1
|
García-García FA, Cristiani-Urbina E, Morales-Barrera L, Rodríguez-Peña ON, Hernández-Portilla LB, Campos JE, Flores-Ortíz CM. Study of Bacillus cereus as an Effective Multi-Type A Trichothecene Inactivator. Microorganisms 2024; 12:2236. [PMID: 39597625 PMCID: PMC11596695 DOI: 10.3390/microorganisms12112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Type A trichothecenes are common mycotoxins in stored cereal grains, where co-contamination is likely to occur. Seeking new microbiological options capable of inactivating more than one type A trichothecene, this study aimed to analyze facultative anaerobe bacteria isolated from broiler proventriculus. For this purpose, type A trichothecenes were produced in vitro, and a facultative anaerobic bacterial consortium was obtained from a broiler's proventriculus. Then, the most representative bacterial strains were purified, and trichothecene inactivating assays were performed. Finally, the isolate with the greatest capacity to remove all tested mycotoxins was selected for biosorption assays. The results showed that when the consortium was tested, neosolaniol (NEO) was the most degraded mycotoxin (64.55%; p = 0.008), followed by HT-2 toxin (HT-2) (22.96%; p = 0.008), and T-2 toxin (T-2) (20.84%; p = 0.014). All isolates were bacillus-shaped and Gram-positive, belonging to the Bacillus and Lactobacillus genera, of which B. cereus was found to remove T-2 (28.35%), HT-2 (32.84%), and NEO (27.14%), where biosorption accounted for 86.10% in T-2, 35.59% in HT-2, and 68.64% in NEO. This study is the first to prove the capacity of B. cereus as an effective inactivator and binder of multi-type A trichothecenes.
Collapse
Affiliation(s)
- Fernando Abiram García-García
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico; (F.A.G.-G.); (L.B.H.-P.)
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico;
| | - Eliseo Cristiani-Urbina
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico;
| | - Liliana Morales-Barrera
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico;
| | - Olga Nelly Rodríguez-Peña
- Laboratorio de Biogeoquímica, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico;
| | - Luis Barbo Hernández-Portilla
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico; (F.A.G.-G.); (L.B.H.-P.)
| | - Jorge E. Campos
- Laboratorio de Bioquímica Molecular, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico;
| | - Cesar Mateo Flores-Ortíz
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico; (F.A.G.-G.); (L.B.H.-P.)
- Laboratorio de Fisiología Vegetal, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico
| |
Collapse
|
2
|
Zorigt T, Furuta Y, Paudel A, Kamboyi HK, Shawa M, Chuluun M, Sugawara M, Enkhtsetseg N, Enkhtuya J, Battsetseg B, Munyeme M, Hang'ombe BM, Higashi H. Pan-genome analysis reveals novel chromosomal markers for multiplex PCR-based specific detection of Bacillus anthracis. BMC Infect Dis 2024; 24:942. [PMID: 39251928 PMCID: PMC11385494 DOI: 10.1186/s12879-024-09817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Bacillus anthracis is a highly pathogenic bacterium that can cause lethal infection in animals and humans, making it a significant concern as a pathogen and biological agent. Consequently, accurate diagnosis of B. anthracis is critically important for public health. However, the identification of specific marker genes encoded in the B. anthracis chromosome is challenging due to the genetic similarity it shares with B. cereus and B. thuringiensis. METHODS The complete genomes of B. anthracis, B. cereus, B. thuringiensis, and B. weihenstephanensis were de novo annotated with Prokka, and these annotations were used by Roary to produce the pan-genome. B. anthracis exclusive genes were identified by Perl script, and their specificity was examined by nucleotide BLAST search. A local BLAST alignment was performed to confirm the presence of the identified genes across various B. anthracis strains. Multiplex polymerase chain reactions (PCR) were established based on the identified genes. RESULT The distribution of genes among 151 whole-genome sequences exhibited three distinct major patterns, depending on the bacterial species and strains. Further comparative analysis between the three groups uncovered thirty chromosome-encoded genes exclusively present in B. anthracis strains. Of these, twenty were found in known lambda prophage regions, and ten were in previously undefined region of the chromosome. We established three distinct multiplex PCRs for the specific detection of B. anthracis by utilizing three of the identified genes, BA1698, BA5354, and BA5361. CONCLUSION The study identified thirty chromosome-encoded genes specific to B. anthracis, encompassing previously described genes in known lambda prophage regions and nine newly discovered genes from an undefined gene region to the best of our knowledge. Three multiplex PCR assays offer an accurate and reliable alternative method for detecting B. anthracis. Furthermore, these genetic markers have value in anthrax vaccine development, and understanding the pathogenicity of B. anthracis.
Collapse
Affiliation(s)
- Tuvshinzaya Zorigt
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- Graduate School of Infectious Diseases, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Yoshikazu Furuta
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Graduate School of Infectious Diseases, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Atmika Paudel
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Graduate School of Infectious Diseases, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- GenEndeavor LLC, 26219 Eden Landing Rd, Hayward, CA, USA
| | - Harvey Kakoma Kamboyi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Graduate School of Infectious Diseases, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Misheck Shawa
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Graduate School of Infectious Diseases, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mungunsar Chuluun
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Graduate School of Infectious Diseases, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Misa Sugawara
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Nyamdorj Enkhtsetseg
- Laboratory of Infectious Diseases and Immunology, Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Jargalsaikhan Enkhtuya
- Laboratory of Food Safety and Hygiene, Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Badgar Battsetseg
- Laboratory of Molecular Genetics, Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Musso Munyeme
- Public Health Unit, Disease Control Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Bernard M Hang'ombe
- Microbiology Unit, Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Hideaki Higashi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Graduate School of Infectious Diseases, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Metryka O, Wasilkowski D, Dulski M, Adamczyk-Habrajska M, Augustyniak M, Mrozik A. Metallic nanoparticle actions on the outer layer structure and properties of Bacillus cereus and Staphylococcus epidermidis. CHEMOSPHERE 2024; 354:141691. [PMID: 38484999 DOI: 10.1016/j.chemosphere.2024.141691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Although the antimicrobial activity of nanoparticles (NPs) penetrating inside the cell is widely recognised, the toxicity of large NPs (>10 nm) that cannot be translocated across bacterial membranes remains unclear. Therefore, this study was performed to elucidate the direct effects of Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs on relative membrane potential, permeability, hydrophobicity, structural changes within chemical compounds at the molecular level and the distribution of NPs on the surfaces of the bacteria Bacillus cereus and Staphylococcus epidermidis. Overall analysis of the results indicated the different impacts of individual NPs on the measured parameters in both strains depending on their type and concentration. B. cereus proved to be more resistant to the action of NPs than S. epidermidis. Generally, Cu-NPs showed the most substantial toxic effect on both strains; however, Ag-NPs exhibited negligible toxicity. All NPs had a strong affinity for cell surfaces and showed strain-dependent characteristic dispersion. ATR-FTIR analysis explained the distinctive interactions of NPs with bacterial functional groups, leading to macromolecular structural modifications. The results presented provide new and solid evidence for the current understanding of the interactions of metallic NPs with bacterial membranes.
Collapse
Affiliation(s)
- Oliwia Metryka
- Doctoral School, University of Silesia, Bankowa 14, 40-032, Katowice, Poland.
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Mateusz Dulski
- Institute of Materials Science, Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500, Chorzów, Poland
| | - Małgorzata Adamczyk-Habrajska
- Institute of Materials Science, Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500, Chorzów, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
4
|
Hossain MM, Rajia S, Ohkawa M, Yoshimoto S, Fujii Y, Kawsar SMA, Ozeki Y, Hasan I. Physicochemical properties and antimicrobial activities of MytiLec-1, a member from the mytilectin family of mussels. Int J Biol Macromol 2023; 253:127628. [PMID: 37884254 DOI: 10.1016/j.ijbiomac.2023.127628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
MytiLec-1, the recombinant form of a mussel lectin from Mytillus galloprovincialis, was purified by affinity chromatography and showed the maximum hemagglutination activity at a temperature range of 10 °C to 40 °C and at pH 7.0 to 9.0. Denaturants like urea and acidic-guanidine inhibited its hemagglutination activity significantly. MytiLec-1 was found to be metal-independent though Ca2+ slightly increased the activity of chelated MytiLec-1. The lectin suppressed 65 % growth of Pseudomonas aeruginosa (ATCC 47085) at 200 μg/ml and reduced the formation of biofilm (15 % at 200 μg/ml). Comparing to Shigella sonnei (ATCC 29930), Shigella boydii (ATCC 231903) and Shigella dysenteriae (ATCC 238135), Bacillus cereus (ATCC 14579) was slightly more sensitive to MytiLec-1. At a concentration of 200 μg/disc and 100 μg/ml, MytiLec-1 prevented the growth of Aspergillus niger and agglutinated the spores of Aspergillus niger and Trichoderma reesei, respectively. Amino acid sequences, physicochemical properties and antimicrobial activities of MytiLec-1 were compared with three other lectins (CGL, MTL and MCL from Crenomytilus grayanus, Mytilus trossulas and Mytilus californianus, respectively) from the mytilectin family of bivalve mollusks. It reconfirms the function of these lectins to recognize pathogens and perform important roles in innate immune response of mussels.
Collapse
Affiliation(s)
- Md Mikail Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Sultana Rajia
- Center for Interdisciplinary Research, Varendra University, Rajshahi 6204, Bangladesh; Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Mayuka Ohkawa
- Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Suzuna Yoshimoto
- Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Yuki Fujii
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7, Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Sarkar M A Kawsar
- Department of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh
| | - Yasuhiro Ozeki
- Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Imtiaj Hasan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh.
| |
Collapse
|
5
|
Lee CJ, Qiu TA, Hong Z, Zhang Z, Min Y, Zhang L, Dai L, Zhao H, Si T, Sweedler JV. Profiling of d-alanine production by the microbial isolates of rat gut microbiota. FASEB J 2022; 36:e22446. [PMID: 35816159 DOI: 10.1096/fj.202101595r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 11/11/2022]
Abstract
d-alanine (d-Ala) and several other d-amino acids (d-AAs) act as hormones and neuromodulators in nervous and endocrine systems. Unlike the endogenously synthesized d-serine in animals, d-Ala may be from exogenous sources, e.g., diet and intestinal microorganisms. However, it is unclear if the capability to produce d-Ala and other d-AAs varies among different microbial strains in the gut. We isolated individual microorganisms of rat gut microbiota and profiled their d-AA production in vitro, focusing on d-Ala. Serial dilutions of intestinal contents from adult male rats were plated on agar to obtain clonal cultures. Using MALDI-TOF MS for rapid strain typing, we identified 38 unique isolates, grouped into 11 species based on 16S rRNA gene sequences. We then used two-tier screening to profile bacterial d-AA production, combining a d-amino acid oxidase-based enzymatic assay for rapid assessment of non-acidic d-AA amount and chiral LC-MS/MS to quantify individual d-AAs, revealing 19 out of the 38 isolated strains as d-AA producers. LC-MS/MS analysis of the eight top d-AA producers showed high levels of d-Ala in all strains tested, with substantial inter- and intra-species variations. Though results from the enzymatic assay and LC-MS/MS analysis aligned well, LC-MS/MS further revealed the existence of d-glutamate and d-aspartate, which are poor substrates for this enzymatic assay. We observed large inter- and intra-species variation of d-AA production profiles from rat gut microbiome species, demonstrating the importance of chemical profiling of gut microbiota in addition to sequencing, furthering the idea that microbial metabolites modulate host physiology.
Collapse
Affiliation(s)
- Cindy J Lee
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Tian A Qiu
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Zhilai Hong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhenkun Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuhao Min
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Linzixuan Zhang
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huimin Zhao
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Tong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jonathan V Sweedler
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
6
|
Sharma P, Rekhi P, Kumari S, Debnath M. Deciphering the molecular diversity of related halophilic
Bacillus
sp.
isolated from
Sambhar Lake
and the functional characterizations of surfactin. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Priyanka Sharma
- Department of Biosciences Manipal University Jaipur Jaipur India
| | - Pavni Rekhi
- Department of Biosciences Manipal University Jaipur Jaipur India
| | - Sapna Kumari
- Department of Biosciences Manipal University Jaipur Jaipur India
| | - Mousumi Debnath
- Department of Biosciences Manipal University Jaipur Jaipur India
| |
Collapse
|
7
|
Bhattacharya P, Dey A, Neogi S. An insight into the mechanism of antibacterial activity by magnesium oxide nanoparticles. J Mater Chem B 2021; 9:5329-5339. [PMID: 34143165 DOI: 10.1039/d1tb00875g] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The exact mechanism behind the antibacterial efficacy of nanoparticles has remained unexplored to date. This study aims to shed light the mechanism adopted using magnesium oxide nanoparticles prepared in ethyl alcohol against gram-negative and gram-positive bacterial cells, and the generation of reactive oxygen species (ROS) is proposed to be the dominant mechanism. This paradigm is supported by the quantification of the hydroxyl radical and superoxide anions produced in the nanoparticle treated and untreated bacterial solutions, and by the reduction of the antibacterial efficiency after the addition of a radical scavenger. The production of free Mg2+ ions from the nanoparticle is supposed to be the causative agent behind this uncontrolled ROS generation, resulting in excessive oxidative stress, which the antioxidants of the bacterial cells are unable to nullify, leading to cell damage. The amount of proteins, carbohydrates and lipids leaked due to the distortion of the cellular membrane is also quantified, and it is observed that their leakage trend varies on the structure of the bacterial cell. FESEM images taken at certain time intervals show the gradual internalization of the nanoparticles, and increasing rupture of bacterial cell membranes, leading to cell necrosis.
Collapse
Affiliation(s)
| | - Aishee Dey
- Indian Institute of Technology Kharagpur, 721302, India.
| | - Sudarsan Neogi
- Indian Institute of Technology Kharagpur, 721302, India.
| |
Collapse
|
8
|
Shadrin VS, Machulin AV, Dorofeeva LV, Chernyshov SV, Mikoulinskaia GV. Lysis of cells of diverse bacteria by l,d-peptidases of Escherichia coli bacteriophages RB43, RB49 and T5. J Appl Microbiol 2020; 130:1902-1912. [PMID: 33107183 DOI: 10.1111/jam.14910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 01/03/2023]
Abstract
AIMS The objective of this work was to study the antibacterial specificity and antibacterial effect of endolysins isolated from colibacteriophages RB43, RB49 and T5-as manifested on the exponential and stationary cell cultures of diverse bacteria depending on the growth stage, structure of peptidoglycan (PG) and antibiotic resistance. METHODS AND RESULTS Enzyme activity was assayed by the spectrophotometric method. Antimicrobial activity was estimated by the number of colony forming units (CFUs), with the results represented as logarithmic units. Morphological examination of bacterial cells was conducted using phase-contrast and scanning electron microscopy. The enzymes EndoT5, endolysin of bacteriophage T5, EndoRB43, endolysin of bacteriophage RB43 and EndoRB49, endolysin of bacteriophage RB49 turned out to be much less bacteriospecific than the corresponding Escherichia coli phages; they lysed bacteria of the genera Bacillus, Cellulomonas and Sporosarcina, whose PGs had different structures (A1γ, A4α and A4β) and chemical modifications (amidation). The specific lytic activity of phage enzymes was independent of the antibiotic resistance of bacterial cells and was higher when the cells were in the exponential, rather than stationary, growth phase. The analysis of morphological changes showed that the intermediate stage of the endolysin-induced lysis of bacterial cells was the formation of spheroplasts and protoplasts. CONCLUSIONS Endolysins of colibacteriophages RB49, RB43 and T5 have a wide spectrum of antibacterial action, which includes a number of diverse micro-organisms with different PG structures. SIGNIFICANCE AND IMPACT OF THE STUDY This is a study of the bacterial selectivity of enzymes degrading bacterial cell wall in relation to the chemical structure of PG. It is shown that endolysins of bacteriophages RB49 and RB43 efficiently lyse cell wall of Gram-positive bacteria of the genus Bacillus and Gram-negative bacteria of the genus Pseudomonas (including an antibiotic-resistant strain). The number of bacterial cells is reduced by 3-6 orders of magnitude, which indicates good prospects for using these enzymes in biotechnology.
Collapse
Affiliation(s)
- V S Shadrin
- Branch of Shemyakin & Ovchinnikov's Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - A V Machulin
- Skryabin's Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the, Russian Academy of Sciences', Pushchino, Russia
| | - L V Dorofeeva
- Skryabin's Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the, Russian Academy of Sciences', Pushchino, Russia
| | - S V Chernyshov
- Branch of Shemyakin & Ovchinnikov's Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - G V Mikoulinskaia
- Branch of Shemyakin & Ovchinnikov's Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| |
Collapse
|
9
|
Chateau A, Oh SY, Tomatsidou A, Brockhausen I, Schneewind O, Missiakas D. Distinct Pathways Carry Out α and β Galactosylation of Secondary Cell Wall Polysaccharide in Bacillus anthracis. J Bacteriol 2020; 202:e00191-20. [PMID: 32457049 PMCID: PMC7348550 DOI: 10.1128/jb.00191-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/15/2020] [Indexed: 12/26/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax disease, elaborates a secondary cell wall polysaccharide (SCWP) that is required for the retention of surface layer (S-layer) and S-layer homology (SLH) domain proteins. Genetic disruption of the SCWP biosynthetic pathway impairs growth and cell division. B. anthracis SCWP is comprised of trisaccharide repeats composed of one ManNAc and two GlcNAc residues with O-3-α-Gal and O-4-β-Gal substitutions. UDP-Gal, synthesized by GalE1, is the substrate of galactosyltransferases that modify the SCWP repeat. Here, we show that the gtsE gene, which encodes a predicted glycosyltransferase with a GT-A fold, is required for O-4-β-Gal modification of trisaccharide repeats. We identify a DXD motif critical for GtsE activity. Three distinct genes, gtsA, gtsB, and gtsC, are required for O-3-α-Gal modification of trisaccharide repeats. Based on the similarity with other three-component glycosyltransferase systems, we propose that GtsA transfers Gal from cytosolic UDP-Gal to undecaprenyl phosphate (C55-P), GtsB flips the C55-P-Gal intermediate to the trans side of the membrane, and GtsC transfers Gal onto trisaccharide repeats. The deletion of galE1 does not affect growth in vitro, suggesting that galactosyl modifications are dispensable for the function of SCWP. The deletion of gtsA, gtsB, or gtsC leads to a loss of viability, yet gtsA and gtsC can be deleted in strains lacking galE1 or gtsE We propose that the loss of viability is caused by the accumulation of undecaprenol-bound precursors and present an updated model for SCWP assembly in B. anthracis to account for the galactosylation of repeat units.IMPORTANCE Peptidoglycan is a conserved extracellular macromolecule that protects bacterial cells from turgor pressure. Peptidoglycan of Gram-positive bacteria serves as a scaffold for the attachment of polymers that provide defined bacterial interactions with their environment. One such polymer, B. anthracis SCWP, is pyruvylated at its distal end to serve as a receptor for secreted proteins bearing the S-layer homology domain. Repeat units of SCWP carry three galactoses in B. anthracis Glycosylation is a recurring theme in nature and often represents a means to mask or alter conserved molecular signatures from intruders such as bacteriophages. Several glycosyltransferase families have been described based on bioinformatics prediction, but few have been studied. Here, we describe the glycosyltransferases that mediate the galactosylation of B. anthracis SCWP.
Collapse
Affiliation(s)
- Alice Chateau
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
| | - So Young Oh
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
| | - Anastasia Tomatsidou
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
| | - Inka Brockhausen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
| | - Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
10
|
Panigrahi A, Das RR, Sivakumar MR, Saravanan A, Saranya C, Sudheer NS, Kumaraguru Vasagam KP, Mahalakshmi P, Kannappan S, Gopikrishna G. Bio-augmentation of heterotrophic bacteria in biofloc system improves growth, survival, and immunity of Indian white shrimp Penaeus indicus. FISH & SHELLFISH IMMUNOLOGY 2020; 98:477-487. [PMID: 31945485 DOI: 10.1016/j.fsi.2020.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/07/2020] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
Effect of bio-augmentation of Bacillus spp in biofloc on growth, survival and immunity in Indian white shrimp Penaeus indicus was evaluated. Nine Bacillus strains were isolated and screened individually as well as in the form of a consortia. To maintain a C:N ratio of 12:1 a blend of carbohydrate sources was used. Bio-augmentation with bacterial consortium and Virgibacillus sp. produced improved growth and immunity. Shrimp survival ranged from 80 to 95% among treatments. Production was higher (35%) in the biofloc tanks with an average body weight (ABW) of 10.89 ± 1.2 g. On evaluating the immune responses, it was found that trypsin significantly (P < 0.05) enhanced Prophenoloxidase (PO) activity in Lysinibacillus, Bacillus cereus, Bacillus licheniformis and Bacillus subtilis bio-augmented groups. Laminarin induced PO activity was observed in groups supplemented with Oceanobacillus sp., Bacillus sp.and Bacillus megaterium. The lysozyme (LZ) activity was significantly (P < 0.05) higher in B. cereus and Microbial Consortia (MC), while other treatments were less effective. Total hemocyte count (THC) significantly (P < 0.05) increased in all treatment groups compared to the control. Hyaline hemocyte (HH) count was significantly (P < 0.05) higher in the control group (14.43%). Semi granular hemocytes (SGH) was higher in groups treated with Lysinibacillus, Bacillus sp., B. licheniformis and B. subtilis. The granular hemocyte (GH) count was significantly (P < 0.05) higher in Virgibacillus sp., B. cereus, B.megaterium and Oceanobacillus sp. The biofloc alone (BF), treated and augmented with B. megaterium significantly (P < 0.05) increased phagocytic activity. Highly significant phagocytic index (PI) was observed in bio-augmented groups, BF and MC. The relative expression levels of immune genes were found to be significantly up-regulated in shrimps grown in bio-augmented groups. Enhanced immunological parameters implies that bio-augmentation of biofloc with Bacillus spp. improved immunity in shrimps. Hence, bio-augmentation of probiotics in biofloc may be useful in improving culture conditions to produce P. indicus.
Collapse
Affiliation(s)
- A Panigrahi
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600 028, India.
| | - R R Das
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600 028, India
| | - M R Sivakumar
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600 028, India
| | - A Saravanan
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600 028, India
| | - C Saranya
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600 028, India
| | - N S Sudheer
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600 028, India
| | - K P Kumaraguru Vasagam
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600 028, India
| | - P Mahalakshmi
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600 028, India
| | - S Kannappan
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600 028, India
| | - G Gopikrishna
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600 028, India
| |
Collapse
|
11
|
Chateau A, Schneewind O, Missiakas D. Extraction and Purification of Wall-Bound Polymers of Gram-Positive Bacteria. Methods Mol Biol 2019; 1954:47-57. [PMID: 30864123 DOI: 10.1007/978-1-4939-9154-9_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The envelope of gram-positive bacteria encompasses the cell wall, a rigid exoskeleton comprised of peptidoglycan that provides protection against lysis and governs bacterial cell shapes. Peptidoglycan also serves as the site of attachment for proteins and nonproteinaceous polymers that interact with the bacterial environment. Nonproteinaceous molecules include teichoic acids, capsular polysaccharides, and secondary cell wall polysaccharides (SCWP). Treatment of gram-positive bacterial cells with proteases, nucleases, and detergents results in the isolation of "murein sacculi" (i.e., peptidoglycan with bound carbohydrate polymers). Incubation of sacculi with acid or base releases carbohydrate polymers that can be purified for further biochemical characterization. This protocol describes the hydrofluoric acid extraction and purification of the secondary cell wall polymer of Bacillus anthracis that is also found in the envelope of the other members of the Bacillus cereus sensu lato group of bacteria.
Collapse
Affiliation(s)
- Alice Chateau
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL, USA.,Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL, USA.,Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL, USA. .,Department of Microbiology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Novais Â, Freitas AR, Rodrigues C, Peixe L. Fourier transform infrared spectroscopy: unlocking fundamentals and prospects for bacterial strain typing. Eur J Clin Microbiol Infect Dis 2018; 38:427-448. [DOI: 10.1007/s10096-018-3431-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/11/2018] [Indexed: 01/25/2023]
|
13
|
Genes under positive selection in the core genome of pathogenic Bacillus cereus group members. INFECTION GENETICS AND EVOLUTION 2018; 65:55-64. [PMID: 30006047 DOI: 10.1016/j.meegid.2018.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 11/24/2022]
Abstract
In this comparative genomics study our aim was to unravel genes under positive selection in the core genome of the Bacillus cereus group. Indeed, the members of this group share close genetic relationships but display a rather large phenotypic and ecological diversity, providing a unique opportunity for studying how genomic changes reflect ecological adaptation during the divergence of a bacterial group. For this purpose, we screened ten completely sequenced genomes of four pathogenic Bacillus species, finding that 254 out of 3093 genes have codon sites with dN/dS (ω) values above one. These results remained unchanged after having disentangled the confounding effects of recombination and selection signature in a Bayesian framework. The presumably adaptive nucleotide polymorphisms are distributed over a wide range of biological functions, such as antibiotic resistance, DNA repair, nutrient uptake, metabolism, cell wall assembly and spore structure. Our results indicate that adaptation to animal hosts, whether as pathogens, saprophytes or symbionts, is the major driving force in the evolution of the Bacillus cereus group. Future work should seek to understand the evolutionary dynamics of both core and accessory genes in an integrative framework to ultimately unravel the key networks involved in host adaptation.
Collapse
|
14
|
Sychantha D, Little DJ, Chapman RN, Boons GJ, Robinson H, Howell PL, Clarke AJ. PatB1 is an O-acetyltransferase that decorates secondary cell wall polysaccharides. Nat Chem Biol 2017; 14:79-85. [DOI: 10.1038/nchembio.2509] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/29/2017] [Indexed: 11/09/2022]
|
15
|
Structural and immunochemical relatedness suggests a conserved pathogenicity motif for secondary cell wall polysaccharides in Bacillus anthracis and infection-associated Bacillus cereus. PLoS One 2017; 12:e0183115. [PMID: 28832613 PMCID: PMC5568421 DOI: 10.1371/journal.pone.0183115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/28/2017] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis (Ba) and human infection-associated Bacillus cereus (Bc) strains Bc G9241 and Bc 03BB87 have secondary cell wall polysaccharides (SCWPs) comprising an aminoglycosyl trisaccharide repeat: →4)-β-d-ManpNAc-(1→4)-β-d-GlcpNAc-(1→6)-α-d-GlcpNAc-(1→, substituted at GlcNAc residues with both α- and β-Galp. In Bc G9241 and Bc 03BB87, an additional α-Galp is attached to O-3 of ManNAc. Using NMR spectroscopy, mass spectrometry and immunochemical methods, we compared these structures to SCWPs from Bc biovar anthracis strains isolated from great apes displaying “anthrax-like” symptoms in Cameroon (Bc CA) and Côte d’Ivoire (Bc CI). The SCWPs of Bc CA/CI contained the identical HexNAc trisaccharide backbone and Gal modifications found in Ba, together with the α-Gal-(1→3) substitution observed previously at ManNAc residues only in Bc G9241/03BB87. Interestingly, the great ape derived strains displayed a unique α-Gal-(1→3)-α-Gal-(1→3) disaccharide substitution at some ManNAc residues, a modification not found in any previously examined Ba or Bc strain. Immuno-analysis with specific polyclonal anti-Ba SCWP antiserum demonstrated a reactivity hierarchy: high reactivity with SCWPs from Ba 7702 and Ba Sterne 34F2, and Bc G9241 and Bc 03BB87; intermediate reactivity with SCWPs from Bc CI/CA; and low reactivity with the SCWPs from structurally distinct Ba CDC684 (a unique strain producing an SCWP lacking all Gal substitutions) and non-infection-associated Bc ATCC10987 and Bc 14579 SCWPs. Ba-specific monoclonal antibody EAII-6G6-2-3 demonstrated a 10–20 fold reduced reactivity to Bc G9241 and Bc 03BB87 SCWPs compared to Ba 7702/34F2, and low/undetectable reactivity to SCWPs from Bc CI, Bc CA, Ba CDC684, and non-infection-associated Bc strains. Our data indicate that the HexNAc motif is conserved among infection-associated Ba and Bc isolates (regardless of human or great ape origin), and that the number, positions and structures of Gal substitutions confer unique antigenic properties. The conservation of this structural motif could open a new diagnostic route in detection of pathogenic Bc strains.
Collapse
|
16
|
El-kersh TA, Ahmed AM, Al-sheikh YA, Tripet F, Ibrahim MS, Metwalli AAM. Isolation and characterization of native Bacillus thuringiensis strains from Saudi Arabia with enhanced larvicidal toxicity against the mosquito vector Anopheles gambiae (s.l.). Parasit Vectors 2016; 9:647. [PMID: 27993165 PMCID: PMC5168711 DOI: 10.1186/s13071-016-1922-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/30/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Worldwide, mosquito vectors are transmitting several etiological agents of important human diseases, including malaria, causing millions of deaths every year. In Saudi Arabia, as elsewhere, vector-control is based mostly on chemical insecticides which may be toxic and cause environmental deprivation. Here, to support the development of bio-pesticide alternatives, a study was conducted to identify native Bacillus thuringiensis (Bt) isolates with improved toxicity against the malaria vector, Anopheles gambiae (s.l.). METHODS Sixty-eight Bt isolates were obtained from 300 soil and other samples collected from 16 sites across Saudi Arabia. Bt identification was based on morphological characteristics of colonies, shape of parasporal crystals and biochemical profiles. After characterization of their mosquitocidal activity, larvicidal strains were described through 16S ribosomal DNA gene sequencing, cry, cyt and chi genes PCR-amplification profiles, and SDS-PAGE protein analyses. RESULTS Spherical Bt crystals were predominant amongst the 68 isolates (34%), while irregular, bi-pyramidal and spore-attached crystals were found in 32, 13 and 21% of strains, respectively. LC50 and LC90 bioassays showed that 23/68 isolates were larvicidal, with distinct biochemical activity profiles compared to non-larvicidal Bt strains. Eight larvicidal strains showed larvicidal activity up to 3.4-fold higher (LC50 range: 3.90-7.40 μg/ml) than the reference Bti-H14 strain (LC50 = 13.33 μg/ml). Of these, 6 strains had cry and cyt gene profiles similar to Bti-H14 (cry4Aa, cry4Ba, cry10, cry11, cyt1Aa, cyt1Ab, cyt2Aa). The seventh strain (Bt63) displaying the highest larvicidal activity (LC50 = 3.90 μg/ml) missed the cry4Aa and cyt1Ab genes and had SDS-PAGE protein profiles and spore/crystal sizes distinct from Bti-H14. The eight strain (Bt55) with LC50 of 4.11μg/ml had cry and cyt gene profiles similar to Bti-H14 but gave a chi gene PCR product size of 2027bp. No strains harbouring cry2, cry17 + 27, cry24 + 40, cry25, cry29, cry30, or cyt2Ba were detected. CONCLUSION This study represents the first report of several Saudi indigenous Bt strains with significantly higher larvicidal efficacy against An. gambiae than the reference Bti-H14 strain. The very high toxicity of the Bt63 strain, combined with distinct cry and cyt genes and SDS-PAGE-protein profiles makes it a promising candidate for future applications in mosquito bio-control.
Collapse
Affiliation(s)
- Talaat A. El-kersh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ashraf M. Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yazeed A. Al-sheikh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Frédéric Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, ST5 5BG UK
| | - Mohamed S. Ibrahim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali A. M. Metwalli
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Silva PM, Napoleão TH, Silva LC, Fortes DT, Lima TA, Zingali RB, Pontual EV, Araújo JM, Medeiros PL, Rodrigues CG, Gomes FS, Paiva PM. The juicy sarcotesta of Punica granatum contains a lectin that affects growth, survival as well as adherence and invasive capacities of human pathogenic bacteria. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
18
|
Pfrunder S, Grossmann J, Hunziker P, Brunisholz R, Gekenidis MT, Drissner D. Bacillus cereus Group-Type Strain-Specific Diagnostic Peptides. J Proteome Res 2016; 15:3098-107. [DOI: 10.1021/acs.jproteome.6b00216] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefanie Pfrunder
- Agroscope, Institute
for Food Sciences, Schloss
1, 8820 Waedenswil, Switzerland
| | - Jonas Grossmann
- Functional
Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstraße
190, 8057 Zurich, Switzerland
| | - Peter Hunziker
- Functional
Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstraße
190, 8057 Zurich, Switzerland
| | - René Brunisholz
- Functional
Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstraße
190, 8057 Zurich, Switzerland
| | - Maria-Theresia Gekenidis
- Agroscope, Institute
for Food Sciences, Schloss
1, 8820 Waedenswil, Switzerland
- ETH Zurich, Institute of Food, Nutrition and
Health, Schmelzbergstraße
7, 8092 Zurich, Switzerland
| | - David Drissner
- Agroscope, Institute
for Food Sciences, Schloss
1, 8820 Waedenswil, Switzerland
| |
Collapse
|
19
|
Lunderberg JM, Liszewski Zilla M, Missiakas D, Schneewind O. Bacillus anthracis tagO Is Required for Vegetative Growth and Secondary Cell Wall Polysaccharide Synthesis. J Bacteriol 2015; 197:3511-20. [PMID: 26324447 PMCID: PMC4621081 DOI: 10.1128/jb.00494-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/17/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Bacillus anthracis elaborates a linear secondary cell wall polysaccharide (SCWP) that retains surface (S)-layer and associated proteins via their S-layer homology (SLH) domains. The SCWP is comprised of trisaccharide repeats [→4)-β-ManNAc-(1→4)-β-GlcNAc-(1→6)-α-GlcNAc-(1→] and tethered via acid-labile phosphodiester bonds to peptidoglycan. Earlier work identified UDP-GlcNAc 2-epimerases GneY (BAS5048) and GneZ (BAS5117), which act as catalysts of ManNAc synthesis, as well as a polysaccharide deacetylase (BAS5051), as factors contributing to SCWP synthesis. Here, we show that tagO (BAS5050), which encodes a UDP-N-acetylglucosamine:undecaprenyl-P N-acetylglucosaminyl 1-P transferase, the enzyme that initiates the synthesis of murein linkage units, is required for B. anthracis SCWP synthesis and S-layer assembly. Similar to gneY-gneZ mutants, B. anthracis strains lacking tagO cannot maintain cell shape or support vegetative growth. In contrast, mutations in BAS5051 do not affect B. anthracis cell shape, vegetative growth, SCWP synthesis, or S-layer assembly. These data suggest that TagO-mediated murein linkage unit assembly supports SCWP synthesis and attachment to the peptidoglycan via acid-labile phosphodiester bonds. Further, B. anthracis variants unable to synthesize SCWP trisaccharide repeats cannot sustain cell shape and vegetative growth. IMPORTANCE Bacillus anthracis elaborates an SCWP to support vegetative growth and envelope assembly. Here, we show that some, but not all, SCWP synthesis is dependent on tagO-derived murein linkage units and subsequent attachment of SCWP to peptidoglycan. The data implicate secondary polymer modifications of peptidoglycan and subcellular distributions as a key feature of the cell cycle in Gram-positive bacteria and establish foundations for work on the molecular functions of the SCWP and on inhibitors with antibiotic attributes.
Collapse
Affiliation(s)
- J Mark Lunderberg
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Megan Liszewski Zilla
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
20
|
Wang C, Ehrhardt CJ, Yadavalli VK. Single cell profiling of surface carbohydrates on Bacillus cereus. J R Soc Interface 2015; 12:rsif.2014.1109. [PMID: 25505137 DOI: 10.1098/rsif.2014.1109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell surface carbohydrates are important to various bacterial activities and functions. It is well known that different types of Bacillus display heterogeneity of surface carbohydrate compositions, but detection of their presence, quantitation and estimation of variation at the single cell level have not been previously solved. Here, using atomic force microscopy (AFM)-based recognition force mapping coupled with lectin probes, the specific carbohydrate distributions of N-acetylglucosamine and mannose/glucose were detected, mapped and quantified on single B. cereus surfaces at the nanoscale across the entire cell. Further, the changes of the surface carbohydrate compositions from the vegetative cell to spore were shown. These results demonstrate AFM-based 'recognition force mapping' as a versatile platform to quantitatively detect and spatially map key bacterial surface biomarkers (such as carbohydrate compositions), and monitor in situ changes in surface biochemical properties during intracellular activities at the single cell level.
Collapse
Affiliation(s)
- Congzhou Wang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Christopher J Ehrhardt
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
21
|
Abstract
Prokaryotic glycosylation fulfills an important role in maintaining and protecting the structural integrity and function of the bacterial cell wall, as well as serving as a flexible adaption mechanism to evade environmental and host-induced pressure. The scope of bacterial and archaeal protein glycosylation has considerably expanded over the past decade(s), with numerous examples covering the glycosylation of flagella, pili, glycosylated enzymes, as well as surface-layer proteins. This article addresses structure, analysis, function, genetic basis, biosynthesis, and biomedical and biotechnological applications of cell-envelope glycoconjugates, S-layer glycoprotein glycans, and "nonclassical" secondary-cell wall polysaccharides. The latter group of polymers mediates the important attachment and regular orientation of the S-layer to the cell wall. The structures of these glycopolymers reveal an enormous diversity, resembling the structural variability of bacterial lipopolysaccharides and capsular polysaccharides. While most examples are presented for Gram-positive bacteria, the S-layer glycan of the Gram-negative pathogen Tannerella forsythia is also discussed. In addition, archaeal S-layer glycoproteins are briefly summarized.
Collapse
Affiliation(s)
- Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | |
Collapse
|
22
|
GneZ, a UDP-GlcNAc 2-epimerase, is required for S-layer assembly and vegetative growth of Bacillus anthracis. J Bacteriol 2014; 196:2969-78. [PMID: 24914184 DOI: 10.1128/jb.01829-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, forms an S-layer atop its peptidoglycan envelope and displays S-layer proteins and Bacillus S-layer-associated (BSL) proteins with specific functions to support cell separation of vegetative bacilli and growth in infected mammalian hosts. S-layer and BSL proteins bind via the S-layer homology (SLH) domain to the pyruvylated secondary cell wall polysaccharide (SCWP) with the repeat structure [→4)-β-ManNAc-(1→4)-β-GlcNAc-(1→6)-α-GlcNAc-(1→]n, where α-GlcNAc and β-GlcNAc are substituted with two and one galactosyl residues, respectively. B. anthracis gneY (BAS5048) and gneZ (BAS5117) encode nearly identical UDP-GlcNAc 2-epimerase enzymes that catalyze the reversible conversion of UDP-GlcNAc and UDP-ManNAc. UDP-GlcNAc 2-epimerase enzymes have been shown to be required for the attachment of the phage lysin PlyG with the bacterial envelope and for bacterial growth. Here, we asked whether gneY and gneZ are required for the synthesis of the pyruvylated SCWP and for S-layer assembly. We show that gneZ, but not gneY, is required for B. anthracis vegetative growth, rod cell shape, S-layer assembly, and synthesis of pyruvylated SCWP. Nevertheless, inducible expression of gneY alleviated all the defects associated with the gneZ mutant. In contrast to vegetative growth, neither germination of B. anthracis spores nor the formation of spores in mother cells required UDP-GlcNAc 2-epimerase activity.
Collapse
|
23
|
Use of a bacteriophage lysin to identify a novel target for antimicrobial development. PLoS One 2013; 8:e60754. [PMID: 23593301 PMCID: PMC3622686 DOI: 10.1371/journal.pone.0060754] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/02/2013] [Indexed: 11/19/2022] Open
Abstract
We identified an essential cell wall biosynthetic enzyme in Bacillus anthracis and an inhibitor thereof to which the organism did not spontaneously evolve measurable resistance. This work is based on the exquisite binding specificity of bacteriophage-encoded cell wall-hydrolytic lysins, which have evolved to recognize critical receptors within the bacterial cell wall. Focusing on the B. anthracis-specific PlyG lysin, we first identified its unique cell wall receptor and cognate biosynthetic pathway. Within this pathway, one biosynthetic enzyme, 2-epimerase, was required for both PlyG receptor expression and bacterial growth. The 2-epimerase was used to design a small-molecule inhibitor, epimerox. Epimerox prevented growth of several Gram-positive pathogens and rescued mice challenged with lethal doses of B. anthracis. Importantly, resistance to epimerox was not detected (<10(-11) frequency) in B. anthracis and S. aureus. These results describe the use of phage lysins to identify promising lead molecules with reduced resistance potential for antimicrobial development.
Collapse
|
24
|
Ganguly J, Low LY, Kamal N, Saile E, Forsberg LS, Gutierrez-Sanchez G, Hoffmaster AR, Liddington R, Quinn CP, Carlson RW, Kannenberg EL. The secondary cell wall polysaccharide of Bacillus anthracis provides the specific binding ligand for the C-terminal cell wall-binding domain of two phage endolysins, PlyL and PlyG. Glycobiology 2013; 23:820-32. [PMID: 23493680 DOI: 10.1093/glycob/cwt019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endolysins are bacteriophage enzymes that lyse their bacterial host for phage progeny release. They commonly contain an N-terminal catalytic domain that hydrolyzes bacterial peptidoglycan (PG) and a C-terminal cell wall-binding domain (CBD) that confers enzyme localization to the PG substrate. Two endolysins, phage lysin L (PlyL) and phage lysin G (PlyG), are specific for Bacillus anthracis. To date, the cell wall ligands for their C-terminal CBD have not been identified. We recently described structures for a number of secondary cell wall polysaccharides (SCWPs) from B. anthracis and B. cereus strains. They are covalently bound to the PG and are comprised of a -ManNAc-GlcNAc-HexNAc- backbone with various galactosyl or glucosyl substitutions. Surface plasmon resonance (SPR) showed that the endolysins PlyL and PlyG bind to the SCWP from B. anthracis (SCWPBa) with high affinity (i.e. in the μM range with dissociation constants ranging from 0.81 × 10(-6) to 7.51 × 10(-6) M). In addition, the PlyL and PlyG SCWPBa binding sites reside with their C-terminal domains. The dissociation constants for the interactions of these endolysins and their derived C-terminal domains with the SCWPBa were in the range reported for other protein-carbohydrate interactions. Our findings show that the SCWPBa is the ligand that confers PlyL and PlyG lysin binding and localization to the PG. PlyL and PlyG also bound the SCWP from B. cereus G9241 with comparable affinities to SCWPBa. No detectable binding was found to the SCWPs from B. cereus ATCC (American Type Culture Collection) 10987 and ATCC 14579, thus demonstrating specificity of lysin binding to SCWPs.
Collapse
Affiliation(s)
- Jhuma Ganguly
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lunderberg JM, Nguyen-Mau SM, Richter GS, Wang YT, Dworkin J, Missiakas DM, Schneewind O. Bacillus anthracis acetyltransferases PatA1 and PatA2 modify the secondary cell wall polysaccharide and affect the assembly of S-layer proteins. J Bacteriol 2013; 195:977-89. [PMID: 23243307 PMCID: PMC3571321 DOI: 10.1128/jb.01274-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 12/09/2012] [Indexed: 11/20/2022] Open
Abstract
The envelope of Bacillus anthracis encompasses a proteinaceous S-layer with two S-layer proteins (Sap and EA1). Protein assembly in the envelope of B. anthracis requires S-layer homology domains (SLH) within S-layer proteins and S-layer-associated proteins (BSLs), which associate with the secondary cell wall polysaccharide (SCWP), an acetylated carbohydrate that is tethered to peptidoglycan. Here, we investigated the contributions of two putative acetyltransferases, PatA1 and PatA2, on SCWP acetylation and S-layer assembly. We show that mutations in patA1 and patA2 affect the chain lengths of B. anthracis vegetative forms and perturb the deposition of the BslO murein hydrolase at cell division septa. The patA1 and patA2 mutants are defective for the assembly of EA1 in the envelope but retain the ability of S-layer formation with Sap. SCWP isolated from the patA1 patA2 mutant lacked acetyl moieties identified in wild-type polysaccharide and failed to associate with the SLH domains of EA1. A model is discussed whereby patA1- and patA2-mediated acetylation of SCWP enables the deposition of EA1 as well as BslO near the septal region of the B. anthracis envelope.
Collapse
Affiliation(s)
- J. Mark Lunderberg
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Argonne, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Sao-Mai Nguyen-Mau
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Argonne, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - G. Stefan Richter
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Argonne, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Ya-Ting Wang
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Argonne, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Jonathan Dworkin
- Department of Microbiology and Immunology, Columbia University, New York, New York, USA
| | - Dominique M. Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Argonne, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Argonne, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
26
|
Mo KF, Li X, Li H, Low LY, Quinn CP, Boons GJ. Endolysins of Bacillus anthracis bacteriophages recognize unique carbohydrate epitopes of vegetative cell wall polysaccharides with high affinity and selectivity. J Am Chem Soc 2012; 134:15556-62. [PMID: 22935003 PMCID: PMC3489029 DOI: 10.1021/ja3069962] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacteriophages express endolysins which are the enzymes that hydrolyze peptidoglycan resulting in cell lysis and release of bacteriophages. Endolysins have acquired stringent substrate specificities, which have been attributed to cell wall binding domains (CBD). Although it has been realized that CBDs of bacteriophages that infect Gram-positive bacteria target cell wall carbohydrate structures, molecular mechanisms that confer selectivity are not understood. A range of oligosaccharides, derived from the secondary cell wall polysaccharides of Bacillus anthracis, has been chemically synthesized. The compounds contain an α-d-GlcNAc-(1→4)-β-d-ManNAc-(1→4)-β-d-GlcNAc backbone that is modified by various patterns of α-d-Gal and β-d-Gal branching points. The library of compounds could readily be prepared by employing a core trisaccharide modified by the orthogonal protecting groups N(α)-9-fluorenylmethyloxycarbonate (Fmoc), 2-methylnaphthyl ether (Nap), levulinoyl ester (Lev) and dimethylthexylsilyl ether (TDS) at key branching points. Dissociation constants for the binding the cell wall binding domains of the endolysins PlyL and PlyG were determined by surface plasmon resonance (SPR). It was found that the pattern of galactosylation greatly influenced binding affinities, and in particular a compound having a galactosyl moiety at C-4 of the nonreducing GlcNAc moiety bound in the low micromolar range. It is known that secondary cell wall polysaccharides of various bacilli may have both common and variable structural features and in particular differences in the pattern of galactosylation have been noted. Therefore, it is proposed that specificity of endolysins for specific bacilli is achieved by selective binding to a uniquely galactosylated core structure.
Collapse
Affiliation(s)
- Kai-For Mo
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
27
|
Schneewind O, Missiakas DM. Protein secretion and surface display in Gram-positive bacteria. Philos Trans R Soc Lond B Biol Sci 2012; 367:1123-39. [PMID: 22411983 PMCID: PMC3297441 DOI: 10.1098/rstb.2011.0210] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The cell wall peptidoglycan of Gram-positive bacteria functions as a surface organelle for the transport and assembly of proteins that interact with the environment, in particular, the tissues of an infected host. Signal peptide-bearing precursor proteins are secreted across the plasma membrane of Gram-positive bacteria. Some precursors carry C-terminal sorting signals with unique sequence motifs that are cleaved by sortase enzymes and linked to the cell wall peptidoglycan of vegetative forms or spores. The sorting signals of pilin precursors are cleaved by pilus-specific sortases, which generate covalent bonds between proteins leading to the assembly of fimbrial structures. Other precursors harbour surface (S)-layer homology domains (SLH), which fold into a three-pronged spindle structure and bind secondary cell wall polysaccharides, thereby associating with the surface of specific Gram-positive microbes. Type VII secretion is a non-canonical secretion pathway for WXG100 family proteins in mycobacteria. Gram-positive bacteria also secrete WXG100 proteins and carry unique genes that either contribute to discrete steps in secretion or represent distinctive substrates for protein transport reactions.
Collapse
Affiliation(s)
- Olaf Schneewind
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| | | |
Collapse
|
28
|
Candela T, Maes E, Garénaux E, Rombouts Y, Krzewinski F, Gohar M, Guérardel Y. Environmental and biofilm-dependent changes in a Bacillus cereus secondary cell wall polysaccharide. J Biol Chem 2011; 286:31250-62. [PMID: 21784857 DOI: 10.1074/jbc.m111.249821] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial species from the Bacillus genus, including Bacillus cereus and Bacillus anthracis, synthesize secondary cell wall polymers (SCWP) covalently associated to the peptidoglycan through a phospho-diester linkage. Although such components were observed in a wide panel of B. cereus and B. anthracis strains, the effect of culture conditions or of bacterial growth state on their synthesis has never been addressed. Herein we show that B. cereus ATCC 14579 can synthesize not only one, as previously reported, but two structurally unrelated secondary cell wall polymers (SCWP) polysaccharides. The first of these SCWP, →4)[GlcNAc(β1-3)]GlcNAc(β1-6)[Glc(β1-3)][ManNAc(α1-4)]GalNAc(α1-4)ManNAc(β1→, although presenting an original sequence, fits to the already described the canonical sequence motif of SCWP. In contrast, the second polysaccharide was made up by a totally original sequence, →6)Gal(α1-2)(2-R-hydroxyglutar-5-ylamido)Fuc2NAc4N(α1-6)GlcNAc(β1→, which no equivalent has ever been identified in the Bacillus genus. In addition, we established that the syntheses of these two polysaccharides were differently regulated. The first one is constantly expressed at the surface of the bacteria, whereas the expression of the second is tightly regulated by culture conditions and growth states, planktonic, or biofilm.
Collapse
Affiliation(s)
- Thomas Candela
- Université de Lille1, Unité de Glycobiologie Structurale et Fonctionnelle, F-59650 Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Forsberg LS, Choudhury B, Leoff C, Marston CK, Hoffmaster AR, Saile E, Quinn CP, Kannenberg EL, Carlson RW. Secondary cell wall polysaccharides from Bacillus cereus strains G9241, 03BB87 and 03BB102 causing fatal pneumonia share similar glycosyl structures with the polysaccharides from Bacillus anthracis. Glycobiology 2011; 21:934-48. [PMID: 21421577 PMCID: PMC3110489 DOI: 10.1093/glycob/cwr026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/03/2011] [Accepted: 03/04/2011] [Indexed: 11/13/2022] Open
Abstract
Secondary cell wall polysaccharides (SCWPs) are important structural components of the Bacillus cell wall and contribute to the array of antigens presented by these organisms in both spore and vegetative forms. We previously found that antisera raised to Bacillus anthracis spore preparations cross-reacted with SCWPs isolated from several strains of pathogenic B. cereus, but did not react with other phylogenetically related but nonpathogenic Bacilli, suggesting that the SCWP from B. anthracis and pathogenic B. cereus strains share specific structural features. In this study, SCWPs from three strains of B. cereus causing severe or fatal pneumonia (G9241, 03BB87 and 03BB102) were isolated and subjected to structural analysis and their structures were compared to SCWPs from B. anthracis. Complete structural analysis was performed for the B. cereus G9241 SCWP using NMR spectroscopy, mass spectrometry and derivatization methods. The analyses show that SCWPs from B. cereus G9241 has a glycosyl backbone identical to that of B. anthracis SCWP, consisting of multiple trisaccharide repeats of: →6)-α-d-GlcpNAc-(1 → 4)-β-d-ManpNAc-(1 → 4)-β-d-GlcpNAc-(1→. Both the B. anthracis and pathogenic B. cereus SCWPs are highly substituted at all GlcNAc residues with α- and β-Gal residues, however, only the SCWPs from B. cereus G9241 and 03BB87 carry an additional α-Gal substitution at O-3 of ManNAc residues, a feature lacking in the B. anthracis SCWPs. Both the B. anthracis and B. cereus SCWPs are pyruvylated, with an approximate molecular mass of ≈12,000 Da. The implications of these findings regarding pathogenicity and cell wall structure are discussed.
Collapse
Affiliation(s)
- L Scott Forsberg
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Biswa Choudhury
- Glycotechnology Core Resource, University of California at San Diego, San Diego, CA, USA
| | - Christine Leoff
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Chung K Marston
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Alex R Hoffmaster
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Elke Saile
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Conrad P Quinn
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Elmar L Kannenberg
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Russell W Carlson
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
30
|
The effect of growth medium on B. anthracis Sterne spore carbohydrate content. J Microbiol Methods 2011; 85:183-9. [PMID: 21396405 DOI: 10.1016/j.mimet.2011.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 11/21/2022]
Abstract
The expressed characteristics of biothreat agents may be impacted by variations in the culture environment, including growth medium formulation. The carbohydrate composition of B. anthracis spores has been well studied, particularly for the exosporium, which is the outermost spore structure. The carbohydrate composition of the exosporium has been demonstrated to be distinct from the vegetative form containing unique monosaccharides. We have investigated the carbohydrate composition of B. anthracis Sterne spores produced using four different medium types formulated with different sources of medium components. The amount of rhamnose, 3-O-methyl rhamnose and galactosamine was found to vary significantly between spores cultured using different medium formulations. The relative abundance of these monosaccharides compared to other monosaccharides such as mannosamine was also found to vary with medium type. Specific medium components were also found to impact the carbohydrate profile. Xylose has not been previously described in B. anthracis spores but was detected at low levels in two media. This may represent residual material from the brewery yeast extract used to formulate these two media. These results illustrate the utility of this method to capture the impact of growth medium on carbohydrate variation in spores. Detecting carbohydrate profiles in B. anthracis evidentiary material may provide useful forensic information on the growth medium used for sporulation.
Collapse
|
31
|
Enhancing electro-transformation competency of recalcitrant Bacillus amyloliquefaciens by combining cell-wall weakening and cell-membrane fluidity disturbing. Anal Biochem 2010; 409:130-7. [PMID: 20951110 DOI: 10.1016/j.ab.2010.10.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/08/2010] [Accepted: 10/09/2010] [Indexed: 11/24/2022]
Abstract
Bacillus amyloliquefaciens has been a major workhorse for the production of a variety of commercially important enzymes and metabolites for the past decades. Some subspecies of this bacterium are recalcitrant to exogenous DNA, and transformation with plasmid DNA is usually less efficient, thereby limiting the genetic manipulation of the recalcitrant species. In this work, a methodology based on electro-transformation has been developed, in which the cells were grown in a semicomplex hypertonic medium, cell walls were weakened by adding glycine (Gly) and DL-threonine (DL-Thr), and the cell-membrane fluidity was elevated by supplementing Tween 80. After optimization of the cell-loosening recipe by response surface methodology (RSM), the transformation efficiency reached 1.13 ± 0.34 × 10(7) cfu/μg syngeneic pUB110 DNA in a low conductivity electroporation buffer. Moreover, by temporary heat inactivation of the host restriction enzyme, a transformation efficiency of 8.94 ± 0.77 × 10(5) cfu/μg DNA was achieved with xenogeneic shuttle plasmids, a 10(3)-fold increase compared to that reported previously. The optimized protocol was also applicable to other recalcitrant B. amyloliquefaciens strains used in this study. This work could shed light on the functional genomics and subsequent strain improvement of the recalcitrant Bacillus, which are difficult to be transformed using conventional methods.
Collapse
|
32
|
The metabolic enzyme ManA reveals a link between cell wall integrity and chromosome morphology. PLoS Genet 2010; 6:e1001119. [PMID: 20862359 PMCID: PMC2940726 DOI: 10.1371/journal.pgen.1001119] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 08/12/2010] [Indexed: 01/19/2023] Open
Abstract
Synchronizing cell growth, division and DNA replication is an essential property of all living cells. Accurate coordination of these cellular events is especially crucial for bacteria, which can grow rapidly and undergo multifork replication. Here we show that the metabolic protein ManA, which is a component of mannose phosphotransferase system, participates in cell wall construction of the rod shaped bacterium Bacillus subtilis. When growing rapidly, cells lacking ManA exhibit aberrant cell wall architecture, polyploidy and abnormal chromosome morphologies. We demonstrate that these cellular defects are derived from the role played by ManA in cell wall formation. Furthermore, we show that ManA is required for maintaining the proper carbohydrate composition of the cell wall, particularly of teichoic acid constituents. This perturbed cell wall synthesis causes asynchrony between cell wall elongation, division and nucleoid segregation.
Collapse
|
33
|
Detection technologies for Bacillus anthracis: Prospects and challenges. J Microbiol Methods 2010; 82:1-10. [DOI: 10.1016/j.mimet.2010.04.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/09/2010] [Accepted: 04/12/2010] [Indexed: 01/20/2023]
|
34
|
Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes. Genome Biol 2010; 11:R31. [PMID: 20230605 PMCID: PMC2864571 DOI: 10.1186/gb-2010-11-3-r31] [Citation(s) in RCA: 295] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 01/18/2010] [Accepted: 03/15/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Structured noncoding RNAs perform many functions that are essential for protein synthesis, RNA processing, and gene regulation. Structured RNAs can be detected by comparative genomics, in which homologous sequences are identified and inspected for mutations that conserve RNA secondary structure. RESULTS By applying a comparative genomics-based approach to genome and metagenome sequences from bacteria and archaea, we identified 104 candidate structured RNAs and inferred putative functions for many of these. Twelve candidate metabolite-binding RNAs were identified, three of which were validated, including one reported herein that binds the coenzyme S-adenosylmethionine. Newly identified cis-regulatory RNAs are implicated in photosynthesis or nitrogen regulation in cyanobacteria, purine and one-carbon metabolism, stomach infection by Helicobacter, and many other physiological processes. A candidate riboswitch termed crcB is represented in both bacteria and archaea. Another RNA motif may control gene expression from 3'-untranslated regions of mRNAs, which is unusual for bacteria. Many noncoding RNAs that likely act in trans are also revealed, and several of the noncoding RNA candidates are found mostly or exclusively in metagenome DNA sequences. CONCLUSIONS This work greatly expands the variety of highly structured noncoding RNAs known to exist in bacteria and archaea and provides a starting point for biochemical and genetic studies needed to validate their biologic functions. Given the sustained rate of RNA discovery over several similar projects, we expect that far more structured RNAs remain to be discovered from bacterial and archaeal organisms.
Collapse
|
35
|
Fouet A. The surface of Bacillus anthracis. Mol Aspects Med 2009; 30:374-85. [PMID: 19607856 DOI: 10.1016/j.mam.2009.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 07/08/2009] [Indexed: 11/25/2022]
Abstract
Bacillus anthracis is a Gram positive organism possessing a complex parietal structure. An S-layer, a bi-dimensional crystalline layer, and a peptidic capsule surround the thick peptidoglycan of bacilli harvested during infection. A review of the current literature indicates that elements from each of these three structures, as well as membrane components, have been studied. So-called cell-wall secondary polymers, be they attached to the cell-wall or to the membrane play important functions, either per se or because they permit the anchoring of proteins. Some surface proteins, whichever compartment they are attached to, play, as had been hypothesized, key roles in virulence. Others, of yet unknown function, are nevertheless expressed in vivo. This review will focus on well-studied polymers or proteins and indicate, when appropriate, the mechanisms by which they are targeted to their respective locations.
Collapse
Affiliation(s)
- Agnès Fouet
- Institut Pasteur, Unité Toxines et Pathogénie Bactérienne, CNRS, URA2172, F-75015 Paris, France.
| |
Collapse
|
36
|
Leoff C, Saile E, Rauvolfova J, Quinn CP, Hoffmaster AR, Zhong W, Mehta AS, Boons GJ, Carlson RW, Kannenberg EL. Secondary cell wall polysaccharides of Bacillus anthracis are antigens that contain specific epitopes which cross-react with three pathogenic Bacillus cereus strains that caused severe disease, and other epitopes common to all the Bacillus cereus strains tested. Glycobiology 2009; 19:665-73. [PMID: 19270075 PMCID: PMC2682610 DOI: 10.1093/glycob/cwp036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 02/27/2009] [Accepted: 02/27/2009] [Indexed: 11/12/2022] Open
Abstract
The immunoreactivities of hydrogen fluoride (HF)-released cell wall polysaccharides (HF-PSs) from selected Bacillus anthracis and Bacillus cereus strains were compared using antisera against live and killed B. anthracis spores. These antisera bound to the HF-PSs from B. anthracis and from three clinical B. cereus isolates (G9241, 03BB87, and 03BB102) obtained from cases of severe or fatal human pneumonia but did not bind to the HF-PSs from the closely related B. cereus ATCC 10987 or from B. cereus type strain ATCC 14579. Antiserum against a keyhole limpet hemocyanin conjugate of the B. anthracis HF-PS (HF-PS-KLH) also bound to HF-PSs and cell walls from B. anthracis and the three clinical B. cereus isolates, and B. anthracis spores. These results indicate that the B. anthracis HF-PS is an antigen in both B. anthracis cell walls and spores, and that it shares cross-reactive, and possibly pathogenicity-related, epitopes with three clinical B. cereus isolates that caused severe disease. The anti-HF-PS-KLH antiserum cross-reacted with the bovine serum albumin (BSA)-conjugates of all B. anthracis and all B. cereus HF-PSs tested, including those from nonclinical B. cereus ATCC 10987 and ATCC 14579 strains. Finally, the serum of vaccinated (anthrax vaccine adsorbed (AVA)) Rhesus macaques that survived inhalation anthrax contained IgG antibodies that bound the B. anthracis HF-PS-KLH conjugate. These data indicate that HF-PSs from the cell walls of the bacilli tested here are (i) antigens that contain (ii) a potentially virulence-associated carbohydrate antigen motif, and (iii) another antigenic determinant that is common to B. cereus strains.
Collapse
Affiliation(s)
| | | | - Jana Rauvolfova
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602
| | - Conrad P Quinn
- Centers for Disease Control and Prevention, 1600 Clifton Rd., MS D-11, Atlanta, GA 30333, USA
| | - Alex R Hoffmaster
- Centers for Disease Control and Prevention, 1600 Clifton Rd., MS D-11, Atlanta, GA 30333, USA
| | - Wei Zhong
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602
| | - Alok S Mehta
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602
| | - Russell W Carlson
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602
| | | |
Collapse
|
37
|
Leoff C, Choudhury B, Saile E, Quinn CP, Carlson RW, Kannenberg EL. Structural elucidation of the nonclassical secondary cell wall polysaccharide from Bacillus cereus ATCC 10987. Comparison with the polysaccharides from Bacillus anthracis and B. cereus type strain ATCC 14579 reveals both unique and common structural features. J Biol Chem 2008; 283:29812-21. [PMID: 18757856 PMCID: PMC2573068 DOI: 10.1074/jbc.m803234200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/29/2008] [Indexed: 01/09/2023] Open
Abstract
Nonclassical secondary cell wall polysaccharides constitute a major cell wall structure in the Bacillus cereus group of bacteria. The structure of the secondary cell wall polysaccharide from Bacillus cereus ATCC 10987, a strain that is closely related to Bacillus anthracis, was determined. This polysaccharide was released from the cell wall with aqueous hydrogen fluoride (HF) and purified by gel filtration chromatography. The purified polysaccharide, HF-PS, was characterized by glycosyl composition and linkage analyses, mass spectrometry, and one- and two-dimensional NMR analysis. The results showed that the B. cereus ATCC 10987 HF-PS has a repeating oligosaccharide consisting of a -->6)-alpha-GalNAc-(1-->4)-beta-ManNAc-(1-->4)-beta-GlcNAc-(1--> trisaccharide that is substituted with beta-Gal at O3 of the alpha-GalNAc residue and nonstoichiometrically acetylated at O3 of the N-acetylmannosamine (ManNAc) residue. Comparison of this structure with that of the B. anthracis HF-PS and with structural data obtained for the HF-PS from B. cereus type strain ATCC 14579 revealed that each HF-PS had the same general structural theme consisting of three HexNAc and one Hex residues. A common structural feature in the HF-PSs from B. cereus ATCC 10987 and B. anthracis was the presence of a repeating unit consisting of a HexNAc(3) trisaccharide backbone in which two of the three HexNAc residues are GlcNAc and ManNAc and the third can be either GlcNAc or GalNAc. The implications of these results with regard to the possible functions of the HF-PSs are discussed.
Collapse
Affiliation(s)
- Christine Leoff
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
38
|
Vasan M, Rauvolfova J, Wolfert MA, Leoff C, Kannenberg EL, Quinn CP, Carlson RW, Boons GJ. Chemical synthesis and immunological properties of oligosaccharides derived from the vegetative cell wall of Bacillus anthracis. Chembiochem 2008; 9:1716-20. [PMID: 18563773 PMCID: PMC2832322 DOI: 10.1002/cbic.200800210] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Indexed: 11/08/2022]
Abstract
Bacillus anthracis vaccine candidate : Sera of rabbits exposed to live and irradiated-killed spores of B. anthracis Sterne 34F2 or immunized with B. anthracis polysaccharide conjugated to KLH elicited antibodies that recognize isolated polysaccharide and two synthetic trisaccharides providing a proof-of-concept step in the development of vegetative and spore-specific reagents for detection and targeting of non-protein structures of B. anthracis .
Collapse
Affiliation(s)
- Mahalakshmi Vasan
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA)
| | - Jana Rauvolfova
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA)
| | - Margreet A. Wolfert
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA)
| | - Christine Leoff
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA)
| | - Elmar L. Kannenberg
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA)
| | - Conrad P. Quinn
- Centers for Disease Control and Prevention§, Microbial Pathogenesis and Immune Response Laboratory, Meningitis and Vaccine Preventable Diseases Branch, NCIRD, DBD, 1600 Clifton Road, MS D-11, Atlanta, GA 30333 (USA)
| | - Russell W. Carlson
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA)
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA)
| |
Collapse
|
39
|
Ngamwongsatit P, Banada PP, Panbangred W, Bhunia AK. WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line. J Microbiol Methods 2008; 73:211-5. [DOI: 10.1016/j.mimet.2008.03.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 03/04/2008] [Accepted: 03/05/2008] [Indexed: 11/25/2022]
|
40
|
Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol 2008; 6:276-87. [PMID: 18327271 DOI: 10.1038/nrmicro1861] [Citation(s) in RCA: 562] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most Gram-positive bacteria incorporate membrane- or peptidoglycan-attached carbohydrate-based polymers into their cell envelopes. Such cell-wall glycopolymers (CWGs) often have highly variable structures and have crucial roles in protecting, connecting and controlling the major envelope constituents. Further important roles of CWGs in host-cell adhesion, inflammation and immune activation have also been described in recent years. Identifying and harnessing highly conserved or species-specific structural features of CWGs offers excellent opportunities for developing new antibiotics, vaccines and diagnostics for use in the fight against severe infectious diseases, such as sepsis, pneumonia, anthrax and tuberculosis.
Collapse
|
41
|
Callahan C, Castanha ER, Fox KF, Fox A. The Bacillus cereus containing sub-branch most closely related to Bacillus anthracis, have single amino acid substitutions in small acid-soluble proteins, while remaining sub-branches are more variable. Mol Cell Probes 2008; 22:207-11. [PMID: 18439962 DOI: 10.1016/j.mcp.2007.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
Abstract
Hoffmaster et al. [Hoffmaster AR, Ravel J, Rasko DA, Chapman GD, Chute MD, Marston CK, et al. Identification of anthrax toxin genes in Bacillus cereus associated with illness resembling inhalation anthrax. Proc Natl Acad Sci U S A 2004;101:8449-54; Hoffmaster AR, Hill KK, Gee JE, Marston CK, De BK, Popovic T, et al. Characterization of Bacillus cereus isolates associated with fatal pneumonias: strains are closely related to Bacillus anthracis and harbor B. anthracis virulence genes. J Clin Microbiol 2006;44:3352-60] phylogenetically divided Bacillus cereus strains into 10 branches by amplified fragment length polymorphism (AFLP) with Branch F including all Bacillus anthracis strains and pneumonia-causing strains of B. cereus. There are four sub-branches within Branch F, referred to here as F1-A, F1-B, F2-A and F2-B. The B. anthracis strains are found within sub-branch F1-B. Concerning, the currently available B. cereus pneumonia-causing isolates, one was found to categorize within sub-branch F1-B and two within F2-B. In the following work the sequence variation between B. cereus strains was determined by MALDI-TOF MS and MS-MS for each strain of B. cereus in Branch F. ESI-MS was performed on selected strains for confirmation. Small acid-soluble proteins (SASPs) of B. cereus strains found in F1-B showed a single amino acid substitution, while strains in the other three sub-branches were more variable generally showing one or two amino acid substitutions. The single substitutions always occurred in the C-terminus. Double substitutions occurred in both N and C termini. Of the pneumonia-causing strains, one exhibited a single amino acid substitution, while the other two exhibited a two amino acid substitution.
Collapse
Affiliation(s)
- Courtney Callahan
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, 6311 Garners Ferry Road, Columbia, SC 29208, USA.
| | | | | | | |
Collapse
|