial surfaces. However, the mechanisms underlying this phenomena remain unclear, which ultimately limits translational potential toward real-world applications. Using real-time and end-point analysis techniques, we demonstrate that in contrast to initial expectations, bacteria on multiple hydrophilic "mechano-bactericidal" surfaces remained viable unless exposed to a moving air-liquid interface, which caused considerable cell death. Reasoning that normal forces arising from surface tension may underlie this mechano-bactericidal activity, we developed computational and experimental models to estimate, manipulate, and recreate the impact of these forces. Our experiments together demonstrate that a critical level of external force acting on cells attached to nanopillar surfaces can rapidly deform and rupture bacteria. These studies provide fundamental physical insight into how nanopillar surfaces can serve as effective antibacterial materials and suggest use-conditions under which such nanotechnology approaches may provide practical value.
Collapse
Affiliation(s)
- Amin Valiei
- Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| | - Nicholas Lin
- Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| | - Jean-Francois Bryche
- Laboratoire Nanotechnologies Nanosystèmes (LN2), CNRS UMI-3463, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Geoffrey McKay
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, Québec H3A 0G4, Canada
| | - Michael Canva
- Laboratoire Nanotechnologies Nanosystèmes (LN2), CNRS UMI-3463, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Paul G Charette
- Laboratoire Nanotechnologies Nanosystèmes (LN2), CNRS UMI-3463, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Dao Nguyen
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, Québec H3A 0G4, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec H3A 0G4, Canada
- Department of Medicine, McGill University, Montréal, Québec H3A 0G4, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
- Department of Biomedical Engineering, McGill University, Montréal, Québec H3A 0G4, Canada
- Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, Québec H3A 0G4,Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| |
Collapse
|
18
|
The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces. Proc Natl Acad Sci U S A 2020; 117:12598-12605. [PMID: 32457154 DOI: 10.1073/pnas.1916680117] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mechano-bactericidal activity of nanostructured surfaces has become the focus of intensive research toward the development of a new generation of antibacterial surfaces, particularly in the current era of emerging antibiotic resistance. This work demonstrates the effects of an incremental increase of nanopillar height on nanostructure-induced bacterial cell death. We propose that the mechanical lysis of bacterial cells can be influenced by the degree of elasticity and clustering of highly ordered silicon nanopillar arrays. Herein, silicon nanopillar arrays with diameter 35 nm, periodicity 90 nm and increasing heights of 220, 360, and 420 nm were fabricated using deep UV immersion lithography. Nanoarrays of 360-nm-height pillars exhibited the highest degree of bactericidal activity toward both Gram stain-negative Pseudomonas aeruginosa and Gram stain-positive Staphylococcus aureus bacteria, inducing 95 ± 5% and 83 ± 12% cell death, respectively. At heights of 360 nm, increased nanopillar elasticity contributes to the onset of pillar deformation in response to bacterial adhesion to the surface. Theoretical analyses of pillar elasticity confirm that deflection, deformation force, and mechanical energies are more significant for the substrata possessing more flexible pillars. Increased storage and release of mechanical energy may explain the enhanced bactericidal action of these nanopillar arrays toward bacterial cells contacting the surface; however, with further increase of nanopillar height (420 nm), the forces (and tensions) can be partially compensated by irreversible interpillar adhesion that reduces their bactericidal effect. These findings can be used to inform the design of next-generation mechano-responsive surfaces with tuneable bactericidal characteristics for antimicrobial surface technologies.
Collapse
|
19
|
El-Taboni F, Caseley E, Katsikogianni M, Swanson L, Swift T, Romero-González ME. Fluorescence Spectroscopy Analysis of the Bacteria-Mineral Interface: Adsorption of Lipopolysaccharides to Silica and Alumina. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1623-1632. [PMID: 31957449 PMCID: PMC7145363 DOI: 10.1021/acs.langmuir.9b02158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We present here a quantification of the sorption process and molecular conformation involved in the attachment of bacterial cell wall lipopolysaccharides (LPSs), extracted from Escherichia coli, to silica (SiO2) and alumina (Al2O3) particles. We propose that interfacial forces govern the physicochemical interactions of the bacterial cell wall with minerals in the natural environment, and the molecular conformation of LPS cell wall components depends on both the local charge at the point of binding and hydrogen bonding potential. This has an effect on bacterial adaptation to the host environment through adhesion, growth, function, and ability to form biofilms. Photophysical techniques were used to investigate adsorption of fluorescently labeled LPS onto mineral surfaces as model systems for bacterial attachment. Adsorption of macromolecules in dilute solutions was studied as a function of pH and ionic strength in the presence of alumina and silica via fluorescence, potentiometric, and mass spectrometry techniques. The effect of silica and alumina particles on bacterial growth as a function of pH was also investigated using spectrophotometry. The alumina and silica particles were used to mimic active sites on the surface of clay and soil particles, which serve as a point of attachment of bacteria in natural systems. It was found that LPS had a high adsorption affinity for Al2O3 while adsorbing weakly to SiO2 surfaces. Strong adsorption was observed at low pH for both minerals and varied with both pH and mineral concentration, likely in part due to conformational rearrangement of the LPS macromolecules. Bacterial growth was also enhanced in the presence of the particles at low pH values. This demonstrates that at a molecular level, bacterial cell wall components are able to adapt their conformation, depending on the solution pH, in order to maximize attachment to substrates and guarantee community survival.
Collapse
Affiliation(s)
- Fateh El-Taboni
- Department
of Chemistry, University of Benghazi, Benghazi Qar Yunis 9480, Libya
| | - Emily Caseley
- School
of Chemistry and Biosciences, University
of Bradford, Bradford BD7 1DP, U.K.
| | - Maria Katsikogianni
- School
of Chemistry and Biosciences, University
of Bradford, Bradford BD7 1DP, U.K.
| | - Linda Swanson
- Department
of Chemistry, The University of Sheffield, Sheffield S10 2TN, U.K.
| | - Thomas Swift
- School
of Chemistry and Biosciences, University
of Bradford, Bradford BD7 1DP, U.K.
- E-mail: (T.S.)
| | | |
Collapse
|
20
|
Goss JW, Volle CB. Using Atomic Force Microscopy To Illuminate the Biophysical Properties of Microbes. ACS APPLIED BIO MATERIALS 2019; 3:143-155. [PMID: 32851362 DOI: 10.1021/acsabm.9b00973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since its invention in 1986, atomic force microscopy (AFM) has grown from a system designed for imaging inorganic surfaces to a tool used to probe the biophysical properties of living cells and tissues. AFM is a scanning probe technique and uses a pyramidal tip attached to a flexible cantilever to scan across a surface, producing a highly detailed image. While many research articles include AFM images, fewer include force-distance curves, from which several biophysical properties can be determined. In a single force-distance curve, the cantilever is lowered and raised from the surface, while the forces between the tip and the surface are monitored. Modern AFM has a wide variety of applications, but this review will focus on exploring the mechanobiology of microbes, which we believe is of particular interest to those studying biomaterials. We briefly discuss experimental design as well as different ways of extracting meaningful values related to cell surface elasticity, cell stiffness, and cell adhesion from force-distance curves. We also highlight both classic and recent experiments using AFM to illuminate microbial biophysical properties.
Collapse
Affiliation(s)
- John W Goss
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Catherine B Volle
- Departments of Biology and Chemistry, Cornell College, Mount Vernon, Iowa 52314, United States
| |
Collapse
|
21
|
Adoonsook D, Chia-Yuan C, Wongrueng A, Pumas C. A simple way to improve a conventional A/O-MBR for high simultaneous carbon and nutrient removal from synthetic municipal wastewater. PLoS One 2019; 14:e0214976. [PMID: 31756182 PMCID: PMC6913871 DOI: 10.1371/journal.pone.0214976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/03/2019] [Indexed: 11/18/2022] Open
Abstract
In this study, two anoxic-oxic membrane bioreactor (A/O-MBR) systems, i.e. conventional and biofilm anoxic-oxic-membrane bioreactors (C-A/O-MBR and BF-A/O-MBR, respectively), were operated in parallel under conditions of complete sludge retention for the purposes of comparing system performance and microbial community composition. Moreover, with the microbial communities, comparisons were made between the adhesive stage and the suspended stage. High average removal of COD, NH4+-N and TN was achieved in both systems. However, TP removal efficiency was remarkably higher in BF-A/O-MBR when compared with C-A/O-MBR. TP mass balance analysis suggested that under complete sludge retention, polyurethane sponges that were added into the anoxic tank played a key role in both phosphorus release and accumulation. The qPCR analysis showed that sponge biomass could maintain a higher level of abundance of total bacteria than the suspended sludge. Meanwhile, AOB and denitrifiers were enriched in the suspended sludge but not in the sponge biomass. Results of illumina sequencing reveal that the compacted sponge in BF-A/O-MBR could promote the growth of bacteria involved in nutrient removal and reduce the amount of filamentous and bacterial growth that is related to membrane fouling in the suspended sludge.
Collapse
Affiliation(s)
- Dome Adoonsook
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai Thailand
| | - Chang Chia-Yuan
- Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.,College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Aunnop Wongrueng
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai Thailand.,Research Program in Control of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management (HSM), Bangkok, Thailand.,Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chayakorn Pumas
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
22
|
Reducing the Phytoplankton Biomass to Promote the Growth of Submerged Macrophytes by Introducing Artificial Aquatic Plants in Shallow Eutrophic Waters. WATER 2019. [DOI: 10.3390/w11071370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Harmful cyanobacterial blooms frequently occur in shallow eutrophic lakes and usually cause the decline of submerged vegetation. Therefore, artificial aquatic plants (AAPs) were introduced into enclosures in the eutrophic Dianchi Lake to investigate whether or not they could reduce cyanobacterial blooms and promote the growth of submerged macrophytes. On the 60th day after the AAPs were installed, the turbidity, total nitrogen (TN), total phosphorous (TP), and the cell density of phytoplankton (especially cyanobacteria) of the treated enclosures were significantly reduced as compared with the control enclosures. The adsorption and absorption of the subsequently formed periphyton biofilms attached to the AAPs effectively decreased nutrient levels in the water. Moreover, the microbial diversity and structure in the water changed with the development of periphyton biofilms, showing that the dominant planktonic algae shifted from Cyanophyta to Chlorophyta. The biodiversity of both planktonic and attached bacterial communities in the periphyton biofilm also gradually increased with time, and were higher than those of the control enclosures. The transplanted submerged macrophyte (Elodea nuttallii) in treated enclosures recovered effectively and reached 50% coverage in one month while those in the control enclosures failed to grow. The application of AAPs with incubated periphyton presents an environmentally-friendly and effective solution for reducing nutrients and controlling the biomass of phytoplankton, thereby promoting the restoration of submerged macrophytes in shallow eutrophic waters.
Collapse
|
23
|
Uzoechi SC, Abu-Lail NI. Changes in Cellular Elasticities and Conformational Properties of Bacterial Surface Biopolymers of Multidrug-Resistant Escherichia coli (MDR- E. coli) Strains in Response to Ampicillin. ACTA ACUST UNITED AC 2019; 5. [PMID: 31179402 PMCID: PMC6550352 DOI: 10.1016/j.tcsw.2019.100019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The roles of the thicknesses and grafting densities of the surface biopolymers of four multi-drug resistant (MDR) Escherichia coli bacterial strains that varied in their biofilm formation in controlling cellular elasticities after exposure to ampicillin were investigated using atomic force microscopy. Exposure to ampicillin was carried out at minimum inhibitory concentrations for different duration times. Our results indicated that the four strains resisted ampicillin through variable mechanisms. Strain A5 did not change its cellular properties upon exposure to ampicillin and as such resisted ampicillin through dormancy. Strain H5 increased its biopolymer brush thickness, adhesion and biofilm formation and kept its roughness, surface area and cell elasticity unchanged upon exposure to ampicillin. As such, this strain likely limits the diffusion of ampicillin by forming strong biofilms. At three hours’ exposure to ampicillin, strains D4 and A9 increased their roughness, surface areas, biofilm formation, and brush thicknesses and decreased their elasticities. Therefore, at short exposure times to ampicillin, these strains resisted ampicillin through forming strong biofilms that impede ampicillin diffusion. At eight hours’ exposure to ampicillin, strains D4 and A9 collapsed their biopolymers, increased their apparent grafting densities and increased their cellular elasticities. Therefore, at long exposure times to ampicillin, cells utilized their higher rigidity to reduce the diffusion of ampicillin into the cells. The findings of this study clearly point to the potential of using the nanoscale characterization of MDR bacterial properties as a means to monitor cell modifications that enhance “phenotypic antibiotic resistance”.
Collapse
Affiliation(s)
- Samuel C Uzoechi
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164.,Department of Biomedical Technology, Federal University of Technology, Owerri, PMB 1526, Owerri, Nigeria
| | - Nehal I Abu-Lail
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249
| |
Collapse
|
24
|
Song Z, Zhang X, Ngo HH, Guo W, Song P, Zhang Y, Wen H, Guo J. Zeolite powder based polyurethane sponges as biocarriers in moving bed biofilm reactor for improving nitrogen removal of municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1078-1086. [PMID: 30360241 DOI: 10.1016/j.scitotenv.2018.09.173] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
This study aims to enhance nitrogen removal efficiency of a moving bed biofilm reactor (MBBR) by developing a new MBBR with zeolite powder-based polyurethane sponges as biocarriers (Z-MBBR). Results indicated the total nitrogen (TN) removal efficiency and simultaneous nitrification and denitrification (SND) performance in Z-MBBR were nearly 10% higher than those in the conventional MBBR with sponges as biocarriers (S-MBBR). About 84.2 ± 4.8% of TN was removed in Z-MBBR compared to 75.1 ± 6.8% in S-MBBR. Correspondingly, the SND performance in Z-MBBR and S-MBBR was 90.7 ± 4.1% and 81.7 ± 6.5%, respectively. The amount of biofilm attached to new biocarriers (0.470 ± 0.131 g/g carrier) was 1.3 times more than that of sponge carriers (0.355 ± 0.099 g/g carrier). Based on the microelectrode measurements and microbial community analysis, more denitrifying bacteria existed in the Z-MBBR system, and this can improve the SND performance. Consequently, this new Z-MBBR can be a promising option for a hybrid treatment system to better nitrogen removal from wastewater.
Collapse
Affiliation(s)
- Zi Song
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, China and School of Civil and Environmental Engineering, University of Technology Sydney, Australia; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, China and School of Civil and Environmental Engineering, University of Technology Sydney, Australia; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China.
| | - Huu Hao Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, China and School of Civil and Environmental Engineering, University of Technology Sydney, Australia; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, China and School of Civil and Environmental Engineering, University of Technology Sydney, Australia; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney Sydney, NSW 2007, Australia
| | - Pengfei Song
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yongchao Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, China and School of Civil and Environmental Engineering, University of Technology Sydney, Australia; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Haitao Wen
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, China and School of Civil and Environmental Engineering, University of Technology Sydney, Australia; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Jianbo Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, China and School of Civil and Environmental Engineering, University of Technology Sydney, Australia; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| |
Collapse
|
25
|
Ma SJ, Ding LL, Hu HD, Ma HJ, Xu K, Huang H, Geng JJ, Ren HQ. Cell membrane characteristics and microbial population distribution of MBBR and IFAS with different dissolved oxygen concentration. BIORESOURCE TECHNOLOGY 2018; 265:17-24. [PMID: 29864733 DOI: 10.1016/j.biortech.2018.03.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
This paper investigated the influences of different dissolved oxygen (DO) concentration (0.71-1.32, 2.13-3.02 and 4.31-5.16 mg/L) on cell membrane characteristics and microbial population distribution of moving biofilm reactors. Two representative reactors, i.e., moving bed biofilm reactors and integrated fixed-film activated sludge were operated. Results indicated that both DO concentration of 0.71-1.32 mg/L and 4.31-5.16 mg/L could increase membrane lipid mobile fraction (49.4%-67.4%) of the microbes, however, through prompting the synthesis of branched fatty acids and unsaturated fatty acids, respectively. For the biofilms, the abundance of Bacteroidetes decreased and Actinobacteria increased with the increase of DO levels. The lowest EfOM content and the highest microbial diversities (1.14-1.52) was observed at DO of 2.13-3.02 mg/L. Redundancy analysis showed that changes of DO levels could alter cell membrane properties and bacterial community structures, and subsequently significantly influenced effluent organic matter composition of moving biofilm reactors.
Collapse
Affiliation(s)
- Si-Jia Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Li-Li Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hai-Dong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hai-Jun Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jin-Ju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hong-Qiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
26
|
Gulyuk AV, LaJeunesse DR, Collazo R, Ivanisevic A. Characterization of Pseudomonas aeruginosa Films on Different Inorganic Surfaces before and after UV Light Exposure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10806-10815. [PMID: 30122052 DOI: 10.1021/acs.langmuir.8b02079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The changes of the surface properties of Au, GaN, and SiO x after UV light irradiation were used to actively influence the process of formation of Pseudomonas aeruginosa films. The interfacial properties of the substrates were characterized by X-ray photoelectron spectroscopy and atomic force microscopy. The changes in the P. aeruginosa film properties were accessed by analyzing adhesion force maps and quantifying the intracellular Ca2+ concentration. The collected analysis indicates that the alteration of the inorganic materials' surface chemistry can lead to differences in biofilm formation and variable response from P. aeruginosa cells.
Collapse
Affiliation(s)
- Alexey V Gulyuk
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Dennis R LaJeunesse
- Joint School of Nanoscience and Nanoengineering , University of North Carolina-Greensboro and North Carolina A&T State University , Greensboro , North Carolina 27401 , United States
| | - Ramon Collazo
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Albena Ivanisevic
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| |
Collapse
|
27
|
Wu L, Tang B, Bin L, Chen G, Huang S, Li P, Fu F. Heterogeneity of the diverse aerobic sludge granules self-cultivated in a membrane bioreactor with enhanced internal circulation. BIORESOURCE TECHNOLOGY 2018; 263:297-305. [PMID: 29753931 DOI: 10.1016/j.biortech.2018.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/28/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
The present work revealed the heterogeneity of the sludge granules formed in a membrane bioreactor with enhanced internal circulation, and also contributed to better understanding of their forming mechanisms. By continuously carrying out an experiment lasting for more than 3 months with the floc sludge from a local municipal wastewater treatment plant as inoculation sludge, diverse aerobic sludge granules were found to be successfully self-cultivated within the reactor. The results of scanning electron microscopy, fluorescence microscope and high-throughput sequencing measurement indicated that the obtained diverse granules exhibited quite obvious heterogeneity in their basic physico-chemical and microbial properties, and filamentous bacteria actually acted as a main skeleton to keep the self-cultivated sludge granules stable in both their structure and morphology. Furthermore, stable and high COD and TN removal achieved, over 85% and 60%, respectively, which confirmed its usefulness in wastewater treatment.
Collapse
Affiliation(s)
- Luying Wu
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China
| | - Bing Tang
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China.
| | - Liying Bin
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China
| | - Guangpeng Chen
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China
| | - Shaosong Huang
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China
| | - Ping Li
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China
| | - Fenglian Fu
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China
| |
Collapse
|
28
|
Huang H, Yu Q, Ren H, Geng J, Xu K, Zhang Y, Ding L. Towards physicochemical and biological effects on detachment and activity recovery of aging biofilm by enzyme and surfactant treatments. BIORESOURCE TECHNOLOGY 2018; 247:319-326. [PMID: 28950141 DOI: 10.1016/j.biortech.2017.09.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/17/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
In order to explore physicochemical and biological effects on detachment and activity recovery of aging biofilm by enzyme and surfactant treatments, two kinds of biofilm processes, i.e. biological aeration filter (BAF) and moving bed biofilm reactor (MBBR), and multiple indicators including water quality, biofilm morphology, activity and microbial community structure, were employed. Results showed that detachment of aging biofilm was mainly attributed by extracellular polymeric substance (EPS) solubilization and dispersion, and activity recovery of aging biofilm mainly depended on biological effects of dominant bacteria. Phosphorus metabolism related bacteria, such as Microbacterium and Micropruina, were responsible for BAF biofilm regeneration. More abundant microbial community structure of MBBR regenerated biofilm was found, and biofilm activity was not only related to phosphorus metabolism related bacteria, but also to denitrifying bacteria. Rhamnolipid performed best on aging biofilm detachment and regeneration, giving a clue for effective activation of aging biofilm in wastewater treatment systems.
Collapse
Affiliation(s)
- Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Qisheng Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Lili Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
29
|
Alvarado-Gomez E, Perez-Diaz M, Valdez-Perez D, Ruiz-Garcia J, Magaña-Aquino M, Martinez-Castañon G, Martinez-Gutierrez F. Adhesion forces of biofilms developed in vitro from clinical strains of skin wounds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 82:336-344. [PMID: 29025667 DOI: 10.1016/j.msec.2017.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 07/08/2017] [Accepted: 08/10/2017] [Indexed: 11/16/2022]
Abstract
A biofilm is a very complex consortium formed by a mix of different microorganisms, which have become an important health problem, because its formation is a resistance mechanism used by bacteria against antibiotics or the immune system. In this work, we show differences between some physicochemical properties of biofilms in mono- and multi-species, formed by bacteria from clinical samples of infected chronic wounds. Of the most prevalent bacteria in wounds, two mono- and one multi-species biofilms were developed in vitro by Drip Flow Reactor: one biofilm was developed by S. aureus, other by P. aeruginosa, and a third one by the mix of both strains. With these biofilms, we determined microbial growth by plate counting, and their physicochemical characterization by Atomic Force Microscopy, Raman Micro-Spectroscopy and Scanning Electron Microscopy. We found that the viability of S. aureus was less than P. aeruginosa in multi-species biofilm. However, the adhesion force of S. aureus is much higher than that of P. aeruginosa, but it decreased while that of P. aeruginosa increased in the multi-species biofilm. In addition, we found free pyrimidines functional groups in the P. aeruginosa biofilm and its mix with S. aureus. Surprisingly, each bacterium alone formed single layer biofilms, while the mix bacteria formed a multilayer biofilm at the same observation time. Our results show the necessity to evaluate biofilms from clinically isolated strains and have a better understanding of the adhesion forces of bacteria in biofilm multispecies, which could be of prime importance in developing more effective treatments against biofilm formation.
Collapse
Affiliation(s)
- Elizabeth Alvarado-Gomez
- Microbiology Laboratory, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava No. 6, CP 78210 San Luis Potosi, S.L.P., Mexico
| | - Mario Perez-Diaz
- Microbiology Laboratory, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava No. 6, CP 78210 San Luis Potosi, S.L.P., Mexico
| | - Donato Valdez-Perez
- Instituto Politecnico Nacional, UPALM, Edif. Z-4 3er Piso, CP 07738 Mexico D.F., Mexico
| | - Jaime Ruiz-Garcia
- Biological Physics Laboratory, Instituto de Fisica, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava No. 6, CP 78210 San Luis Potosi, S.L.P., Mexico
| | - Martin Magaña-Aquino
- Infectology Department, Hospital Central "Dr. Ignacio Morones Prieto", Av. Venustiano Carranza No. 2395, Zona Universitaria, CP 78290 San Luis Potosi, S.L.P., Mexico
| | - Gabriel Martinez-Castañon
- Facultad de Estomatologia, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava No. 6, CP 78210 San Luis Potosi, S.L.P., Mexico
| | - Fidel Martinez-Gutierrez
- Microbiology Laboratory, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava No. 6, CP 78210 San Luis Potosi, S.L.P., Mexico.
| |
Collapse
|
30
|
Li S, Peng C, Wang C, Zheng J, Hu Y, Li D. Microbial Succession and Nitrogen Cycling in Cultured Biofilms as Affected by the Inorganic Nitrogen Availability. MICROBIAL ECOLOGY 2017; 73:1-15. [PMID: 27538871 DOI: 10.1007/s00248-016-0827-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
Biofilms play important roles in nutrients and energy cycling in aquatic ecosystems. We hypothesized that as eutrophication could change phytoplankton community and decrease phytoplankton diversity, ambient inorganic nitrogen level will affect the microbial community and diversity of biofilms and the roles of biofilms in nutrient cycling. Biofilms were cultured using a flow incubator either with replete inorganic nitrogen (N-rep) or without exogenous inorganic nitrogen supply (N-def). The results showed that the biomass and nitrogen and phosphorous accumulation of biofilms were limited by N deficiency; however, as expected, the N-def biofilms had significantly higher microbial diversity than that of N-rep biofilms. The microbial community of biofilms shifted in composition and abundance in response to ambient inorganic nitrogen level. For example, as compared between the N-def and the N-rep biofilms, the former consisted of more diazotrophs, while the latter consisted of more denitrifying bacteria. As a result of the shift of the functional microbial community, the N concentration of N-rep medium kept decreasing, while that of N-def medium showed an increasing trend in the late stage. This indicates that biofilms can serve as the source or the sink of nitrogen in aquatic ecosystems, and it depends on the inorganic nitrogen availability.
Collapse
Affiliation(s)
- Shuangshuang Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengrong Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chun Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jiaoli Zheng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yao Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
31
|
Escherichia coli Removal in Biochar-Modified Biofilters: Effects of Biofilm. PLoS One 2016; 11:e0167489. [PMID: 27907127 PMCID: PMC5132165 DOI: 10.1371/journal.pone.0167489] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/23/2016] [Indexed: 11/19/2022] Open
Abstract
The presence of microbial contaminants in urban stormwater is a significant concern for public health; however, their removal by traditional stormwater biofilters has been reported as inconsistent and inadequate. Recent work has explored the use of biochar to improve performance of stormwater biofilters under simplified conditions that do not consider potential effects of biofilm development on filter media. The present study investigates the role of biofilm on microbial contaminant removal performance of stormwater biofilters. Pseudomonas aeruginosa biofilms were formed in laboratory-scale sand and biochar-modified sand packed columns, which were then challenged with Escherichia coli laden synthetic stormwater containing natural organic matter. Results suggests that the presence of biofilm influences the removal of E. coli. However, the nature of the influence depends on the specific surface area and the relative hydrophobicity of filter media. The distribution of attached bacteria within the columns indicates that removal by filter media varies along the length of the column: the inlet was the primary removal zone regardless of experimental conditions. Findings from this research inform the design of field-scale biofilters for better and consistent performance in removing microbial contaminants from urban stormwater.
Collapse
|
32
|
Tang B, Yu C, Bin L, Zhao Y, Feng X, Huang S, Fu F, Ding J, Chen C, Li P, Chen Q. Essential factors of an integrated moving bed biofilm reactor-membrane bioreactor: Adhesion characteristics and microbial community of the biofilm. BIORESOURCE TECHNOLOGY 2016; 211:574-583. [PMID: 27038266 DOI: 10.1016/j.biortech.2016.03.136] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 06/05/2023]
Abstract
This work aims at revealing the adhesion characteristics and microbial community of the biofilm in an integrated moving bed biofilm reactor-membrane bioreactor, and further evaluating their variations over time. With multiple methods, the adhesion characteristics and microbial community of the biofilm on the carriers were comprehensively illuminated, which showed their dynamic variation along with the operational time. Results indicated that: (1) the roughness of biofilm on the carriers increased very quickly to a maximum value at the start-up stage, then, decreased to become a flat curve, which indicated a layer of smooth biofilm formed on the surface; (2) the tightly-bound protein and polysaccharide was the most important factor influencing the stability of biofilm; (3) the development of biofilm could be divided into three stages, and Gammaproteobacteria were the most dominant microbial species in class level at the last stage, which occupied the largest ratio (51.48%) among all microbes.
Collapse
Affiliation(s)
- Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, 510006 Guangzhou, PR China.
| | - Chunfei Yu
- School of Environmental Science and Engineering, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Yiliang Zhao
- School of Environmental Science and Engineering, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Xianfeng Feng
- School of Environmental Science and Engineering, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Jiewei Ding
- School of Environmental Science and Engineering, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Cuiqun Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Qianyu Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, 510006 Guangzhou, PR China
| |
Collapse
|
33
|
Terms of endearment: Bacteria meet graphene nanosurfaces. Biomaterials 2016; 89:38-55. [PMID: 26946404 DOI: 10.1016/j.biomaterials.2016.02.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/11/2016] [Accepted: 02/19/2016] [Indexed: 12/12/2022]
|
34
|
Mechanics of Bacterial Cells and Initial Surface Colonisation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:245-60. [DOI: 10.1007/978-3-319-32189-9_15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
35
|
Zhu Y, Zhang Y, Ren HQ, Geng JJ, Xu K, Huang H, Ding LL. Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor. BIORESOURCE TECHNOLOGY 2015; 180:345-51. [PMID: 25636169 DOI: 10.1016/j.biortech.2015.01.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/01/2015] [Accepted: 01/03/2015] [Indexed: 05/06/2023]
Abstract
This study aimed to investigate biofilm properties evolution coupled with different ages during the start-up period in a moving bed biofilm reactor system. Physicochemical characteristics including adhesion force, extracellular polymeric substances (EPS), morphology as well as volatile solid and microbial community were studied. Results showed that the formation and development of biofilms exhibited four stages, including (I) initial attachment and young biofilm formation, (II) biofilms accumulation, (III) biofilm sloughing and updating, and (IV) biofilm maturation. During the whole start-up period, adhesion force was positively and significantly correlated with the contents of EPS, especially the content of polysaccharide. In addition, increased adhesion force and EPS were beneficial for biofilm retention. Gram-negative bacteria mainly including Sphaerotilus, Zoogloea and Haliscomenobacter were predominant in the initial stage. Actinobacteria was beneficial to resist sloughing. Furthermore, filamentous bacteria were dominant in maturation biofilm.
Collapse
Affiliation(s)
- Yan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hong-Qiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Jin-Ju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Li-Li Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
36
|
Ruhal R, Antti H, Rzhepishevska O, Boulanger N, Barbero DR, Wai SN, Uhlin BE, Ramstedt M. A multivariate approach to correlate bacterial surface properties to biofilm formation by lipopolysaccharide mutants of Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 2015; 127:182-91. [PMID: 25679490 DOI: 10.1016/j.colsurfb.2015.01.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/19/2014] [Accepted: 01/19/2015] [Indexed: 11/15/2022]
Abstract
Bacterial biofilms are involved in various medical infections and for this reason it is of great importance to better understand the process of biofilm formation in order to eradicate or mitigate it. It is a very complex process and a large range of variables have been suggested to influence biofilm formation. However, their internal importance is still not well understood. In the present study, a range of surface properties of Pseudomonas aeruginosa lipopolysaccharide mutants were studied in relation to biofilm formation measured in different kinds of multi-well plates and growth conditions in order to better understand the complexity of biofilm formation. Multivariate analysis was used to simultaneously evaluate the role of a range of physiochemical parameters under different conditions. Our results suggest the presence of serum inhibited biofilm formation due to changes in twitching motility. From the multivariate analysis it was observed that the most important parameters, positively correlated to biofilm formation on two types of plates, were high hydrophobicity, near neutral zeta potential and motility. Negative correlation was observed with cell aggregation, as well as formation of outer membrane vesicles and exopolysaccharides. This work shows that the complexity of biofilm formation can be better understood using a multivariate approach that can interpret and rank the importance of different factors being present simultaneously under several different environmental conditions, enabling a better understanding of this complex process.
Collapse
Affiliation(s)
- Rohit Ruhal
- Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Henrik Antti
- Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Olena Rzhepishevska
- Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | | | | | - Sun Nyunt Wai
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Bernt Eric Uhlin
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Madeleine Ramstedt
- Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| |
Collapse
|
37
|
Antiadhesive activity of ulvan polysaccharides covalently immobilized onto titanium surface. Colloids Surf B Biointerfaces 2013; 112:229-36. [DOI: 10.1016/j.colsurfb.2013.07.061] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/18/2013] [Accepted: 07/30/2013] [Indexed: 11/17/2022]
|
38
|
Feng W, Swift S, Singhal N. Effects of surfactants on cell surface tension parameters and hydrophobicity of Pseudomonas putida 852 and Rhodococcus erythropolis 3586. Colloids Surf B Biointerfaces 2013; 105:43-50. [DOI: 10.1016/j.colsurfb.2012.12.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 12/23/2012] [Accepted: 12/27/2012] [Indexed: 10/27/2022]
|
39
|
Otero J, Baños R, González L, Torrents E, Juárez A, Puig-Vidal M. Quartz tuning fork studies on the surface properties of Pseudomonas aeruginosa during early stages of biofilm formation. Colloids Surf B Biointerfaces 2013; 102:117-23. [DOI: 10.1016/j.colsurfb.2012.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/19/2012] [Accepted: 08/07/2012] [Indexed: 11/29/2022]
|
40
|
Petrocelli S, Tondo ML, Daurelio LD, Orellano EG. Modifications of Xanthomonas axonopodis pv. citri lipopolysaccharide affect the basal response and the virulence process during citrus canker. PLoS One 2012; 7:e40051. [PMID: 22792211 PMCID: PMC3391215 DOI: 10.1371/journal.pone.0040051] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 05/31/2012] [Indexed: 12/16/2022] Open
Abstract
Xanthomonas axonopodis pv. citri (Xac) is the phytopathogen responsible for citrus canker, one of the most devastating citrus diseases in the world. A broad range of pathogens is recognized by plants through so-called pathogen-associated molecular patterns (PAMPs), which are highly conserved fragments of pathogenic molecules. In plant pathogenic bacteria, lipopolisaccharyde (LPS) is considered a virulence factor and it is being recognized as a PAMP. The study of the participation of Xac LPS in citrus canker establishment could help to understand the molecular bases of this disease. In the present work we investigated the role of Xac LPS in bacterial virulence and in basal defense during the interaction with host and non host plants. We analyzed physiological features of Xac mutants in LPS biosynthesis genes (wzt and rfb303) and the effect of these mutations on the interaction with orange and tobacco plants. Xac mutants showed an increased sensitivity to external stresses and differences in bacterial motilities, in vivo and in vitro adhesion and biofilm formation. Changes in the expression levels of the LPS biosynthesis genes were observed in a medium that mimics the plant environment. Xacwzt exhibited reduced virulence in host plants compared to Xac wild-type and Xacrfb303. However, both mutant strains produced a lower increase in the expression levels of host plant defense-related genes respect to the parental strain. In addition, Xac LPS mutants were not able to generate HR during the incompatible interaction with tobacco plants. Our findings indicate that the structural modifications of Xac LPS impinge on other physiological attributes and lead to a reduction in bacterial virulence. On the other hand, Xac LPS has a role in the activation of basal defense in host and non host plants.
Collapse
Affiliation(s)
- Silvana Petrocelli
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| | - María Laura Tondo
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| | - Lucas D. Daurelio
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| | - Elena G. Orellano
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
- * E-mail:
| |
Collapse
|
41
|
Tran VB, Sung YS, Fleiszig SM, Evans DJ, Radke C. Dynamics of Pseudomonas aeruginosa association with anionic hydrogel surfaces in the presence of aqueous divalent-cation salts. J Colloid Interface Sci 2011; 362:58-66. [PMID: 21723562 PMCID: PMC3789522 DOI: 10.1016/j.jcis.2011.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/03/2011] [Accepted: 06/03/2011] [Indexed: 10/18/2022]
Abstract
Binding of bacteria to solid surfaces is complex with many aspects incompletely understood. We investigate Pseudomonas aeruginosa uptake kinetics onto hydrogel surfaces representative of soft-contact lenses made of nonionic poly(2-hydroxyethylmethacrylate) (p-HEMA), anionic poly(methacrylic acid) (p-MAA), and anionic poly(acrylic acid) (p-AA). Using a parallel-plate flow cell under phase-contrast microscopy, we document a kinetic "burst" at the anionic hydrogel surface: dilute aqueous P. aeruginosa first rapidly accumulates and then rapidly depletes. Upon continuing flow, divalent cations in the suspending solution sorb into the hydrogel network causing the previously surface-accumulated bacteria to desorb. The number of bacteria eventually bound to the surface is low compared to the nonionic p-HEMA hydrogel. We propose that the kinetic burst is due to reversible divalent-cation bridging between the anionic bacteria and the negatively charged hydrogel surface. The number of surface bridging sites diminishes as divalent cations impregnate into and collapse the gel. P. aeruginosa association with the surface then falls. Low eventual binding of P. aeruginosa to the anionic hydrogel is ascribed to increased surface hydrophilicity compared to the counterpart nonionic p-HEMA hydrogel.
Collapse
Affiliation(s)
- Victoria B. Tran
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, United States
| | - Ye Suel Sung
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, United States
| | - Suzanne M.J. Fleiszig
- School of Optometry, University of California, Berkeley, CA 94720, United States
- Graduate Group in Vision Science, University of California, Berkeley, CA 94720, United States
- Graduate Groups in Plant and Microbial Biology, and Infectious Disease and Immunity, University of California, Berkeley, CA 94720, United States
| | - David J. Evans
- School of Optometry, University of California, Berkeley, CA 94720, United States
- Touro University – California, College of Pharmacy, Vallejo, CA 94592, United States
| | - C.J. Radke
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, United States
- Graduate Group in Vision Science, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
42
|
Chao Y, Zhang T. Probing roles of lipopolysaccharide, type 1 fimbria, and colanic acid in the attachment of Escherichia coli strains on inert surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:11545-53. [PMID: 21842859 DOI: 10.1021/la202534p] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The roles of bacterial surface polymers in reversible (phase I) and irreversible (phase II) attachment (i.e., lipopolysaccharides (LPS), type 1 fimbria, and capsular colanic acid (CA)) were investigated in situ by combining fluorescence microscopy and atomic force microscopy. Fluorescence microscopy was used to evaluate the phase I attachment by counting the total number of cells on the substrata, and AFM was applied to image the phase II cells and measure the lateral detachment force to characterize phase II attachment. Also, by comparing the number of cells in phases I and II, the transformation ratio was calculated and used as an index to evaluate the roles of different polymers in the attachment process. Escherichia coli K-12 and its six mutants, which had different surface polymers in terms of LPS structures, CA contents, and type 1 fimbriae, were used as the test strains. Six different materials were applied as substrata, including glass, two metals (aluminum and stainless steel), and three plastics (polyvinyl chloride, polycarbonate, and polyethylene). The results indicated that LPS significantly enhanced phases I and II attachment as well as the transformation ratio from phase I to II. Like LPS, type 1 fimbriae largely increased the phase I attachment and the transformation ratio; however, they did not significantly influence the adhesion strength in phase II. CA had a negative effect on attachment in phases I and II by decreasing the adhered number of cells and the lateral detachment force, respectively, but had no influence on the transformation ratio.
Collapse
Affiliation(s)
- Yuanqing Chao
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | | |
Collapse
|
43
|
Park BJ, Abu-Lail NI. Atomic force microscopy investigations of heterogeneities in the adhesion energies measured between pathogenic and non-pathogenic Listeria species and silicon nitride as they correlate to virulence and adherence. BIOFOULING 2011; 27:543-59. [PMID: 21623482 PMCID: PMC3172993 DOI: 10.1080/08927014.2011.584129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Atomic force microscopy (AFM) was used to probe heterogeneities in adhesion energies measured between pathogenic and non-pathogenic species of Listeria and silicon nitride in water at four levels. Adhesion energies were quantified on individual bacterial cells (cell level), bacterial cells that belonged to an individual Listeria strain but varied in their cultures (strain level), bacterial cells that belonged to an individual Listeria species but varied in their strain type (species level) and on bacterial cells that belonged to the Listeria genus but varied in their species type (genus level). To quantify heterogeneities in the adhesion energies, a heterogeneity index (HI) was defined based on quantified standard errors of mean. At the cell level, spatial variations in the adhesion energies were not observed. For the strain, species, and genus levels, the HI increased with increased adhesion energies. At the species level, the HI increased with strain virulence.
Collapse
Affiliation(s)
- Bong-Jae Park
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-2710, USA
| | - Nehal I. Abu-Lail
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-2710, USA
| |
Collapse
|
44
|
Study of Antibacterial Efficacy of Hybrid Chitosan-Silver Nanoparticles for Prevention of Specific Biofilm and Water Purification. ACTA ACUST UNITED AC 2011. [DOI: 10.1155/2011/693759] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Antibacterial efficacy of silver nanoparticles (Ag NPs) deposited alternatively layer by layer (LBL) on chitosan polymer in the form of a thin film over a quartz plate and stainless steel strip has been studied. An eight-bilayer chitosan/silver (Cs/Ag)8 hybrid was prepared having a known concentration of silver. Techniques such as UV-visible spectroscopy, inductively coupled plasma optical emission spectroscopy (ICP-OES), and atomic force microscopy (AFM) were carried out to understand and elucidate the physical nature of the film. Gram-negative bacteria, Escherichia coli (E. coli), were used as a test sample in saline solution for antibacterial studies. The growth inhibition at different intervals of contact time and, more importantly, the antibacterial properties of the hybrid film on repeated cycling in saline solution have been demonstrated. AFM studies are carried out for the first time on the microbe to know the morphological changes affected by the hybrid film. The hybrid films on aging (3 months) are found to be as bioactive as before. Cytotoxicity experiments indicated good biocompatibility. The hybrid can be a promising bioactive material for the prevention of biofilms specific to E. coli and in purification of water for safe drinking.
Collapse
|
45
|
Relating the physical properties of Pseudomonas aeruginosa lipopolysaccharides to virulence by atomic force microscopy. J Bacteriol 2010; 193:1259-66. [PMID: 21148734 DOI: 10.1128/jb.01308-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipopolysaccharides (LPS) are an important class of macromolecules that are components of the outer membrane of Gram-negative bacteria such as Pseudomonas aeruginosa. P. aeruginosa contains two different sugar chains, the homopolymer common antigen (A band) and the heteropolymer O antigen (B band), which impart serospecificity. The characteristics of LPS are generally assessed after isolation rather than in the context of whole bacteria. Here we used atomic force microscopy (AFM) to probe the physical properties of the LPS of P. aeruginosa strain PA103 (serogroup O11) in situ. This strain contains a mixture of long and very long polymers of O antigen, regulated by two different genes. For this analysis, we studied the wild-type strain and four mutants, ΔWzz1 (producing only very long LPS), ΔWzz2 (producing only long LPS), DΔM (with both the wzz1 and wzz2 genes deleted), and Wzy::GM (producing an LPS core oligosaccharide plus one unit of O antigen). Forces of adhesion between the LPS on these strains and the silicon nitride AFM tip were measured, and the Alexander and de Gennes model of steric repulsion between a flat surface and a polymer brush was used to calculate the LPS layer thickness (which we refer to as length), compressibility, and spacing between the individual molecules. LPS chains were longest for the wild-type strain and ΔWzz1, at 170.6 and 212.4 nm, respectively, and these values were not statistically significantly different from one another. Wzy::GM and DΔM have reduced LPS lengths, at 34.6 and 37.7 nm, respectively. Adhesion forces were not correlated with LPS length, but a relationship between adhesion force and bacterial pathogenicity was found in a mouse acute pneumonia model of infection. The adhesion forces with the AFM probe were lower for strains with LPS mutations, suggesting that the wild-type strain is optimized for maximal adhesion. Our research contributes to further understanding of the role of LPS in the adhesion and virulence of P. aeruginosa.
Collapse
|
46
|
Bacterial adhesion to hydrocarbons: Role of asphaltenes and resins. Colloids Surf B Biointerfaces 2010; 79:219-26. [DOI: 10.1016/j.colsurfb.2010.03.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 03/29/2010] [Accepted: 03/31/2010] [Indexed: 11/24/2022]
|
47
|
Nanocharacterization in dentistry. Int J Mol Sci 2010; 11:2523-45. [PMID: 20640166 PMCID: PMC2904930 DOI: 10.3390/ijms11062523] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/05/2010] [Accepted: 06/07/2010] [Indexed: 11/26/2022] Open
Abstract
About 80% of US adults have some form of dental disease. There are a variety of new dental products available, ranging from implants to oral hygiene products that rely on nanoscale properties. Here, the application of AFM (Atomic Force Microscopy) and optical interferometry to a range of dentistry issues, including characterization of dental enamel, oral bacteria, biofilms and the role of surface proteins in biochemical and nanomechanical properties of bacterial adhesins, is reviewed. We also include studies of new products blocking dentine tubules to alleviate hypersensitivity; antimicrobial effects of mouthwash and characterizing nanoparticle coated dental implants. An outlook on future “nanodentistry” developments such as saliva exosomes based diagnostics, designing biocompatible, antimicrobial dental implants and personalized dental healthcare is presented.
Collapse
|
48
|
Kalasin S, Dabkowski J, Nüsslein K, Santore MM. The role of nano-scale heterogeneous electrostatic interactions in initial bacterial adhesion from flow: A case study with Staphylococcus aureus. Colloids Surf B Biointerfaces 2010; 76:489-95. [DOI: 10.1016/j.colsurfb.2009.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 12/13/2009] [Accepted: 12/15/2009] [Indexed: 11/25/2022]
|
49
|
Glonti T, Chanishvili N, Taylor P. Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates ofPseudomonas aeruginosa. J Appl Microbiol 2010; 108:695-702. [DOI: 10.1111/j.1365-2672.2009.04469.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
|