1
|
Xiong D, Yang Z, He X, He W, Shen D, Wang L, Lin L, Murero A, Minamino T, Shao X, Qian G. Loss of Flagella-Related Genes Enables a Nonflagellated, Fungal-Predating Bacterium To Strengthen the Synthesis of an Antifungal Weapon. Microbiol Spectr 2023; 11:e0414922. [PMID: 36629418 PMCID: PMC9927559 DOI: 10.1128/spectrum.04149-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/17/2022] [Indexed: 01/12/2023] Open
Abstract
Loss of flagellar genes causes a nonmotile phenotype. The genus Lysobacter consists of numerous environmentally ubiquitous, nonflagellated bacteria, including Lysobacter enzymogenes, an antifungal bacterium that is beneficial to plants. L. enzymogenes still has many flagellar genes on its genome, although this bacterium does not engage in flagella-driven motility. Here, we report that loss of certain flagellar genes allows L. enzymogenes to strengthen its evolutionarily gained capacity in fungal killing. To clarify why this bacterium loses flagellar genes during the evolutionary process, we cloned several representative flagellar genes from Xanthomonas oryzae, a flagellated, phylogenetically related species of Lysobacter, and introduced them individually into L. enzymogenes to mimic genomic reacquisition of lost flagellar genes. Heterogeneous expression of the three X. oryzae flagellar structural genes (Xo-motA, Xo-motB, Xo-fliE) and one flagellar regulatory gene (Xo-fleQ) remarkably weakened the bacterial capacity to kill fungal pathogens by impairing the synthesis of an antifungal weapon, known as the heat-stable antifungal factor (HSAF). We further investigated the underlying mechanism by selecting Xo-FleQ as the representative because it is a master transcription factor responsible for flagellar gene expression. Xo-FleQ inhibited the transcription of operon genes responsible for HSAF synthesis via direct binding of Xo-FleQ to the promoter region, thereby decreasing HSAF biosynthesis by L. enzymogenes. These observations suggest a possible genome and function coevolution event, in which an antifungal bacterium deletes certain flagellar genes in order to enhance its ability to kill fungi. IMPORTANCE It is generally recognized that flagellar genes are commonly responsible for the flagella-driven bacterial motility. Thus, finding nonflagellated bacteria partially or fully lost flagellar genes is not a surprise. However, the present study provides new insights into this common idea. We found that loss of either certain flagellar structural or regulatory genes (such as motA, motB, fliE, and fleQ) allows a nonflagellated, antifungal bacterium (L. enzymogenes) to stimulate its fungal-killing capacity, outlining a genome-function coevolution event, where an antifungal bacterium "smartly" designed its genome to "delete" crucial flagellar genes to coordinate flagellar loss and fungal predation. This unusual finding might trigger bacteriologists to reconsider previously ignored functions of the lost flagellar genes in any nonflagellated, pathogenic, or beneficial bacteria.
Collapse
Affiliation(s)
- Dan Xiong
- College of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, P. R. China
| | - Zixiang Yang
- College of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, P. R. China
| | - Xueting He
- College of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, P. R. China
| | - Weimei He
- College of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, P. R. China
| | - Danyu Shen
- College of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, P. R. China
| | - Lu Wang
- Medical College, China Three Gorges University, Yichang, China
| | - Long Lin
- College of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, P. R. China
| | - Aprodisia Murero
- College of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, P. R. China
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Xiaolong Shao
- College of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, P. R. China
| | - Guoliang Qian
- College of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
2
|
Energy conservation under extreme energy limitation: the role of cytochromes and quinones in acetogenic bacteria. Extremophiles 2021; 25:413-424. [PMID: 34480656 PMCID: PMC8578096 DOI: 10.1007/s00792-021-01241-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022]
Abstract
Acetogenic bacteria are a polyphyletic group of organisms that fix carbon dioxide under anaerobic, non-phototrophic conditions by reduction of two mol of CO2 to acetyl-CoA via the Wood–Ljungdahl pathway. This pathway also allows for lithotrophic growth with H2 as electron donor and this pathway is considered to be one of the oldest, if not the oldest metabolic pathway on Earth for CO2 reduction, since it is coupled to the synthesis of ATP. How ATP is synthesized has been an enigma for decades, but in the last decade two ferredoxin-dependent respiratory chains were discovered. Those respiratory chains comprise of a cytochrome-free, ferredoxin-dependent respiratory enzyme complex, which is either the Rnf or Ech complex. However, it was discovered already 50 years ago that some acetogens contain cytochromes and quinones, but their role had only a shadowy existence. Here, we review the literature on the characterization of cytochromes and quinones in acetogens and present a hypothesis that they may function in electron transport chains in addition to Rnf and Ech.
Collapse
|
3
|
Cho SY, Song WS, Yoon SI. Crystal structure of the flagellar cap protein FliD from Bdellovibrio bacteriovorus. Biochem Biophys Res Commun 2019; 519:652-658. [PMID: 31542231 DOI: 10.1016/j.bbrc.2019.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 01/10/2023]
Abstract
Bdellovibrio bacteriovorus is a predator bacterial species of the Deltaproteobacteria class that requires flagellum-mediated motility to initiate the parasitization of other gram-negative bacteria. The flagellum is capped by FliD, which polymerizes flagellin into a flagellar filament. FliD has been reported to function as a species-specific oligomer, such as a tetramer, a pentamer, or a hexamer, in members of the Gammaproteobacteria class. However, the oligomeric state and structural features of FliD from bacterial species outside the Gammaproteobacteria class are unknown. Based on structural and biochemical analyses, we report here that B. bacteriovorus FliD (bbFliD) forms a tetramer. bbFliD tetramerizes in a circular head-to-tail arrangement by inserting the D2 domain of one subunit into the concave surface of the second subunit generated between the D2 and D3 domains as observed in Serratia marcescens FliD. However, bbFliD adopts a more compact and flat oligomeric structure, which exhibits a more extended tetramerization interface flanked by two additional surfaces due to different intersubunit and interdomain organizations as well as an elongated loop. In conclusion, FliD from B. bacteriovorus, which belongs to the Deltaproteobacteria class, also produces a tetramer similar to FliD from Gammaproteobacterial species but adopts a unique species-specific oligomeric structure.
Collapse
Affiliation(s)
- So Yeon Cho
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Wan Seok Song
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
4
|
Cho SY, Song WS, Oh HB, Kim HU, Jung HS, Yoon SI. Structural analysis of the flagellar capping protein FliD from Helicobacter pylori. Biochem Biophys Res Commun 2019; 514:98-104. [PMID: 31023530 DOI: 10.1016/j.bbrc.2019.04.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 01/17/2023]
Abstract
Helicobacter pylori is a pathogenic flagellated bacterium that infects the gastroduodenal mucosa and causes peptic ulcers in humans. FliD caps the distal end of the flagellar filament and is essential in filament growth. Moreover, FliD has been studied to diagnose and prevent H. pylori infection. Here, we report structure-based molecular studies of H. pylori FliD (hpFliD). A crystal structure of hpFliD at 2.6 Å resolution presents a four-domain (D2-D5) structure, where the D3 domain forms a central platform surrounded by the other three domains (D2, D4, and D5). hpFliD domains D2 and D3 structurally resemble those of FliD orthologs, whereas the D4 and D5 domains are exclusive to hpFliD. Moreover, our ELISA analysis using anti-H. pylori antibodies demonstrated that the hpFliD-specific D4 and D5 domains are highly antigenic compared to the D2 and D3 domains. Collectively, our structural and serological analyses underscore the structural role of hpFliD domains and provide a molecular basis for vaccine and diagnosis development.
Collapse
Affiliation(s)
- So Yeon Cho
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Wan Seok Song
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Han-Byeol Oh
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Han-Ul Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
5
|
Crystal structure of FlgL and its implications for flagellar assembly. Sci Rep 2018; 8:14307. [PMID: 30250171 PMCID: PMC6155364 DOI: 10.1038/s41598-018-32460-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/07/2018] [Indexed: 01/05/2023] Open
Abstract
Bacteria move toward attractants and away from repellants by rotating their flagellum. The bacterial flagellum assembles through the ordered organization of more than 30 different proteins. Among the diverse flagellar proteins, FlgL forms the junction between the hook and the filament in the flagellum together with FlgK and provides a structural base where flagellin, a filament-forming protein, is inserted for the initiation of filament elongation. However, the functional and structural information available for FlgL is highly limited. To provide structural insights into the cross-linkage between the FlgL junction and the flagellin filament, we determined the crystal structures of FlgL from gram-positive Bacillus cereus (bcFlgL) and gram-negative Xanthomonas campestris (xcFlgL). bcFlgL contains one domain (D1), whereas xcFlgL adopts a two-domain structure that consists of the D1 and D2 domains. The constant D1 domain of FlgL adopts a rod structure that is generated by four longitudinal segments. This four-segment structure is recapitulated in filament and junction proteins but not in hook and rod proteins, allowing us to propose a junction-filament assembly mechanism based on a quasi-homotypic interaction. The D2 domain of xcFlgL resembles that of another junction protein, FlgK, suggesting the structural and functional relatedness of FlgL and FlgK.
Collapse
|
6
|
Yeh HY, Kojima K, Mobley JA. Epitope mapping of Salmonella flagellar hook-associated protein, FlgK, with mass spectrometry-based immuno-capture proteomics using chicken (Gallus gallus domesticus) sera. Vet Immunol Immunopathol 2018; 201:20-25. [DOI: 10.1016/j.vetimm.2018.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/19/2018] [Accepted: 05/13/2018] [Indexed: 12/13/2022]
|
7
|
Chevance FFV, Hughes KT. Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol 2008; 6:455-65. [PMID: 18483484 DOI: 10.1038/nrmicro1887] [Citation(s) in RCA: 535] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The assembly of large and complex organelles, such as the bacterial flagellum, poses the formidable problem of coupling temporal gene expression to specific stages of the organelle-assembly process. The discovery that levels of the bacterial flagellar regulatory protein FlgM are controlled by its secretion from the cell in response to the completion of an intermediate flagellar structure (the hook-basal body) was only the first of several discoveries of unique mechanisms that coordinate flagellar gene expression with assembly. In this Review, we discuss this mechanism, together with others that also coordinate gene regulation and flagellar assembly in Gram-negative bacteria.
Collapse
Affiliation(s)
- Fabienne F V Chevance
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
8
|
Chevance FFV, Hughes KT. Coordinating assembly of a bacterial macromolecular machine. NATURE REVIEWS. MICROBIOLOGY 2008. [PMID: 18483484 DOI: 10.1038/nrmicro1887.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The assembly of large and complex organelles, such as the bacterial flagellum, poses the formidable problem of coupling temporal gene expression to specific stages of the organelle-assembly process. The discovery that levels of the bacterial flagellar regulatory protein FlgM are controlled by its secretion from the cell in response to the completion of an intermediate flagellar structure (the hook-basal body) was only the first of several discoveries of unique mechanisms that coordinate flagellar gene expression with assembly. In this Review, we discuss this mechanism, together with others that also coordinate gene regulation and flagellar assembly in Gram-negative bacteria.
Collapse
Affiliation(s)
- Fabienne F V Chevance
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
9
|
Kim SY, Hong HY, Rhee JH, Chung SS. Roles of Flagellar Hook-Associated Proteins in Vibrio vulnificus Motility and Virulence. ACTA ACUST UNITED AC 2008. [DOI: 10.4167/jbv.2008.38.1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Soo Young Kim
- Clinical Vaccine R&D Center, Chonnam National University Hwasun Hospital, Jeonnam 519-809, South Republic of Korea
- National Research Laboratory of Molecular Microbial Pathogenesis and Department of Microbiology, Chonnam National University Medical School, Gwangju 501-746, South Republic of Korea
| | - Hye Young Hong
- National Research Laboratory of Molecular Microbial Pathogenesis and Department of Microbiology, Chonnam National University Medical School, Gwangju 501-746, South Republic of Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University Hwasun Hospital, Jeonnam 519-809, South Republic of Korea
- Research Institute of Vibrio Infections and Genome Research Center for Enteropathogenic Bacteria, Chonnam National University Medical School, Gwangju 501-746, South Republic of Korea
- National Research Laboratory of Molecular Microbial Pathogenesis and Department of Microbiology, Chonnam National University Medical School, Gwangju 501-746, South Republic of Korea
| | - Sun Sik Chung
- Research Institute of Vibrio Infections and Genome Research Center for Enteropathogenic Bacteria, Chonnam National University Medical School, Gwangju 501-746, South Republic of Korea
| |
Collapse
|
10
|
Nilsen T, Yan AW, Gale G, Goldberg MB. Presence of multiple sites containing polar material in spherical Escherichia coli cells that lack MreB. J Bacteriol 2005; 187:6187-96. [PMID: 16109960 PMCID: PMC1196171 DOI: 10.1128/jb.187.17.6187-6196.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In rod-shaped bacteria, certain proteins are specifically localized to the cell poles. The nature of the positional information that leads to the proper localization of these proteins is unclear. In a screen for factors required for the localization of the Shigella sp. actin assembly protein IcsA to the bacterial pole, a mutant carrying a transposon insertion in mreB displayed altered targeting of IcsA. The phenotype of cells containing a transposon insertion in mreB was indistinguishable from that of cells containing a nonpolar mutation in mreB or that of wild-type cells treated with the MreB inhibitor A22. In cells lacking MreB, a green fluorescent protein (GFP) fusion to a cytoplasmic derivative of IcsA localized to multiple sites. Secreted full-length native IcsA was present in multiple faint patches on the surfaces of these cells in a pattern similar to that seen for the cytoplasmic IcsA-GFP fusion. EpsM, the polar Vibrio cholerae inner membrane protein, also localized to multiple sites in mreB cells and colocalized with IcsA, indicating that localization to multiple sites is not unique to IcsA. Our results are consistent with the requirement, either direct or indirect, for MreB in the restriction of certain polar material to defined sites within the cell and, in the absence of MreB, with the formation of ectopic sites containing polar material.
Collapse
Affiliation(s)
- Trine Nilsen
- Bacterial Pathogenesis Laboratories, University Park, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
11
|
Abstract
The bacterial flagellum is both a motor organelle and a protein export/assembly apparatus. It extends from the cytoplasm to the cell exterior. All the protein subunits of the external elements have to be exported. Export employs a type III pathway, also utilized for secretion of virulence factors. Six of the components of the export apparatus are integral membrane proteins and are believed to be located within the flagellar basal body. Three others are soluble: the ATPase that drives export, a regulator of the ATPase, and a general chaperone. Exported substrates diffuse down a narrow channel in the growing structure and assemble at the distal end, often with the help of a capping structure.
Collapse
Affiliation(s)
- Robert M Macnab
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.
| |
Collapse
|
12
|
Furukawa Y, Imada K, Vonderviszt F, Matsunami H, Sano KI, Kutsukake K, Namba K. Interactions between bacterial flagellar axial proteins in their monomeric state in solution. J Mol Biol 2002; 318:889-900. [PMID: 12054831 DOI: 10.1016/s0022-2836(02)00139-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The axial structure of the bacterial flagellum is composed of many different proteins, such as hook protein and flagellin, and each protein forms a short or long axial segment one after another in a well-defined order along the axis. Under physiological conditions, most of these proteins are stable in the monomeric state in solution, and spontaneous polymerization appears to be suppressed, as demonstrated clearly for flagellin, probably to avoid undesirable self-assembly in the cytoplasmic space. However, no systematic studies of the possible associations between monomeric axial proteins in solution have been carried out. We therefore studied self and cross-association between hook protein, flagellin and three hook-associated proteins, HAP1, HAP2 and HAP3, in all possible pairs, by gel-filtration and analytical centrifugation, and found interactions in the following two cases only. Flagellin facilitated HAP3 aggregation into beta-amyloid-like filaments, but without stable binding between the two. Addition of HAP3 to HAP2 resulted in disassembly of preformed HAP2 decamers and formation of stable HAP2-HAP3 heterodimers. HAP2 missing either of its disordered terminal regions did not form the heterodimer, whereas HAP3 missing either of its disordered terminal regions showed stable heterodimer formation. This polarity in the heterodimer interactions suggests that the interactions between HAP2 and HAP3 in solution are basically the same as those in the flagellar axial structure. We discuss these results in relation to the assembly mechanism of the flagellum.
Collapse
Affiliation(s)
- Yukio Furukawa
- Protonic NanoMachine Project, ERATO, JST, 3-4 Hikaridai, Seika, Kyoto 619-0237, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Turcot I, Ponnampalam TV, Bouwman CW, Martin NL. Isolation and characterization of a chromosomally encoded disulphide oxidoreductase from Salmonella enterica serovar Typhimurium. Can J Microbiol 2001. [DOI: 10.1139/w01-071] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, the chromosomally encoded disulphide oxidoreductase dsbA from Salmonella typhimurium was cloned and characterized. A survey of a number of serovars of Salmonella subspecies I showed that dsbA is highly conserved in most, but not all members of this subclass of Salmonella species. Using motility, β-galactosidase, and alkaline phosphatase assays as indirect indicators of disulphide oxidoreductase activity, we demonstrated that DsbA from S. typhimurium LT2 can only partially complement an Escherichia coli dsbA-null strain. This is surprising considering the high degree of conservation between these two DsbA proteins (87% amino acid identity). To determine the contribution of DsbA to the proper folding and assembly of proteins of S. typhimurium, deletion mutants were created in the avirulent strain LT2 and in the virulent strain SL1344. These null alleles were constructed by partial deletion of the dsbA-coding region and then insertion of an antibiotic resistance marker in the gene. Mutants no longer expressing a functional disulphide oxidoreductase exhibit pleitropic effects, including an increase in colony mucoidy, a dramatic decrease in motility, and an increased susceptibility to the cationic peptide protamine sulphate. The disruption of disulphide bond formation was also shown to specifically affect the stability of several proteins secreted into the extracellular environment.Key words: disulphide oxidoreductase, protein folding, Salmonella typhimurium, DsbA.
Collapse
|
14
|
Affiliation(s)
- V T Lee
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA.
| | | |
Collapse
|
15
|
Rahlfs S, Aufurth S, Müller V. The Na(+)-F(1)F(0)-ATPase operon from Acetobacterium woodii. Operon structure and presence of multiple copies of atpE which encode proteolipids of 8- and 18-kda. J Biol Chem 1999; 274:33999-4004. [PMID: 10567365 DOI: 10.1074/jbc.274.48.33999] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eight genes (atpI, atpB, atpE(1), atpE(2), atpE(3), atpF, atpH, and atpA) upstream of and contiguous with the previously described genes atpG, atpD, and atpC were cloned from chromosomal DNA of Acetobacterium woodii. Northern blot analysis revealed that the eleven atp genes are transcribed as a polycistronic message. The atp operon encodes the Na(+)-F(1)F(0)-ATPase of A. woodii, as evident from a comparison of the biochemically derived N termini of the subunits with the amino acid sequences deduced from the DNA sequences. The molecular analysis revealed that all of the F(1)F(0)-encoding genes from Escherichia coli have homologs in the Na(+)-F(1)F(0)-ATPase operon from A. woodii, despite the fact that only six subunits were found in previous preparations of the enzyme from A. woodii. These results unequivocally prove that the Na(+)-ATPase from A. woodii is an enzyme of the F(1)F(0) class. Most interestingly, the gene encoding the proteolipid underwent quadruplication. Two gene copies (atpE(2) and atpE(3)) encode identical 8-kDa proteolipids. Two additional gene copies were fused to form the atpE(1) gene. Heterologous expression experiments as well as immunolabeling studies with native membranes revealed that atpE(1) encodes a duplicated 18-kDa proteolipid. This is the first demonstration of multiplication and fusion of proteolipid-encoding genes in F(1)F(0)-ATPase operons. Furthermore, AtpE(1) is the first duplicated proteolipid ever found to be encoded by an F(1)F(0)-ATPase operon.
Collapse
Affiliation(s)
- S Rahlfs
- Institut für Mikrobiologie und Genetik der Georg-August-Universität, Grisebachstrasse 8, 37077 Göttingen, Germany
| | | | | |
Collapse
|
16
|
Komoriya K, Shibano N, Higano T, Azuma N, Yamaguchi S, Aizawa SI. Flagellar proteins and type III-exported virulence factors are the predominant proteins secreted into the culture media of Salmonella typhimurium. Mol Microbiol 1999; 34:767-79. [PMID: 10564516 DOI: 10.1046/j.1365-2958.1999.01639.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We analysed all major proteins secreted into culture media from Salmonella typhimurium. Proteins in culture supernatants were collected by trichloroacetic acid precipitation, separated in SDS-polyacrylamide gels and analysed by amino acid sequencing. Wild-type strain SJW1103 cells typically gave rise to nine bands in SDS gels: 89, 67, 58, 52, 50, 42, 40, 35 and (sometimes) 28 kDa. A search of the sequences in the available databases revealed that they were either flagellar proteins or virulence factors. Six of them were flagella specific: FlgK or HAP1 (58 kDa), FliC or flagellin (52 kDa), FliD or HAP2 (50 kDa), FlgE or hook protein (42 kDa), FlgL or HAP3 (35 kDa) and FlgD or hook-cap protein (28 kDa). The other four bands were specific for virulence factors: SipA (89 kDa), SipB (67 kDa), SipC (42 kDa) and InvJ (40 kDa). The 42 kDa band was a mixture of FlgE and SipC. We also analysed secreted proteins from more than 30 flagellar mutants, and they were categorized into four groups according to their band patterns: wild type, mot type, polyhook type and master gene type. Virulence factors were constantly secreted at a higher level in all flagellar mutants except a deltamot (motAB deletion) mutant, in which the amounts were greatly reduced. A new morphological pathway of flagellar biogenesis including protein secretion is presented.
Collapse
Affiliation(s)
- K Komoriya
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan. Department of Applied Biochemistry, Utsunomiya University, Utsunomiya 321-8505, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Yorimitsu T, Sato K, Asai Y, Kawagishi I, Homma M. Functional interaction between PomA and PomB, the Na(+)-driven flagellar motor components of Vibrio alginolyticus. J Bacteriol 1999; 181:5103-6. [PMID: 10438787 PMCID: PMC94004 DOI: 10.1128/jb.181.16.5103-5106.1999] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four proteins, PomA, PomB, MotX, and MotY, appear to be involved in force generation of the sodium-driven polar flagella of Vibrio alginolyticus. Among these, PomA and PomB seem to be associated and to form a sodium channel. By using antipeptide antibodies against PomA or PomB, we carried out immunoprecipitation to verify whether these proteins form a complex and examined the in vivo stabilities of PomA and PomB. As a result, we could demonstrate that PomA and PomB functionally interact with each other.
Collapse
Affiliation(s)
- T Yorimitsu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-Ku, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
18
|
Fraser GM, Bennett JC, Hughes C. Substrate-specific binding of hook-associated proteins by FlgN and FliT, putative chaperones for flagellum assembly. Mol Microbiol 1999; 32:569-80. [PMID: 10320579 DOI: 10.1046/j.1365-2958.1999.01372.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During flagellum assembly by motile enterobacteria, flagellar axial proteins destined for polymerization into the cell surface structure are thought to be exported through the 25-30 A flagellum central channel as partially unfolded monomers. How are premature folding and oligomerization in the cytosol prevented? We have shown previously using hyperflagellated Proteus mirabilis and a motile but non-swarming flgN transposon mutant that the apparently cytosolic 16. 5 kDa flagellar protein FlgN facilitates efficient flagellum filament assembly. Here, we investigate further whether FlgN, predicted to contain a C-terminal amphipathic helix typical of type III export chaperones, acts as a chaperone for axial proteins. Incubation of soluble radiolabelled FlgN from Salmonella typhimurium with nitrocellulose-immobilized cell lysates of wild-type S. typhimurium and a non-flagellate class 1 flhDC mutant indicated that FlgN binds to flagellar proteins. Identical affinity blot analysis of culture supernatants from the wild-type and flhDC, flgI, flgK, flgL, fliC or fliD flagellar mutants showed that FlgN binds to the flagellar hook-associated proteins (HAPs) FlgK and FlgL. This was confirmed by blotting artificially expressed individual HAPs in Escherichia coli. Analysis of axial proteins secreted into the culture medium by the original P. mirabilis flgN mutant demonstrated that export of FlgK and FlgL was specifically reduced, with concomitant increased release of unpolymerized flagellin (FliC), the immediately distal component of the flagellum. These data suggest that FlgN functions as an export chaperone for FlgK and FlgL. Parallel experiments showed that FliT, a similarly small (14 kDa), potentially helical flagellar protein, binds specifically to the flagellar filament cap protein, FliD (HAP2), indicating that it too might be an export chaperone. Flagellar axial proteins all contain amphipathic helices at their termini. Removal of the HAP C-terminal helical domains abolished binding by FlgN and FliT in each case, and polypeptides comprising each of the HAP C-termini were specifically bound by FlgN and FliT. We suggest that FlgN and FliT are substrate-specific flagellar chaperones that prevent oligomerization of the HAPs by binding to their helical domains before export.
Collapse
Affiliation(s)
- G M Fraser
- University of Cambridge Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | |
Collapse
|
19
|
Schoenhals GJ, Kihara M, Macnab RM. Translation of the flagellar gene fliO of Salmonella typhimurium from putative tandem starts. J Bacteriol 1998; 180:2936-42. [PMID: 9603885 PMCID: PMC107262 DOI: 10.1128/jb.180.11.2936-2942.1998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/1997] [Accepted: 03/27/1998] [Indexed: 02/07/2023] Open
Abstract
The flagellar gene fliO of Salmonella typhimurium can be translated from an AUG codon that overlaps the termination codon of fliN (K. Ohnishi et al., J. Bacteriol. 179:6092-6099, 1997). However, it had been concluded on the basis of complementation analysis that in Escherichia coli a second start codon 60 bp downstream was the authentic one (J. Malakooti et al., J. Bacteriol. 176:189-197, 1994). This raised the possibility of tandem translational starts, such as occur for the chemotaxis gene cheA; this possibility was increased by the existence of a stem-loop sequence covering the second start, a feature also found with cheA. Protein translated from the first start codon was detected regardless of whether the second start codon was present; it was also detected when the stem-loop structure was disrupted or deleted. Translation from the second start codon, either as the natural one (GUG) or as AUG, was not detected when the first start and intervening sequence were intact. Nor was it detected when the first codon was attenuated (by conversion of AUGAUG to AUAAUA; in S. typhimurium there is a second, adjacent, AUG) or eliminated (by conversion to CGCCGC); disruption of the stem-loop structure still did not yield detectable translation from the second start. When the entire sequence up to the second start was deleted, translation from the second start was detected provided the natural codon GUG had been converted to AUG. A fliO null mutant could be fully complemented in swarm assays whenever the first start and intervening sequence were present, regardless of the state of the second start. Reasonably good complementation occurred when the first start and intervening sequence were absent provided the second start was intact, either as AUG or as GUG; thus translation from the GUG codon must have been occurring even though protein levels were too low to be detected. The translated intervening sequence is rather divergent between S. typhimurium and E. coli and corresponds to a substantial cytoplasmic domain prior to the sole transmembrane segment, which is highly conserved; the sequence following the second start begins immediately prior to that transmembrane segment. The significance of the data for FliO is discussed and compared to the equivalent data for CheA. Attention is also drawn to the fact that given an optimal ribosome binding site, AUA can serve as a fairly efficient start codon even though it seldom if ever appears to be used in nature.
Collapse
Affiliation(s)
- G J Schoenhals
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | |
Collapse
|
20
|
Imada K, Vonderviszt F, Furukawa Y, Oosawa K, Namba K. Assembly characteristics of flagellar cap protein HAP2 of Salmonella: decamer and pentamer in the pH-sensitive equilibrium. J Mol Biol 1998; 277:883-91. [PMID: 9545379 DOI: 10.1006/jmbi.1998.1662] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cap of the bacterial flagellum is an oligomeric assembly of HAP2 protein (also called FliD), tightly attached to the tip of the flagellar filament. Flagellar growth does not occur in fliD-deficient mutants because flagellin monomers transported through the central channel of the flagellum leak out without polymerizing at the distal end. The structure of the cap complex is not known yet. An in vitro assembly of HAP2 proteins was found to have a pentagonal shape, while its molecular mass corresponded roughly to that of a dodecamer. To characterize the structure and assembly behavior of the complex formed in vitro in more detail, the stoichiometry of the complex and the association equilibrium have been studied. Crosslinking experiments now clearly show that the HAP2 complex is decameric. The assembly equilibrium is mainly between the monomer and decamer with a minor population of intermediate oligomers involved, and is highly dependent on the solution pH as well as the salt concentration: the fraction of the decamer sharply rises as the pH decreases from 8.5 to 8.0; the physiological concentration of salt partially suppresses the decamer formation. A preferential crosslinking within a pentameric unit together with a bipolar feature of the complex particle observed by electron microscopy suggests that the decamer is a bipolar pair of pentamers. Because of the polar nature of the filament cap structure, the pentamer is suggested to be the cap complex with its decamer forming surface involved in interactions with the filament.
Collapse
Affiliation(s)
- K Imada
- International Institute for Advanced Research, Matsushita Electric Industrial Co., Ltd., 3-4 Hikaridai, Seika 619-02, Japan
| | | | | | | | | |
Collapse
|
21
|
Lienard T, Gottschalk G. Cloning, sequencing and expression of the genes encoding the sodium translocating N5-methyltetrahydromethanopterin : coenzyme M methyltransferase of the methylotrophic archaeon Methanosarcina mazei Gö1. FEBS Lett 1998; 425:204-8. [PMID: 9559648 DOI: 10.1016/s0014-5793(98)00229-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The N5-methyltetrahydromethanopterin:coenzyme M methyltransferase of Methanosarcina mazei Gö1 is a membrane-associated, corrinoid-containing protein that uses a transmethylation reaction to drive an energy-conserving sodium ion pump. The eight open reading frames encoding the eight different subunits of the methyltransferase were identified and sequenced. All of these subunits are shown to be heterologously expressed in minicells of the Escherichia coli mutant DK6. Sequence comparisons with the methyltransferases of thermophilic and hypothermophilic methanogenic archaea are presented. The participation of the gene product of mtrD in sodium ion translocation as well as a consensus sequence of a corrinoid binding motif in MtrA are discussed.
Collapse
Affiliation(s)
- T Lienard
- Institut für Mikrobiologie und Genetik der Universität, Göttingen, Germany
| | | |
Collapse
|
22
|
Ohnishi K, Fan F, Schoenhals GJ, Kihara M, Macnab RM. The FliO, FliP, FliQ, and FliR proteins of Salmonella typhimurium: putative components for flagellar assembly. J Bacteriol 1997; 179:6092-9. [PMID: 9324257 PMCID: PMC179513 DOI: 10.1128/jb.179.19.6092-6099.1997] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The flagellar genes fliO, fliP, fliQ, and fliR of Salmonella typhimurium are contiguous within the fliLMNOPQR operon. They are needed for flagellation but do not encode any known structural or regulatory components. They may be involved in flagellar protein export, which proceeds by a type III export pathway. The genes have been cloned and sequenced. The sequences predict proteins with molecular masses of 13,068, 26,755, 9,592, and 28,933 Da, respectively. All four gene products were identified experimentally; consistent with their high hydrophobic residue content, they segregated with the membrane fraction. From N-terminal amino acid sequence analysis, we conclude that fliO starts immediately after fliN rather than at a previously proposed site downstream. FliP existed in two forms, a 25-kDa form and a 23-kDa form. N-terminal amino acid analysis of the 23-kDa form demonstrated that it had undergone cleavage of a signal peptide--a rare process for prokaryotic cytoplasmic membrane proteins. Site-directed mutation at the cleavage site resulted in impaired processing, which reduced, but did not eliminate, complementation of a fliP mutant in swarm plate assays. A cloned fragment encoding the mature form of the protein could also complement the fliP mutant but did so even more poorly. Finally, when the first transmembrane span of MotA (a cytoplasmic membrane protein that does not undergo signal peptide cleavage) was fused to the mature form of FliP, the fusion protein complemented very weakly. Higher levels of synthesis of the mutant proteins greatly improved function. We conclude that, for insertion of FliP into the membrane, cleavage is important kinetically but not absolutely required.
Collapse
Affiliation(s)
- K Ohnishi
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | | | |
Collapse
|
23
|
Kundu TK, Kusano S, Ishihama A. Promoter selectivity of Escherichia coli RNA polymerase sigmaF holoenzyme involved in transcription of flagellar and chemotaxis genes. J Bacteriol 1997; 179:4264-9. [PMID: 9209042 PMCID: PMC179248 DOI: 10.1128/jb.179.13.4264-4269.1997] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The rpoF gene of Escherichia coli codes for the RNA polymerase sigmaF (or sigma28) subunit, which is involved in transcription of the flagellar and chemotaxis genes. Both sigmaF and sigma70 (the major sigma subunit in growing cells) were overexpressed, purified to homogeneity, and compared with respect to activity and specificity. The affinity of sigmaF to core RNA polymerase (E) is higher than that of sigma70, as measured by gel filtration high-pressure liquid chromatography. In an in vitro transcription system, the holoenzyme (E sigmaF) containing sigmaF selectively transcribed the flagellar and chemotaxis genes, all of which could not be transcribed by E sigma70. This strict promoter recognition property of sigmaF is similar to those of other stress response minor sigma subunits but different from those of the principal sigma subunits, sigma70 and sigma38. sigma70-dependent transcription in vitro is inhibited at high concentrations of all salts tested, showing maximum activity at 50 mM. In contrast, sigmaF-dependent transcription was maximum at 50 mM KCI and then decreased to negligible level at 300 mM; in the cases of potassium acetate and potassium glutamate, maximum transcription was between 200 and 300 mM. DNase I foot printing of the fliC and fliD promoters indicated that sigmaF alone is unable to bind DNA, but E sigmaF specifically recognizes -10 and -35 regions of the sigmaF-dependent promoters with rather long upstream protection. Alteration of the promoter structure after binding of E sigmaF was suggested.
Collapse
Affiliation(s)
- T K Kundu
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | | | | |
Collapse
|
24
|
Kihara M, Francis NR, DeRosier DJ, Macnab RM. Analysis of a FliM-FliN flagellar switch fusion mutant of Salmonella typhimurium. J Bacteriol 1996; 178:4582-9. [PMID: 8755888 PMCID: PMC178227 DOI: 10.1128/jb.178.15.4582-4589.1996] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In the course of an analysis of the three genes encoding the flagellar motor switch, we isolated a paralyzed mutant whose defect proved to be a 4-bp deletion of the ribosome binding sequence of the fliN switch gene (V. M. Irikura, M. Kihara, S. Yamaguchi, H. Sockett, and R. M. Macnab, J. Bacteriol. 175:802-810,1993). This sequence lies just before the 3' end of the coding sequence of the upstream fliM switch gene, in the same operon. This mutant readily gave rise to pseudorevertants which, though much less motile than the wild type, did exhibit significant swarming. One such pseudorevertant was found to contain a compensating frameshift such that the fliM and fliN genes were placed in frame, coding for an essentially complete FliM-FliN protein fusion. Minicell analysis demonstrated that, as expected, the parental mutant synthesized an essentially full-length FliM protein but no detectable FliN. The pseudorevertant, in contrast, synthesized a protein with the predicted size for the FliM-FliN fusion protein and no detectable FliM or FliN. Immunoblotting of minicells with antibodies against FliM and FliN confirmed the identities of these various proteins. Immunoblotting of book-basal-body complexes from the wild-type strain gave a strong signal for the three switch proteins FliG, FliM, and FliN. Complexes from the FliM-FliN fusion mutant gave a strong signal for FliG but no signal for either FIiM or FliN; a moderately strong signal for the FliM-FliN fusion protein was seen with the anti-FliM antibody, and a weaker signal was seen with the anti-FliN antibody. The cytoplasmic C ring of the structure, which is seen consistently in electron microscopy of wild-type complexes and which is known to contain the FliM and FliN proteins, was much more labile in the FliM-FliN fusion mutant, giving a fragmented and variable appearance or being completely absent. Complementation data indicated that wild-type FliM had a mild dominant negative effect over the fusion protein, that wild-type FliN and the fusion protein work much better than the fusion protein alone, and that wild-type FliM and FliN together have no major positive or negative effect on the function of the fusion protein. We interpret these data to mean that the FliM-FliN fusion protein incorporates into structure but less stably than do the FliM and FliN proteins separately, that wild-type FliM tends to displace the fusion protein, and that wild-type FliN can supplement the FliN domain of the fusion protein without displacing the FliM domain. The data support, but do not prove, a model in which FliM and FliN in the wild-type switch complex are stationary with respect to each other.
Collapse
Affiliation(s)
- M Kihara
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | |
Collapse
|
25
|
Schoenhals GJ, Macnab RM. Physiological and biochemical analyses of FlgH, a lipoprotein forming the outer membrane L ring of the flagellar basal body of Salmonella typhimurium. J Bacteriol 1996; 178:4200-7. [PMID: 8763949 PMCID: PMC178178 DOI: 10.1128/jb.178.14.4200-4207.1996] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The FlgH protein of Salmonella typhimurium, from which the outer membrane L ring of the flagellar basal body is constructed, has a consensus motif (LTG C) for lipoylation and signal peptide cleavage. We have confirmed the previous finding (M. Homma, K. Ohnishi, T. Iino, and R. M. Macnab, J. Bacteriol. 169:3617-3624, 1987) that it is synthesized in precursor form and processed to a mature form with an apparent molecular mass of ca. 25 kDa. flgH alleles with an in-frame deletion or a 3' truncation still permitted processing. The deletion permitted partial restoration of motility in complementation tests, whereas the truncation did not. Globomycin, an antibiotic which inhibits signal peptide cleavage of prolipoproteins, caused accumulation of precursor forms of FlgH. When cells transformed with a plasmid containing the flgH gene were grown in the presence of [3H]palmitate, a 25-kDa protein doublet was found to be radiolabeled; its identity as FlgH was confirmed by shifts in mobility when the internally deleted and truncated alleles of the gene were used. Hook-basal body complexes from cells grown in the presence of [3H]palmitate demonstrated that FlgH incorporated into flagellar structure was also labeled. An in-frame fusion between the leader sequence of the periplasmic protein PeIB and the mature FlgH sequence, with the putative N-terminal cysteine replaced by glycine, resulted in production of a fusion protein that was processed to its mature form. With a low-copy-number plasmid, the ability of this pelB-flgH fusion to complement a flgH mutant was poor, but with a high-copy-number plasmid, it was comparable to that of the wild type. Although lacking the N-terminal cysteine and therefore being incapable of lipoylation via a thioether linkage, the mutant protein still incorporated [3H]palmitate at low levels, perhaps through acylation of the N-terminal alpha-amino group. We conclude that FlgH is a lipoprotein and that under normal physiological conditions the lipoyl modification is necessary for FlgH to function properly as the L-ring protein of the flagellar basal body. We suggest that the N terminus of FlgH is responsible for anchoring the basal body in the outer membrane and that the C terminus may be responsible for binding to the P ring to form the L,P-ring complex.
Collapse
Affiliation(s)
- G J Schoenhals
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | |
Collapse
|
26
|
Kawagishi I, Homma M, Williams AW, Macnab RM. Characterization of the flagellar hook length control protein fliK of Salmonella typhimurium and Escherichia coli. J Bacteriol 1996; 178:2954-9. [PMID: 8631687 PMCID: PMC178034 DOI: 10.1128/jb.178.10.2954-2959.1996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
During flagellar morphogenesis in Salmonella typhimurium and Escherichia coli, the fliK gene product is responsible for hook length control. A previous study (M. Homma, T. Iino, and R. M. Macnab, J. Bacteriol. 170:2221-2228, 1988) had suggested that the fliK gene may generate two products; we have confirmed that both proteins are products of the fliK gene and have eliminated several possible explanations for the two forms. We have determined the DNA sequence of the fliK gene in both bacterial species. The deduced amino acid sequences of the wild-type FliK proteins of S. typhimurium and E. coli correspond to molecular masses of 41,748 and 39,246 Da, respectively, and are fairly hydrophilic. Alignment of the sequences gives an identity level of 50%, which is low for homologous flagellar proteins from S. typhimurium and E. coli; the C-terminal sequence is the most highly conserved part (71% identity in the last 154 amino acids). The central and C-terminal regions are rich in proline and glutamine residues, respectively. Linker insertion mutagenesis of the conserved C-terminal region completely abolished motility, whereas disruption of the less conserved N-terminal and central regions had little or no effect. We suggest that the N-terminal (or N-terminal and central) and C-terminal regions may constitute domains. For several reasons, we consider it unlikely that FliK is functioning as a molecular ruler for determining hook length and conclude that it is probably employing a novel mechanism.
Collapse
Affiliation(s)
- I Kawagishi
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | |
Collapse
|
27
|
Abstract
We have cloned the Escherichia coli fliAZY operon, which contains the fliA gene (the alternative sigma factor sigma F) and two novel genes, fliZ and fliY. Transcriptional mapping of this operon shows two start sites, one of which is preceded by a canonical E sigma F-dependent consensus and is dependent on sigma F for expression in vivo and in vitro. We have overexpressed and purified sigma F and demonstrated that it can direct core polymerase to E sigma F-dependent promoters. FliZ and FliY are not required for motility but may regulate sigma F activity, perhaps in response to a putative cell density signal that may be detected by FliY, a member of the bacterial extracellular solute-binding protein family 3.
Collapse
Affiliation(s)
- D S Mytelka
- Graduate Group in Genetics, University of California, Berkeley 94720, USA
| | | |
Collapse
|
28
|
Goldberg MB, Theriot JA. Shigella flexneri surface protein IcsA is sufficient to direct actin-based motility. Proc Natl Acad Sci U S A 1995; 92:6572-6. [PMID: 7604035 PMCID: PMC41560 DOI: 10.1073/pnas.92.14.6572] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Shigella flexneri is a Gram-negative bacterial pathogen that can grow directly in the cytoplasm of infected host cells and uses a form of actin-based motility for intra- and intercellular spread. Moving intracellular bacteria are associated with a polarized "comet tail" composed of actin filaments. IcsA, a 120-kDa outer membrane protein necessary for actin-based motility, is located at a single pole on the surface of the organism, at the junction with the actin tail. Here, we demonstrate that stable expression of IcsA on the surface of Escherichia coli is sufficient to allow actin-dependent movement of E. coli in cytoplasmic extracts, at rates comparable to the movement of S. flexneri in infected cells. Thus, IcsA is the sole Shigella-specific factor required for actin-based motility. Continuous protein synthesis and polarized distribution of the protein are not necessary for actin tail formation or movement. Listeria monocytogenes is an unrelated bacterial pathogen that exhibits similar actin-based intracytoplasmic motility. Actin filament dynamics in the comet tails associated with the two different organisms are essentially identical, which indicates that they have independently evolved mechanisms to interact with the same components of the host cytoskeleton.
Collapse
Affiliation(s)
- M B Goldberg
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
29
|
Kutsukake K, Ide N. Transcriptional analysis of the flgK and fliD operons of Salmonella typhimurium which encode flagellar hook-associated proteins. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:275-81. [PMID: 7770032 DOI: 10.1007/bf00293195] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In Salmonella typhimurium, three hook-associated proteins, HAP1, HAP2 and HAP3, are known to be essential for formation of flagellar filament. HAP1 and HAP2 are encoded by the flgK and flgL genes, respectively, which together constitute an operon, called the flgK operon. HAP3 is encoded by the fliD gene which forms part of the fliD operon together with the fliS and fliT genes. In the flagellar regulon, the operons are divided into three classes, 1, 2 and 3, based on their positions within a transcriptional hierarchy. Transcriptional analysis suggested that the flgK and fliD operons should belong to class 3, whose expression is dependent on the flagellum-specific sigma factor FliA. However, biochemical data indicated that these HAP proteins are detectable even in the hook-basal body structures produced by the fliA mutant. This work was carried out to resolve this discrepancy. More careful examination of transcription revealed that the fliA mutation reduces but does not eliminate the expression of these operons, whereas a mutation in the flhD operon, which encodes activator proteins for the class 2 operons, eliminates their expression. This suggests that the flgK and fliD operons may be transcribed from both class 2 and class 3 promoters. Primer extension analysis indicated that the promoter region of fliD contains both class 2 and class 3 promoters, while that of flgK contains only a class 3 promoter. Transposon insertion into the flgB operon, which belongs to class 2 and lies upstream of the flgK operon, was found to decrease the expression of the flgK operon to the basal level.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Kutsukake
- Faculty of Applied Biological Science, Hiroshima University, Japan
| | | |
Collapse
|
30
|
O'Toole PW, Kostrzynska M, Trust TJ. Non-motile mutants of Helicobacter pylori and Helicobacter mustelae defective in flagellar hook production. Mol Microbiol 1994; 14:691-703. [PMID: 7891557 DOI: 10.1111/j.1365-2958.1994.tb01307.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Flagellar hooks were purified from Helicobacter pylori and Helicobacter mustelae. The 70 x 16 nm H. pylori hook was composed of FlgE subunits of 78kDa, while the 72 x 16 nm H. mustelae hook was composed of 87 kDa subunits. N-terminal sequence was obtained for the FlgE proteins of both species, and for an internal H. mustelae FlgE peptide. Degenerate oligonucleotide primers allowed amplification of a 1.2 kb fragment from the H. mustelae chromosome, which carried part of the flgE gene. The corresponding H. pylori gene was cloned by immunoscreening of a genomic library constructed in lambda ZAP Express. The translated H. pylori flgE sequence indicated a protein with limited homology with the hook proteins from Salmonella typhimurium and Treponema phagedenis. Mutants of H. pylori and H. mustelae defective in hook production generated by allele replacement were non-motile and devoid of flagellar filaments but produced both flagellin subunits, which were localized in the soluble fraction of the cell. The level of flagellin production was unchanged in the mutants, indicating that the regulation of flagellin expression in Helicobacter differs from that in the Enterobacteriaceae.
Collapse
Affiliation(s)
- P W O'Toole
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | | | | |
Collapse
|
31
|
Hirano T, Yamaguchi S, Oosawa K, Aizawa S. Roles of FliK and FlhB in determination of flagellar hook length in Salmonella typhimurium. J Bacteriol 1994; 176:5439-49. [PMID: 8071222 PMCID: PMC196732 DOI: 10.1128/jb.176.17.5439-5449.1994] [Citation(s) in RCA: 184] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The length of flagellar hooks isolated from wild-type and mutant cells with various hook lengths were measured on electron micrographs. The length of the wild-type hook showed a narrow distribution with a peak (+/- standard deviation) at 55.0 +/- 5.9 nm, whereas fliK mutants (so-called polyhook mutants) showed a broad distribution of hook lengths ranging from 40 to 900 nm, strongly indicating that FliK is involved in hook length determination. Among pseudorevertants isolated from such polyhook mutants, fliK intragenic suppressors gave rise to polyhook filaments. However, intergenic suppressors mapping to flhB also gave rise to hooks of abnormal length, albeit they were much shorter than polyhooks. Furthermore, double mutations of flhB and flgK (the structural gene for hook-associated protein 1; HAP1) resulted in polyhooks, suggesting another way in which hook length can be affected. The roles of FliK, FlhB, and HAP1 in hook length determination are discussed.
Collapse
Affiliation(s)
- T Hirano
- Department of Biosciences, Teikyo University, Utsunomiya, Japan
| | | | | | | |
Collapse
|
32
|
Kutsukake K, Okada T, Yokoseki T, Iino T. Sequence analysis of the flgA gene and its adjacent region in Salmonella typhimurium, and identification of another flagellar gene, flgN. Gene 1994; 143:49-54. [PMID: 8200538 DOI: 10.1016/0378-1119(94)90603-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The flagellar genes flgA and flgM are located at the terminus of the region-I flagellar gene cluster on the chromosome of Salmonella typhimurium. The flgA gene is involved in P-ring formation of the flagellar basal body, whereas flgM encodes the anti-sigma factor which acts as a negative regulator of the flagellar regulon. The nucleotide sequence of the DNA fragment containing these flagellar genes and the adjacent region was determined. The flgA gene was found to encode a 219-amino-acid (aa) protein of 23,556 Da. The N-terminal region of FlgA has the characteristics of a typical signal sequence, suggesting that FlgA may function in the periplasmic space where P-ring assembly takes place. The flgM gene was found to constitute an operon together with an ORF which encodes a 140-aa protein of 15,899 Da. A gene disruption mutant was constructed by inserting a cat gene cartridge into the ORF on the chromosome. This mutant showed only weak motility, indicating that the product of the ORF is involved in flagellar formation. Therefore, this ORF was designated as flgN. Electron microscopic observation revealed that most of the flagellar structures produced by the flgN mutant are hook-basal body complexes lacking the filament portions. Based on these results, we concluded that the flgN product is required for the efficient initiation of filament assembly.
Collapse
Affiliation(s)
- K Kutsukake
- Faculty of Applied Biological Science, Hiroshima University, Japan
| | | | | | | |
Collapse
|
33
|
Raha M, Sockett H, Macnab RM. Characterization of the fliL gene in the flagellar regulon of Escherichia coli and Salmonella typhimurium. J Bacteriol 1994; 176:2308-11. [PMID: 8157599 PMCID: PMC205353 DOI: 10.1128/jb.176.8.2308-2311.1994] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
filL is a small gene of unknown function that lies within the beginning of a large flagellar operon of Salmonella typhimurium and Escherichia coli. A spontaneous fliL mutant of S. typhimurium, containing a frameshift mutation about 40% from the 3' end of the gene, was moderately motile but swarmed poorly, suggesting that FliL might be a component of the flagellar motor or switch. However, in-frame deletions of the E. coli gene, including an essentially total deletion, had little or no effect on motility or chemotaxis. Thus, FliL does not appear to have a major role in flagellar structure or function and is therefore unlikely to be a component of the motor or switch; the effect on motility caused by truncation of the gene is probably an indirect one.
Collapse
Affiliation(s)
- M Raha
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114
| | | | | |
Collapse
|
34
|
Ohnishi K, Ohto Y, Aizawa S, Macnab RM, Iino T. FlgD is a scaffolding protein needed for flagellar hook assembly in Salmonella typhimurium. J Bacteriol 1994; 176:2272-81. [PMID: 8157595 PMCID: PMC205349 DOI: 10.1128/jb.176.8.2272-2281.1994] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
FlgD is known to be absolutely required for hook assembly, yet it has not been detected in the mature flagellum. We have overproduced and purified FlgD and raised an antibody against it. By using this antibody, we have detected FlgD in substantial amounts in isolated basal bodies from flgA, flgE, flgH, flgI, flgK, and fliK mutants, in much smaller amounts in those from the wild type and flgL, fliA, fliC, fliD, and fliE mutants, and not at all in those from flgB, flgD, flgG, and flgJ mutants. In terms of the morphological assembly pathway, these results indicate that FlgD is first added to the structure when the rod is completed and is discarded when the hook, having reached its mature length, has the first of the hook-filament junction proteins, FlgK, added to its tip. Immunoelectron microscopy established that FlgD initially is located at the distal end of the rod and eventually is located at the distal end of the hook. Thus, it appears to act as a hook-capping protein to enable assembly of hook protein subunits, much as another flagellar protein, FliD, does for the flagellin subunits of the filament. However, whereas FliD is associated with the filament tip indefinitely, FlgD is only transiently associated with the hook tip; i.e., it acts as a scaffolding protein. When FlgD was added to the culture medium of a flgD mutant, cells gained motility; thus, although the hook cap is normally added endogenously, it can be added exogenously. When culture media were analyzed for the presence of hook protein, it was found only with the flgD mutant and, in smaller amounts, the fliK (polyhook) mutant. Thus, although FlgD is needed for assembly of hook protein, it is not needed for its export.
Collapse
Affiliation(s)
- K Ohnishi
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114
| | | | | | | | | |
Collapse
|
35
|
Dailey FE, Berg HC. Mutants in disulfide bond formation that disrupt flagellar assembly in Escherichia coli. Proc Natl Acad Sci U S A 1993; 90:1043-7. [PMID: 8503954 PMCID: PMC45807 DOI: 10.1073/pnas.90.3.1043] [Citation(s) in RCA: 193] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We report the isolation and characterization of Escherichia coli mutants (dsbB) that fail to assemble functional flagella unless cystine is present. Flagellar basal bodies obtained from these mutants are missing the L and P rings. This defect in assembly appears to result from an inability to form a disulfide bond in the P-ring protein (FlgI). Cystine suppresses this defect in dsbB strains. We also show that dsbA strains [Bardwell, J. C. A., McGovern, K. & Beckwith, J. (1991) Cell 67, 581-589] fail to assemble P rings, apparently from a similar failure in disulfide bond formation. However, cystine does not completely suppress this defect in dsbA strains. Thus, disulfide bond formation in FlgI is essential for assembly. DsbA likely puts in that bond directly, whereas the DsbB product(s) play a role in oxidizing DsbA, so that it can be active.
Collapse
Affiliation(s)
- F E Dailey
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
36
|
Affiliation(s)
- S R Caplan
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
37
|
Raha M, Kawagishi I, Müller V, Kihara M, Macnab RM. Escherichia coli produces a cytoplasmic alpha-amylase, AmyA. J Bacteriol 1992; 174:6644-52. [PMID: 1400215 PMCID: PMC207642 DOI: 10.1128/jb.174.20.6644-6652.1992] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the gap between two closely linked flagellar gene clusters on the Escherichia coli and Salmonella typhimurium chromosomes (at about 42 to 43 min on the E. coli map), we found an open reading frame whose sequence suggested that it encoded an alpha-amylase; the deduced amino acid sequences in the two species were 87% identical. The strongest similarities to other alpha-amylases were to the excreted liquefying alpha-amylases of bacilli, with > 40% amino acid identity; the N-terminal sequence of the mature bacillar protein (after signal peptide cleavage) aligned with the N-terminal sequence of the E. coli or S. typhimurium protein (without assuming signal peptide cleavage). Minicell experiments identified the product of the E. coli gene as a 56-kDa protein, in agreement with the size predicted from the sequence. The protein was retained by spheroplasts rather than being released with the periplasmic fraction; cells transformed with plasmids containing the gene did not digest extracellular starch unless they were lysed; and the protein, when overproduced, was found in the soluble fraction. We conclude that the protein is cytoplasmic, as predicted by its sequence. The purified protein rapidly digested amylose, starch, amylopectin, and maltodextrins of size G6 or larger; it also digested glycogen, but much more slowly. It was specific for the alpha-anomeric linkage, being unable to digest cellulose. The principal products of starch digestion included maltotriose and maltotetraose as well as maltose, verifying that the protein was an alpha-amylase rather than a beta-amylase. The newly discovered gene has been named amyA. The natural physiological role of the AmyA protein is not yet evident.
Collapse
Affiliation(s)
- M Raha
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | | | | | | | |
Collapse
|
38
|
Kubori T, Shimamoto N, Yamaguchi S, Namba K, Aizawa S. Morphological pathway of flagellar assembly in Salmonella typhimurium. J Mol Biol 1992; 226:433-46. [PMID: 1640458 DOI: 10.1016/0022-2836(92)90958-m] [Citation(s) in RCA: 196] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The process of flagellar assembly was investigated in Salmonella typhimurium. Seven types of flagellar precursors produced by various flagellar mutants were purified by CsCl density gradient protocol. They were characterized morphologically by electron microscopy, and biochemically by two-dimensional gel electrophoresis. The MS ring is formed in the absence of any other flagellar components, including the switch complex and the putative export apparatus. Four proteins previously identified as rod components, FlgB, FlgC, FlgF, FlgG, and another protein, FliE, assemble co-operatively into a stable structure. The hook is formed in two distinct steps; formation of its proximal part and elongation. Proximal part formation occurs, but elongation does not occur, in the absence of the LP ring. FlgD is necessary for hook formation, but not for LP-ring formation. A revised pathway of flagellar assembly is proposed based on these and other results.
Collapse
Affiliation(s)
- T Kubori
- Department of Genetics, Graduate University for Advanced Studies Shizuoka, Japan
| | | | | | | | | |
Collapse
|
39
|
Müller V, Jones CJ, Kawagishi I, Aizawa S, Macnab RM. Characterization of the fliE genes of Escherichia coli and Salmonella typhimurium and identification of the FliE protein as a component of the flagellar hook-basal body complex. J Bacteriol 1992; 174:2298-304. [PMID: 1551848 PMCID: PMC205851 DOI: 10.1128/jb.174.7.2298-2304.1992] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Within flagellar region III of Escherichia coli and Salmonella typhimurium, the genomic organization has been largely established. An exception is fliE, a gene whose exact location and product function are not well understood. We cloned the fliE gene, obtained its DNA sequence, and identified its product.fliE was found to be a monocistronic transcriptional unit, adjacent to and divergent from the large fliF operon. It is several kilobases distant from the nearest flagellar operon in the other direction, the fliD operon, and constitutes the first operon within the newly defined region IIIb, which contains the genes fliE through fliR.fliE encodes a small, moderately hydrophilic protein with a deduced molecular mass of 11,114 Da (E. coli) or 11,065 Da (S. typhimurium). We identified a protein within the isolated hook-basal body complex as the fliE gene product on the basis of its size and comparison of its N-terminal amino acid sequence with that deduced from the gene sequence. From gel electrophoresis and autoradiography of 35S-labeled S. typhimurium hook-basal body complexes (C.J. Jones, R.M. Macnab, H. Okino, and S.-I. Aizawa, J. Mol. Biol. 212:377-387, 1990) and the deduced number of sulfur-containing residues in FliE, we estimated the stoichiometry of the protein in the hook-basal body complex to be about nine subunits. FliE does not undergo cleavage of a signal peptide, nor does it show any sequence similarity to the axial components like the rod or hook proteins, which are believed to be exported by the flagellum-specific export pathway. On the basis of this and other evidence, we suggest that FliE may be in the vicinity of the MS ring, perhaps acting as an adaptor protein between the ring and rod substructures.
Collapse
Affiliation(s)
- V Müller
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- M D Manson
- Department of Biology, Texas A&M University, College Station 77843-3258
| |
Collapse
|
41
|
Abstract
Escherichia coli and Salmonella typhimurium invest considerable resources in making flagella, motor organelles that function much like the propellers on a ship. Both classical and molecular genetic studies have begun to reveal how flagellar genes are regulated and how their products build and operate these remarkable devices.
Collapse
Affiliation(s)
- R M Macnab
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | | |
Collapse
|
42
|
Jones CJ, Aizawa S. The bacterial flagellum and flagellar motor: structure, assembly and function. Adv Microb Physiol 1991; 32:109-72. [PMID: 1882727 DOI: 10.1016/s0065-2911(08)60007-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The bacterial flagellum is a complex multicomponent structure which serves as the propulsive organelle for many species of bacteria. Rotation of the helical flagellar filament, driven by a proton-powered motor embedded in the cell wall, enables the flagellum to function as a screw propeller. It seems likely that almost all of the genes required for flagellar formation and function have been identified. Continuing analysis of the portions of the genome containing these genes may reveal the existence of a few more. Transcription of the flagellar genes is under the control of the products of a single operon, and so these genes constitute a regulon. Other controls, both transcriptional and post-transcriptional, have been identified. Many of these genes have been sequenced, and the information obtained will aid in the design of experiments to clarify the various regulatory mechanisms of the flagellar regulon. The flagellum is composed of several substructures. The long helical filament is connected via the flexible hook to the complex basal body which is located in the cell wall. The filament is composed of many copies of a single protein, and can adopt a number of distinct helical forms. Structural analyses of the filament are adding to our understanding of this dynamic polymer. The component proteins of the hook and filament have all been identified. Continuing studies on the structure of the basal body have revealed the presence of several hitherto unknown basal-body proteins, whose identities and functions have yet to be elucidated. The proteins essential for energizing the motor, the Mot and switch proteins, are thought to exist as multisubunit complexes peripheral to the basal body. These complexes have yet to be identified biochemically or morphologically. Not surprisingly, flagellar assembly is a complex process, occurring in several stages. Assembly occurs in a proximal-to-distal fashion; the basal body is assembled before the hook, and the hook before the filament. This pattern is also maintained within the filament, with monomers added at the distal end of the polymer; the same is presumably true of the other axial components. An exception to this general pattern is assembly of the Mot proteins into the motor, which appears to be possible at any time during flagellar assembly. With the identification of the genes encoding many of the flagellar proteins, the roles of these proteins in assembly is understood, but the function of a number of gene products in flagellar formation remains unknown.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C J Jones
- ERATO, Research Development Corporation of Japan, Ibaraki
| | | |
Collapse
|
43
|
Wilson ML, Macnab RM. Co-overproduction and localization of the Escherichia coli motility proteins motA and motB. J Bacteriol 1990; 172:3932-9. [PMID: 2193926 PMCID: PMC213376 DOI: 10.1128/jb.172.7.3932-3939.1990] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The motility genes motA and motB of Escherichia coli were placed under control of the Serratia marcescens trp promoter. After induction with beta-indoleacrylic acid, the levels of MotA and MotB rose over about a 3-h period, reaching plateau levels approximately 50-fold higher than wild-type levels. Both overproduced proteins inserted into the cytoplasmic membrane. Growth and motility were essentially normal, suggesting that although the motor is a proton-conducting device, MotA and MotB together do not constitute a major proton leak. Derivative plasmids which maintained an intact version of motB but had the motA coding region deleted in various ways were constructed. With these, the levels of MotB were much lower, reaching a peak within 30 min after induction and declining thereafter; pulse-chase measurements indicated that a contributing factor was MotB degradation. The low levels of MotB occurred even with an in-frame internal deletion of motA, whose translational initiation and termination sites were intact, suggesting that it is the MotA protein, rather than the process of MotA synthesis, that is important for MotB stability. Termination at the usual site of overlap with the start of motB (ATGA) was not an absolute requirement for MotB synthesis but did result in higher rates of synthesis than when translation of motA information terminated prematurely. Even in the total absence of MotA, the MotB that was synthesized was found exclusively in the cytoplasmic membrane fraction. In wild-type cells, MotA was estimated by immunoprecipitation to be in about fourfold excess over MotB; a previous estimate of 600 +/- 250 copies of MotA per cell then yielded an estimate of 150 +/- 70 copies of MotB per cell.
Collapse
Affiliation(s)
- M L Wilson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | |
Collapse
|
44
|
Homma M, DeRosier DJ, Macnab RM. Flagellar hook and hook-associated proteins of Salmonella typhimurium and their relationship to other axial components of the flagellum. J Mol Biol 1990; 213:819-32. [PMID: 2193164 DOI: 10.1016/s0022-2836(05)80266-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Within the bacterial flagellum the basal-body rod, the hook, the hook-associated proteins (HAPs), and the helical filament constitute an axial substructure whose elements share structural features and a common export pathway. We present here the amino acid sequences of the hook protein and the three HAPs of Salmonella typhimurium, as deduced from the DNA sequences of their structural genes (flgE, flgK, flgL and fliD, respectively). We compared these sequences with each other and with those for the filament protein (flagellin) and four rod proteins, which have been described previously (Joys, 1985; Homma et al., 1990; Smith & Selander, 1990). Hook protein most strongly resembled the distal rod protein (FlgG) and the proximal HAP (HAP1), which are thought to be attached to the proximal and distal ends of the hook, respectively; the similarities were most pronounced near the N and C termini. Hook protein and flagellin, which occupy virtually identical helical lattices, did not resemble each other strongly but showed some limited similarities near their termini. HAP3 and HAP2, which form the proximal and distal boundaries of the filament, showed few similarities to flagellin, each other, or the other axial proteins. With the exceptions of the N-terminal region of HAP2, and the C-terminal region of flagellin, proline residues were absent from the terminal regions of the axial proteins. Moreover, with the exception of the N-terminal region of HAP2, the terminal regions contained hydrophobic residues at intervals of seven residues. Together, these observations suggest that the axial proteins may have amphipathic alpha-helical structure at their N and C termini. In the case of the filament and the hook, the terminal regions are believed to be responsible for the quaternary interactions between subunits. We suggest that this is likely to be true of the other axial structures as well, and specifically that interaction between N-terminal and C-terminal alpha-helices may be important in the formation of the axial structures of the flagellum. Although consensus sequences were noted among some of the proteins, such as the rod, hook and HAP1, no consensus extended to the entire set of axial proteins. Thus the basis for recognition of a protein for export by the flagellum-specific pathway remains to be identified.
Collapse
Affiliation(s)
- M Homma
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | | | | |
Collapse
|
45
|
Jones CJ, Macnab RM, Okino H, Aizawa S. Stoichiometric analysis of the flagellar hook-(basal-body) complex of Salmonella typhimurium. J Mol Biol 1990; 212:377-87. [PMID: 2181149 DOI: 10.1016/0022-2836(90)90132-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The stoichiometries of components within the flagellar hook-(basal-body) complex of Salmonella typhimurium have been determined. The hook protein (FlgE), the most abundant protein in the complex, is present at approximately 130 subunits. Hook-associated protein 1 (FlgK) is present at approximately 12 subunits. The distal rod protein (FlgG) is present at approximately 26 subunits, while the proximal rod proteins (FlgB, FlgC and FlgF) are present at only approximately six subunits each. The stoichiometries of the proximal rod proteins and hook-associated protein 1 are, within experimental error, consistent with values of 5 or 6, and 11, respectively. Such values would correspond to either one or two turns of a helical structure with a basic helix of approximately 5.5 subunits per turn, which is the geometry of both the hook and the filament and, one supposes, the rod and hook-associated proteins. These stoichiometries may derive from rules for the heterologous interactions that occur when a helical structure consists of successive segments constructed from different proteins; the stoichiometries within the hook and the distal portion of the rod must, however, be set by different mechanisms. The stoichiometries for the ring proteins are approximately 26 subunits each for the M-ring protein (FliF), the P-ring protein (FlgI), and the L-ring protein (FlgH); the protein responsible for the S-ring feature is not known. The rings presumably have rotational rather than helical symmetry, in which case the stoichiometries would be directly constrained by the intersubunit bonding angle. The ring stoichiometries are discussed in light of other information concerning flagellar structure and function.
Collapse
Affiliation(s)
- C J Jones
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | | | | | | |
Collapse
|
46
|
Flagellar assembly in Salmonella typhimurium: analysis with temperature-sensitive mutants. J Bacteriol 1990; 172:1327-39. [PMID: 2407720 PMCID: PMC208602 DOI: 10.1128/jb.172.3.1327-1339.1990] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The process of flagellar assembly in Salmonella typhimurium was investigated by using temperature-sensitive mutants. The mutants were grown at the restrictive temperature and then at the permissive temperature, with radiolabel supplied in the first phase of the experiment and not the second, or vice versa. Flagellar hook-basal body complexes were then purified and analyzed by gel electrophoresis and autoradiography. The extent to which a given protein was labeled in the two phases of the experiment provided information as to whether it preceded or followed the block caused by the mutant protein. We conclude the following concerning flagellar assembly. The M-ring protein (FliF) is stably incorporated in the earliest stage detected, along with two previously unknown proteins, with apparent molecular masses of 23 and 26 kilodaltons, respectively, and possibly one of the switch components, FliG. Independent of that event and all other events, the P-ring and L-ring proteins (FlgI and FlgH) are synthesized and exported to the periplasm and outer membrane by the primary cellular export pathway. Rod assembly occurs by export (via the flagellum-specific pathway) of subunits of four proteins, FlgB, FlgC, FlgF, and FlgG, and their incorporation, probably in that order, into the rod structure; this stage requires the flhA and fliI genes, perhaps because they encode part of the export apparatus. Once rod assembly is complete, the FlgI and FlgH proteins assemble around the rod to form the P and L rings. The rod structure, which is only metastable while it is being constructed, becomes stable upon P-ring addition. Export (via the flagellum-specific pathway) and assembly of hook protein, hook-associated proteins, and filament protein then occur successively. A number of flagellar proteins, whose genetic origin and structural role are not yet known, were identified on the basis of their dependence on the flagellar master operon for expression.
Collapse
|
47
|
Homma M, Kutsukake K, Hasebe M, Iino T, Macnab RM. FlgB, FlgC, FlgF and FlgG. A family of structurally related proteins in the flagellar basal body of Salmonella typhimurium. J Mol Biol 1990; 211:465-77. [PMID: 2129540 DOI: 10.1016/0022-2836(90)90365-s] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The flagellar basal body of Salmonella typhimurium consists of four rings surrounding a rod. The rod, which is believed to transmit motor rotation to the filament, is not well characterized in terms of its structure and composition. FlgG is known to lie within the distal portion of the rod, in the region where it is surrounded by the L and P rings, just before the rod-hook junction. The FlgC and FlgF proteins are also known to be flagellar basal-body components; by comparison of deduced and experimental N-terminal amino acid sequences we show here that FlgB is a basal-body protein. The flgB, flgC, flgF and flgG gene sequences and the deduced protein sequences are presented. The four proteins are clearly related to each other in primary sequence, especially toward the N and C termini, supporting the hypothesis (based on examination of basal-body subfractions) that FlgB, FlgC and FlgF are, like FlgG, rod proteins. From this and other information we suggest that the rod is the cell-proximal part of a segmented axial structure of the flagellum, with FlgB, FlgC and FlgF located (in unknown order) in successive segments of the proximal rod, followed by FlgG located in the distal rod; the axial structure then continues with the hook, HAPs and filament. Although the rod is external to the cell membrane, none of the four rod proteins contains a consensus signal sequence for the primary export pathway; comparison with the experimentally determined N-terminal amino acid sequence indicates that FlgB has had its N-terminal methionine removed, while the other three are not processed at all. This demonstrates that these proteins are not exported by the primary cellular pathway, and suggests that they are exported by the same flagellum-specific pathway as the flagellar filament protein flagellin. The observed sequence similarities among the rod proteins, especially a six-residue consensus motif about 30 residues in from the N terminus, may constitute a recognition signal for this pathway or they may reflect higher-order structural similarities within the rod.
Collapse
Affiliation(s)
- M Homma
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | | | | | | | | |
Collapse
|
48
|
Inoue YH, Kutsukake K, Iino T, Yamaguchi S. Sequence analysis of operator mutants of the phase-1 flagellin-encoding gene, fliC, in Salmonella typhimurium. Gene X 1989; 85:221-6. [PMID: 2695399 DOI: 10.1016/0378-1119(89)90485-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In phase-2 cells of diphasic Salmonella strains, expression of the phase-1 flagellin-encoding gene, fliC, is repressed by the repressor encoded by the fljA gene. Nine operator-constitutive (Oc) mutants of fliC were isolated from S. typhimurium by selecting those which could express fliC in the presence of the repressor. Among them, eight mutants could express fliC both in the presence and the absence of the repressor, whereas the ninth one could express only in the presence of the repressor. Nucleotide sequence analysis revealed that the Oc mutations of the former type were all located between bp 7 and 20 upstream from the coding region of fliC, which suggests that this region may correspond to the operator for fliC. The latter mutant was found to have a tandem duplication of 28 bp which contains a part of the operator sequence, and seems to require the repressor to activate fliC expression.
Collapse
Affiliation(s)
- Y H Inoue
- Department of Biology, School of Education, Waseda University, Tokyo, Japan
| | | | | | | |
Collapse
|
49
|
Jones CJ, Homma M, Macnab RM. L-, P-, and M-ring proteins of the flagellar basal body of Salmonella typhimurium: gene sequences and deduced protein sequences. J Bacteriol 1989; 171:3890-900. [PMID: 2544561 PMCID: PMC210140 DOI: 10.1128/jb.171.7.3890-3900.1989] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The flgH, flgI, and fliF genes of Salmonella typhimurium encode the major proteins for the L, P, and M rings of the flagellar basal body. We have determined the sequences of these genes and the flgJ gene and examined the deduced amino acid sequences of their products. FlgH and FlgI, which are exported across the cell membrane to their destinations in the outer membrane and periplasmic space, respectively, both had typical N-terminal cleaved signal-peptide sequences. FlgH is predicted to have a considerable amount of beta-sheet structure, as has been noted for other outer membrane proteins. FlgI is predicted to have an even greater amount of beta-structure. FliF, as is usual for a cytoplasmic membrane protein of a procaryote, lacked a signal peptide; it is predicted to have considerable alpha-helical structure, including an N-terminal sequence that is likely to be membrane-spanning. However, it had overall a quite hydrophilic sequence with a high charge density, especially towards its C terminus. The flgJ gene, immediately adjacent to flgI and the last gene of the flgB operon, encodes a flagellar protein of unknown function whose deduced sequence was hydrophilic and may correspond to a cytoplasmic protein. Several aspects of the DNA sequence of these genes and their surrounds suggest complex regulation of the flagellar gene system. A notable example occurs within the flgB operon, where between the end of flgG (encoding the distal rod protein of the basal body) and the start of flgH (encoding the L-ring protein) there was an unusually long noncoding region containing a potential stem-loop sequence, which could attenuate termination of transcription or stabilize part of the transcript against degradation. Another example is the interface between the flgB and flgK operons, where transcription termination of the former may occur within the coding region of the latter.
Collapse
Affiliation(s)
- C J Jones
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | | | |
Collapse
|
50
|
Driks A, Bryan R, Shapiro L, DeRosier DJ. The organization of the Caulobacter crescentus flagellar filament. J Mol Biol 1989; 206:627-36. [PMID: 2738912 DOI: 10.1016/0022-2836(89)90571-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The structural organization of the flagellar filament of Caulobacter crescentus, as revealed by immunoelectron microscopy, shows five antigenically distinct regions within the hook-filament complex. The first region is the hook. The second region is adjacent to the hook and is approximately 10 nm in length. On the basis of its location in the hook-filament complex, this region may contain hook-associated proteins. Next to this is the third region, which is approximately 60 nm in length. Antibody decoration experiments using mutant strains with deletions of the structural gene for the 29 x 10(3) Mr flagellin (flgJ) showed that the presence of this region is correlated with the expression of the 29 x 10(3) Mr flagellin gene. The next region (region IV), of length approximately 1 to 2 microns, appears to contain the 27.5 x 10(3) Mr flagellin, but at its distal end includes, in gradually increasing amounts, the 25 x 10(3) Mr flagellin. The rest of the filament (region V) is made up predominantly, if not completely, of the 25 x 10(3) Mr flagellin. Except for the hook, there are no morphological features that would otherwise distinguish these regions. A functional flagellum, having the wild-type length and morphology, is assembled by mutant strains deficient in the 29 x 10(3) Mr flagellin and 27.5 x 10(3) Mr flagellin.
Collapse
Affiliation(s)
- A Driks
- Graduate Program in Biology, Brandeis University, Waltham, MA 02254
| | | | | | | |
Collapse
|