1
|
Keim K, Bhattacharya M, Crosby HA, Jenul C, Mills K, Schurr M, Horswill A. Polymicrobial interactions between Staphylococcus aureus and Pseudomonas aeruginosa promote biofilm formation and persistence in chronic wound infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621402. [PMID: 39574578 PMCID: PMC11580920 DOI: 10.1101/2024.11.04.621402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Chronic, non-healing wounds are a leading cause of prolonged patient morbidity and mortality due to biofilm- associated, polymicrobial infections. Staphylococcus aureus and Pseudomonas aeruginosa are the most frequently co-isolated pathogens from chronic wound infections. Competitive interactions between these pathogens contribute to enhanced virulence, persistence, and antimicrobial tolerance. P. aeruginosa utilizes the extracellular proteases LasB, LasA, and AprA to degrade S. aureus surface structures, disrupt cellular physiology, and induce cell lysis, gaining a competitive advantage during co-infection. S. aureus evades P. aeruginosa by employing aggregation mechanisms to form biofilms. The cell wall protein SasG is implicated in S. aureus biofilm formation by facilitating intercellular aggregation upon cleavage by an extracellular protease. We have previously shown that proteolysis by a host protease can induce aggregation. In this study, we report that P. aeruginosa proteases LasA, LasB, and AprA cleave SasG to induce S. aureus aggregation. We demonstrate that SasG contributes to S. aureus biofilm formation in response to interactions with P. aeruginosa proteases by quantifying aggregation, SasG degradation, and proteolytic kinetics. Additionally, we assess the role of SasG in influencing S. aureus biofilm architecture during co-infection in vivo, chronic wound co-infections. This work provides further knowledge of some of the principal interactions that contribute to S. aureus persistence within chronic wounds co-infected with P. aeruginosa, and their impact on healing and infection outcomes.
Collapse
Affiliation(s)
- Klara Keim
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Mohini Bhattacharya
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Heidi A Crosby
- New England Biolabs, Ipswich, MA, United States of America
| | - Christian Jenul
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Krista Mills
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
- Alphabet Health, New York, NY, United States of America
| | - Michael Schurr
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Alexander Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| |
Collapse
|
2
|
O’Brien C, Spencer S, Jafari N, Huang AJ, Scott AJ, Cheng Z, Leung BM. Modeling Cystic Fibrosis Chronic Infection Using Engineered Mucus-like Hydrogels. ACS Biomater Sci Eng 2024; 10:6558-6568. [PMID: 39297972 PMCID: PMC11483100 DOI: 10.1021/acsbiomaterials.4c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024]
Abstract
The airway mucus of patients with cystic fibrosis has altered properties, which create a microenvironment primed for chronic infections that are difficult to treat. These complex polymicrobial airway infections and corresponding mammalian-microbe interactions are challenging to model in vitro. Here, we report the development of mucus-like hydrogels with varied compositions and viscoelastic properties reflecting differences between healthy and cystic fibrosis airway mucus. Models of cystic fibrosis and healthy airway microenvironments were created by combining the hydrogels with relevant pathogens, human bronchial epithelial cells, and an antibiotic. Notably, pathogen antibiotic resistance was not solely dependent on the altered properties of the mucus-like hydrogels but was also influenced by culture conditions including microbe species, monomicrobial or polymicrobial culture, and the presence of epithelial cells. Additionally, the cystic fibrosis airway model showed the ability to mimic features characteristic of chronic cystic fibrosis airway infections including sustained polymicrobial growth and increased antibiotic tolerance.
Collapse
Affiliation(s)
- Courtney
L. O’Brien
- School
of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Sarah Spencer
- School
of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Naeimeh Jafari
- Department
of Applied Oral Science, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Andy J. Huang
- School
of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Alison J. Scott
- Department
of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Zhenyu Cheng
- Department
of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Brendan M. Leung
- School
of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Applied Oral Science, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Pathology, Faculty of Medicine, Dalhousie
University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
3
|
Sánchez-Peña A, Winans JB, Nadell CD, Limoli DH. Pseudomonas aeruginosa surface motility and invasion into competing communities enhance interspecies antagonism. mBio 2024; 15:e0095624. [PMID: 39105585 PMCID: PMC11389416 DOI: 10.1128/mbio.00956-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are prevalent, difficult to eradicate, and associated with poor health outcomes. Therefore, understanding interactions between these pathogens is important to inform improved treatment development. We previously demonstrated that P. aeruginosa is attracted to S. aureus using type IV pili (TFP)-mediated chemotaxis, but the impact of attraction on S. aureus growth and physiology remained unknown. Using live single-cell confocal imaging to visualize microcolony structure, spatial organization, and survival of S. aureus during coculture, we found that interspecies chemotaxis provides P. aeruginosa a competitive advantage by promoting invasion into and disruption of S. aureus microcolonies. This behavior renders S. aureus susceptible to P. aeruginosa antimicrobials. Conversely, in the absence of TFP motility, P. aeruginosa cells exhibit reduced invasion of S. aureus colonies. Instead, P. aeruginosa builds a cellular barrier adjacent to S. aureus and secretes diffusible, bacteriostatic antimicrobials like 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) into the S. aureus colonies. Reduced invasion leads to the formation of denser and thicker S. aureus colonies with increased HQNO-mediated lactic acid fermentation, a physiological change that could complicate treatment strategies. Finally, we show that P. aeruginosa motility modifications of spatial structure enhance competition against S. aureus. Overall, these studies expand our understanding of how P. aeruginosa TFP-mediated interspecies chemotaxis facilitates polymicrobial interactions, highlighting the importance of spatial positioning in mixed-species communities. IMPORTANCE The polymicrobial nature of many chronic infections makes their eradication challenging. Particularly, coisolation of Pseudomonas aeruginosa and Staphylococcus aureus from airways of people with cystic fibrosis and chronic wound infections is common and associated with severe clinical outcomes. The complex interplay between these pathogens is not fully understood, highlighting the need for continued research to improve management of chronic infections. Our study unveils that P. aeruginosa is attracted to S. aureus, invades into neighboring colonies, and secretes anti-staphylococcal factors into the interior of the colony. Upon inhibition of P. aeruginosa motility and thus invasion, S. aureus colony architecture changes dramatically, whereby S. aureus is protected from P. aeruginosa antagonism and responds through physiological alterations that may further hamper treatment. These studies reinforce accumulating evidence that spatial structuring can dictate community resilience and reveal that motility and chemotaxis are critical drivers of interspecies competition.
Collapse
Affiliation(s)
- Andrea Sánchez-Peña
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - James B. Winans
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Carey D. Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Dominique H. Limoli
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
4
|
Smith NM, Kaur H, Kaur R, Minoza T, Kent M, Barekat A, Lenhard JR. Influence of β-lactam pharmacodynamics on the systems microbiology of gram-positive and gram-negative polymicrobial communities. Front Pharmacol 2024; 15:1339858. [PMID: 38895629 PMCID: PMC11183306 DOI: 10.3389/fphar.2024.1339858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Objectives We sought to evaluate the pharmacodynamics of β-lactam antibacterials against polymicrobial communities of clinically relevant gram-positive and gram-negative pathogens. Methods Two Enterococcus faecalis isolates, two Staphylococcus aureus isolates, and three Escherichia coli isolates with varying β-lactamase production were evaluated in static time-killing experiments. Each gram-positive isolate was exposed to a concentration array of ampicillin (E. faecalis) or cefazolin (S. aureus) alone and during co-culture with an E. coli isolate that was β-lactamase-deficient, produced TEM-1, or produced KPC-3/TEM-1B. The results of the time-killing experiments were summarized using an integrated pharmacokinetic/pharmacodynamics analysis as well as mathematical modelling to fully characterize the antibacterial pharmacodynamics. Results In the integrated analysis, the maximum killing of ampicillin (Emax) against both E. faecalis isolates was ≥ 4.11 during monoculture experiments or co-culture with β-lactamase-deficient E. coli, whereas the Emax was reduced to ≤ 1.54 during co-culture with β-lactamase-producing E. coli. In comparison to monoculture experiments, culturing S. aureus with KPC-producing E. coli resulted in reductions of the cefazolin Emax from 3.25 and 3.71 down to 2.02 and 2.98, respectively. Two mathematical models were created to describe the interactions between E. coli and either E. faecalis or S. aureus. When in co-culture with E. coli, S. aureus experienced a reduction in its cefazolin Kmax by 24.8% (23.1%RSE). Similarly, β-lactamase-producing E. coli preferentially protected the ampicillin-resistant E. faecalis subpopulation, reducing Kmax,r by 90.1% (14%RSE). Discussion β-lactamase-producing E. coli were capable of protecting S. aureus and E. faecalis from exposure to β-lactam antibacterials.
Collapse
Affiliation(s)
- Nicholas M. Smith
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Harpreet Kaur
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| | - Ravneet Kaur
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| | - Trisha Minoza
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| | - Michael Kent
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| | - Ayeh Barekat
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| | - Justin R. Lenhard
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| |
Collapse
|
5
|
Choi SY, Chung IY, Bae HW, Cho YH. Autolysis of Pseudomonas aeruginosa Quorum-Sensing Mutant Is Suppressed by Staphylococcus aureus through Iron-Dependent Metabolism. J Microbiol Biotechnol 2024; 34:795-803. [PMID: 38303126 DOI: 10.4014/jmb.2312.12028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
Microorganisms usually coexist as a multifaceted polymicrobial community in the natural habitats and at mucosal sites of the human body. Two opportunistic human pathogens, Pseudomonas aeruginosa and Staphylococcus aureus commonly coexist in the bacterial infections for hospitalized and/or immunocompromised patients. Here, we observed that autolysis of the P. aeruginosa quorum-sensing (QS) mutant (lasRmvfR) was suppressed by the presence of the S. aureus cells in vitro. The QS mutant still displayed killing against S. aureus cells, suggesting the link between the S. aureus-killing activity and the autolysis suppression. Independent screens of the P. aeruginosa transposon mutants defective in the S. aureus-killing and the S. aureus transposon mutants devoid of the autolysis suppression revealed the genetic link between both phenotypes, suggesting that the iron-dependent metabolism involving S. aureus exoproteins might be central to both phenotypes. The autolysis was suppressed by iron treatment as well. These results suggest that the interaction between P. aeruginosa and S. aureus might be governed by mechanisms that necessitate the QS circuitry as well as the metabolism involving the extracellular iron resources during the polymicrobial infections in the human airway.
Collapse
Affiliation(s)
- Shin-Yae Choi
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - In-Young Chung
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Hee-Won Bae
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - You-Hee Cho
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
6
|
Sánchez-Peña A, Winans JB, Nadell CD, Limoli DH. Pseudomonas aeruginosa surface motility and invasion into competing communities enhances interspecies antagonism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.588010. [PMID: 38617332 PMCID: PMC11014535 DOI: 10.1101/2024.04.03.588010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are prevalent, difficult to eradicate, and associated with poor health outcomes. Therefore, understanding interactions between these pathogens is important to inform improved treatment development. We previously demonstrated that P. aeruginosa is attracted to S. aureus using type IV pili-mediated chemotaxis, but the impact of attraction on S. aureus growth and physiology remained unknown. Using live single-cell confocal imaging to visualize microcolony structure, spatial organization, and survival of S. aureus during coculture, we found that interspecies chemotaxis provides P. aeruginosa a competitive advantage by promoting invasion into and disruption of S. aureus microcolonies. This behavior renders S. aureus susceptible to P. aeruginosa antimicrobials. Conversely, in the absence of type IV pilus motility, P. aeruginosa cells exhibit reduced invasion of S. aureus colonies. Instead, P. aeruginosa builds a cellular barrier adjacent to S. aureus and secretes diffusible, bacteriostatic antimicrobials like 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) into the S. aureus colonies. P. aeruginosa reduced invasion leads to the formation of denser and thicker S. aureus colonies with significantly increased HQNO-mediated lactic acid fermentation, a physiological change that could complicate the effective treatment of infections. Finally, we show that P. aeruginosa motility modifications of spatial structure enhance competition against S. aureus. Overall, these studies build on our understanding of how P. aeruginosa type IV pili-mediated interspecies chemotaxis mediates polymicrobial interactions, highlighting the importance of spatial positioning in mixed-species communities.
Collapse
Affiliation(s)
- Andrea Sánchez-Peña
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - James B Winans
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Dominique H Limoli
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
7
|
Subsomwong P, Teng W, Ishiai T, Narita K, Sukchawalit R, Nakane A, Asano K. Extracellular vesicles from Staphylococcus aureus promote the pathogenicity of Pseudomonas aeruginosa. Microbiol Res 2024; 281:127612. [PMID: 38244256 DOI: 10.1016/j.micres.2024.127612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Co-infections with Staphylococcus aureus and Pseudomonas aeruginosa are common in patients with chronic wounds, but little is known about their synergistic effect mediated by extracellular vesicles (EVs). In this study, we investigated the effect of EVs derived from S. aureus (SaEVs) on the pathogenicity of P. aeruginosa. By using lipophilic dye, we could confirm the fusion between SaEV and P. aeruginosa membranes. However, SaEVs did not alter the growth and antibiotic susceptible pattern of P. aeruginosa. Differential proteomic analysis between SaEV-treated and non-treated P. aeruginosa was performed, and the results revealed that lipopolysaccharide (LPS) biosynthesis protein in P. aeruginosa significantly increased after SaEV-treatment. Regarding this result, we also found that SaEVs promoted LPS production, biofilm formation, and expression of polysaccharide polymerization-related genes in P. aeruginosa. Furthermore, invasion of epithelial cells by SaEV-pretreated P. aeruginosa was enhanced. On the other hand, uptake of P. aeruginosa by RAW 264.7 macrophages was impaired after pretreatment P. aeruginosa with SaEVs. Proteomic analysis SaEVs revealed that SaEVs contain the proteins involving in host cell colonization, inhibition of host immune response, anti-phagocytosis of the macrophages, and protein translocation and iron uptake of S. aureus. In conclusion, SaEVs serve as a mediator that promote P. aeruginosa pathogenicity by enhancing LPS biosynthesis, biofilm formation, epithelial cell invasion, and macrophage uptake impairment.
Collapse
Affiliation(s)
- Phawinee Subsomwong
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Wei Teng
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Takahito Ishiai
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Kouji Narita
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan; Institute for Animal Experimentation, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Rojana Sukchawalit
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand
| | - Akio Nakane
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan; Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| |
Collapse
|
8
|
Kifelew LG, Warner MS, Morales S, Gordon DL, Thomas N, Mitchell JG, Speck PG. Lytic activity of phages against bacterial pathogens infecting diabetic foot ulcers. Sci Rep 2024; 14:3515. [PMID: 38347019 PMCID: PMC10861545 DOI: 10.1038/s41598-024-53317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Complications of diabetes, such as diabetic foot ulcers (DFUs), are common, multifactorial in origin, and costly to treat. DFUs are the cause of nearly 90% of limb amputations among persons with diabetes. In most chronic infections such as DFU, biofilms are involved. Bacteria in biofilms are 100-1000 times more resistant to antibiotics than their planktonic counterparts. Multidrug-resistant (MDR) Staphylococcus aureus and Pseudomonas aeruginosa infections in DFUs may require alternative therapeutic agents such as bacteriophages ("phages"). This study describes the lytic activity of phage cocktails AB-SA01 (3-phage cocktail) and AB-PA01 (4-phage cocktail), which target S. aureus and P. aeruginosa, respectively. The host range and lytic effect of AB-SA01 and AB-PA01 on a planktonic culture, single-species biofilm, and mixed-species biofilm were evaluated. In vitro testing showed that 88.7% of S. aureus and 92.7% of P. aeruginosa isolates were susceptible to AB-SA01 and AB-PA01, respectively, in the planktonic state. The component phages of AB-SA01 and AB-PA01 infected 66% to 94.3% of the bacterial isolates tested. Furthermore, AB-SA01 and AB-PA01 treatment significantly (p < 0.05) reduced the biofilm biomass of their hosts, regardless of the antibiotic-resistant characteristics of the isolates and the presence of a non-susceptible host. In conclusion, the strong lytic activity, broad host range, and significant biofilm biomass reduction of AB-SA01 and AB-PA01 suggest the considerable potential of phages in treating antibiotic-resistant S. aureus and P. aeruginosa infections alone or as coinfections in DFUs.
Collapse
Affiliation(s)
- Legesse Garedew Kifelew
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia.
- St Paul's Hospital Millennium Medical College, 1271, Addis Ababa, Ethiopia.
| | - Morgyn S Warner
- Infectious Diseases Unit, Queen Elizabeth Hospital, Woodville, SA, 5011, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sandra Morales
- AmpliPhi Australia Pty Ltd., Brookvale, NSW, 2100, Australia
- Phage Consulting, Sydney, NSW, 2100, Australia
| | - David L Gordon
- Department of Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Nicky Thomas
- Basil Hetzel Institute for Translational Health Research, Woodville South, SA, 5011, Australia
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - James G Mitchell
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Peter G Speck
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
9
|
Vasiljevs S, Witney AA, Baines DL. The presence of cystic fibrosis-related diabetes modifies the sputum microbiome in cystic fibrosis disease. Am J Physiol Lung Cell Mol Physiol 2024; 326:L125-L134. [PMID: 38084404 PMCID: PMC11244689 DOI: 10.1152/ajplung.00219.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/30/2023] [Accepted: 11/23/2023] [Indexed: 01/24/2024] Open
Abstract
Cystic fibrosis-related diabetes (CFRD) affects 40%-50% of adults with CF and is associated with a decline in respiratory health. The microbial flora of the lung is known to change with the development of CF disease, but how CFRD affects the microbiome has not been described. We analyzed the microbiome in sputa from 14 people with CF, 14 with CFRD, and two who were classed as pre-CFRD by extracting DNA and amplifying the variable V3-V4 region of the microbial 16S ribosomal RNA gene by PCR. Sequences were analyzed and sources were identified to genus level. We found that the α-diversity of the microbiome using Shannon's diversity index was increased in CFRD compared with CF. Bray Curtis dissimilarity analysis showed that there was separation of the microbiomes in CF and CFRD sputa. The most abundant phyla identified in the sputum samples were Firmicutes and Proteobacteria, Actinobacteriota and Bacteroidota, and the ratio of Firmicutes/Bacteroidota was reduced in CFRD compared with CF. Pseudomonas, Azhorizophilus, Porphyromonas, and Actinobacillus were more abundant in CFRD compared with CF, whereas Staphylococcus was less abundant. The relative abundance of these genera did not correlate with age; some correlated with a decline in FEV1/FVC but all correlated with hemoglobin A1C (HbA1c) indicating that development of CFRD mediates further changes to the respiratory microbiome in CF.NEW & NOTEWORTHY Cystic fibrosis-related diabetes (CFRD) is associated with a decline in respiratory health. We show for the first time that there was a change in the sputum microbiome of people with CFRD compared with CF that correlated with markers of raised blood glucose.
Collapse
Affiliation(s)
- Stanislavs Vasiljevs
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Adam A Witney
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Deborah L Baines
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| |
Collapse
|
10
|
Bru JL, Kasallis SJ, Chang R, Zhuo Q, Nguyen J, Pham P, Warren E, Whiteson K, Høyland-Kroghsbo NM, Limoli DH, Siryaporn A. The great divide: rhamnolipids mediate separation between P. aeruginosa and S. aureus. Front Cell Infect Microbiol 2023; 13:1245874. [PMID: 37780859 PMCID: PMC10540625 DOI: 10.3389/fcimb.2023.1245874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
The interactions between bacterial species during infection can have significant impacts on pathogenesis. Pseudomonas aeruginosa and Staphylococcus aureus are opportunistic bacterial pathogens that can co-infect hosts and cause serious illness. The factors that dictate whether one species outcompetes the other or whether the two species coexist are not fully understood. We investigated the role of surfactants in the interactions between these two species on a surface that enables P. aeruginosa to swarm. We found that P. aeruginosa swarms are repelled by colonies of clinical S. aureus isolates, creating physical separation between the two strains. This effect was abolished in mutants of S. aureus that were defective in the production of phenol-soluble modulins (PSMs), which form amyloid fibrils around wild-type S. aureus colonies. We investigated the mechanism that establishes physical separation between the two species using Imaging of Reflected Illuminated Structures (IRIS), which is a non-invasive imaging method that tracks the flow of surfactants produced by P. aeruginosa. We found that PSMs produced by S. aureus deflected the surfactant flow, which in turn, altered the direction of P. aeruginosa swarms. These findings show that rhamnolipids mediate physical separation between P. aeruginosa and S. aureus, which could facilitate coexistence between these species. Additionally, we found that a number of molecules repelled P. aeruginosa swarms, consistent with a surfactant deflection mechanism. These include Bacillus subtilis surfactant, the fatty acids oleic acid and linoleic acid, and the synthetic lubricant polydimethylsiloxane. Lung surfactant repelled P. aeruginosa swarms and inhibited swarm expansion altogether at higher concentration. Our results suggest that surfactant interactions could have major impacts on bacteria-bacteria and bacteria-host relationships. In addition, our findings uncover a mechanism responsible for P. aeruginosa swarm development that does not rely solely on sensing but instead is based on the flow of surfactant.
Collapse
Affiliation(s)
- Jean-Louis Bru
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Summer J. Kasallis
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Physics & Astronomy, University of California, Irvine, Irvine, CA, United States
| | - Rendell Chang
- School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Quantum Zhuo
- Department of Physics & Astronomy, University of California, Irvine, Irvine, CA, United States
| | - Jacqueline Nguyen
- School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Phillip Pham
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Elizabeth Warren
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Katrine Whiteson
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
| | | | - Dominique H. Limoli
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Albert Siryaporn
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Physics & Astronomy, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
11
|
Rodgers AM, Lindsay J, Monahan A, Dubois AV, Faniyi AA, Plant BJ, Mall MA, Ekkelenkamp MB, Elborn S, Ingram RJ. Biologically Relevant Murine Models of Chronic Pseudomonas aeruginosa Respiratory Infection. Pathogens 2023; 12:1053. [PMID: 37624013 PMCID: PMC10458525 DOI: 10.3390/pathogens12081053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen and the leading cause of infection in patients with cystic fibrosis (CF). The ability of P. aeruginosa to evade host responses and develop into chronic infection causes significant morbidity and mortality. Several mouse models have been developed to study chronic respiratory infections induced by P. aeruginosa, with the bead agar model being the most widely used. However, this model has several limitations, including the requirement for surgical procedures and high mortality rates. Herein, we describe novel and adapted biologically relevant models of chronic lung infection caused by P. aeruginosa. Three methods are described: a clinical isolate infection model, utilising isolates obtained from patients with CF; an incomplete antibiotic clearance model, leading to bacterial bounce-back; and the establishment of chronic infection; and an adapted water bottle chronic infection model. These models circumvent the requirement for a surgical procedure and, importantly, can be induced with clinical isolates of P. aeruginosa and in wild-type mice. We also demonstrate successful induction of chronic infection in the transgenic βENaC murine model of CF. We envisage that the models described will facilitate the investigations of host and microbial factors, and the efficacy of novel antimicrobials, during chronic P. aeruginosa respiratory infections.
Collapse
Affiliation(s)
- Aoife M. Rodgers
- Wellcome-Wolfson Institute of Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK (S.E.)
| | - Jaime Lindsay
- Wellcome-Wolfson Institute of Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK (S.E.)
| | - Avril Monahan
- Wellcome-Wolfson Institute of Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK (S.E.)
| | - Alice V. Dubois
- Wellcome-Wolfson Institute of Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK (S.E.)
| | - Aduragbemi A. Faniyi
- Wellcome-Wolfson Institute of Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK (S.E.)
| | - Barry J. Plant
- Cork Centre for Cystic Fibrosis (3CF), Cork University Hospital, University College Cork, T12 E8YV Cork, Ireland
- The HRB Funded Clinical Research Facility, University College Cork, T12 E8YV Cork, Ireland
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—University of Medicine Berlin, 10117 Berlin, Germany
- German Center for Lung Research (DZL), 10117 Berlin, Germany
- Berlin Institute of Health at Charité—University of Medicine Berlin, 10117 Berlin, Germany
| | - Miquel B. Ekkelenkamp
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Stuart Elborn
- Wellcome-Wolfson Institute of Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK (S.E.)
| | - Rebecca J. Ingram
- Wellcome-Wolfson Institute of Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK (S.E.)
| |
Collapse
|
12
|
Sandmann S, Nunes JV, Grobusch MP, Sesay M, Kriegel MA, Varghese J, Schaumburg F. Research article network analysis of polymicrobial chronic wound infections in Masanga, Sierra Leone. BMC Infect Dis 2023; 23:250. [PMID: 37072717 PMCID: PMC10112320 DOI: 10.1186/s12879-023-08204-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Chronic wounds are frequently colonized or infected with multiple bacterial or fungal species, which can both promote or inhibit each other. Network analyses are helpful to understand the interplay of these species in polymicrobial infections. Our aim was to analyse the network of bacterial and fungal species in chronic wounds. METHODS Swabs (n = 163) from chronic wound infections (Masanga, Sierra Leone, 2019-2020) were screened for bacterial and fungal species using non-selective agars. Some of these wounds were suspected but not confirmed Buruli ulcer. Species identification was done with MALDI-TOF mass spectrometry. Network analysis was performed to investigate co-occurrence of different species within one patient. All species with n ≥ 10 isolates were taken into account. RESULTS Of the 163 patients, 156 had a positive wound culture (median of three different species per patient; range 1-7). Pseudomonas aeruginosa (n = 75) was the dominating species with frequent co-detections of Klebsiella pneumoniae (21 cases; OR = 1.36, 95%CI: 0.63-2.96, p = 0.47), Staphylococcus aureus (14 cases; OR = 1.06, 95%CI: 0.44-2.55, p = 1) and Proteus mirabilis (13 cases; OR = 0.84, 95%CI: 0.35-1.99, p = 0.69). CONCLUSION The culturome of chronic wounds in Sierra Leonean patients is highly diverse and characterized by the co-occurrence of P. aeruginosa, K. pneumoniae and S. aureus.
Collapse
Affiliation(s)
- Sarah Sandmann
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Jonathan Vas Nunes
- Masanga Medical Research Unit (MMRU), Masanga, Sierra Leone
- Department of Infectious Diseases, Center of Tropical Medicine and Travel Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Martin P Grobusch
- Masanga Medical Research Unit (MMRU), Masanga, Sierra Leone
- Department of Infectious Diseases, Center of Tropical Medicine and Travel Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Maxwell Sesay
- Masanga Medical Research Unit (MMRU), Masanga, Sierra Leone
| | - Martin A Kriegel
- Section of Rheumatology and Clinical Immunology, Department of Medicine, University Hospital Münster, Münster, Germany
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, Münster, Germany
- Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
- Department of Immunobiology, Yale University School of Medicine, New Haven, USA
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University of Münster, Münster, Germany.
| |
Collapse
|
13
|
Ishiai T, Subsomwong P, Narita K, Kawai N, Teng W, Suzuki S, Sukchawalit R, Nakane A, Asano K. Extracellular vesicles of Pseudomonas aeruginosa downregulate pyruvate fermentation enzymes and inhibit the initial growth of Staphylococcus aureus. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100190. [PMID: 37131486 PMCID: PMC10149184 DOI: 10.1016/j.crmicr.2023.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Staphylococcus aureus and Pseudomonas aeruginosa are well-known opportunistic pathogens that frequently coexist in chronic wounds and cystic fibrosis. The exoproducts of P. aeruginosa have been shown to affect the growth and pathogenicity of S. aureus, but the detailed mechanisms are not well understood. In this study, we investigated the effect of extracellular vesicles from P. aeruginosa (PaEVs) on the growth of S. aureus. We found that PaEVs inhibited the S. aureus growth independently of iron chelation and showed no bactericidal activity. This growth inhibitory effect was also observed with methicillin-resistant S. aureus but not with Acinetobacter baumannii, Enterococcus faecalis, S. Typhimurium, E. coli, Listeria monocytogenes, or Candida albicans, suggesting that the growth inhibitory effect of PaEVs is highly specific for S. aureus. To better understand the detailed mechanism, the difference in protein production of S. aureus between PaEV-treated and non-treated groups was further analyzed. The results revealed that lactate dehydrogenase 2 and formate acetyltransferase enzymes in the pyruvate fermentation pathway were significantly reduced after PaEV treatment. Likewise, the expression of ldh2 gene for lactate dehydrogenase 2 and pflB gene for formate acetyltransferase in S. aureus was reduced by PaEV treatment. In addition, this inhibitory effect of PaEVs was abolished by supplementation with pyruvate or oxygen. These results suggest that PaEVs inhibit the growth of S. aureus by suppressing the pyruvate fermentation pathway. This study reported a mechanism of PaEVs in inhibiting S. aureus growth which may be important for better management of S. aureus and P. aeruginosa co-infections.
Collapse
Affiliation(s)
- Takahito Ishiai
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Phawinee Subsomwong
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Kouj Narita
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Institute for Animal Experimentation, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Noriaki Kawai
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Wei Teng
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Sachio Suzuki
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Rojana Sukchawalit
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | - Akio Nakane
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 306-8562, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 306-8562, Japan
- Corresponding author at: Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.
| |
Collapse
|
14
|
Essential Fitness Repertoire of Staphylococcus aureus during Co-infection with Acinetobacter baumannii In Vivo. mSystems 2022; 7:e0033822. [PMID: 36040021 PMCID: PMC9600432 DOI: 10.1128/msystems.00338-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus represents a major human pathogen that is frequently involved in polymicrobial infections. However, the prevalence and role of co-infectious microbes on the pathogenesis and fitness essentiality of S. aureus in vivo remain largely unknown. In this study, we firstly performed a retrospective surveillance of 760 clinical samples and revealed a notable predominance of co-infection with S. aureus and Acinetobacter baumannii. The high-density S. aureus transposon mutant library coupled to transposon insertion sequencing (Tn-Seq) further identified a core set of genes enriched in metabolism of inorganic ions, amino acids, and carbohydrates, which are essential for infection and tissue colonization of S. aureus in the murine systemic infection model. Notably, we revealed a differential requirement of fitness factors for S. aureus in tissue-specific (liver and kidney) and infection-type-specific manner (mono- and co-infection). Co-infection with A. baumannii dramatically altered the fitness requirements of S. aureus in vivo; 49% of the mono-infection fitness genes in S. aureus strain Newman were converted to non-essential, and the functionality of ATP-binding cassette (ABC) transporters was significantly elicited during co-infection. Furthermore, the number of genes essential during co-infection (503) outnumbers the genes essential during mono-infection (362). In addition, the roles of 3 infection-type-specific genes in S. aureus during mono-infection or co-infection with A. baumannii were validated with competitive experiments in vivo. Our data indicated a high incidence and clinical relevance of S. aureus and A. baumannii co-infection, and provided novel insights into establishing antimicrobial regimens to control co-infections. IMPORTANCE Polymicrobial infections are widespread in clinical settings, which potentially correlate with increased infection severity and poor clinical outcomes. Staphylococcus aureus is a formidable human pathogen that causes a variety of diseases in polymicrobial nature. Co-infection and interaction of S. aureus have been described with limited pathogens, mainly including Pseudomonas aeruginosa, Candida albicans, and influenza A virus. Thus far, the prevalence and role of co-infectious microbes on the pathogenesis and fitness essentiality of S. aureus in vivo remain largely unknown. Understanding the polymicrobial composition and interaction, from a community and genome-wide perspective, is thus crucial to shed light on S. aureus pathogenesis strategy. Here, our findings demonstrated, for the first time, that a high incidence rate and clinical relevance of co-infection was caused by S. aureus and Acinetobacter baumannii, illustrating the importance of polymicrobial nature in investigating S. aureus pathogenesis. The infection-type-specific genes likely serve as potential therapeutic targets to control S. aureus infections, either in mono- or co-infection situation, providing novel insights into the development of antimicrobial regimens to control co-infections.
Collapse
|
15
|
Abbott C, Grout E, Morris T, Brown HL. Cutibacterium acnes biofilm forming clinical isolates modify the formation and structure of Staphylococcus aureus biofilms, increasing their susceptibility to antibiotics. Anaerobe 2022; 76:102580. [DOI: 10.1016/j.anaerobe.2022.102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 02/01/2022] [Accepted: 04/28/2022] [Indexed: 11/01/2022]
|
16
|
Mitra S, Mallick A, Priyadarshini S. Effect of polymicrobial interactions on antimicrobial resistance: an in vitro analysis in human ocular infections. Future Microbiol 2022; 17:491-504. [PMID: 35315292 DOI: 10.2217/fmb-2021-0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose: Investigate the effect of polymicrobial interactions on antimicrobial resistance (AMR) of ocular pathogens in polymicrobial settings, compared with monomicrobial infections. Methods: Polymicrobial interactions were labeled as antagonistic, synergistic or indifferent based on a reduction, an increase or no change, respectively, in antibiotics' MIC by the Vitek 2 compact system, compared with monomicrobial pathogens. Results: Staphylococcus epidermidis showed antagonistic polymicrobial interactions (22.6%); Pseudomonas aeruginosa showed synergistic interactions (62.5%); multidrug-resistant Acinetobacter baumannii showed increased susceptibility to select antibiotics; Serratia ficaria (inherently colistin resistant) became colistin-susceptible in polymicrobial combinations. Conclusion: Both antagonistic and synergistic interactions exist among human pathogens in polymicrobial settings. Gram-positive pathogens had significantly higher antagonistic polymicrobial interactions (increased MICs: 20.4%) compared with Gram-negative ones (synergistic: 59.4%).
Collapse
Affiliation(s)
- Sanchita Mitra
- Jhaveri Microbiology Centre, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Aparajita Mallick
- Ocular Microbiology Services, LV Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, 751024, India
| | - Shilpa Priyadarshini
- Ocular Microbiology Services, LV Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, 751024, India
| |
Collapse
|
17
|
Biswas L, Götz F. Molecular Mechanisms of Staphylococcus and Pseudomonas Interactions in Cystic Fibrosis. Front Cell Infect Microbiol 2022; 11:824042. [PMID: 35071057 PMCID: PMC8770549 DOI: 10.3389/fcimb.2021.824042] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/16/2021] [Indexed: 11/15/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder that is characterized by recurrent and chronic infections of the lung predominantly by the opportunistic pathogens, Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa. While S. aureus is the main colonizing bacteria of the CF lungs during infancy and early childhood, its incidence declines thereafter and infections by P. aeruginosa become more prominent with increasing age. The competitive and cooperative interactions exhibited by these two pathogens influence their survival, antibiotic susceptibility, persistence and, consequently the disease progression. For instance, P. aeruginosa secretes small respiratory inhibitors like hydrogen cyanide, pyocyanin and quinoline N-oxides that block the electron transport pathway and suppress the growth of S. aureus. However, S. aureus survives this respiratory attack by adapting to respiration-defective small colony variant (SCV) phenotype. SCVs cause persistent and recurrent infections and are also resistant to antibiotics, especially aminoglycosides, antifolate antibiotics, and to host antimicrobial peptides such as LL-37, human β-defensin (HBD) 2 and HBD3; and lactoferricin B. The interaction between P. aeruginosa and S. aureus is multifaceted. In mucoid P. aeruginosa strains, siderophores and rhamnolipids are downregulated thus enhancing the survival of S. aureus. Conversely, protein A from S. aureus inhibits P. aeruginosa biofilm formation while protecting both P. aeruginosa and S. aureus from phagocytosis by neutrophils. This review attempts to summarize the current understanding of the molecular mechanisms that drive the competitive and cooperative interactions between S. aureus and P. aeruginosa in the CF lungs that could influence the disease outcome.
Collapse
Affiliation(s)
- Lalitha Biswas
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Mixed Populations and Co-Infection: Pseudomonas aeruginosa and Staphylococcus aureus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:397-424. [DOI: 10.1007/978-3-031-08491-1_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Dorado Doncel R, Larcher P, Schmitter C, Zouaghi S. [Bacteria in cystic fibrosis: United they stand - Recent advances in microbiology research through the eyes of ENS students]. Med Sci (Paris) 2021; 37:939-941. [PMID: 34647884 DOI: 10.1051/medsci/2021157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Le dossier que nous présentons a été rédigé par les étudiantes et étudiants de Master 1 de Biologie de l’École Normale Supérieure de Lyon à l’issue de l’UE Microbiologie Moléculaire et Structurale (2020-2021).
Le Master de Biologie de l’ENS de Lyon accueille chaque année environ 40 étudiants en M1 et en M2 et propose une formation de haut niveau à la recherche en biosciences. Chaque étudiant y construit son parcours à la carte, en choisissant ses options parmi un large panel de modules, favorisant ainsi une approche pluridisciplinaire des sciences du vivant, et cela en relation étroite avec les laboratoires de recherche du tissu local, national et international.
En participant à diverses activités scientifiques liées aux UE de leur formation, les étudiants préparent également l’obtention du Diplôme de l’ENS de Lyon, qui valide leur scolarité à l’ENS. La rédaction du présent dossier, qui vise à transmettre de façon claire les messages issus d’une sélection d’articles scientifiques publiés récemment dans le domaine de la microbiologie, constitue l’une de ces activités connexes proposées aux étudiants.
Collapse
Affiliation(s)
- Romane Dorado Doncel
- École normale supérieure de Lyon, Département de biologie, Master Biosciences, Lyon, France
| | - Philéas Larcher
- École normale supérieure de Lyon, Département de biologie, Master Biosciences, Lyon, France
| | - Céline Schmitter
- École normale supérieure de Lyon, Département de biologie, Master Biosciences, Lyon, France
| | - Sarah Zouaghi
- École normale supérieure de Lyon, Département de biologie, Master Biosciences, Lyon, France - ETH Zurich, Institute of Food, Nutrition and Health, Zurich, Suisse
| |
Collapse
|
20
|
Monteiro R, Magalhães AP, Pereira MO, Sousa AM. Long-term coexistence of Pseudomonas aeruginosa and Staphylococcus aureus using an in vitro cystic fibrosis model. Future Microbiol 2021; 16:879-893. [PMID: 34319132 DOI: 10.2217/fmb-2021-0025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the role of pre-established Staphylococcus aureus on Pseudomonas aeruginosa adaptation and antibiotic tolerance. Materials & methods: Bacteria were cultured mimicking the sequential pattern of lung colonization and exposure to ciprofloxacin. Results: In the absence of ciprofloxacin exposure, S. aureus and P. aeruginosa coexisted supported by the physicochemical characteristics of the artificial sputum medium. S. aureus had no role in P. aeruginosa tolerance against ciprofloxacin and did not select P. aeruginosa small-colony variants during antibiotic treatment. rhlR and psqE were downregulated after the contact with S. aureus indicating that P. aeruginosa attenuated its virulence potential. Conclusion: P. aeruginosa and S. aureus can cohabit in cystic fibrosis airway environment for long-term without significant impact on P. aeruginosa adaptation and antibiotic tolerance.
Collapse
Affiliation(s)
- Rosana Monteiro
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Andreia Patrícia Magalhães
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Maria Olivia Pereira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Ana Margarida Sousa
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
21
|
Reece E, Bettio PHDA, Renwick J. Polymicrobial Interactions in the Cystic Fibrosis Airway Microbiome Impact the Antimicrobial Susceptibility of Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10070827. [PMID: 34356747 PMCID: PMC8300716 DOI: 10.3390/antibiotics10070827] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most dominant pathogens in cystic fibrosis (CF) airway disease and contributes to significant inflammation, airway damage, and poorer disease outcomes. The CF airway is now known to be host to a complex community of microorganisms, and polymicrobial interactions have been shown to play an important role in shaping P. aeruginosa pathogenicity and resistance. P. aeruginosa can cause chronic infections that once established are almost impossible to eradicate with antibiotics. CF patients that develop chronic P. aeruginosa infection have poorer lung function, higher morbidity, and a reduced life expectancy. P. aeruginosa adapts to the CF airway and quickly develops resistance to several antibiotics. A perplexing phenomenon is the disparity between in vitro antimicrobial sensitivity testing and clinical response. Considering the CF airway is host to a diverse community of microorganisms or 'microbiome' and that these microorganisms are known to interact, the antimicrobial resistance and progression of P. aeruginosa infection is likely influenced by these microbial relationships. This review combines the literature to date on interactions between P. aeruginosa and other airway microorganisms and the influence of these interactions on P. aeruginosa tolerance to antimicrobials.
Collapse
|
22
|
Reigada I, San-Martin-Galindo P, Gilbert-Girard S, Chiaro J, Cerullo V, Savijoki K, Nyman TA, Fallarero A, Miettinen I. Surfaceome and Exoproteome Dynamics in Dual-Species Pseudomonas aeruginosa and Staphylococcus aureus Biofilms. Front Microbiol 2021; 12:672975. [PMID: 34248881 PMCID: PMC8267900 DOI: 10.3389/fmicb.2021.672975] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/21/2021] [Indexed: 01/12/2023] Open
Abstract
Bacterial biofilms are an important underlying cause for chronic infections. By switching into the biofilm state, bacteria can evade host defenses and withstand antibiotic chemotherapy. Despite the fact that biofilms at clinical and environmental settings are mostly composed of multiple microbial species, biofilm research has largely been focused on single-species biofilms. In this study, we investigated the interaction between two clinically relevant bacterial pathogens (Staphylococcus aureus and Pseudomonas aeruginosa) by label-free quantitative proteomics focusing on proteins associated with the bacterial cell surfaces (surfaceome) and proteins exported/released to the extracellular space (exoproteome). The changes observed in the surfaceome and exoproteome of P. aeruginosa pointed toward higher motility and lower pigment production when co-cultured with S. aureus. In S. aureus, lower abundances of proteins related to cell wall biosynthesis and cell division, suggesting increased persistence, were observed in the dual-species biofilm. Complementary phenotypic analyses confirmed the higher motility and the lower pigment production in P. aeruginosa when co-cultured with S. aureus. Higher antimicrobial tolerance associated with the co-culture setting was additionally observed in both species. To the best of our knowledge, this study is among the first systematic explorations providing insights into the dynamics of both the surfaceome and exoproteome of S. aureus and P. aeruginosa dual-species biofilms.
Collapse
Affiliation(s)
- Inés Reigada
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Paola San-Martin-Galindo
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Shella Gilbert-Girard
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jacopo Chiaro
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Kirsi Savijoki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, Rikshospitalet, University of Oslo, Oslo, Norway
| | - Adyary Fallarero
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ilkka Miettinen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Camus L, Briaud P, Vandenesch F, Moreau K. How Bacterial Adaptation to Cystic Fibrosis Environment Shapes Interactions Between Pseudomonas aeruginosa and Staphylococcus aureus. Front Microbiol 2021; 12:617784. [PMID: 33746915 PMCID: PMC7966511 DOI: 10.3389/fmicb.2021.617784] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are the two most prevalent bacteria species in the lungs of cystic fibrosis (CF) patients and are associated with poor clinical outcomes. Co-infection by the two species is a frequent situation that promotes their interaction. The ability of P. aeruginosa to outperform S. aureus has been widely described, and this competitive interaction was, for a long time, the only one considered. More recently, several studies have described that the two species are able to coexist. This change in relationship is linked to the evolution of bacterial strains in the lungs. This review attempts to decipher how bacterial adaptation to the CF environment can induce a change in the type of interaction and promote coexisting interaction between P. aeruginosa and S. aureus. The impact of coexistence on the establishment and maintenance of a chronic infection will also be presented, by considering the latest research on the subject.
Collapse
Affiliation(s)
- Laura Camus
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France
| | - Paul Briaud
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France
| | - François Vandenesch
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France.,Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France.,Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Karen Moreau
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France
| |
Collapse
|
24
|
Wolter DJ, Ramsey BW. Not Quite the Bully in the Schoolyard: Staphylococcus aureus Can Survive and Coexist with Pseudomonas aeruginosa in the Cystic Fibrosis Lung. Am J Respir Crit Care Med 2021; 203:279-281. [PMID: 32846098 PMCID: PMC7874311 DOI: 10.1164/rccm.202008-3077ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Daniel J Wolter
- Department of Pediatrics University of Washington Seattle, Washington.,Division of Pediatric Pulmonology Seattle Children's Hospital Seattle, Washington and
| | - Bonnie W Ramsey
- Department of Pediatrics University of Washington Seattle, Washington.,Division of Pediatric Pulmonology Seattle Children's Hospital Seattle, Washington and.,Center for Clinical and Translational Research Seattle Children's Research Institute Seattle, Washington
| |
Collapse
|
25
|
Camus L, Vandenesch F, Moreau K. From genotype to phenotype: adaptations of Pseudomonas aeruginosa to the cystic fibrosis environment. Microb Genom 2021; 7:mgen000513. [PMID: 33529147 PMCID: PMC8190622 DOI: 10.1099/mgen.0.000513] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is one of the main microbial species colonizing the lungs of cystic fibrosis patients and is responsible for the decline in respiratory function. Despite the hostile pulmonary environment, P. aeruginosa is able to establish chronic infections thanks to its strong adaptive capacity. Various longitudinal studies have attempted to compare the strains of early infection with the adapted strains of chronic infection. Thanks to new '-omics' techniques, convergent genetic mutations, as well as transcriptomic and proteomic dysregulations have been identified. As a consequence of this evolution, the adapted strains of P. aeruginosa have particular phenotypes that promote persistent infection.
Collapse
Affiliation(s)
- Laura Camus
- CIRI – Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR5308/ENS de Lyon, Lyon, France
| | - François Vandenesch
- CIRI – Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR5308/ENS de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Karen Moreau
- CIRI – Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR5308/ENS de Lyon, Lyon, France
| |
Collapse
|
26
|
Yong YY, Ong MWK, Dykes G, Choo WS. Betacyanin-inhibited biofilm formation of co-culture of Staphylococcus aureus and Pseudomonas aeruginosa on different polymer surfaces. FEMS Microbiol Lett 2020; 368:6041720. [PMID: 33338235 DOI: 10.1093/femsle/fnaa214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus and Pseudomonas aeruginosa are bacteria that cause biofilm-associated infections. The aim of this study was to determine the activity of combined betacyanin fractions from Amaranthus dubius (red spinach) and Hylocereus polyrhizus (red pitahaya) against biofilms formed by co-culture of S. aureus and P. aeruginosa on different polymer surfaces. Various formulations containing different concentrations of the betacyanin fractions were investigated for biofilm-inhibiting activity on polystyrene surfaces using crystal violet assay and scanning electron microscopy. A combination of each betacyanin fraction (0.625 mg mL-1) reduced biofilm formation of five S. aureus strains and four P. aeruginosa strains from optical density values of 1.24-3.84 and 1.25-3.52 to 0.81-2.63 and 0.80-1.71, respectively. These combined fractions also significantly inhibited dual-species biofilms by 2.30 and reduced 1.0-1.3 log CFU cm-2 bacterial attachment on polymer surfaces such as polyvinyl chloride, polyethylene, polypropylene and silicone rubber. This study demonstrated an increase in biofilm-inhibiting activity against biofilms formed by two species using combined fractions than that by using single fractions. Betacyanins found in different plants could collectively be used to potentially decrease the risk of biofilm-associated infections caused by these bacteria on hydrophobic polymers.
Collapse
Affiliation(s)
- Yi Yi Yong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Michelle Wei Kim Ong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Gary Dykes
- School of Public Health, Curtin University, 6102, Bentley, Western Australia, Australia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
27
|
Menetrey Q, Dupont C, Chiron R, Jumas-Bilak E, Marchandin H. High Occurrence of Bacterial Competition Among Clinically Documented Opportunistic Pathogens Including Achromobacter xylosoxidans in Cystic Fibrosis. Front Microbiol 2020; 11:558160. [PMID: 33013789 PMCID: PMC7513574 DOI: 10.3389/fmicb.2020.558160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Cystic Fibrosis (CF) airways favor abnormal microbial development. Infections are considered as polymicrobial and competition can be observed between microorganisms. The current literature on bacterial competition in CF mostly consists of studies with limited numbers of strains, mainly focused on the major pathogens Pseudomonas aeruginosa (Pa) and Staphylococcus aureus (Sa) and does not give a comprehensive overview of the overall importance of bacterial interactions or the behavior of less often encountered emerging bacteria such as Achromobacter. In this context, we screened a panel of 39 strains from six CF patients, of either clinical or domestic environmental origin, distinguished according to genotype and belonging to four opportunistic pathogens, Pa (n = 15), Sa (n = 3), Stenotrophomonas maltophilia (Sm, n = 10) and Achromobacter xylosoxidans (Ax, n = 11). We investigated their capacity to compete in terms of growth, motility, and pigment production on agar media through 203 crossing experiments. Eleven strains selected via the initial screening results were further studied for competitive growth in liquid medium and biofilm formation. Competition was noted for 33% (67/203) of the pairs of strains with 85 modifications observed between monocultures and co-cultures, impacting growth (23.6%), motility (13.8%), and/or pigment production (6.1%). Under all conditions of the study (clinical, environmental strains; intra-, inter-patients; intra-, inter-species levels), competition was significantly more frequent among pairs of strains with at least one clinical strain. While Pa mainly outcompeted other species, in one patient with chronic colonization by Ax and sporadic colonization by Pa, we showed that some Ax inhibited the growth and pigmentation of Pa whereas biofilm formation was drastically reduced. Enlarging the panel of strains tested in competition assays gave new perspectives on the complex interactions taking place among the CF airway community. Indeed, the frequent occurrence of varied, strain-dependent interactions is revealed here. We report the first results of competition assays for Ax with the ability of certain strains to outcompete Pa. Our results are linked to the patient’s colonization history and question the importance of bacterial competitiveness in the colonization pattern of CF airways.
Collapse
Affiliation(s)
- Quentin Menetrey
- HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Chloé Dupont
- HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Montpellier, France.,HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Laboratoire d'Ecologie Microbienne Hospitalière, CHU Montpellier, Montpellier, France
| | - Raphaël Chiron
- HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Montpellier, France.,HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Centre de Ressources et de Compétences de la Mucoviscidose, CHU Montpellier, Montpellier, France
| | - Estelle Jumas-Bilak
- HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Montpellier, France.,HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Laboratoire d'Ecologie Microbienne Hospitalière, CHU Montpellier, Montpellier, France
| | - Hélène Marchandin
- HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Montpellier, France.,HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Département de Microbiologie, CHU Nîmes, Nîmes, France
| |
Collapse
|
28
|
Strain Background, Species Frequency, and Environmental Conditions Are Important in Determining Pseudomonas aeruginosa and Staphylococcus aureus Population Dynamics and Species Coexistence. Appl Environ Microbiol 2020; 86:AEM.00962-20. [PMID: 32651205 DOI: 10.1128/aem.00962-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/04/2020] [Indexed: 01/09/2023] Open
Abstract
Bacterial communities in the environment and in infections are typically diverse, yet we know little about the factors that determine interspecies interactions. Here, we apply concepts from ecological theory to understand how biotic and abiotic factors affect interaction patterns between the two opportunistic human pathogens Pseudomonas aeruginosa and Staphylococcus aureus, which often cooccur in polymicrobial infections. Specifically, we conducted a series of short- and long-term competition experiments between P. aeruginosa PAO1 (as our reference strain) and three different S. aureus strains (Cowan I, 6850, and JE2) at three starting frequencies and under three environmental (culturing) conditions. We found that the competitive ability of P. aeruginosa strongly depended on the strain background of S. aureus, whereby P. aeruginosa dominated against Cowan I and 6850 but not against JE2. In the latter case, both species could end up as winners depending on conditions. Specifically, we observed strong frequency-dependent fitness patterns, including positive frequency dependence, where P. aeruginosa could dominate JE2 only when common (not when rare). Finally, changes in environmental (culturing) conditions fundamentally altered the competitive balance between the two species in a way that P. aeruginosa dominance increased when moving from shaken to static environments. Altogether, our results highlight that ecological details can have profound effects on the competitive dynamics between coinfecting pathogens and determine whether two species can coexist or invade each others' populations from a state of rare frequency. Moreover, our findings might parallel certain dynamics observed in chronic polymicrobial infections.IMPORTANCE Bacterial infections are frequently caused by more than one species, and such polymicrobial infections are often considered more virulent and more difficult to treat than the respective monospecies infections. Pseudomonas aeruginosa and Staphylococcus aureus are among the most important pathogens in polymicrobial infections, and their cooccurrence is linked to worse disease outcome. There is great interest in understanding how these two species interact and what the consequences for the host are. While previous studies have mainly looked at molecular mechanisms implicated in interactions between P. aeruginosa and S. aureus, here we show that ecological factors, such as strain background, species frequency, and environmental conditions, are important elements determining population dynamics and species coexistence patterns. We propose that the uncovered principles also play major roles in infections and, therefore, proclaim that an integrative approach combining molecular and ecological aspects is required to fully understand polymicrobial infections.
Collapse
|
29
|
Silva E, Monteiro R, Grainha T, Alves D, Pereira MO, Sousa AM. Fostering Innovation in the Treatment of Chronic Polymicrobial Cystic Fibrosis-Associated Infections Exploring Aspartic Acid and Succinic Acid as Ciprofloxacin Adjuvants. Front Cell Infect Microbiol 2020; 10:441. [PMID: 32974221 PMCID: PMC7481398 DOI: 10.3389/fcimb.2020.00441] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/17/2020] [Indexed: 11/23/2022] Open
Abstract
Cystic fibrosis (CF) disease provokes the accumulation of thick and viscous sputum in the lungs, favoring the development of chronic and polymicrobial infections. Pseudomonas aeruginosa is the main bacterium responsible for these chronic infections, and much of the difficulty involved in eradicating it is due to biofilm formation. However, this could be mitigated using adjuvant compounds that help or potentiate the antibiotic action. Therefore, the main goal of this study was to search for substances that function as adjuvants and also as biofilm-controlling compounds, preventing or dismantling P. aeruginosa biofilms formed in an in vitro CF airway environment. Dual combinations of compounds with subinhibitory (1 and 2 mg/L) and inhibitory concentrations (4 mg/L) of ciprofloxacin were tested to inhibit the bacterial growth and biofilm formation (prophylactic approach) and to eradicate 24-h-old P. aeruginosa populations, including planktonic cells and biofilms (treatment approach). Our results revealed that aspartic acid (Asp) and succinic acid (Suc) restored ciprofloxacin action against P. aeruginosa. Suc combined with 2 mg/L of ciprofloxacin (Suc-Cip) was able to eradicate bacteria, and Asp combined with 4 mg/L of ciprofloxacin (Asp–Cip) seemed to eradicate the whole 24-h-old populations, including planktonic cells and biofilms. Based on biomass depletion data, we noted that Asp induced cell death and Suc seemed somehow to block or reduce the expression of ciprofloxacin resistance. As far as we know, this kind of action had not been reported up till now. The presence of Staphylococcus aureus and Burkholderia cenocepacia did not affect the efficacy of the Asp–Cip and Suc–Cip therapies against P. aeruginosa and, also important, P. aeruginosa depletion from polymicrobial communities did not create a window of opportunity for these species to thrive. Rather the contrary, Asp and Suc also improved ciprofloxacin action against B. cenocepacia. Further studies on the cytotoxicity using lung epithelial cells indicated toxicity of Suc–Cip caused by the Suc. In conclusion, we provided evidences that Asp and Suc could be potential ciprofloxacin adjuvants to eradicate P. aeruginosa living within polymicrobial communities. Asp–Cip and Suc–Cip could be promising therapeutic options to cope with CF treatment failures.
Collapse
Affiliation(s)
- Eduarda Silva
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Rosana Monteiro
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Tânia Grainha
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Diana Alves
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Maria Olivia Pereira
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Ana Margarida Sousa
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|
30
|
The effect of Staphylococcus aureus on the antibiotic resistance and pathogenicity of Pseudomonas aeruginosa based on crc gene as a metabolism regulator: An in vitro wound model study. INFECTION GENETICS AND EVOLUTION 2020; 85:104509. [PMID: 32835876 DOI: 10.1016/j.meegid.2020.104509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/25/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The cooperation of Pseudomonas aeruginosa and Staphylococcus aureus in various infections results in increased pathogenicity and antibiotic resistance. However, the mechanism controlling such a phenomenon is still unclear. In this study, the effects of S. aureus on the metabolism, antibiotic resistance, and pathogenicity of P. aeruginosa were investigated. MATERIAL AND METHODS The biofilm and the planktonic states of growth of P. aeruginosa and S. aureus were investigated using the co-culture method in the L929 cell line. Then, the antibiotic resistance and virulence factors production of the recovered colonies of P. aeruginosa were examined by phenotypic methods. Quantitative Real-Time PCR was used to determine the expression level of crc, lasI/R, and rhlI/R genes. Two way ANOVA test and student's t-test were used to analyze the effect of S.aureus on metabolism, virulence, and resistance of P.aeruginosa. RESULTS P. aeruginosa strains in a single-species planktonic culture on the L929 cell line indicated higher CFU counts than the biofilm. Conversely, in the biofilm state of co-culture, the CFU counts increased in comparison to the planktonic condition. Also, the expression level of crc increased two fold in the PA-1 and PA-2 strains compared to the single-species cultures on the L929 cell line. However, the PA-3 strain indicated a sharp decrease in the expression of crc (3 fold decrease). Besides, a 3-4 fold increase in susceptibility to amikacin was observed as the expression level of crc declined. The QS-regulated factors were diminished as rhlR and lasI were downregulated in both states of growth. CONCLUSION In polymicrobial wound infection, Staphylococcus aureus plays a vital role in the metabolic changes of Pseudomonas aeruginosa. However, the levels of antibiotic susceptibility and pathogenicity of Pseudomonas aeruginosa also changed due to metabolism.
Collapse
|
31
|
Camus L, Briaud P, Bastien S, Elsen S, Doléans-Jordheim A, Vandenesch F, Moreau K. Trophic cooperation promotes bacterial survival of Staphylococcus aureus and Pseudomonas aeruginosa. ISME JOURNAL 2020; 14:3093-3105. [PMID: 32814867 DOI: 10.1038/s41396-020-00741-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 01/07/2023]
Abstract
In the context of infection, Pseudomonas aeruginosa and Staphylococcus aureus are frequently co-isolated, particularly in cystic fibrosis (CF) patients. Within lungs, the two pathogens exhibit a range of competitive and coexisting interactions. In the present study, we explored the impact of S. aureus on the physiology of P. aeruginosa in the context of coexistence. Transcriptomic analyses showed that S. aureus significantly and specifically affects the expression of numerous genes involved in P. aeruginosa carbon and amino acid metabolism. In particular, 65% of the strains presented considerable overexpression of the genes involved in the acetoin catabolic (aco) pathway. We demonstrated that acetoin is (i) produced by clinical S. aureus strains, (ii) detected in sputa from CF patients and (iii) involved in P. aeruginosa's aco system induction. Furthermore, acetoin is catabolized by P. aeruginosa, a metabolic process that improves the survival of both pathogens by providing a new carbon source for P. aeruginosa and avoiding the toxic accumulation of acetoin on S. aureus. Due to its beneficial effects on both bacteria, acetoin catabolism could testify to the establishment of trophic cooperation between S. aureus and P. aeruginosa in the CF lung environment, thus promoting their persistence.
Collapse
Affiliation(s)
- Laura Camus
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Paul Briaud
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Sylvère Bastien
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Sylvie Elsen
- Université Grenoble Alpes, CNRS ERL5261, CEA-IRIG-BCI, INSERM UMR1036, 38000, Grenoble, France
| | - Anne Doléans-Jordheim
- Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France.,Bactéries Pathogènes Opportunistes et Environnement, UMR CNRS 5557 Ecologie Microbienne, Université Lyon 1 and VetAgro Sup, Villeurbanne, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France.,Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France.,Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France
| | - Karen Moreau
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France.
| |
Collapse
|
32
|
Bernardy EE, Petit RA, Raghuram V, Alexander AM, Read TD, Goldberg JB. Genotypic and Phenotypic Diversity of Staphylococcus aureus Isolates from Cystic Fibrosis Patient Lung Infections and Their Interactions with Pseudomonas aeruginosa. mBio 2020; 11. [PMID: 32576671 DOI: 10.31234/osf.io/9whp4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Staphylococcus aureus has recently overtaken Pseudomonas aeruginosa as the most commonly recognized bacterial pathogen that infects the respiratory tracts of individuals with the genetic disease cystic fibrosis (CF) in the United States. Most studies of S. aureus in CF patient lung infections have focused on a few isolates, often exclusively laboratory-adapted strains, and how they are killed by P. aeruginosa Less is known about the diversity of S. aureus CF patient lung isolates in terms of both their virulence and their interaction with P. aeruginosa To begin to address this gap, we recently sequenced 64 clinical S. aureus isolates and a reference isolate, JE2. Here, we analyzed the antibiotic resistance genotypes, sequence types, clonal complexes, spa types, agr types, and presence/absence of other known virulence factor genes of these isolates. We hypothesized that virulence phenotypes of S. aureus, namely, toxin production and the mucoid phenotype, would be lost in these isolates due to adaptation in the CF patient lung. In contrast to these expectations, we found that most isolates can lyse both rabbit and sheep blood (67.7%) and produce polysaccharide (69.2%), suggesting that these phenotypes were not lost during adaptation to the CF lung. We also identified three distinct phenotypic groups of S. aureus based on their survival in the presence of nonmucoid P. aeruginosa laboratory strain PAO1 and its mucoid derivative. Altogether, our work provides greater insight into the diversity of S. aureus isolates from CF patients, specifically the distribution of important virulence factors and their interaction with P. aeruginosa, all of which have implications in patient health.IMPORTANCEStaphylococcus aureus is now the most frequently detected recognized pathogen in the lungs of individuals who have cystic fibrosis (CF) in the United States, followed closely by Pseudomonas aeruginosa When these pathogens are found to coinfect the CF lung, patients have a significantly worse prognosis. While P. aeruginosa has been rigorously studied in the context of bacterial pathogenesis in CF, less is known about S. aureus Here, we present an in-depth study of 64 S. aureus clinical isolates from CF patients, for which we investigated genetic diversity utilizing whole-genome sequencing, virulence phenotypes, and interactions with P. aeruginosa We found that S. aureus isolated from CF lungs are phylogenetically diverse; most retain known virulence factors and vary in their interactions with P. aeruginosa (i.e., they range from being highly sensitive to P. aeruginosa to completely tolerant to it). Deepening our understanding of how S. aureus responds to its environment and other microbes in the CF lung will enable future development of effective treatments and preventative measures against these formidable infections.
Collapse
Affiliation(s)
- Eryn E Bernardy
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Emory-Children's Center for Cystic Fibrosis Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Robert A Petit
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | - Vishnu Raghuram
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Ashley M Alexander
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Timothy D Read
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Emory-Children's Center for Cystic Fibrosis Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
33
|
Bernardy EE, Petit RA, Raghuram V, Alexander AM, Read TD, Goldberg JB. Genotypic and Phenotypic Diversity of Staphylococcus aureus Isolates from Cystic Fibrosis Patient Lung Infections and Their Interactions with Pseudomonas aeruginosa. mBio 2020; 11:mBio.00735-20. [PMID: 32576671 PMCID: PMC7315118 DOI: 10.1128/mbio.00735-20] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Staphylococcus aureus has recently overtaken Pseudomonas aeruginosa as the most commonly recognized bacterial pathogen that infects the respiratory tracts of individuals with the genetic disease cystic fibrosis (CF) in the United States. Most studies of S. aureus in CF patient lung infections have focused on a few isolates, often exclusively laboratory-adapted strains, and how they are killed by P. aeruginosa Less is known about the diversity of S. aureus CF patient lung isolates in terms of both their virulence and their interaction with P. aeruginosa To begin to address this gap, we recently sequenced 64 clinical S. aureus isolates and a reference isolate, JE2. Here, we analyzed the antibiotic resistance genotypes, sequence types, clonal complexes, spa types, agr types, and presence/absence of other known virulence factor genes of these isolates. We hypothesized that virulence phenotypes of S. aureus, namely, toxin production and the mucoid phenotype, would be lost in these isolates due to adaptation in the CF patient lung. In contrast to these expectations, we found that most isolates can lyse both rabbit and sheep blood (67.7%) and produce polysaccharide (69.2%), suggesting that these phenotypes were not lost during adaptation to the CF lung. We also identified three distinct phenotypic groups of S. aureus based on their survival in the presence of nonmucoid P. aeruginosa laboratory strain PAO1 and its mucoid derivative. Altogether, our work provides greater insight into the diversity of S. aureus isolates from CF patients, specifically the distribution of important virulence factors and their interaction with P. aeruginosa, all of which have implications in patient health.IMPORTANCEStaphylococcus aureus is now the most frequently detected recognized pathogen in the lungs of individuals who have cystic fibrosis (CF) in the United States, followed closely by Pseudomonas aeruginosa When these pathogens are found to coinfect the CF lung, patients have a significantly worse prognosis. While P. aeruginosa has been rigorously studied in the context of bacterial pathogenesis in CF, less is known about S. aureus Here, we present an in-depth study of 64 S. aureus clinical isolates from CF patients, for which we investigated genetic diversity utilizing whole-genome sequencing, virulence phenotypes, and interactions with P. aeruginosa We found that S. aureus isolated from CF lungs are phylogenetically diverse; most retain known virulence factors and vary in their interactions with P. aeruginosa (i.e., they range from being highly sensitive to P. aeruginosa to completely tolerant to it). Deepening our understanding of how S. aureus responds to its environment and other microbes in the CF lung will enable future development of effective treatments and preventative measures against these formidable infections.
Collapse
Affiliation(s)
- Eryn E Bernardy
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Emory-Children's Center for Cystic Fibrosis Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Robert A Petit
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | - Vishnu Raghuram
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Ashley M Alexander
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Timothy D Read
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Emory-Children's Center for Cystic Fibrosis Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
34
|
Vandeplassche E, Sass A, Ostyn L, Burmølle M, Kragh KN, Bjarnsholt T, Coenye T, Crabbé A. Antibiotic susceptibility of cystic fibrosis lung microbiome members in a multispecies biofilm. Biofilm 2020; 2:100031. [PMID: 33447816 PMCID: PMC7798459 DOI: 10.1016/j.bioflm.2020.100031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
The lungs of cystic fibrosis (CF) patients are often chronically colonized by multiple microbial species that can form biofilms, including the major CF pathogen Pseudomonas aeruginosa. Herewith, lower microbial diversity in CF airways is typically associated with worse health outcomes. In an attempt to treat CF lung infections patients are frequently exposed to antibiotics, which may affect microbial diversity. This study aimed at understanding if common antibiotics that target P. aeruginosa influence microbial diversity. To this end, a microaerophilic multispecies biofilm model of frequently co-isolated members of the CF lung microbiome (Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus anginosus, Achromobacter xylosoxidans, Rothia mucilaginosa, and Gemella haemolysans) was exposed to antipseudomonal antibiotics. We found that antibiotics that affected several dominant species (i.e. ceftazidime, tobramycin) resulted in higher species evenness compared to colistin, which is only active against P. aeruginosa. Furthermore, susceptibility of individual species in the multispecies biofilm following antibiotic treatment was compared to that of the respective single-species biofilms, showing no differences. Adding three anaerobic species (Prevotella melaninogenica, Veillonella parvula, and Fusobacterium nucleatum) to the multispecies biofilm did not influence antibiotic susceptibility. In conclusion, our study demonstrates antibiotic-dependent effects on microbial community diversity of multispecies biofilms comprised of CF microbiome members.
Collapse
Affiliation(s)
- Eva Vandeplassche
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Lisa Ostyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Mette Burmølle
- Department of Microbiology, University of Copenhagen, Denmark
| | - Kasper Nørskov Kragh
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Denmark
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| |
Collapse
|
35
|
Briaud P, Bastien S, Camus L, Boyadjian M, Reix P, Mainguy C, Vandenesch F, Doléans-Jordheim A, Moreau K. Impact of Coexistence Phenotype Between Staphylococcus aureus and Pseudomonas aeruginosa Isolates on Clinical Outcomes Among Cystic Fibrosis Patients. Front Cell Infect Microbiol 2020; 10:266. [PMID: 32582568 PMCID: PMC7285626 DOI: 10.3389/fcimb.2020.00266] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus (SA) is the major colonizer of the lungs of cystic fibrosis (CF) patients during childhood and adolescence. As patients age, the prevalence of SA decreases and Pseudomonas aeruginosa (PA) becomes the major pathogen infecting adult lungs. Nonetheless, SA remains significant and patients harboring both SA and PA are frequently found in the worldwide cohort. The overall impact of co-infection remains controversial. Furthermore, co-infecting isolates may compete or coexist. The aim of this study was to analyse if co-infection and the coexistence of SA and PA could lead to worse clinical outcomes. The clinical and bacteriological data of 212 Lyon CF patients were collected retrospectively, and patients were ranked into three groups, SA only (n = 112), PA only (n = 48) or SA plus PA (n = 52). In addition, SA and PA isolates from co-infected patients were tested in vitro to define their interaction profile. Sixty five percent (n = 34) of SA/PA pairs coexist. Using univariate and multivariate analysis, we confirm that SA patients have a less severe clinical condition than others, and PA induces a poor outcome independently of the presence of SA. Regarding co-infection, no significant difference in clinical outcomes was observed between patients with coexisting pairs and patients with competitive pairs. However, when compared to SA mono-infected patients, patients with coexisting pair presented higher frequency and length of hospitalizations and more exacerbations. We suggest that coexistence between SA and PA may be an important step in the natural history of lung bacterial colonization within CF patients.
Collapse
Affiliation(s)
- Paul Briaud
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Sylvère Bastien
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Laura Camus
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Marie Boyadjian
- Pediatric Pulmonology Department, Hôpital Femme-Mère-Enfant, Hospices civils de Lyon, UMR5558, Lyon, France
| | - Philippe Reix
- Pediatric Pulmonology Department, Hôpital Femme-Mère-Enfant, Hospices civils de Lyon, UMR5558, Lyon, France
| | - Catherine Mainguy
- Pediatric Pulmonology Department, Hôpital Femme-Mère-Enfant, Hospices civils de Lyon, UMR5558, Lyon, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France.,Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
| | - Anne Doléans-Jordheim
- Equipe Bactéries Pathogènes Opportunistes et Environnement, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Lyon, France
| | - Karen Moreau
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| |
Collapse
|
36
|
Efficacy of Lytic Phage Cocktails on Staphylococcus aureus and Pseudomonas aeruginosa in Mixed-Species Planktonic Cultures and Biofilms. Viruses 2020; 12:v12050559. [PMID: 32443619 PMCID: PMC7291191 DOI: 10.3390/v12050559] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 01/21/2023] Open
Abstract
The efficacy of phages in multispecies infections has been poorly examined. The in vitro lytic efficacies of phage cocktails AB-SA01, AB-PA01, which target Staphylococcus aureus and Pseudomonas aeruginosa, respectively, and their combination against their hosts were evaluated in S. aureus and P. aeruginosa mixed-species planktonic and biofilm cultures. Green fluorescent protein (GFP)-labelled P. aeruginosa PAO1 and mCherry-labelled S. aureus KUB7 laboratory strains and clinical isolates were used as target bacteria. During real-time monitoring using fluorescence spectrophotometry, the density of mCherry S. aureus KUB7 and GFP P. aeruginosa PAO1 significantly decreased when treated by their respective phage cocktail, a mixture of phage cocktails, and gentamicin. The decrease in bacterial density measured by relative fluorescence strongly associated with the decline in bacterial cell counts. This microplate-based mixed-species culture treatment monitoring through spectrophotometry combine reproducibility, rapidity, and ease of management. It is amenable to high-throughput screening for phage cocktail efficacy evaluation. Each phage cocktail, the combination of the two phage cocktails, and tetracycline produced significant biofilm biomass reduction in mixed-species biofilms. This study result shows that these phage cocktails lyse their hosts in the presence of non-susceptible bacteria. These data support the use of phage cocktails therapy in infections with multiple bacterial species.
Collapse
|
37
|
Yang N, Cao Q, Hu S, Xu C, Fan K, Chen F, Yang C, Liang H, Wu M, Bae T, Lan L. Alteration of protein homeostasis mediates the interaction of
Pseudomonas aeruginosa
with
Staphylococcus aureus. Mol Microbiol 2020; 114:423-442. [DOI: 10.1111/mmi.14519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Nana Yang
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Qiao Cao
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
- College of Life Science Northwest University Xi'an China
| | - Shuyang Hu
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Chenchen Xu
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Ke Fan
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Feifei Chen
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
- College of Life Science Northwest University Xi'an China
| | - Cai‐Guang Yang
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Haihua Liang
- College of Life Science Northwest University Xi'an China
| | - Min Wu
- Department of Biomedical Sciences University of North Dakota Grand Forks ND USA
| | - Taeok Bae
- Department of Microbiology and Immunology Indiana University School of Medicine‐Northwest Gary IN USA
| | - Lefu Lan
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
- College of Life Science Northwest University Xi'an China
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology Shanghai Institute for Food and Drug Control Shanghai China
| |
Collapse
|
38
|
Orazi G, O'Toole GA. "It Takes a Village": Mechanisms Underlying Antimicrobial Recalcitrance of Polymicrobial Biofilms. J Bacteriol 2019; 202:e00530-19. [PMID: 31548277 PMCID: PMC6932244 DOI: 10.1128/jb.00530-19] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic infections are frequently caused by polymicrobial biofilms. Importantly, these infections are often difficult to treat effectively in part due to the recalcitrance of biofilms to antimicrobial therapy. Emerging evidence suggests that polymicrobial interactions can lead to dramatic and unexpected changes in the ability of antibiotics to eradicate biofilms and often result in decreased antimicrobial efficacy in vitro In this review, we discuss the influence of polymicrobial interactions on the antibiotic susceptibility of biofilms, and we highlight the studies that first documented the shifted antimicrobial susceptibilities of mixed-species cultures. Recent studies have identified several mechanisms underlying the recalcitrance of polymicrobial biofilm communities, including interspecies exchange of antibiotic resistance genes, β-lactamase-mediated inactivation of antibiotics, changes in gene expression induced by metabolites and quorum sensing signals, inhibition of the electron transport chain, and changes in properties of the cell membrane. In addition to elucidating multiple mechanisms that contribute to the altered drug susceptibility of polymicrobial biofilms, these studies have uncovered novel ways in which polymicrobial interactions can impact microbial physiology. The diversity of findings discussed highlights the importance of continuing to investigate the efficacy of antibiotics against biofilm communities composed of different combinations of microbial species. Together, the data presented here illustrate the importance of studying microbes as part of mixed-species communities rather than in isolation. In light of our greater understanding of how interspecies interactions alter the efficacy of antimicrobial agents, we propose that the methods for measuring the drug susceptibility of polymicrobial infections should be revisited.
Collapse
Affiliation(s)
- Giulia Orazi
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
39
|
Briaud P, Camus L, Bastien S, Doléans-Jordheim A, Vandenesch F, Moreau K. Coexistence with Pseudomonas aeruginosa alters Staphylococcus aureus transcriptome, antibiotic resistance and internalization into epithelial cells. Sci Rep 2019; 9:16564. [PMID: 31719577 PMCID: PMC6851120 DOI: 10.1038/s41598-019-52975-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/26/2019] [Indexed: 02/08/2023] Open
Abstract
Cystic fibrosis (CF) is the most common life-threatening genetic disease among Caucasians. CF patients suffer from chronic lung infections due to the presence of thick mucus, caused by cftr gene dysfunction. The two most commonly found bacteria in the mucus of CF patients are Staphylococcus aureus and Pseudomonas aeruginosa. It is well known that early-infecting P. aeruginosa strains produce anti-staphylococcal compounds and inhibit S. aureus growth. More recently, it has been shown that late-infecting P. aeruginosa strains develop commensal-like/coexistence interaction with S. aureus. The aim of this study was to decipher the impact of P. aeruginosa strains on S. aureus. RNA sequencing analysis showed 77 genes were specifically dysregulated in the context of competition and 140 genes in the context of coexistence in the presence of P. aeruginosa. In coexistence, genes encoding virulence factors and proteins involved in carbohydrates, lipids, nucleotides and amino acids metabolism were downregulated. On the contrary, several transporter family encoding genes were upregulated. In particular, several antibiotic pumps belonging to the Nor family were upregulated: tet38, norA and norC, leading to an increase in antibiotic resistance of S. aureus when exposed to tetracycline and ciprofloxacin and an enhanced internalization rate within epithelial pulmonary cells. This study shows that coexistence with P. aeruginosa affects the S. aureus transcriptome and virulence.
Collapse
Affiliation(s)
- Paul Briaud
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon1, Ecole Normale Supérieure de Lyon, CNRS UMR5308, Lyon, France
| | - Laura Camus
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon1, Ecole Normale Supérieure de Lyon, CNRS UMR5308, Lyon, France
| | - Sylvère Bastien
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon1, Ecole Normale Supérieure de Lyon, CNRS UMR5308, Lyon, France
| | - Anne Doléans-Jordheim
- Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
- Bactéries Pathogènes Opportunistes et Environnement, UMR CNRS 5557 Ecologie Microbienne, Université Lyon 1 & VetAgro Sup, Villeurbanne, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon1, Ecole Normale Supérieure de Lyon, CNRS UMR5308, Lyon, France
- Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France
- Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
| | - Karen Moreau
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon1, Ecole Normale Supérieure de Lyon, CNRS UMR5308, Lyon, France.
| |
Collapse
|
40
|
Shin J, Magar KBS, Lee J, Kim KS, Lee YR. Design, synthesis, and discovery of novel oxindoles bearing 3-heterocycles as species-specific and combinatorial agents in eradicating Staphylococcus species. Sci Rep 2019; 9:8012. [PMID: 31527598 PMCID: PMC6746789 DOI: 10.1038/s41598-019-44304-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/14/2019] [Indexed: 01/12/2023] Open
Abstract
A series of new functionalized 3-indolylindolin-2-ones, 3-(1-methylpyrrol-2-yl)indolin-2-ones, and 3-(thiophen-2-yl)indolin-2-ones were synthesized by using novel indium (III)-catalysed reaction of various 3-diazoindolin-2-ones with indoles, 1-methylpyrrole, or thiophene via one-pot procedure. The newly synthesized compounds were characterized and screened for their in vitro antibacterial activity against various Staphylococcus species, including methicillin-resistant Staphylococcus aureus. results revealed that five compounds KS15, KS16, KS17, KS19, and KS20 exhibited potent and specific antibacterial activity against Staphylococcus species albeit inactive against Gram-negative bacteria. Especially, compounds exhibited superior antibacterial potency against Staphylococcus epidermidis compared to the reference drug streptomycin. The most potential compound KS16 also increased the susceptibility of Staphylococcus aureus to ciprofloxacin, gentamicin, kanamycin, and streptomycin. Among them, KS16 was found to be a synergistic compound with gentamicin and kanamycin. Furthermore, the cellular level of autolysin protein was increased from the KS16-treated Staphylococcus aureus cells. Finally, in vitro CCK-8 assays showed that KS16 exhibited no cytotoxicity at the minimum inhibitory concentrations used for killing Staphylococcus species. From all our results, novel oxindole compounds directly have lethal action or boost existing antibiotic power with the reduction of doses and toxicity in the treatment of multidrug-resistant Staphylococcus species.
Collapse
Affiliation(s)
- Jonghoon Shin
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | | | - Jungwoon Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
41
|
Anaerobiosis influences virulence properties of Pseudomonas aeruginosa cystic fibrosis isolates and the interaction with Staphylococcus aureus. Sci Rep 2019; 9:6748. [PMID: 31043640 PMCID: PMC6494883 DOI: 10.1038/s41598-019-42952-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/03/2019] [Indexed: 01/08/2023] Open
Abstract
The airways of individuals with cystic fibrosis (CF) are abundantly colonised by Staphylococcus aureus and Pseudomonas aeruginosa. Co-infecting hypoxic regions of static mucus within CF airways, together with decreases in pulmonary function, mucus plugging and oxygen consumption by host neutrophils gives rise to regions of anoxia. This study determined the impact of anaerobiosis upon S. aureus-P. aeruginosa interactions in planktonic co-culture and mixed species biofilms in vitro. Whilst anoxia reduced the ability for P. aeruginosa CF isolates to dominate over S. aureus, this occurred in an isolate dependent manner. Investigations into the underlying mechanisms suggest that the anti-staphylococcal compound facilitating P. aeruginosa dominance under normoxia and anoxia is greater than 3 kDa in size and is heat-stable. Not all interspecies interactions studied were antagonistic, as S. aureus exoproducts were shown to restore and enhance P. aeruginosa motility under normoxia and anoxia in an isolate dependent manner. Collectively, this study suggests changes in oxygen availability within regions of the CF lung is likely to influence interspecies interactions and in turn, potentially influence disease progression.
Collapse
|
42
|
Limoli DH, Hoffman LR. Help, hinder, hide and harm: what can we learn from the interactions between Pseudomonas aeruginosa and Staphylococcus aureus during respiratory infections? Thorax 2019; 74:684-692. [PMID: 30777898 PMCID: PMC6585302 DOI: 10.1136/thoraxjnl-2018-212616] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/15/2022]
Abstract
Recent studies of human respiratory secretions using culture-independent techniques have found a surprisingly diverse array of microbes. Interactions among these community members can profoundly impact microbial survival, persistence and antibiotic susceptibility and, consequently, disease progression. Studies of polymicrobial interactions in the human microbiota have shown that the taxonomic and structural compositions, and resulting behaviours, of microbial communities differ substantially from those of the individual constituent species and in ways of clinical importance. These studies primarily involved oral and gastrointestinal microbiomes. While the field of polymicrobial respiratory disease is relatively young, early findings suggest that respiratory tract microbiota members also compete and cooperate in ways that may influence disease outcomes. Ongoing efforts therefore focus on how these findings can inform more 'enlightened', rational approaches to combat respiratory infections. Among the most common respiratory diseases involving polymicrobial infections are cystic fibrosis (CF), non-CF bronchiectasis, COPD and ventilator-associated pneumonia. While respiratory microbiota can be diverse, two of the most common and best-studied members are Staphylococcus aureus and Pseudomonas aeruginosa, which exhibit a range of competitive and cooperative interactions. Here, we review the state of research on pulmonary coinfection with these pathogens, including their prevalence, combined and independent associations with patient outcomes, and mechanisms of those interactions that could influence lung health. Because P. aeruginosa-S. aureus coinfection is common and well studied in CF, this disease serves as the paradigm for our discussions on these two organisms and inform our recommendations for future studies of polymicrobial interactions in pulmonary disease.
Collapse
Affiliation(s)
- Dominique Hope Limoli
- Microbiology and Immunology, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, Iowa, USA
| | - Lucas R Hoffman
- Departments of Pediatrics and Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
43
|
Tognon M, Köhler T, Luscher A, van Delden C. Transcriptional profiling of Pseudomonas aeruginosa and Staphylococcus aureus during in vitro co-culture. BMC Genomics 2019; 20:30. [PMID: 30630428 PMCID: PMC6327441 DOI: 10.1186/s12864-018-5398-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/19/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Co-colonization by Pseudomonas aeruginosa and Staphylococcus aureus is frequent in cystic fibrosis patients. Polymicrobial infections involve both detrimental and beneficial interactions between different bacterial species. Such interactions potentially indirectly impact the human host through virulence, antibiosis and immunomodulation. RESULTS Here we explored the responses triggered by the encounter of these two pathogens to identify early processes that are important for survival when facing a potential competitor. Transcriptional profiles of both bacteria were obtained after 3 h co-culture and compared to the respective mono-culture using RNAseq. Global responses in both bacteria included competition for nitrogen sources, amino acids and increased tRNA levels. Both organisms also induced lysogenic mechanisms related to prophage induction (S. aureus) and R- and F- pyocin synthesis (P. aeruginosa), possibly as a response to stress resulting from nutrient limitation or cell damage. Specific responses in S. aureus included increased expression of de novo and salvation pathways for purine and pyrimidine synthesis, a switch to glucose fermentation, and decreased expression of major virulence factors and global regulators. CONCLUSIONS Taken together, transcriptomic data indicate that early responses between P. aeruginosa and S. aureus involve competition for resources and metabolic adaptations, rather than the expression of bacteria- or host-directed virulence factors.
Collapse
Affiliation(s)
- Mikaël Tognon
- Transplant Infectious Diseases Unit, University Hospitals of Geneva, Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, 1, rue Michel Servet, CH-1211, Genève 4, Switzerland
| | - Thilo Köhler
- Transplant Infectious Diseases Unit, University Hospitals of Geneva, Geneva, Switzerland. .,Department of Microbiology and Molecular Medicine, University of Geneva, 1, rue Michel Servet, CH-1211, Genève 4, Switzerland.
| | - Alexandre Luscher
- Transplant Infectious Diseases Unit, University Hospitals of Geneva, Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, 1, rue Michel Servet, CH-1211, Genève 4, Switzerland
| | - Christian van Delden
- Transplant Infectious Diseases Unit, University Hospitals of Geneva, Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, 1, rue Michel Servet, CH-1211, Genève 4, Switzerland
| |
Collapse
|
44
|
Hakansson AP, Orihuela CJ, Bogaert D. Bacterial-Host Interactions: Physiology and Pathophysiology of Respiratory Infection. Physiol Rev 2018; 98:781-811. [PMID: 29488821 PMCID: PMC5966719 DOI: 10.1152/physrev.00040.2016] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
It has long been thought that respiratory infections are the direct result of acquisition of pathogenic viruses or bacteria, followed by their overgrowth, dissemination, and in some instances tissue invasion. In the last decades, it has become apparent that in contrast to this classical view, the majority of microorganisms associated with respiratory infections and inflammation are actually common members of the respiratory ecosystem and only in rare circumstances do they cause disease. This suggests that a complex interplay between host, environment, and properties of colonizing microorganisms together determines disease development and its severity. To understand the pathophysiological processes that underlie respiratory infectious diseases, it is therefore necessary to understand the host-bacterial interactions occurring at mucosal surfaces, along with the microbes inhabiting them, during symbiosis. Current knowledge regarding host-bacterial interactions during asymptomatic colonization will be discussed, including a plausible role for the human microbiome in maintaining a healthy state. With this as a starting point, we will discuss possible disruptive factors contributing to dysbiosis, which is likely to be a key trigger for pathobionts in the development and pathophysiology of respiratory diseases. Finally, from this renewed perspective, we will reflect on current and potential new approaches for treatment in the future.
Collapse
Affiliation(s)
- A P Hakansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| | - C J Orihuela
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| | - D Bogaert
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| |
Collapse
|
45
|
Community Composition Determines Activity of Antibiotics against Multispecies Biofilms. Antimicrob Agents Chemother 2017; 61:AAC.00302-17. [PMID: 28696232 DOI: 10.1128/aac.00302-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/02/2017] [Indexed: 02/07/2023] Open
Abstract
In young cystic fibrosis (CF) patients, Staphylococcus aureus is typically the most prevalent organism, while in adults, Pseudomonas aeruginosa is the major pathogen. More recently, it was observed that also Streptococcus anginosus plays an important role in exacerbations of respiratory symptoms. These species are often coisolated from CF lungs, yet little is known about whether antibiotic killing of one species is influenced by the presence of others. In the present study, we compared the activities of various antibiotics against S. anginosus, S. aureus, and P. aeruginosa when grown in monospecies biofilms with the activity observed in a multispecies biofilm. Our results show that differences in antibiotic activity against species grown in mono- and multispecies biofilms are species and antibiotic dependent. Fewer S. anginosus cells are killed by antibiotics that interfere with cell wall synthesis (amoxicillin plus sulbactam, cefepime, imipenem, meropenem, and vancomycin) in the presence of S. aureus and P. aeruginosa, while for ciprofloxacin, levofloxacin, and tobramycin, no difference was observed. In addition, we observed that the cell-free supernatant of S. aureus, but not that of P. aeruginosa biofilms, also caused this decrease in killing. Overall, S. aureus was more affected by antibiotic treatment in a multispecies biofilm, while for P. aeruginosa, no differences were observed between growth in mono- or multispecies biofilms. The results of the present study suggest that it is important to take the community composition into account when evaluating the effect of antimicrobial treatments against certain species in mixed biofilms.
Collapse
|
46
|
Tognon M, Köhler T, Gdaniec BG, Hao Y, Lam JS, Beaume M, Luscher A, Buckling A, van Delden C. Co-evolution with Staphylococcus aureus leads to lipopolysaccharide alterations in Pseudomonas aeruginosa. ISME JOURNAL 2017; 11:2233-2243. [PMID: 28548661 DOI: 10.1038/ismej.2017.83] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 03/24/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
Detrimental and beneficial interactions between co-colonizing bacteria may influence the course of infections. In cystic fibrosis (CF) airways, Staphylococcus aureus prevails in childhood, whereas Pseudomonas aeruginosa progressively predominates thereafter. While a range of interactions has been identified, it is unclear if these represent specific adaptations or correlated responses to other aspects of the environment. Here, we investigate how P. aeruginosa adapts to S. aureus by evolving P. aeruginosa in the presence and absence of S. aureus. P. aeruginosa populations that evolved for 150 generations were sequenced and compared to the ancestor strain. Mutations in the Wsp signaling system were identified in both treatments and likely occurred because of low oxygen availability. Despite showing increased killing activity, wsp mutants were less fit in the presence of S. aureus. In contrast, mutations in lipopolysaccharide (LPS) biosynthesis occurred exclusively in co-cultures with S. aureus and conferred a fitness gain in its presence. Moreover, they increased resistance towards beta-lactam antibiotics. Strikingly, both mutations in wsp and LPS genes are observed in clinical isolates from CF-patients. Our results suggest that P. aeruginosa LPS mutations are a direct consequence of S. aureus imposed selection in vitro.
Collapse
Affiliation(s)
- Mikael Tognon
- Transplant Infectious Diseases Unit, University Hospitals of Geneva, Genève, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, Genève, Switzerland
| | - Thilo Köhler
- Transplant Infectious Diseases Unit, University Hospitals of Geneva, Genève, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, Genève, Switzerland
| | - Bartosz G Gdaniec
- Transplant Infectious Diseases Unit, University Hospitals of Geneva, Genève, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, Genève, Switzerland
| | - Youai Hao
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Joseph S Lam
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Marie Beaume
- Transplant Infectious Diseases Unit, University Hospitals of Geneva, Genève, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, Genève, Switzerland
| | - Alexandre Luscher
- Transplant Infectious Diseases Unit, University Hospitals of Geneva, Genève, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, Genève, Switzerland
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | - Christian van Delden
- Transplant Infectious Diseases Unit, University Hospitals of Geneva, Genève, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, Genève, Switzerland
| |
Collapse
|
47
|
Growth-altering microbial interactions are responsive to chemical context. PLoS One 2017; 12:e0164919. [PMID: 28319121 PMCID: PMC5358735 DOI: 10.1371/journal.pone.0164919] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/27/2017] [Indexed: 11/20/2022] Open
Abstract
Microbial interactions are ubiquitous in nature, and are equally as relevant to human wellbeing as the identities of the interacting microbes. However, microbial interactions are difficult to measure and characterize. Furthermore, there is growing evidence that they are not fixed, but dependent on environmental context. We present a novel workflow for inferring microbial interactions that integrates semi-automated image analysis with a colony stamping mechanism, with the overall effect of improving throughput and reproducibility of colony interaction assays. We apply our approach to infer interactions among bacterial species associated with the normal lung microbiome, and how those interactions are altered by the presence of benzo[a]pyrene, a carcinogenic compound found in cigarettes. We found that the presence of this single compound changed the interaction network, demonstrating that microbial interactions are indeed dynamic and responsive to local chemical context.
Collapse
|
48
|
Moreau P, Diggle SP, Friman VP. Bacterial cell-to-cell signaling promotes the evolution of resistance to parasitic bacteriophages. Ecol Evol 2017; 7:1936-1941. [PMID: 28331600 PMCID: PMC5355186 DOI: 10.1002/ece3.2818] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/19/2016] [Accepted: 01/28/2017] [Indexed: 12/21/2022] Open
Abstract
The evolution of host–parasite interactions could be affected by intraspecies variation between different host and parasite genotypes. Here we studied how bacterial host cell‐to‐cell signaling affects the interaction with parasites using two bacteria‐specific viruses (bacteriophages) and the host bacterium Pseudomonas aeruginosa that communicates by secreting and responding to quorum sensing (QS) signal molecules. We found that a QS‐signaling proficient strain was able to evolve higher levels of resistance to phages during a short‐term selection experiment. This was unlikely driven by demographic effects (mutation supply and encounter rates), as nonsignaling strains reached higher population densities in the absence of phages in our selective environment. Instead, the evolved nonsignaling strains suffered relatively higher growth reduction in the absence of the phage, which could have constrained the phage resistance evolution. Complementation experiments with synthetic signal molecules showed that the Pseudomonas quinolone signal (PQS) improved the growth of nonsignaling bacteria in the presence of a phage, while the activation of las and rhl quorum sensing systems had no effect. Together, these results suggest that QS‐signaling can promote the evolution of phage resistance and that the loss of QS‐signaling could be costly in the presence of phages. Phage–bacteria interactions could therefore indirectly shape the evolution of intraspecies social interactions and PQS‐mediated virulence in P. aeruginosa.
Collapse
Affiliation(s)
- Pierre Moreau
- Imperial College London, Silwood Park Campus Ascot Berkshire UK
| | - Stephen P Diggle
- School of Life Sciences Centre for Biomolecular Sciences University of Nottingham Nottingham UK
| | - Ville-Petri Friman
- Imperial College London, Silwood Park Campus Ascot Berkshire UK; Department of Biology The University of York York UK
| |
Collapse
|
49
|
Reen FJ, Phelan JP, Woods DF, Shanahan R, Cano R, Clarke S, McGlacken GP, O'Gara F. Harnessing Bacterial Signals for Suppression of Biofilm Formation in the Nosocomial Fungal Pathogen Aspergillus fumigatus. Front Microbiol 2016; 7:2074. [PMID: 28066389 PMCID: PMC5177741 DOI: 10.3389/fmicb.2016.02074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/08/2016] [Indexed: 12/18/2022] Open
Abstract
Faced with the continued emergence of antibiotic resistance to all known classes of antibiotics, a paradigm shift in approaches toward antifungal therapeutics is required. Well characterized in a broad spectrum of bacterial and fungal pathogens, biofilms are a key factor in limiting the effectiveness of conventional antibiotics. Therefore, therapeutics such as small molecules that prevent or disrupt biofilm formation would render pathogens susceptible to clearance by existing drugs. This is the first report describing the effect of the Pseudomonas aeruginosa alkylhydroxyquinolone interkingdom signal molecules 2-heptyl-3-hydroxy-4-quinolone and 2-heptyl-4-quinolone on biofilm formation in the important fungal pathogen Aspergillus fumigatus. Decoration of the anthranilate ring on the quinolone framework resulted in significant changes in the capacity of these chemical messages to suppress biofilm formation. Addition of methoxy or methyl groups at the C5-C7 positions led to retention of anti-biofilm activity, in some cases dependent on the alkyl chain length at position C2. In contrast, halogenation at either the C3 or C6 positions led to loss of activity, with one notable exception. Microscopic staining provided key insights into the structural impact of the parent and modified molecules, identifying lead compounds for further development.
Collapse
Affiliation(s)
- F Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork - National University of Ireland Cork, Ireland
| | - John P Phelan
- BIOMERIT Research Centre, School of Microbiology, University College Cork - National University of Ireland Cork, Ireland
| | - David F Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork - National University of Ireland Cork, Ireland
| | - Rachel Shanahan
- Department of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork - National University of Ireland Cork, Ireland
| | - Rafael Cano
- Department of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork - National University of Ireland Cork, Ireland
| | - Sarah Clarke
- Department of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork - National University of Ireland Cork, Ireland
| | - Gerard P McGlacken
- Department of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork - National University of Ireland Cork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork - National University of IrelandCork, Ireland; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, PerthWA, Australia
| |
Collapse
|
50
|
Mumford R, Friman VP. Bacterial competition and quorum-sensing signalling shape the eco-evolutionary outcomes of model in vitro phage therapy. Evol Appl 2016; 10:161-169. [PMID: 28127392 PMCID: PMC5253424 DOI: 10.1111/eva.12435] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/25/2016] [Indexed: 12/12/2022] Open
Abstract
The rapid rise of antibiotic resistance has renewed interest in phage therapy – the use of bacteria‐specific viruses (phages) to treat bacterial infections. Even though phages are often pathogen‐specific, little is known about the efficiency and eco‐evolutionary outcomes of phage therapy in polymicrobial infections. We studied this experimentally by exposing both quorum‐sensing (QS) signalling PAO1 and QS‐deficient lasR Pseudomonas aeruginosa genotypes (differing in their ability to signal intraspecifically) to lytic PT7 phage in the presence and absence of two bacterial competitors: Staphylococcus aureus and Stenotrophomonas maltophilia–two bacteria commonly associated with P. aeruginosa in polymicrobial cystic fibrosis lung infections. Both the P. aeruginosa genotype and the presence of competitors had profound effects on bacteria and phage densities and bacterial resistance evolution. In general, competition reduced the P. aeruginosa frequencies leading to a lower rate of resistance evolution. This effect was clearer with QS signalling PAO1 strain due to lower bacteria and phage densities and relatively larger pleiotropic growth cost imposed by both phages and competitors. Unexpectedly, phage selection decreased the total bacterial densities in the QS‐deficient lasR pathogen communities, while an increase was observed in the QS signalling PAO1 pathogen communities. Together these results suggest that bacterial competition can shape the eco‐evolutionary outcomes of phage therapy.
Collapse
Affiliation(s)
- Rachel Mumford
- Silwood Park Campus Imperial College London Ascot Berkshire UK
| | - Ville-Petri Friman
- Silwood Park Campus Imperial College London Ascot Berkshire UK; Department of Biology University of York York UK
| |
Collapse
|