1
|
La Fortezza M, Verwilt J, Cossey SM, Eisner SA, Velicer GJ, Yu YTN. Deletion of an sRNA primes development in a multicellular bacterium. iScience 2025; 28:111980. [PMID: 40124474 PMCID: PMC11928866 DOI: 10.1016/j.isci.2025.111980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/14/2024] [Accepted: 02/05/2025] [Indexed: 03/25/2025] Open
Abstract
Small non-coding RNAs (sRNAs) regulate gene expression of many biological processes. During growth, some myxobacteria produce an sRNA-Pxr-that blocks fruiting-body development, an aggregative multicellular process typically triggered by starvation. Deleting the pxr gene allows Myxococcus xanthus to develop despite nutrient availability, but Pxr binding targets and the genes regulated by Pxr remain unknown. Here, after showing that Pxr controls the temporal dynamics of development, we compare the transcriptomes of vegetative M. xanthus cells possessing vs. lacking pxr. Over half of the genes impacted by pxr deletion are linked to development, including known and previously undiscovered critical regulators. Pxr also positively regulates genes associated with general metabolic processes. Our study discovers phenotypic effects of Pxr regulation with ecological importance, identifies the suite of genes this sRNA controls during vegetative growth and reveals a previously unknown developmental regulator. These findings provide insights into the molecular mechanism controlling myxobacterial development.
Collapse
Affiliation(s)
| | - Jasper Verwilt
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Complex Genetics of Alzheimer’s Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Sarah M. Cossey
- Institute of Integrative System Biology, ETH, Zürich, Switzerland
| | | | | | - Yuen-Tsu N. Yu
- Institute of Integrative System Biology, ETH, Zürich, Switzerland
| |
Collapse
|
2
|
La Fortezza M, Rendueles O, Keller H, Velicer GJ. Hidden paths to endless forms most wonderful: ecology latently shapes evolution of multicellular development in predatory bacteria. Commun Biol 2022; 5:977. [PMID: 36114258 PMCID: PMC9481553 DOI: 10.1038/s42003-022-03912-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractEcological causes of developmental evolution, for example from predation, remain much investigated, but the potential importance of latent phenotypes in eco-evo-devo has received little attention. Using the predatory bacterium Myxococcus xanthus, which undergoes aggregative fruiting body development upon starvation, we tested whether adaptation to distinct growth environments that do not induce development latently alters developmental phenotypes under starvation conditions that do induce development. In an evolution experiment named MyxoEE-3, growing M. xanthus populations swarmed across agar surfaces while adapting to conditions varying at factors such as surface stiffness or prey identity. Such ecological variation during growth was found to greatly impact the latent evolution of development, including fruiting body morphology, the degree of morphological trait correlation, reaction norms, degrees of developmental plasticity and stochastic diversification. For example, some prey environments promoted retention of developmental proficiency whereas others led to its systematic loss. Our results have implications for understanding evolutionary interactions among predation, development and motility in myxobacterial life cycles, and, more broadly, how ecology can profoundly shape the evolution of developmental systems latently rather than by direct selection on developmental features.
Collapse
|
3
|
Goo E, Hwang I. Essential roles of Lon protease in the morpho-physiological traits of the rice pathogen Burkholderia glumae. PLoS One 2021; 16:e0257257. [PMID: 34525127 PMCID: PMC8443046 DOI: 10.1371/journal.pone.0257257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022] Open
Abstract
The highly conserved ATP-dependent Lon protease plays important roles in diverse biological processes. The lon gene is usually nonessential for viability; however, lon mutants of several bacterial species, although viable, exhibit cellular defects. Here, we show that a lack of Lon protease causes pleiotropic effects in the rice pathogen Burkholderia glumae. The null mutation of lon produced three colony types, big (BLONB), normal (BLONN), and small (BLONS), in Luria–Bertani (LB) medium. Colonies of the BLONB and BLONN types were re-segregated upon subculture, while those of the BLONS type were too small to manipulate. The BLONN type was chosen for further studies, as only this type was fully genetically complemented. BLONN-type cells did not reach the maximum growth capacity, and their population decreased drastically after the stationary phase in LB medium. BLONN-type cells were defective in the biosynthesis of quorum sensing (QS) signals and exhibited reduced oxalate biosynthetic activity, causing environmental alkaline toxicity and population collapse. Addition of excessive N-octanoyl-homoserine lactone (C8-HSL) to BLONN-type cell cultures did not fully restore oxalate biosynthesis, suggesting that the decrease in oxalate biosynthesis in BLONN-type cells was not due to insufficient C8-HSL. Co-expression of lon and tofR in Escherichia coli suggested that Lon negatively affects the TofR level in a C8-HSL-dependent manner. Lon protease interacted with the oxalate biosynthetic enzymes, ObcA and ObcB, indicating potential roles for the oxalate biosynthetic activity. These results suggest that Lon protease influences colony morphology, growth, QS system, and oxalate biosynthesis in B. glumae.
Collapse
Affiliation(s)
- Eunhye Goo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| | - Ingyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Sharma G, Yao AI, Smaldone GT, Liang J, Long M, Facciotti MT, Singer M. Global gene expression analysis of the Myxococcus xanthus developmental time course. Genomics 2020; 113:120-134. [PMID: 33276008 DOI: 10.1016/j.ygeno.2020.11.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/06/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022]
Abstract
To accurately identify the genes and pathways involved in the initiation of the Myxococcus xanthus multicellular developmental program, we have previously reported a method of growing vegetative populations as biofilms within a controllable environment. Using a modified approach to remove up to ~90% rRNAs, we report a comprehensive transcriptional analysis of the M. xanthus developmental cycle while comparing it with the vegetative biofilms grown in rich and poor nutrients. This study identified 1522 differentially regulated genes distributed within eight clusters during development. It also provided a comprehensive overview of genes expressed during a nutrient-stress response, specific development time points, and during development initiation and regulation. We identified several differentially expressed genes involved in key central metabolic pathways suggesting their role in regulating myxobacterial development. Overall, this study will prove an important resource for myxobacterial researchers to delineate the regulatory and functional pathways responsible for development from those of the general nutrient stress response.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Microbiology and Molecular Genetics, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America; Institute of Bioinformatics and Applied Biotechnology, Electronic City, Bengaluru, Karnataka, India
| | - Andrew I Yao
- Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, CA 95616, United States of America; Genome Center, University of California-Davis, One Shields Avenue, Davis CA 95616 Zymergen, Inc., Emeryville, CA, United States of America
| | - Gregory T Smaldone
- Department of Microbiology and Molecular Genetics, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America
| | - Jennifer Liang
- Department of Microbiology and Molecular Genetics, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America
| | - Matt Long
- Department of Microbiology and Molecular Genetics, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America
| | - Marc T Facciotti
- Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, CA 95616, United States of America; Genome Center, University of California-Davis, One Shields Avenue, Davis CA 95616 Zymergen, Inc., Emeryville, CA, United States of America
| | - Mitchell Singer
- Department of Microbiology and Molecular Genetics, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America.
| |
Collapse
|
5
|
Demir Z, Bayraktar A, Tunca S. One Extra Copy of lon Gene Causes a Dramatic Increase in Actinorhodin Production by Streptomyces coelicolor A3(2). Curr Microbiol 2019; 76:1045-1054. [PMID: 31214822 DOI: 10.1007/s00284-019-01719-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/12/2019] [Indexed: 01/01/2023]
Abstract
ATP-dependent Lon protease plays important roles in different physiological processes, including cellular differentiation of the bacteria and is a part of an important stress response regulon (HspR/HAIR). In Streptomyces, biosynthesis of secondary metabolites starts with cellular differentiation and stress is one of the factor that affect metabolite production. To clarify the effect of Lon protease on secondary metabolite production, we constructed a recombinant strain of Streptomyces coelicolor A3(2) that has one extra copy of lon gene with its own promoter and transcriptional terminator in its genome. Expression of lon gene in the recombinant strain was determined by quantitative real time (RT-qPCR). Actinorhodin and undecylprodigiosin production of the recombinant cell was measured in liquid R2YE and it was found to produce about 34 times more actinorhodin and 9 times more undecylprodigiosin than the wild-type at 168 h of growth. Development of stable Streptomyces strains capable of producing high amounts of secondary metabolites is valuable for biotechnology industry. One extra copy of lon gene is enough to boost antibiotic production by S. coelicolor A3(2) and this change do not cause any metabolic burden in the cell.
Collapse
Affiliation(s)
- Zeynep Demir
- Molecular Biology and Genetic Department, Faculty of Science, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Aslı Bayraktar
- Molecular Biology and Genetic Department, Faculty of Science, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Sedef Tunca
- Molecular Biology and Genetic Department, Faculty of Science, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
6
|
McLaughlin PT, Bhardwaj V, Feeley BE, Higgs PI. MrpC, a CRP/Fnr homolog, functions as a negative autoregulator during the
Myxococcus xanthus
multicellular developmental program. Mol Microbiol 2018; 109:245-261. [DOI: 10.1111/mmi.13982] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/05/2018] [Accepted: 05/05/2018] [Indexed: 02/06/2023]
Affiliation(s)
| | - Vidhi Bhardwaj
- Department of EcophysiologyMax Planck Institute for Terrestrial MicrobiologyMarburg Hesse Germany
| | - Brooke E. Feeley
- Department of Biological SciencesWayne State UniversityDetroit MI USA
| | - Penelope I. Higgs
- Department of Biological SciencesWayne State UniversityDetroit MI USA
| |
Collapse
|
7
|
Molecular Mechanisms of Signaling in Myxococcus xanthus Development. J Mol Biol 2016; 428:3805-30. [DOI: 10.1016/j.jmb.2016.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022]
|
8
|
Transcription factor MrpC binds to promoter regions of hundreds of developmentally-regulated genes in Myxococcus xanthus. BMC Genomics 2014; 15:1123. [PMID: 25515642 PMCID: PMC4320627 DOI: 10.1186/1471-2164-15-1123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/08/2014] [Indexed: 11/30/2022] Open
Abstract
Background Myxococcus xanthus is a bacterium that undergoes multicellular development when starved. Cells move to aggregation centers and form fruiting bodies in which cells differentiate into dormant spores. MrpC appears to directly activate transcription of fruA, which also codes for a transcription factor. Both MrpC and FruA are crucial for aggregation and sporulation. The two proteins bind cooperatively in promoter regions of some developmental genes. Results Chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) and bioinformatic analysis of cells that had formed nascent fruiting bodies revealed 1608 putative MrpC binding sites. These sites included several known to bind MrpC and they were preferentially distributed in likely promoter regions, especially those of genes up-regulated during development. The up-regulated genes include 22 coding for protein kinases. Some of these are known to be directly involved in fruiting body formation and several negatively regulate MrpC accumulation. Our results also implicate MrpC as a direct activator or repressor of genes coding for several transcription factors known to be important for development, for a major spore protein and several proteins important for spore formation, for proteins involved in extracellular A- and C-signaling, and intracellular ppGpp-signaling during development, and for proteins that control the fate of other proteins or play a role in motility. We found that the putative MrpC binding sites revealed by ChIP-seq are enriched for DNA sequences that strongly resemble a consensus sequence for MrpC binding proposed previously. MrpC2, an N-terminally truncated form of MrpC, bound to DNA sequences matching the consensus in all 11 cases tested. Using longer DNA segments containing 15 of the putative MrpC binding sites from our ChIP-seq analysis as probes in electrophoretic mobility shift assays, evidence for one or more MrpC2 binding site was observed in all cases and evidence for cooperative binding of MrpC2 and FruA was seen in 13 cases. Conclusions We conclude that MrpC and MrpC2 bind to promoter regions of hundreds of developmentally-regulated genes in M. xanthus, in many cases cooperatively with FruA. This binding very likely up-regulates protein kinases, and up- or down-regulates other proteins that profoundly influence the developmental process. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1123) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Nutrient-regulated proteolysis of MrpC halts expression of genes important for commitment to sporulation during Myxococcus xanthus development. J Bacteriol 2014; 196:2736-47. [PMID: 24837289 DOI: 10.1128/jb.01692-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Starved Myxococcus xanthus cells glide to aggregation centers and form fruiting bodies in which rod-shaped cells differentiate into ovoid spores. Commitment to development was investigated by adding nutrients at specific times after starvation and determining whether development halted or proceeded. At 24 h poststarvation, some rod-shaped cells were committed to subsequent shape change and to becoming sonication-resistant spores, but nutrients caused partial disaggregation of fruiting bodies. By 30 h poststarvation, 10-fold more cells were committed to becoming sonication-resistant spores, and compact fruiting bodies persisted after nutrient addition. During the critical period of commitment around 24 to 30 h poststarvation, the transcription factors MrpC and FruA cooperatively regulate genes important for sporulation. FruA responds to short-range C-signaling, which increases as cells form fruiting bodies. MrpC was found to be highly sensitive to nutrient-regulated proteolysis both before and during the critical period of commitment to sporulation. The rapid turnover of MrpC upon nutrient addition to developing cells halted expression of the dev operon, which is important for sporulation. Regulated proteolysis of MrpC appeared to involve ATP-independent metalloprotease activity and may provide a mechanism for monitoring whether starvation persists and halting commitment to sporulation if nutrients reappear.
Collapse
|
10
|
Konovalova A, Søgaard-Andersen L, Kroos L. Regulated proteolysis in bacterial development. FEMS Microbiol Rev 2013; 38:493-522. [PMID: 24354618 DOI: 10.1111/1574-6976.12050] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/03/2013] [Accepted: 10/14/2013] [Indexed: 11/30/2022] Open
Abstract
Bacteria use proteases to control three types of events temporally and spatially during the processes of morphological development. These events are the destruction of regulatory proteins, activation of regulatory proteins, and production of signals. While some of these events are entirely cytoplasmic, others involve intramembrane proteolysis of a substrate, transmembrane signaling, or secretion. In some cases, multiple proteolytic events are organized into pathways, for example turnover of a regulatory protein activates a protease that generates a signal. We review well-studied and emerging examples and identify recurring themes and important questions for future research. We focus primarily on paradigms learned from studies of model organisms, but we note connections to regulated proteolytic events that govern bacterial adaptation, biofilm formation and disassembly, and pathogenesis.
Collapse
Affiliation(s)
- Anna Konovalova
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
11
|
Volz C, Kegler C, Müller R. Enhancer binding proteins act as hetero-oligomers and link secondary metabolite production to myxococcal development, motility, and predation. ACTA ACUST UNITED AC 2013. [PMID: 23177199 DOI: 10.1016/j.chembiol.2012.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Motile predatory Myxobacteria are producers of multiple secondary metabolites and, on starvation, undergo concerted cellular differentiation to form multicellular fruiting bodies. These abilities demand myxobacterial genomes to encode sophisticated regulatory networks that are not satisfactorily understood. Here, we present two bacterial enhancer binding proteins (bEBPs) encoded in Myxococcus xanthus acting as direct regulators of secondary metabolites intriguingly exhibiting activating and inhibitory effects. Elucidation of a regulon for each bEBP enabled us to unravel their role in myxococcal development, predation, and motility. Interestingly, both bEBPs are able to interact by forming a hetero-oligomeric complex. Our findings represent an alternative mode of operation of bEBPs, which are currently thought to enhance promoter activity by acting as homo-oligomers. Furthermore, a direct link between secondary metabolite gene expression and predation, motility, and cellular development could be shown for the first time.
Collapse
Affiliation(s)
- Carsten Volz
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research, Saarland (HIPS), Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| | | | | |
Collapse
|
12
|
A vitamin B12-based system for conditional expression reveals dksA to be an essential gene in Myxococcus xanthus. J Bacteriol 2009; 191:3108-19. [PMID: 19251845 DOI: 10.1128/jb.01737-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus is a prokaryotic model system for the study of multicellular development and the response to blue light. The previous analyses of these processes and the characterization of new genes would benefit from a robust system for controlled gene expression, which has been elusive so far for this bacterium. Here, we describe a system for conditional expression of genes in M. xanthus based on our recent finding that vitamin B12 and CarH, a MerR-type transcriptional repressor, together downregulate a photoinducible promoter. Using this system, we confirmed that M. xanthus rpoN, encoding sigma(54), is an essential gene, as reported earlier. We then tested it with ftsZ and dksA. In most bacteria, ftsZ is vital due to its role in cell division, whereas null mutants of dksA, whose product regulates the stringent response via transcriptional control of rRNA and amino acid biosynthesis promoters, are viable but cause pleiotropic effects. As with rpoN, it was impossible to delete endogenous ftsZ or dksA in M. xanthus except in a merodiploid background carrying another functional copy, which indicates that these are essential genes. B12-based conditional expression of ftsZ was insufficient to provide the high intracellular FtsZ levels required. With dksA, as with rpoN, cells were viable under permissive but not restrictive conditions, and depletion of DksA or sigma(54) produced filamentous, aberrantly dividing cells. dksA thus joins rpoN in a growing list of genes dispensable in many bacteria but essential in M. xanthus.
Collapse
|
13
|
Viswanathan P, Murphy K, Julien B, Garza AG, Kroos L. Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats. J Bacteriol 2007; 189:3738-50. [PMID: 17369305 PMCID: PMC1913320 DOI: 10.1128/jb.00187-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of dev genes is important for triggering spore differentiation inside Myxococcus xanthus fruiting bodies. DNA sequence analysis suggested that dev and cas (CRISPR-associated) genes are cotranscribed at the dev locus, which is adjacent to CRISPR (clustered regularly interspaced short palindromic repeats). Analysis of RNA from developing M. xanthus confirmed that dev and cas genes are cotranscribed with a short upstream gene and at least two repeats of the downstream CRISPR, forming the dev operon. The operon is subject to strong, negative autoregulation during development by DevS. The dev promoter was identified. Its -35 and -10 regions resemble those recognized by M. xanthus sigma(A) RNA polymerase, the homolog of Escherichia coli sigma(70), but the spacer may be too long (20 bp); there is very little expression during growth. Induction during development relies on at least two positive regulatory elements located in the coding region of the next gene upstream. At least two positive regulatory elements and one negative element lie downstream of the dev promoter, such that the region controlling dev expression spans more than 1 kb. The results of testing different fragments for dev promoter activity in wild-type and devS mutant backgrounds strongly suggest that upstream and downstream regulatory elements interact functionally. Strikingly, the 37-bp sequence between the two CRISPR repeats that, minimally, are cotranscribed with dev and cas genes exactly matches a sequence in the bacteriophage Mx8 intP gene, which encodes a form of the integrase needed for lysogenization of M. xanthus.
Collapse
Affiliation(s)
- Poorna Viswanathan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
14
|
Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS, Eisen JA, Ronning CM, Barbazuk WB, Blanchard M, Field C, Halling C, Hinkle G, Iartchuk O, Kim HS, Mackenzie C, Madupu R, Miller N, Shvartsbeyn A, Sullivan SA, Vaudin M, Wiegand R, Kaplan HB. Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci U S A 2006; 103:15200-5. [PMID: 17015832 PMCID: PMC1622800 DOI: 10.1073/pnas.0607335103] [Citation(s) in RCA: 340] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myxobacteria are single-celled, but social, eubacterial predators. Upon starvation they build multicellular fruiting bodies using a developmental program that progressively changes the pattern of cell movement and the repertoire of genes expressed. Development terminates with spore differentiation and is coordinated by both diffusible and cell-bound signals. The growth and development of Myxococcus xanthus is regulated by the integration of multiple signals from outside the cells with physiological signals from within. A collection of M. xanthus cells behaves, in many respects, like a multicellular organism. For these reasons M. xanthus offers unparalleled access to a regulatory network that controls development and that organizes cell movement on surfaces. The genome of M. xanthus is large (9.14 Mb), considerably larger than the other sequenced delta-proteobacteria. We suggest that gene duplication and divergence were major contributors to genomic expansion from its progenitor. More than 1,500 duplications specific to the myxobacterial lineage were identified, representing >15% of the total genes. Genes were not duplicated at random; rather, genes for cell-cell signaling, small molecule sensing, and integrative transcription control were amplified selectively. Families of genes encoding the production of secondary metabolites are overrepresented in the genome but may have been received by horizontal gene transfer and are likely to be important for predation.
Collapse
Affiliation(s)
- B. S. Goldman
- *Monsanto Company, St. Louis, MO 63167
- To whom correspondence may be addressed. E-mail:
| | - W. C. Nierman
- The Institute for Genomic Research, Rockville, MD 20850
- Department of Biochemistry and Molecular Biology, George Washington University, Washington, DC 20052
| | - D. Kaiser
- Departments of Biochemistry and Developmental Biology, Stanford University, Stanford, CA 94305
- To whom correspondence may be addressed at:
Department of Developmental Biology, B300 Beckman Center, 279 Campus Drive, Stanford, CA 94305. E-mail:
| | - S. C. Slater
- *Monsanto Company, St. Louis, MO 63167
- **Biodesign Institute, Arizona State University, Tempe, AZ 85287-5001; and
| | - A. S. Durkin
- The Institute for Genomic Research, Rockville, MD 20850
| | - J. A. Eisen
- The Institute for Genomic Research, Rockville, MD 20850
| | - C. M. Ronning
- The Institute for Genomic Research, Rockville, MD 20850
| | | | | | - C. Field
- *Monsanto Company, St. Louis, MO 63167
| | | | - G. Hinkle
- *Monsanto Company, St. Louis, MO 63167
| | | | - H. S. Kim
- The Institute for Genomic Research, Rockville, MD 20850
| | - C. Mackenzie
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, TX 77030
| | - R. Madupu
- The Institute for Genomic Research, Rockville, MD 20850
| | - N. Miller
- *Monsanto Company, St. Louis, MO 63167
| | | | | | - M. Vaudin
- *Monsanto Company, St. Louis, MO 63167
| | | | - H. B. Kaplan
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, TX 77030
| |
Collapse
|
15
|
Tsilibaris V, Maenhaut-Michel G, Van Melderen L. Biological roles of the Lon ATP-dependent protease. Res Microbiol 2006; 157:701-13. [PMID: 16854568 DOI: 10.1016/j.resmic.2006.05.004] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 05/22/2006] [Accepted: 05/23/2006] [Indexed: 12/24/2022]
Abstract
The Lon ATP-dependent protease plays a major role in protein quality control. An increasing number of regulatory proteins, however, are being identified as Lon substrates, thus indicating that in addition to its housekeeping function, Lon plays an important role in regulating many biological processes in bacteria. This review presents and discusses the involvement of Lon in different aspects of bacterial physiology, including cell differentiation, sporulation, pathogenicity and survival under starvation conditions.
Collapse
Affiliation(s)
- Virginie Tsilibaris
- Laboratoire de Génétique des Procaryotes, IBMM, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | | | | |
Collapse
|
16
|
Karlin S, Brocchieri L, Mrázek J, Kaiser D. Distinguishing features of delta-proteobacterial genomes. Proc Natl Acad Sci U S A 2006; 103:11352-7. [PMID: 16844781 PMCID: PMC1544090 DOI: 10.1073/pnas.0604311103] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We analyzed several features of five currently available delta-proteobacterial genomes, including two aerobic bacteria exhibiting predatory behavior and three anaerobic sulfate-reducing bacteria. The delta genomes are distinguished from other bacteria by several properties: (i) The delta genomes contain two "giant" S1 ribosomal protein genes in contrast to all other bacterial types, which encode a single or no S1; (ii) in most delta-proteobacterial genomes the major ribosomal protein (RP) gene cluster is near the replication terminus whereas most bacterial genomes place the major RP cluster near the origin of replication; (iii) the delta genomes possess the rare combination of discriminating asparaginyl and glutaminyl tRNA synthetase (AARS) together with the amido-transferase complex (Gat CAB) genes that modify Asp-tRNA(Asn) into Asn-tRNA(Asn) and Glu-tRNA(Gln) into Gln-tRNA(Gln); (iv) the TonB receptors and ferric siderophore receptors that facilitate uptake and removal of complex metals are common among delta genomes; (v) the anaerobic delta genomes encode multiple copies of the anaerobic detoxification protein rubrerythrin that can neutralize hydrogen peroxide; and (vi) sigma(54) activators play a more important role in the delta genomes than in other bacteria. delta genomes have a plethora of enhancer binding proteins that respond to environmental and intracellular cues, often as part of two-component systems; (vii) delta genomes encode multiple copies of metallo-beta-lactamase enzymes; (viii) a host of secretion proteins emphasizing SecA, SecB, and SecY may be especially useful in the predatory activities of Myxococcus xanthus; (ix) delta proteobacteria drive many multiprotein machines in their periplasms and outer membrane, including chaperone-feeding machines, jets for slime secretion, and type IV pili. Bdellovibrio replicates in the periplasm of prey cells. The sulfate-reducing delta proteobacteria metabolize hydrogen and generate a proton gradient by electron transport. The predicted highly expressed genes from delta genomes reflect their different ecologies, metabolic strategies, and adaptations.
Collapse
Affiliation(s)
- Samuel Karlin
- Department of Mathematics, Stanford University, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
17
|
Ueki T, Inouye S. A novel regulation on developmental gene expression of fruiting body formation in Myxobacteria. Appl Microbiol Biotechnol 2006; 72:21-29. [PMID: 16791590 DOI: 10.1007/s00253-006-0455-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 02/06/2006] [Accepted: 04/05/2006] [Indexed: 12/19/2022]
Abstract
Myxobacteria are Gram-negative soil microorganisms that prey on other microorganisms. Myxobacteria have significant potential for applications in biotechnology because of their extraordinary ability to produce natural products such as secondary metabolites. Myxobacteria also stand out as model organisms for the study of cell-cell interactions and multicellular development during their complex life cycle. Cellular morphogenesis during multicellular development in myxobacteria is very similar to that in the eukaryotic soil amoebae. Recent studies have started uncovering molecular mechanisms directing the myxobacterial life cycle. We describe recent studies on signal transduction and gene expression during multicellular development in the myxobacterium Myxococcus xanthus. We provide our current model for signal transduction pathways mediated by a two-component His-Asp phosphorelay system and a Ser/Thr kinase cascade.
Collapse
Affiliation(s)
- Toshiyuki Ueki
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA
| | - Sumiko Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA.
| |
Collapse
|
18
|
Nariya H, Inouye S. A protein Ser/Thr kinase cascade negatively regulates the DNA-binding activity of MrpC, a smaller form of which may be necessary for the Myxococcus xanthus development. Mol Microbiol 2006; 60:1205-17. [PMID: 16689796 DOI: 10.1111/j.1365-2958.2006.05178.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The developmental process of Myxococcus xanthus is achieved by the expression of a specific set of genes under the influence of developmental signals. MrpC is a member of the CRP family of transcription regulators, essential for fruA expression during development. The Pkn8-Pkn14 protein kinase cascade negatively regulates mrpC expression (H. Nariya and S. Inouye, 2005. Mol Microbiol 58: 367-379). Elevated levels of mrpC in pkn8 and pkn14 deletion strains (Deltapkn8 and Deltapkn14) induce untimely FruA production during vegetative growth resulting in significantly faster fruiting body development. mrpC expression is presumably activated by MrpA and MrpB which belong to a two-component His-Asp phosphorelay system and is proposed to require MrpC on the basis of the genetic analysis. In the present study, we demonstrate that MrpC binds to at least eight sites in the upstream region of its promoter. Based on analysis of MrpC binding sites in the mrpC and fruA promoter regions, there are two types of MrpC-specific binding sequences. Importantly, MrpC-binding activity was greatly reduced upon its phosphorylation by Pkn14. MrpC2, a transcription activator for fruA expression, lacks the N-terminal 25 residues of MrpC and exhibited four- and eightfold greater binding activity to the mrpC and fruA promoter regions respectively. Pkn14 was not able to phosphorylate MrpC2 and phosphorylates MrpC at Thr residue(s), thus Thr-21 and/or Thr-22 is (are) the likely site(s) of MrpC phosphorylation. MrpC2 was not detected in a lonD mutant in which fruA expression is low. Thus, the LonD protease essential for development may play an important role for the activation of MrpC-binding activity through its proteolytic processing to MrpC2, required for developmental progression. MrpC2, only detectable during development in DZF1, was present at high levels during vegetative growth in Deltapkn8 and Deltapkn14, thus MrpC phosphorylation may inhibit its proteolytic processing. Based on these results, we propose a mechanism by which two transcription factors essential to development, MrpC and FruA, are regulated during the M. xanthus life cycle.
Collapse
Affiliation(s)
- Hirofumi Nariya
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
19
|
Chandu D, Nandi D. Comparative genomics and functional roles of the ATP-dependent proteases Lon and Clp during cytosolic protein degradation. Res Microbiol 2005; 155:710-9. [PMID: 15501647 DOI: 10.1016/j.resmic.2004.06.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Accepted: 06/03/2004] [Indexed: 10/26/2022]
Abstract
The general pathway involving adenosine triphosphate (ATP)-dependent proteases and ATP-independent peptidases during cytosolic protein degradation is conserved, with differences in the enzymes utilized, in organisms from different kingdoms. Lon and caseinolytic protease (Clp) are key enzymes responsible for the ATP-dependent degradation of cytosolic proteins in Escherichia coli. Orthologs of E. coli Lon and Clp were searched for, followed by multiple sequence alignment of active site residues, in genomes from seventeen organisms, including representatives from eubacteria, archaea, and eukaryotes. Lon orthologs, unlike ClpP and ClpQ, are present in most organisms studied. The roles of these proteases as essential enzymes and in the virulence of some organisms are discussed.
Collapse
Affiliation(s)
- Dilip Chandu
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
20
|
Abstract
Myxobacteria use soluble and cell-contact signals during their starvation-induced formation of fruiting bodies. These signals coordinate developmental gene expression with the cell movements that build fruiting bodies. Early in development, the quorum-sensing A-signal in Myxococcus xanthus helps to assess starvation and induce the first stage of aggregation. Later, the morphogenetic C-signal helps to pattern cell movement and shape the fruiting body. C-signal is a 17-kDa cell surface protein that signals by contact between the ends of two cells. The number of C-signal molecules per cell rises 100-fold from the beginning of fruiting body development to the end, when spores are formed. Traveling waves, streams, and sporulation have increasing thresholds for C-signal activity, and this progression ensures that spores form inside fruiting bodies.
Collapse
Affiliation(s)
- Dale Kaiser
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
21
|
Abstract
The clp genes encoding the Clp proteolytic complex are widespread among living organisms. Five clpP genes are present in Streptomyces. Among them, the clpP1 clpP2 operon has been shown to be involved in the Streptomyces growth cycle, as a mutation blocked differentiation at the substrate mycelium step. Four Clp ATPases have been identified in Streptomyces coelicolor (ClpX and three ClpC proteins) which are potential partners of ClpP1 ClpP2. The clpC1 gene appears to be essential, since no mutant has yet been obtained. clpP1 clpP2 and clpC1 are important for Streptomyces growth, and a study of their regulation is reported here. The clpP3 clpP4 operon, which has been studied in Streptomyces lividans, is induced in a clpP1 mutant strain, and regulation of its expression is mediated via PopR, a transcriptional regulator. We report here studies of clgR, a paralogue of popR, in S. lividans. Gel mobility shift assays and DNase I footprinting indicate that ClgR binds not only to the clpP1 and clpC1 promoters, but also to the promoter of the Lon ATP-dependent protease gene and the clgR promoter itself. ClgR recognizes the motif GTTCGC-5N-GCG. In vivo, ClgR acts as an activator of clpC1 gene and clpP1 operon expression. Similarly to PopR, ClgR degradation might be ClpP dependent and could be mediated via recognition of the two carboxy-terminal alanine residues.
Collapse
Affiliation(s)
- Audrey Bellier
- Unité de Biochimie Microbienne, CNRS URA 2172, Institut Pasteur, 75724 Paris 15, France
| | | |
Collapse
|
22
|
Lee AYL, Tsay SS, Chen MY, Wu SH. Identification of a gene encoding Lon protease from Brevibacillus thermoruber WR-249 and biochemical characterization of its thermostable recombinant enzyme. ACTA ACUST UNITED AC 2004; 271:834-44. [PMID: 14764100 DOI: 10.1111/j.1432-1033.2004.03988.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A gene encoding thermostable Lon protease from Brevibacillus thermoruber WR-249 was cloned and characterized. The Br. thermoruber Lon gene (Bt-lon) encodes an 88 kDa protein characterized by an N-terminal domain, a central ATPase domain which includes an SSD (sensor- and substrate-discrimination) domain, and a C-terminal protease domain. The Bt-lon is a heat-inducible gene and may be controlled under a putative Bacillus subtilis sigmaA-dependent promoter, but in the absence of CIRCE (controlling inverted repeat of chaperone expression). Bt-lon was expressed in Escherichia coli, and its protein product was purified. The native recombinant Br. thermoruber Lon protease (Bt-Lon) displayed a hexameric structure. The optimal temperature of ATPase activity for Bt-Lon was 70 degrees C, and the optimal temperature of peptidase and DNA-binding activities was 50 degrees C. This implies that the functions of Lon protease in thermophilic bacteria may be switched, depending on temperature, to regulate their physiological needs. The peptidase activity of Bt-Lon increases substantially in the presence of ATP. Furthermore, the substrate specificity of Bt-Lon is different from that of E. coli Lon in using fluorogenic peptides as substrates. Notably, the Bt-Lon protein shows chaperone-like activity by preventing aggregation of denatured insulin B-chain in a dose-dependent and ATP-independent manner. In thermal denaturation experiments, Bt-Lon was found to display an indicator of thermostability value, Tm of 71.5 degrees C. Sequence comparison with mesophilic Lon proteases shows differences in the rigidity, electrostatic interactions, and hydrogen bonding of Bt-Lon relevant to thermostability.
Collapse
Affiliation(s)
- Alan Y-L Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
23
|
Abstract
A great deal of progress has been made in the studies of fruiting body development and social gliding in Myxocococcus xanthus in the past few years. This includes identification of the bone fide C-signal and a receptor for type IV pili, and development of a model for the mechanism of adventurous gliding motility. It is anticipated that the next few years will see even more progress as the complete genome sequence is available and genomic and proteomic tools are applied to the study of M. xanthus social behaviors.
Collapse
Affiliation(s)
- Heidi B Kaplan
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, 6431 Fannin, 1.765 JFB, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Akiyama T, Inouye S, Komano T. Novel developmental genes, fruCD, of Myxococcus xanthus: involvement of a cell division protein in multicellular development. J Bacteriol 2003; 185:3317-24. [PMID: 12754229 PMCID: PMC155380 DOI: 10.1128/jb.185.11.3317-3324.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus is a gram-negative soil bacterium that undergoes multicellular development upon nutrient starvation. In the present study, two novel developmental genes, fruC and fruD, of M. xanthus were identified and characterized. The FruD protein has significant amino acid sequence similarity to the DivIVA proteins of many bacteria including Bacillus subtilis. Vegetative cells of the fruD mutant exhibited a filamentous phenotype. The fruC and fruD mutants displayed similar delayed-development phenotypes. The formation of tightly aggregated mounds by fruC and fruD mutants was slower than that by the wild-type strain. Spore formation by the fruC and fruD mutants initiated after 30 h poststarvation, whereas wild-type M. xanthus initiated spore formation after 18 h. The fruCD genes were constitutively expressed as an operon during vegetative growth and development. S1 mapping revealed that transcription initiation sites of the fruCD operon were located 114 (P1) and 55 bp (P2) upstream of the fruC initiation codon. Only the P1 promoter was active during vegetative growth, while both the P1 and P2 promoters were active during development. The FruD protein was produced as a cytoplasmic protein and formed an oligomer during vegetative growth and development.
Collapse
Affiliation(s)
- Takuya Akiyama
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | |
Collapse
|
25
|
Tojo N, Komano T. The IntP C-terminal segment is not required for excision of bacteriophage Mx8 from the Myxococcus xanthus chromosome. J Bacteriol 2003; 185:2187-93. [PMID: 12644488 PMCID: PMC151502 DOI: 10.1128/jb.185.7.2187-2193.2003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During lysogenization of myxophage Mx8, phage DNA can be integrated into the attB site of the Myxococcus xanthus chromosome through site-specific recombination. We previously demonstrated that the Mx8 attP site is located within the coding sequence of the Mx8 intP gene. Hence, the integration of Mx8 into the M. xanthus chromosome results in the conversion of the 112-amino-acid C-terminal segment of the IntP protein into a 13-amino-acid C-terminal segment of a new protein, IntR. To examine whether IntR is active for Mx8 excision, we have constructed a series of plasmids carrying various lengths of the intP-attP or intR-attR regions as well as the lacZ gene. The integrated Mx8 was excised at a high frequency, indicating that IntR is active for the excision. For Mx8 excision, a gene designated xis was shown to be required in addition to intR.
Collapse
Affiliation(s)
- Nobuki Tojo
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji-shi, Tokyo 192-0397, Japan
| | | |
Collapse
|
26
|
Sobczyk A, Bellier A, Viala J, Mazodier P. The lon gene, encoding an ATP-dependent protease, is a novel member of the HAIR/HspR stress-response regulon in actinomycetes. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1931-1937. [PMID: 12055312 DOI: 10.1099/00221287-148-6-1931] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Members of a family of ATP-dependent proteases related to Lon from Escherichia coli are present in most prokaryotes and eukaryotes. These proteases are generally reported to be heat induced, and various regulatory systems have been described. The authors cloned and disrupted the lon gene and studied the regulation of its expression in Streptomyces lividans. lon is negatively regulated by the HspR/HAIR repressor/operator system, suggesting that Lon is produced concomitantly with the other members of this regulon, DnaK and ClpB. The lon mutant grew more slowly than the wild-type and spore germination was impaired at high temperature. Nevertheless its cell cycle was not greatly affected and it sporulated normally.
Collapse
Affiliation(s)
- André Sobczyk
- VIVALIS SA, CHU de Nantes - Hôtel-Dieu, Place A. Ricordeau, 44093 Nantes Cedex 1, France2
- Unité de Biochimie Microbienne, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Audrey Bellier
- Unité de Biochimie Microbienne, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Julie Viala
- Unité de Biochimie Microbienne, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Philippe Mazodier
- Unité de Biochimie Microbienne, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| |
Collapse
|
27
|
Ueki T, Inouye S. Transcriptional activation of a heat-shock gene, lonD, of Myxococcus xanthus by a two component histidine-aspartate phosphorelay system. J Biol Chem 2002; 277:6170-7. [PMID: 11748231 DOI: 10.1074/jbc.m110155200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vitro transcription of lonD, a heat-shock gene from Myxococcus xanthus, was stimulated in the presence of extract from heat-shocked cells. For this stimulation the upstream promoter region of lonD was found to be essential. Activation of lonD transcription was also observed when extract from non-heat-shocked cells was heat treated in vitro at 42 degrees C for 10 min. A DNA binding assay and footprinting analysis revealed that a factor(s) binds to the upstream region from -122 to -107 with respect to the transcription initiation site. This region was required for heat-shock induction of lonD expression both in vitro and in vivo. The lonD promoter-binding protein named HsfA was purified, and its gene was cloned. Analysis of the DNA sequence reveals that HsfA is a response regulator of the two-component system and shows high sequence similarity to the NtrC family or the enhancer-binding proteins. Upstream of hsfA, a gene encoding a histidine kinase was identified and named hsfB. HsfB was found to be autophosphorylated and able to phosphorylate HsfA. HsfA with HsfB activated in vitro transcription of lonD in a manner dependent on RNA polymerase containing SigA, the housekeeping sigma factor of M. xanthus.
Collapse
Affiliation(s)
- Toshiyuki Ueki
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
28
|
Abstract
Cytoplasmic proteolysis is an indispensable process for proper function of a cell. Degradation of many intracellular proteins is initiated by ATP-dependent proteinases, which are involved in the regulation of the level of proteins with short half-lives. In addition, they remove many damaged and abnormal proteins and thus play also an important role during stress. ATP-dependent proteinases are large multi-subunit assemblies composed of proteolytic core domains and ATPase-containing regulatory domains on a single polypeptide chain or on distinct subunits, which can act as molecular chaperones. This review briefly summarizes the data about four main groups of these proteinases in bacteria (i.e. Lon, Clp family, HslUV and FtsH) and characterizes their structure, mechanism of action and properties.
Collapse
Affiliation(s)
- O Hlavácek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czechia
| | | |
Collapse
|
29
|
Takaya A, Tomoyasu T, Tokumitsu A, Morioka M, Yamamoto T. The ATP-dependent lon protease of Salmonella enterica serovar Typhimurium regulates invasion and expression of genes carried on Salmonella pathogenicity island 1. J Bacteriol 2002; 184:224-32. [PMID: 11741864 PMCID: PMC134781 DOI: 10.1128/jb.184.1.224-232.2002] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An early step in the pathogenesis of Salmonella enterica serovar Typhimurium infection is bacterial penetration of the intestinal epithelium. Penetration requires the expression of invasion genes found in Salmonella pathogenicity island 1 (SPI1). These genes are controlled in a complex manner by regulators in SPI1, including HilA and InvF, and those outside SPI1, such as two-component regulatory systems and small DNA-binding proteins. We report here that the expression of invasion genes and the invasive phenotype of S. enterica serovar Typhimurium are negatively regulated by the ATP-dependent Lon protease, which is known to be a major contributor to proteolysis in Escherichia coli. A disrupted mutant of lon was able to efficiently invade cultured epithelial cells and showed increased production and secretion of three identified SPI1 proteins, SipA, SipC, and SipD. The lon mutant also showed a dramatic enhancement in transcription of the SPI1 genes hilA, invF, sipA, and sipC. The increases ranged from 10-fold to almost 40-fold. It is well known that the expression of SPI1 genes is also regulated in response to several environmental conditions. We found that the disruption of lon does not abolish the repression of hilA and sipC expression by high-oxygen or low-osmolarity conditions, suggesting that Lon represses SPI1 gene expression by a regulatory pathway independent of these environmental signals. Since HilA is thought to function as a central regulator of SPI1 gene expression, it is speculated that Lon may regulate SPI1 gene expression by proteolysis of putative factors required for activation of hilA expression.
Collapse
Affiliation(s)
- Akiko Takaya
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | | | | | | | | |
Collapse
|
30
|
Serrano M, Hövel S, Moran CP, Henriques AO, Völker U. Forespore-specific transcription of the lonB gene during sporulation in Bacillus subtilis. J Bacteriol 2001; 183:2995-3003. [PMID: 11325926 PMCID: PMC95198 DOI: 10.1128/jb.183.10.2995-3003.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis genome encodes two members of the Lon family of prokaryotic ATP-dependent proteases. One, LonA, is produced in response to temperature, osmotic, and oxidative stress and has also been implicated in preventing sigma(G) activity under nonsporulation conditions. The second is encoded by the lonB gene, which resides immediately upstream from lonA. Here we report that transcription of lonB occurs during sporulation under sigma(F) control and thus is restricted to the prespore compartment of sporulating cells. First, expression of a lonB-lacZ transcriptional fusion was abolished in strains unable to produce sigma(F) but remained unaffected upon disruption of the genes encoding the early and late mother cell regulators sigma(E) and sigma(K) or the late forespore regulator sigma(G). Second, the fluorescence of strains harboring a lonB-gfp fusion was confined to the prespore compartment and depended on sigma(F) production. Last, primer extension analysis of the lonB transcript revealed -10 and -35 sequences resembling the consensus sequence recognized by sigma(F)-containing RNA polymerase. We further show that the lonB message accumulated as a single monocistronic transcript during sporulation, synthesis of which required sigma(F) activity. Disruption of the lonB gene did not confer any discernible sporulation phenotype to otherwise wild-type cells, nor did expression of lonB from a multicopy plasmid. In contrast, expression of a fusion of the lonB promoter to the lonA gene severely reduced expression of the sigma(G)-dependent sspE gene and the frequency of sporulation. In confirmation of earlier observations, we found elevated levels of sigma(F)-dependent activity in a spoIIIE47 mutant, in which the lonB region of the chromosome is not translocated into the prespore. Expression of either lonB or the P(lonB)-lonA fusion from a plasmid in the spoIIIE47 mutant reduced sigma(F) -dependent activity to wild-type levels. The results suggest that both LonA and LonB can prevent abnormally high sigma(F) activity but that only LonA can negatively regulate sigma(G).
Collapse
Affiliation(s)
- M Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras Codex, Portugal
| | | | | | | | | |
Collapse
|
31
|
Abstract
Regulated proteolysis is a critical feature of many intercellular signalling pathways that control cell-fate specification and tissue patterning during metazoan development. The roles of proteolysis in three different pathways, the Toll, Hedgehog, and Notch pathways, are described to illustrate the importance of specific protein cleavages in both extracellular ligand-receptor interactions and intracellular signal transduction. An emerging principle is the use of proteolysis to control the maturation and activation of receptors, to limit the spatial diffusion of their ligands, and to modulate the subcellular localization or transcriptional activity of DNA-binding factors in response to receptor-ligand interactions at the cell surface.
Collapse
Affiliation(s)
- Y Ye
- Department of Genetics, Stellar-Chance Laboratories, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|
32
|
Abstract
Conservative site-specific recombination functions to create biological diversity in prokaryotes. Simple site-specific recombination systems consist of two recombination sites and a recombinase gene. The plasmid R64 shufflon contains seven recombination sites, which flank and separate four DNA segments. Site-specific recombinations mediated by the product of the rci gene between any two inverted recombination sites result in the inversion of four DNA segments independently or in groups. The shufflon functions as a biological switch to select one of seven C-terminal segments of the PilV proteins, which is a minor component of R64 thin pilus. The shufflon determines the recipient specificity in liquid matings of plasmid R64. Other multiple inversion systems as well as integrons, which are multiple insertion systems, are also described in this review.
Collapse
Affiliation(s)
- T Komano
- Department of Biology, Tokyo Metropolitan University, Japan.
| |
Collapse
|
33
|
Robertson GT, Kovach ME, Allen CA, Ficht TA, Roop RM. The Brucella abortus Lon functions as a generalized stress response protease and is required for wild-type virulence in BALB/c mice. Mol Microbiol 2000; 35:577-88. [PMID: 10672180 DOI: 10.1046/j.1365-2958.2000.01726.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gene encoding a Lon protease homologue has been cloned from Brucella abortus. The putative Brucella abortus Lon shares > 60% amino acid identity with its Escherichia coli counterpart and the recombinant form of this protein restores the capacity of an Escherichia coli lon mutant to resist killing by ultraviolet irradiation and regulate the expression of a cpsB:lacZ fusion to wild-type levels. A sigma32 type promoter was identified upstream of the predicted lon coding region and Northern analysis revealed that transcription of the native Brucella abortus lon increases in response to heat shock and other environmental stresses. ATP-dependent proteolytic activity was also demonstrated for purified recombinant Lon. To evaluate the capacity of the Brucella abortus Lon homologue to function as a stress response protease, the majority of the lon coding region was removed from virulent strain Brucella abortus 2308 via allelic exchange. In contrast to the parent strain, the Brucella abortus lon mutant, designated GR106, was impaired in its capacity to form isolated colonies on solid medium at 41 degrees C and displayed an increased sensitivity to killing by puromycin and H2O2. GR106 also displayed reduced survival in cultured murine macrophages and significant attenuation in BALB/c mice at 1 week post infection compared with the virulent parental strain. Beginning at 2 weeks and continuing for 6 weeks post infection, however, GR106 and 2308 displayed equivalent spleen and liver colonization levels in mice. These findings suggest that the Brucella abortus Lon homologue functions as a stress response protease that is required for wild-type virulence during the initial stages of infection in the mouse model, but is not essential for the establishment and maintenance of chronic infection in this host.
Collapse
Affiliation(s)
- G T Robertson
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | | | |
Collapse
|
34
|
Watanabe S, Muramatsu T, Ao H, Hirayama Y, Takahashi K, Tanokura M, Kuchino Y. Molecular cloning of the Lon protease gene from Thermus thermophilus HB8 and characterization of its gene product. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:811-9. [PMID: 10583374 DOI: 10.1046/j.1432-1327.1999.00907.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gene encoding Lon protease was isolated from an extreme thermophile, Thermus thermophilus HB8. Sequence analysis demonstrated that the T. thermophilus Lon protease gene (TT-lon) contains a protein-coding sequence consisting of 2385 bp which is approximately 56% homologous to the Escherichia coli counterpart. As expected, the G/C content of TT-lon was 68%, which is significantly higher than that of the E. coli lon gene (52% G/C). The amino acid sequence of T. thermophilus Lon protease (TT-Lon) predicted from the nucleotide sequence contained several unique sequences conserved in other Lon proteases: (a) a cysteine residue at the position just before the putative ATP-binding domain; (b) motif A and B sequences required for composition of the ATP-binding domain; and (c) a serine residue at the proteolytic active site. Expression of TT-lon under the control of the T7 promoter in E. coli produced an 89-kDa protein with a yield of approximately 5 mg.L-1. Recombinant TT-Lon (rTT-Lon) was purified to homogeneity by sequential column chromatography. The peptidase activity of rTT-Lon was activated by ATP and alpha-casein. rTT-Lon cleaved succinyl-phenylalanyl-leucyl-phenylalanyl-methoxynaphthylamide much more efficiently than succinyl-alanyl-alanyl-phenylalanyl-methoxynaphthylamide, whereas both peptides were cleaved with comparable efficiencies by E. coli Lon. These results suggest that there is a difference between TT-Lon and E. coli Lon in substrate specificity. rTT-Lon most effectively cleaved substrate peptides at 70 degrees C, which was significantly higher than the optimal temperature (37 degrees C) for E. coli Lon. Together, these results indicate that the TT-lon gene isolated from T. thermophilus HB8 actually encodes an ATP-dependent thermostable protease Lon.
Collapse
Affiliation(s)
- S Watanabe
- Biophysics Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Van Melderen L, Gottesman S. Substrate sequestration by a proteolytically inactive Lon mutant. Proc Natl Acad Sci U S A 1999; 96:6064-71. [PMID: 10339542 PMCID: PMC26836 DOI: 10.1073/pnas.96.11.6064] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/1999] [Indexed: 11/18/2022] Open
Abstract
Lon protein of Escherichia coli is an ATP-dependent protease responsible for the rapid turnover of both abnormal and naturally unstable proteins, including SulA, a cell division inhibitor made after DNA damage, and RcsA, a positive regulator of transcription. Lon is a multimer of identical 94-kDa subunits, each containing a consensus ATPase motif and a serine active site. We found that overexpressing Lon, which is mutated for the serine active site (LonS679A) and is therefore devoid of proteolytic activity, unexpectedly led to complementation of the UV sensitivity and capsule overproduction of a lon deletion mutant. SulA was not degraded by LonS679A, but rather was completely protected by the Lon mutant from degradation by other cellular proteases. We interpret these results to mean that the mutant LonS679A binds but does not degrade Lon substrates, resulting in sequestration of the substrate proteins and interference with their activities, resulting in apparent complementation. Lon that carried a mutation in the consensus ATPase site, either with or without the active site serine, was no longer able to complement a Deltalon mutant. These in vivo results suggest that the pathway of degradation by Lon couples ATP-dependent unfolding with movement of the substrate into protected chambers within Lon, where it is held until degradation proceeds. In the absence of degradation the substrate remains sequestered. Comparison of our results with those from a number of other systems suggest that proteins related to the regulatory portions of energy-dependent proteases act as energy-dependent sequestration proteins.
Collapse
Affiliation(s)
- L Van Melderen
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | | |
Collapse
|
36
|
de Crécy-Lagard V, Servant-Moisson P, Viala J, Grandvalet C, Mazodier P. Alteration of the synthesis of the Clp ATP-dependent protease affects morphological and physiological differentiation in Streptomyces. Mol Microbiol 1999; 32:505-17. [PMID: 10320574 DOI: 10.1046/j.1365-2958.1999.01364.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genes of Streptomyces coelicolor A3(2) encoding catalytic subunits (ClpP) and regulatory subunits (ClpX and ClpC) of the ATP-dependent protease family Clp were cloned, mapped and characterized. S. coelicolor contains at least two clpP genes, clpP1 and clpP2, located in tandem upstream from the clpX gene, and at least two unlinked clpC genes. Disruption of the clpP1 gene in S. lividans and S. coelicolor blocks differentiation at the substrate mycelium step. Overexpression of clpP1 and clpP2 accelerates aerial mycelium formation in S. lividans, S. albus and S. coelicolor. Overproduction of ClpX accelerates actinorhodin production in S. coelicolor and activates its production in S. lividans.
Collapse
Affiliation(s)
- V de Crécy-Lagard
- Unité de Biochimie Microbienne, URA 1300 CNRS, Institut Pasteur, 28 rue du Dr Roux, Paris cedex 75724, France.
| | | | | | | | | |
Collapse
|
37
|
Knipfer N, Seth A, Roudiak SG, Shrader TE. Species variation in ATP-dependent protein degradation: protease profiles differ between mycobacteria and protease functions differ between Mycobacterium smegmatis and Escherichia coli. Gene 1999; 231:95-104. [PMID: 10231573 DOI: 10.1016/s0378-1119(99)00087-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We report here that the existence of the potentially broad substrate specificity protease Lon (also called La), is evolutionarily discontinuous within the order Actinomycetales. Lon homologues were identified in the fast-growing species Mycobacterium smegmatis, and the slow-growing species Micobacterium avium and Mycobacterium intracellulare. However, Lon homologues were not detected in the slow-growing species Mycobacterium tuberculosis, Mycobacterium bovis, or Mycobacterium leprae; or in the non-mycobacterial Actinomycetale Corynebacterium glutamica. To characterize the function of the Lon protease within the Actinomycetales, a viable M. smegmatis Deltalon strain was constructed, demonstrating that lon is not essential under certain conditions. Surprisingly, lon was also dispensable in M. smegmatis cells already lacking intact 20S proteasome alpha- and beta-subunit genes (called prcA and prcB, respectively). Creation of the later double deletion strain (prcBA::kan Deltalon) necessitated use of a novel gene deletion strategy that does not require an antibiotic resistance marker. The M. smegmatis prcBA::kan Deltalon double mutants displayed wild type (wt) growth rates and wt stress tolerances. In addition, the M. smegmatis prcBA::kan Deltalon double mutants degraded at wt rates the broad spectrum of truncated proteins induced by treating cells with puromycin. This later result was in sharp contrast to those in Escherichia coli, where either lon or hslUV single mutants are strongly impaired in their degradation of puromycyl peptides (hslV is a prcB homologue). Overall these data suggested that mycobacterial species contain additional ATP-dependent proteases that have broad substrate specificity. Consistent with this suggestion, M. smegmatis and M. tuberculosis each contain at least one homologue of ClpP, the proteolytic subunit common to the ClpAP and ClpXP proteases.
Collapse
Affiliation(s)
- N Knipfer
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA
| | | | | | | |
Collapse
|
38
|
Thies FL, Hartung HP, Giegerich G. Cloning and expression of the Campylobacter jejuni lon gene detected by RNA arbitrarily primed PCR. FEMS Microbiol Lett 1998; 165:329-34. [PMID: 9742705 DOI: 10.1111/j.1574-6968.1998.tb13165.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Fingerprinting of RNA by arbitrarily primed PCR was used to identify a heat-inducible gene in Campylobacter jejuni. Comparing RNA fingerprints from C. jejuni cells before and after 20 min of heat shock at 48 degrees C, a differentially amplified PCR product was identified which displayed a high degree of homology to bacterial lon genes. By screening C. jejuni genomic libraries, the entire lon gene was cloned and sequenced. It encodes a protein of 791 amino acids with a calculated molecular mass of 90.2 kDa. Alignment of the Lon amino acid sequence with that of other bacterial species revealed an overall identity of up to 56.6% (Helicobacter pylori). Northern and RNA dot blot experiments confirmed heat induction of the C. jejuni lon gene, revealing a maximum 6-8-fold increase in the level of specific mRNA.
Collapse
Affiliation(s)
- F L Thies
- Department of Neurology, University Würzburg, Germany
| | | | | |
Collapse
|
39
|
Barakat S, Pearce DA, Sherman F, Rapp WD. Maize contains a Lon protease gene that can partially complement a yeast pim1-deletion mutant. PLANT MOLECULAR BIOLOGY 1998; 37:141-154. [PMID: 9620272 DOI: 10.1023/a:1005912831051] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have identified a gene in maize that encodes a product belonging to the Lon protease family. In yeast and mammals, Lon-type proteases catalyze the ATP-dependent degradation of mitochondrial matrix proteins. The maize gene, which we have designated LON1, is predicted to encode a protein with a molecular mass of 97.7 kDa. Lon1p is more similar in sequence to bacterial Lon proteases than to the yeast and human mitochondrial Lon proteases. LON1 transcripts are present in shoots of 4-day-old etiolated maize seedlings, and transcript levels decrease when these seedlings are heat-shocked. LON1 transcripts are also present at comparable levels in leaves and roots of 2-week-old greenhouse-grown seedlings. In yeast, the mitochondrial Lon-type protease, Pim1p, has been implicated in mitochondrial protein turnover, the assembly of mitochondrial enzyme complexes, and mitochondrial DNA maintenance, and it is essential for respiratory function. We show that maize Lon1p can replace the Pim1p function in yeast for maintaining mitochondrial DNA integrity, but not in the assembly of cytochrome a x a3 complexes.
Collapse
Affiliation(s)
- S Barakat
- Department of Biology, University of Missouri-St. Louis 63121, USA
| | | | | | | |
Collapse
|
40
|
Starkova NN, Koroleva EP, Rumsh LD, Ginodman LM, Rotanova TV. Mutations in the proteolytic domain of Escherichia coli protease Lon impair the ATPase activity of the enzyme. FEBS Lett 1998; 422:218-20. [PMID: 9490010 DOI: 10.1016/s0014-5793(98)00012-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conserved residues of the proteolytic domain of Escherichia coli protease Lon, putative members of the classic catalytic triad (H665, H667, D676, and D743) were identified by comparison of amino acid sequences of Lon proteases. Mutant enzymes containing substitutions D676N, D743N, H665Y, and H667Y were obtained by site-directed mutagenesis. The mutant D743N retained the adenosine triphosphate (ATP)-dependent proteolytic activity, thereby indicating that D743 does not belong to the catalytic site. Simultaneously, the mutants D676N, H665Y, and H667Y lost the capacity for hydrolysis of protein substrates. The ATPase activity of these three mutants was decreased by more than an order of magnitude, which suggests a close spatial location of the ATPase and proteolytic active sites and their tight interaction in the process of protein degradation.
Collapse
Affiliation(s)
- N N Starkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow.
| | | | | | | | | |
Collapse
|
41
|
Abstract
Strains of Lactococcus lactis ssp. lactis and Lactococcus lactis ssp. cremoris were cultured under aerobic and anaerobic conditions on plates of whey agar, Elliker agar, and M17L agar at 15, 20, and 30 degrees C to determine the environmental conditions required for the expression of the ropy phenotype. Two strains, L. lactis ssp. cremoris Ropy 352 and L. lactis ssp. cremoris Hollandicus, exhibited two distinct polysaccharide phenotypes, ropy and mucoid. Expression of these phenotypes could be induced individually or simultaneously. The inducible nature of this response suggests that genetic regulators were present. Western blots were used to determine whether or not Lon protease and RcsA, two regulators of polysaccharide expression in Escherichia coli, were present in lactococci. Lon, a negative regulator, and RcsA, an unstable positive regulator, have been shown at the structural level to be conserved in a number of Gram-negative and Gram-positive microorganisms. The present study found evidence for structural conservation of Lon protease in lactococci. Less of the Lon-like protein was observed in the ropy strains than in the nonropy strains.
Collapse
Affiliation(s)
- K P Dierksen
- Department of Microbiology, Oregon State University, Corvallis 97331-3804, USA
| | | | | |
Collapse
|
42
|
Cloud JL, Marconi RT, Eggers CH, Garon CF, Tilly K, Samuels DS. Cloning and expression of the Borrelia burgdorferi lon gene. Gene 1997; 194:137-41. [PMID: 9266683 DOI: 10.1016/s0378-1119(97)00196-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ATP-dependent protease Lon (La) of Escherichia coli degrades abnormal proteins and is involved in the regulation of capsular polysaccharide synthesis. In addition, mutations in the E. coli lon gene suppress temperature-sensitive mutations in other genes. The lon gene of Borrelia burgdorferi, encoding a homolog of the Lon protease, has been cloned and sequenced. The gene encodes a protein of 806 amino acids. The deduced amino acid sequence of the B. burgdorferi Lon protease shares substantial sequence identity with those of other known Lon proteases. The transcription start point of the B. burgdorferi lon gene was identified by primer extension analysis and the potential promoter did not show similarities to the consensus heat-shock promoter in E. coli. The 5'-end of the B. burgdorferi lon gene appears to suppress the temperature-sensitive phenotype of an E. coli lpxA mutant.
Collapse
Affiliation(s)
- J L Cloud
- Magic Valley Regional Medical Center, Twin Falls, ID 83301, USA
| | | | | | | | | | | |
Collapse
|
43
|
Fu GK, Smith MJ, Markovitz DM. Bacterial Protease Lon Is a Site-specific DNA-binding Protein. J Biol Chem 1997. [DOI: 10.1074/jbc.272.1.534] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
44
|
Stewart BJ, Enos-Berlage JL, McCarter LL. The lonS gene regulates swarmer cell differentiation of Vibrio parahaemolyticus. J Bacteriol 1997; 179:107-14. [PMID: 8981986 PMCID: PMC178667 DOI: 10.1128/jb.179.1.107-114.1997] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Vibrio parahaemolyticus differentiates from a polarly flagellated, short, rod-shaped cell known as the swimmer to the elongated, hyperflagellated, and multinucleated swarmer cell type when it is grown on a surface. The swarmer is adapted to movement over and colonization of surfaces. To understand the signal transduction mechanism by which the bacterium recognizes surfaces and reprograms gene expression, we isolated a new class of mutants defective in surface sensing. These mutants were constitutive for swarmer cell gene expression, inappropriately expressing high levels of a swarmer cell gene fusion product when grown in liquid. They showed no defect in the swimming motility system, unlike all previously isolated constitutive mutants which have defects in the alternate, polar motility system. The lesions in the majority of the newly isolated mutants were found to be in a gene, lonS, which encodes a polypeptide exhibiting 81% sequence identity to the Escherichia coli Lon protein, an ATP-dependent protease. Upstream sequences preceding the lonS coding region resemble a heat shock promoter, and the homology extends to sequences flanking lonS. The gene order appears to be clpX lonS hupB, like the organization of the E. coli locus. V. parahaemolyticus lonS complemented E. coli lon mutants to restore UV resistance and capsular polysaccharide regulation to that of the wild type. Vibrio lonS mutants were UV sensitive. In addition, when grown in liquid and examined in a light microscope, lonS mutant cells were extremely long and thus resembled swarmer cells harvested from a surface.
Collapse
Affiliation(s)
- B J Stewart
- Department of Microbiology, The University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
45
|
Abstract
Proteolysis in Escherichia coli serves to rid the cell of abnormal and misfolded proteins and to limit the time and amounts of availability of critical regulatory proteins. Most intracellular proteolysis is initiated by energy-dependent proteases, including Lon, ClpXP, and HflB; HflB is the only essential E. coli protease. The ATPase domains of these proteases mediate substrate recognition. Recognition elements in target are not well defined, but are probably not specific amino acid sequences. Naturally unstable protein substrates include the regulatory sigma factors for heat shock and stationary phase gene expression, sigma 32 and RpoS. Other cellular proteins serve as environmental sensors that modulate the availability of the unstable proteins to the proteases, resulting in rapid changes in sigma factor levels and therefore in gene transcription. Many of the specific proteases found in E. coli are well-conserved in both prokaryotes and eukaryotes, and serve critical functions in developmental systems.
Collapse
Affiliation(s)
- S Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892-4255, USA.
| |
Collapse
|
46
|
Tojo N, Sanmiya K, Sugawara H, Inouye S, Komano T. Integration of bacteriophage Mx8 into the Myxococcus xanthus chromosome causes a structural alteration at the C-terminal region of the IntP protein. J Bacteriol 1996; 178:4004-11. [PMID: 8763924 PMCID: PMC178153 DOI: 10.1128/jb.178.14.4004-4011.1996] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mx8 is a generalized transducing phage that infects Myxococcus xanthus cells. This phage is lysogenized in M. xanthus cells by the integration of its DNA into the host chromosome through site-specific recombination. Here, we characterize the mechanism of Mx8 integration into the M. xanthus chromosome. The Mx8 attachment site, attP, the M. xanthus chromosome attachment site, attB, and two phage-host junctions, attL and attR, were cloned and sequenced. Sequence alignments of attP, attB, attL, and attR sites revealed a 29-bp segment that is absolutely conserved in all four sequences. The intP gene of Mx8 was found to encode a basic protein that has 533 amino acids and that carries two domains conserved in site-specific recombinases of the integrase family. Surprisingly, the attP site was located within the coding sequence of the intP gene. Hence, the integration of Mx8 into the M. xanthus chromosome results in the conversion of the intP gene to a new gene designated intR. As a result of this conversion, the 112-residue C-terminal sequence of the intP protein is replaced with a 13-residue sequence. A 3-base deletion within the C-terminal region had no effect on Mx8 integration into the chromosome, while a frameshift mutation with the addition of 1 base at the same site blocked integration activity. This result indicates that the C-terminal region is required for the enzymatic function of the intP product.
Collapse
Affiliation(s)
- N Tojo
- Department of Biology, Tokyo Metropolitan University, Japan
| | | | | | | | | |
Collapse
|
47
|
Wright R, Stephens C, Zweiger G, Shapiro L, Alley MR. Caulobacter Lon protease has a critical role in cell-cycle control of DNA methylation. Genes Dev 1996; 10:1532-42. [PMID: 8666236 DOI: 10.1101/gad.10.12.1532] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
CcrM, an adenine DNA methyltransferase, is essential for viability in Caulobacter crescentus. The CcrM protein is present only in the predivisional stage of the cell cycle, resulting in cell-cycle-dependent variation of the DNA methylation state of the chromosome. The availability of CcrM is controlled in two ways: (1) the ccrM gene is transcribed only in the predivisional. cell, and (2) the CcrM protein is rapidly degraded prior to cell division. We demonstrate here that CcrM is an important target of the Lon protease pathway in C. crescentus. In a lon null mutant, ccrM transcription is still temporally regulated, but the CcrM protein is present throughout the cell cycle because of a dramatic increase in its stability that results in a fully methylated chromosome throughout the cell cycle. Because the Lon protease is present throughout the cell cycle, it is likely that the level of CcrM in the cell is controlled by a dynamic balance between temporally varied transcription and constitutive degradation. We have shown previously that restriction of CcrM to the C. crescentus predivisional cell is essential for normal morphogenesis and progression through the cell cycle. Comparison of the lon null mutant strain with a strain whose DNA remains fully methylated as a result of constitutive expression of ccrM suggests that the effect of Lon on DNA methylation contributes to several developmental defects observed in the lon mutant. These defects include a frequent failure to complete cell division and loss of precise cell-cycle control of initiation of DNA replication. Other developmental abnormalities exhibited by the lon null mutant, such as the formation of abnormally long stalks, appear to be unrelated to altered chromosome methylation state. The Lon protease thus exhibits pleiotropic effects in C. crescentus growth and development.
Collapse
Affiliation(s)
- R Wright
- Department of Developmental Biology, Beckman Center for Molecular and Genetic Medicine, Stanford University, California 94305-5427, USA
| | | | | | | | | |
Collapse
|
48
|
Mori E, Fulchieri M, Indorato C, Fani R, Bazzicalupo M. Cloning, nucleotide sequencing, and expression of the Azospirillum brasilense lon gene: involvement in iron uptake. J Bacteriol 1996; 178:3440-6. [PMID: 8655539 PMCID: PMC178111 DOI: 10.1128/jb.178.12.3440-3446.1996] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The lon gene of Escherichia coli encodes the lon (La) protease, which is associated with cellular protein degradation. A lon gene homolog from Azospirillum brasilense, a nitrogen-fixing soil bacterium which lives in association with the roots of cereal grasses, was cloned and characterized. The nucleotide sequence of the A. brasilense lon gene was determined. It contains an open reading frame that encodes a protein of 810 amino acids with a predicted molecular mass of about 90 kDa. The deduced amino acid sequence showed a high level of homology with the sequences of all the known lon gene products. An open reading frame homologous to the E. coli clpX gene was found in front of the lon gene. Transcriptional analysis showed that the lon gene of A. brasilense is induced by heat shock and that the mRNA is monocistronic. An A. brasilense mutant, with Tn5 inserted in the lon gene, was shown to be defective in iron uptake and failed to express two membrane proteins that are induced by iron starvation in the parental strain.
Collapse
Affiliation(s)
- E Mori
- Department of Animal Biology and Genetics, University of Florence, Italy
| | | | | | | | | |
Collapse
|
49
|
O'Connor KA, McBride MJ, West M, Yu H, Trinh L, Yuan K, Lee T, Zusman DR. Photolyase of Myxococcus xanthus, a Gram-negative eubacterium, is more similar to photolyases found in Archaea and "higher" eukaryotes than to photolyases of other eubacteria. J Biol Chem 1996; 271:6252-9. [PMID: 8626418 DOI: 10.1074/jbc.271.11.6252] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We report the identification of the gene encoding a DNA photolyase (phrA) from the Gram-negative eubacterium Myxococcus xanthus. The deduced amino acid sequence of M. xanthus photolyase indicates that the protein contains 401 amino acids (Mr 45,071). By comparison of the amino acid and DNA sequences with those of other known photolyases, it has been found that it is more similar to the deduced amino acid sequences of the photolyases of "higher" eukaryotes than to the photolyases of other eubacteria. Recombinant plasmids carrying M. xanthus phrA rescue the photoreactivation activity of an irradiated strain of Escherichia coli with a deletion in phrA. This rescue is light-dependent.
Collapse
Affiliation(s)
- K A O'Connor
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- M Dworkin
- Department of Microbiology, University of Minnesota, Minneapolis 55455-0312, USA.
| |
Collapse
|