1
|
English J, Newberry F, Hoyles L, Patrick S, Stewart L. Genomic analyses of Bacteroides fragilis: subdivisions I and II represent distinct species. J Med Microbiol 2023; 72. [PMID: 37910167 DOI: 10.1099/jmm.0.001768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Introduction. Bacteroides fragilis is a Gram-negative anaerobe that is a member of the human gastrointestinal microbiota and is frequently found as an extra-intestinal opportunistic pathogen. B. fragilis comprises two distinct groups - divisions I and II - characterized by the presence/absence of genes [cepA and ccrA (cfiA), respectively] that confer resistance to β-lactam antibiotics by either serine or metallo-β-lactamase production. No large-scale analyses of publicly available B. fragilis sequence data have been undertaken, and the resistome of the species remains poorly defined.Hypothesis/Gap Statement. Reclassification of divisions I and II B. fragilis as two distinct species has been proposed but additional evidence is required.Aims. To investigate the genomic diversity of GenBank B. fragilis genomes and establish the prevalence of division I and II strains among publicly available B. fragilis genomes, and to generate further evidence to demonstrate that B. fragilis division I and II strains represent distinct genomospecies.Methodology. High-quality (n=377) genomes listed as B. fragilis in GenBank were included in pangenome and functional analyses. Genome data were also subject to resistome profiling using The Comprehensive Antibiotic Resistance Database.Results. Average nucleotide identity and phylogenetic analyses showed B. fragilis divisions I and II represent distinct species: B. fragilis sensu stricto (n=275 genomes) and B. fragilis A (n=102 genomes; Genome Taxonomy Database designation), respectively. Exploration of the pangenome of B. fragilis sensu stricto and B. fragilis A revealed separation of the two species at the core and accessory gene levels.Conclusion. The findings indicate that B. fragilis A, previously referred to as division II B. fragilis, is an individual species and distinct from B. fragilis sensu stricto. The B. fragilis pangenome analysis supported previous genomic, phylogenetic and resistome screening analyses collectively reinforcing that divisions I and II are two separate species. In addition, it was confirmed that differences in the accessory genes of B. fragilis divisions I and II are primarily associated with carbohydrate metabolism and suggest that differences other than antimicrobial resistance could also be used to distinguish between these two species.
Collapse
Affiliation(s)
- Jamie English
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, UK
| | - Fiona Newberry
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Lesley Hoyles
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Sheila Patrick
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, UK
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Linda Stewart
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, UK
| |
Collapse
|
2
|
Fan Y, Wang S, Song M, Zhou L, Liu C, Yang Y, Yu S, Yang M. Specific biomarker mining and rapid detection of Burkholderia cepacia complex by recombinase polymerase amplification. Front Microbiol 2023; 14:1270760. [PMID: 37779692 PMCID: PMC10539473 DOI: 10.3389/fmicb.2023.1270760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Objective To mine specific proteins and their protein-coding genes as suitable molecular biomarkers for the Burkholderia cepacia Complex (BCC) bacteria detection based on mega analysis of microbial proteomic and genomic data comparisons and to develop a real-time recombinase polymerase amplification (rt-RPA) assay for rapid isothermal screening for pharmaceutical and personal care products. Methods We constructed an automatic screening framework based on Python to compare the microbial proteomes of 78 BCC strains and 263 non-BCC strains to identify BCC-specific protein sequences. In addition, the specific protein-coding gene and its core DNA sequence were validated in silico with a self-built genome database containing 158 thousand bacteria. The appropriate methodology for BCC detection using rt-RPA was evaluated by 58 strains in pure culture and 33 batches of artificially contaminated pharmaceutical and personal care products. Results We identified the protein SecY and its protein-coding gene secY through the automatic comparison framework. The virtual evaluation of the conserved region of the secY gene showed more than 99.8% specificity from the genome database, and it can distinguish all known BCC species from other bacteria by phylogenetic analysis. Furthermore, the detection limit of the rt-RPA assay targeting the secY gene was 5.6 × 102 CFU of BCC bacteria in pure culture or 1.2 pg of BCC bacteria genomic DNA within 30 min. It was validated to detect <1 CFU/portion of BCC bacteria from artificially contaminated samples after a pre-enrichment process. The relative trueness and sensitivity of the rt-RPA assay were 100% in practice compared to the reference methods. Conclusion The automatic comparison framework for molecular biomarker mining is straightforward, universal, applicable, and efficient. Based on recognizing the BCC-specific protein SecY and its gene, we successfully established the rt-RPA assay for rapid detection in pharmaceutical and personal care products.
Collapse
Affiliation(s)
- Yiling Fan
- China State Institute of Pharmaceutical Industry, Shanghai, China
- National Medical Products Administration Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Quality Inspection and Testing Center for Innovative Biological Products, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Shujuan Wang
- National Medical Products Administration Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Quality Inspection and Testing Center for Innovative Biological Products, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Minghui Song
- National Medical Products Administration Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Quality Inspection and Testing Center for Innovative Biological Products, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Liangliang Zhou
- College of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China
| | - Chengzhi Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Hangzhou Digital-Micro Biotech Co., Ltd., Hangzhou, China
| | - Yan Yang
- National Medical Products Administration Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Quality Inspection and Testing Center for Innovative Biological Products, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Shuijing Yu
- College of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China
| | - Meicheng Yang
- China State Institute of Pharmaceutical Industry, Shanghai, China
- Shanghai Food and Drug Packaging Material Control Center, Shanghai, China
| |
Collapse
|
3
|
Barrera-Galicia GC, Peniche-Pavía HA, Peña-Cabriales JJ, Covarrubias SA, Vera-Núñez JA, Délano-Frier JP. Metabolic Footprints of Burkholderia Sensu Lato Rhizosphere Bacteria Active against Maize Fusarium Pathogens. Microorganisms 2021; 9:microorganisms9102061. [PMID: 34683382 PMCID: PMC8538949 DOI: 10.3390/microorganisms9102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Consistent with their reported abundance in soils, several Burkholderia sensu lato strains were isolated from the rhizosphere of maize plants cultivated at different sites in central México. Comparative analysis of their 16S rRNA gene sequences permitted their separation into three distinctive clades, which were further subdivided into six other clusters by their close resemblance to (1) Trinickia dinghuensis; (2) Paraburkholderia kirstenboschensis, P. graminis, P. dilworthii and P. rhynchosiae; (3) B. gladioli; (4) B. arboris; (5) B. contaminans, or (6) B. metallica representative species. Direct confrontation assays revealed that these strains inhibited the growth of pathogenic Fusarium oxysporum f. sp. radicis-lycopersici, and F. verticillioides within a roughly 3-55% inhibition range. The use of a DIESI-based non-targeted mass spectroscopy experimental strategy further indicated that this method is an option for rapid determination of the pathogen inhibitory capacity of Burkholderia sensu lato strains based solely on the analysis of their exometabolome. Furthermore, it showed that the highest anti-fungal activity observed in B. contaminans and B. arboris was associated with a distinctive abundance of certain m/z ions, some of which were identified as components of the ornbactin and pyochelin siderophores. These results highlight the chemical diversity of Burkholderia sensu lato bacteria and suggest that their capacity to inhibit the Fusarium-related infection of maize in suppressive soils is associated with siderophore synthesis.
Collapse
Affiliation(s)
- Guadalupe C. Barrera-Galicia
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico; (G.C.B.-G.); (H.A.P.-P.); (J.J.P.-C.)
| | - Héctor A. Peniche-Pavía
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico; (G.C.B.-G.); (H.A.P.-P.); (J.J.P.-C.)
| | - Juan José Peña-Cabriales
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico; (G.C.B.-G.); (H.A.P.-P.); (J.J.P.-C.)
| | - Sergio A. Covarrubias
- Área de Ciencias de la Salud, Ciudad Universitaria Campus Siglo XXI, Universidad Autónoma de Zacatecas, Zacatecas 98160, Zacatecas, Mexico; (S.A.C.); (J.A.V.-N.)
| | - José A. Vera-Núñez
- Área de Ciencias de la Salud, Ciudad Universitaria Campus Siglo XXI, Universidad Autónoma de Zacatecas, Zacatecas 98160, Zacatecas, Mexico; (S.A.C.); (J.A.V.-N.)
| | - John P. Délano-Frier
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico; (G.C.B.-G.); (H.A.P.-P.); (J.J.P.-C.)
- Correspondence: ; Tel.: +52-462-623-9600
| |
Collapse
|
4
|
Fan HF, Su S. The regulation mechanism of the C-terminus of RecA proteins during DNA strand-exchange process. Biophys J 2021; 120:3166-3179. [PMID: 34197804 DOI: 10.1016/j.bpj.2021.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/21/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
The C-terminus of Escherichia coli RecA protein can affect the DNA binding affinity, interact with accessory proteins, and regulate the RecA activity. A substantial upward shift in the pH-reaction profile of RecA-mediated DNA strand-exchange reactions was observed for C-terminal-truncated E. coli ΔC17 RecA, Deinococcus radiodurans RecA, and Deinococcus ficus RecA. Here, the process of RecA-mediated strand exchange from the beginning to the end was investigated with florescence resonance energy transfer and tethered particle motion experiments to determine the detailed regulation mechanism. RecA proteins with a shorter C-terminus possess more stable nuclei, higher DNA binding affinities, and lower protonation requirements for the formation of nucleoprotein filaments. Moreover, more stable synaptic complexes in the homologous sequence searching process were also observed for RecA proteins with a shorter C-terminus. Our results suggest that the C-terminus of RecA proteins regulates not only the formation of RecA nucleoprotein filaments but also the entrance of secondary DNA into RecA nucleoprotein filaments.
Collapse
Affiliation(s)
- Hsiu-Fang Fan
- Institute of Medical Science and Technology, Kaohsiung, Taiwan; Department of Chemistry, Kaohsiung, Taiwan; Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Shu Su
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
5
|
Jin Y, Zhou J, Zhou J, Hu M, Zhang Q, Kong N, Ren H, Liang L, Yue J. Genome-based classification of Burkholderia cepacia complex provides new insight into its taxonomic status. Biol Direct 2020; 15:6. [PMID: 32131884 PMCID: PMC7057466 DOI: 10.1186/s13062-020-0258-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background Accurate classification of different Burkholderia cepacia complex (BCC) species is essential for therapy, prognosis assessment and research. The taxonomic status of BCC remains problematic and an improved knowledge about the classification of BCC is in particular needed. Methods We compared phylogenetic trees of BCC based on 16S rRNA, recA, hisA and MLSA (multilocus sequence analysis). Using the available whole genome sequences of BCC, we inferred a species tree based on estimated single-copy orthologous genes and demarcated species of BCC using dDDH/ANI clustering. Results We showed that 16S rRNA, recA, hisA and MLSA have limited resolutions in the taxonomic study of closely related bacteria such as BCC. Our estimated species tree and dDDH/ANI clustering clearly separated 116 BCC strains into 36 clusters. With the appropriate reclassification of misidentified strains, these clusters corresponded to 22 known species as well as 14 putative novel species. Conclusions This is the first large-scale and systematic study of the taxonomic status of the BCC and could contribute to further insights into BCC taxonomy. Our study suggested that conjunctive use of core phylogeny based on single-copy orthologous genes, as well as pangenome-based dDDH/ANI clustering would provide a preferable framework for demarcating closely related species. Reviewer This article was reviewed by Dr. Xianwen Ren.
Collapse
Affiliation(s)
- Yuan Jin
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China.,State Key Laboratory of Pathogen and Biosecurity, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China
| | - Jianglin Zhou
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China
| | - Jing Zhou
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China
| | - Mingda Hu
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China
| | - Qi Zhang
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China
| | - Na Kong
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China.,Anhui University, Hefei, 230039, Anhui, China
| | - Hongguang Ren
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China. .,State Key Laboratory of Pathogen and Biosecurity, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China.
| | - Long Liang
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China. .,State Key Laboratory of Pathogen and Biosecurity, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China. .,Anhui University, Hefei, 230039, Anhui, China.
| | - Junjie Yue
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China. .,State Key Laboratory of Pathogen and Biosecurity, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China.
| |
Collapse
|
6
|
Prasad D, Muniyappa K. The Anionic Phospholipids in the Plasma Membrane Play an Important Role in Regulating the Biochemical Properties and Biological Functions of RecA Proteins. Biochemistry 2019; 58:1295-1310. [PMID: 30726069 DOI: 10.1021/acs.biochem.8b01147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli RecA (EcRecA) forms discrete foci that cluster at cell poles during normal growth, which are redistributed along the filamented cell axis upon induction of the SOS response. The plasma membrane is thought to act as a scaffold for EcRecA foci, thereby playing an important role in RecA-dependent homologous recombination. In addition, in vivo and in vitro studies demonstrate that EcRecA binds strongly to the anionic phospholipids. However, there have been almost no data on the association of mycobacterial RecA proteins with the plasma membrane and the effects of membrane components on their function. Here, we show that mycobacterial RecA proteins specifically interact with phosphatidylinositol and cardiolipin among other anionic phospholipids; however, they had no effect on the ability of RecA proteins to bind single-stranded DNA. Interestingly, phosphatidylinositol and cardiolipin impede the DNA-dependent ATPase activity of RecA proteins, although ATP binding is not affected. Furthermore, the ability of RecA proteins to promote DNA strand exchange is not affected by anionic phospholipids. Strikingly, anionic phospholipids suppress the RecA-stimulated autocatalytic cleavage of the LexA repressor. The Mycobacterium smegmatis RecA foci localize to the cell poles during normal growth, and these structures disassemble and reassemble into several foci along the cell after the induction of DNA damage. Taken together, these data support the notion that the interaction of RecA with cardiolipin and phosphatidylinositol, the major anionic phospholipids of the mycobacterial plasma membrane, may be physiologically relevant, as they provide a scaffold for RecA storage and may regulate recombinational DNA repair and the SOS response.
Collapse
Affiliation(s)
- Deepika Prasad
- Department of Biochemistry , Indian Institute of Science , Bengaluru 560012 , India
| | - K Muniyappa
- Department of Biochemistry , Indian Institute of Science , Bengaluru 560012 , India
| |
Collapse
|
7
|
Furlan JPR, Pitondo-Silva A, Braz VS, Gallo IFL, Stehling EG. Evaluation of different molecular and phenotypic methods for identification of environmental Burkholderia cepacia complex. World J Microbiol Biotechnol 2019; 35:39. [PMID: 30739255 DOI: 10.1007/s11274-019-2614-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/05/2019] [Indexed: 12/01/2022]
Abstract
The correct identification of different genera and bacterial species is essential, especially when these bacteria cause infections and appropriate therapies need to be chosen. Bacteria belonging to the Burkholderia cepacia complex are considered important opportunistic pathogens, causing different types of infections in immunocompromised, principally in patients with cystic fibrosis. Twenty-one isolates were obtained from different soil samples and identified by sequencing of 16S rRNA, 23S rRNA, recA gene, MLST and by VITEK 2 and MALDI-TOF MS systems. Then, statistical analyses were performed. VITEK 2 and MALDI-TOF MS systems showed different bacterial genera. Sequencing of the 16S rRNA, 23S rRNA gene and amplification of recA gene showed that all the isolates belong to the B. cepacia complex. Sequencing of the recA gene showed a predominance of B. cenocepacia. The PCR of the recA gene showed a high specificity when it is necessary to identify the bacteria belonging to the B. cepacia complex in comparison with 16S and 23S rRNA genes sequencing. MLST analyzes showed a diversity of STs, which have not yet been correlated to the species. Phenotypic identification was not suitable for the identification of these pathogens since in many cases different genera have been reported, including identification by using MALDI-TOF MS.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - André Pitondo-Silva
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.,School of Dentistry, University of Ribeirao Preto (UNAERP), Ribeirão Preto, Brazil
| | - Vânia Santos Braz
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Inara Fernanda Lage Gallo
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Eliana Guedes Stehling
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
8
|
Sobrinho Santos EM, Almeida AC, Santos HO, Cangussu ASR, Almeida DA, Costa KS. Leader gene of Corynebacterium pseudotuberculosis may be useful in vaccines against caseous lymphadenitis of goats: a bioinformatics approach. J Vet Med Sci 2018; 80:1317-1324. [PMID: 29937460 PMCID: PMC6115270 DOI: 10.1292/jvms.16-0581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We conducted an in silico analysis to search for important genes in the
pathogenesis of Caseous Lymphadenitis (CL), with prospects for use in formulating
effective vaccines against this disease. For this, we performed a survey of proteins
expressed by Corynebacterium pseudotuberculosis, using protein sequences
collected from the NCBI GenPept database and the keywords “caseous lymphadenitis” and
“Corynebacterium pseudotuberculosis” and “goats”. A network was
developed using the STRING 10 database, with a confidence score of 0.900. For every gene
interaction identified, we summed the interaction score of each gene, generating a
combined association score to obtain a single score named weighted number of links (WNL).
Genes with the highest WNL were named “leader genes”. Ontological analysis was extracted
from the STRING database through Kyoto Encyclopedia of Genes and Genomes (KEGG) database.
A search in the GenPept database revealed 2,124 proteins. By using and plotting with
STRING 10, we then developed an in silico network model comprised of 1,243 genes/proteins
interconnecting through 3,330 interactions. The highest WNL values were identified in the
rplB gene, which was named the leader gene. Our ontological analysis
shows that this protein acts effectively mainly on Metabolic pathways and Biosynthesis of
secondary metabolites. In conclusion, the in silico analyses showed that
rplB has good potential for vaccine development. However, functional
assays are needed to make sure that this protein can potentially induce both humoral and
cellular immune responses against C. pseudotuberculosis in goats.
Collapse
Affiliation(s)
- Eliane Macedo Sobrinho Santos
- Department of Dentistry, Universidade Estadual de Montes Claros, Minas Gerais, 39400-000, Brazil.,Instituto Federal do Norte de Minas Gerais, Campus Araçuaí, Minas Gerais, 39600-000, Brazil
| | | | | | | | | | - Kattyanne Souza Costa
- Research and Development Laboratory of Vallée S.A., Montes Claros, Minas Gerais, 39400-000, Brazil
| |
Collapse
|
9
|
Pande A, Pandey P, Mehra S, Singh M, Kaushik S. Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize. J Genet Eng Biotechnol 2017; 15:379-391. [PMID: 30647676 PMCID: PMC6296604 DOI: 10.1016/j.jgeb.2017.06.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/10/2017] [Accepted: 06/10/2017] [Indexed: 11/18/2022]
Abstract
Phosphate solubilizing bacteria (PSB) has ability to convert insoluble form of phosphorous to an available form. Applications of PSB as inoculants increase the phosphorus uptake by plant in the agriculture field. In this study, isolation and identification of PSB were carried out in Indian agriculture field (Nainital region, Uttarakhand). A total of 8 phosphate solubilizing bacterial colonies were isolated on the Pikovskaya’s (PKV) agar medium, containing insoluble tricalcium phosphate (TCP). The colonies showed clear halo zones around the bacterial growth were considered as phosphate solubilizers. Out of 8 bacterial isolates, 3 isolates showed high phosphate solubilization index (PSI) ranged from 4.88 ± 0.69 to 4.48 ± 0.30, lower pH ranging 3.08 ± 0.08 to 3.82 ± 0.12 and high phosphate solubilization varied from 305.49 ± 10 μg/ml to 277.72 ± 1.45 μg/ml, were selected for further characterization. Based on the 16 S rRNA gene sequence analysis A4 isolate and H6 isolate were closely related to Alcaligenes aquatilis (99%), and C1 isolate was closely related to Burkholderia cepacia (99%). In addition, pot examination also showed the greatest efficiency in promotion of maize growth compared to uninoculated plant. Isolated PSB were able to produce different organic acids (such as gluconic acids, formic acid, and citric acid) in the culture supernatant and may consider as the principle mechanism for phosphate solubilization. This study clearly indicates that A4, C1 and H6 isolates may use as a biofertilizers in ecological agricultural systems instead of synthetic chemicals and may help to sustain environmental health and soil productivity.
Collapse
Affiliation(s)
- Amit Pande
- Shri Venkateshwara University, Gajraula, Amroha 244236, India
| | | | - Simmi Mehra
- Medanta The Medicity, Sec-38, Gurgaon, Haryana 122001, India
| | | | - Suresh Kaushik
- Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
10
|
Das S, Dash HR, Mangwani N, Chakraborty J, Kumari S. Understanding molecular identification and polyphasic taxonomic approaches for genetic relatedness and phylogenetic relationships of microorganisms. J Microbiol Methods 2014; 103:80-100. [PMID: 24886836 DOI: 10.1016/j.mimet.2014.05.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 05/22/2014] [Accepted: 05/22/2014] [Indexed: 12/29/2022]
Abstract
The major proportion of earth's biological diversity is inhabited by microorganisms and they play a useful role in diversified environments. However, taxonomy of microorganisms is progressing at a snail's pace, thus less than 1% of the microbial population has been identified so far. The major problem associated with this is due to a lack of uniform, reliable, advanced, and common to all practices for microbial identification and systematic studies. However, recent advances have developed many useful techniques taking into account the house-keeping genes as well as targeting other gene catalogues (16S rRNA, rpoA, rpoB, gyrA, gyrB etc. in case of bacteria and 26S, 28S, β-tubulin gene in case of fungi). Some uncultivable approaches using much advanced techniques like flow cytometry and gel based techniques have also been used to decipher microbial diversity. However, all these techniques have their corresponding pros and cons. In this regard, a polyphasic taxonomic approach is advantageous because it exploits simultaneously both conventional as well as molecular identification techniques. In this review, certain aspects of the merits and limitations of different methods for molecular identification and systematics of microorganisms have been discussed. The major advantages of the polyphasic approach have also been described taking into account certain groups of bacteria as case studies to arrive at a consensus approach to microbial identification.
Collapse
Affiliation(s)
- Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| | - Hirak R Dash
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Neelam Mangwani
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Jaya Chakraborty
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Supriya Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| |
Collapse
|
11
|
Stefanska A, Kaczorowska AK, Plotka M, Fridjonsson OH, Hreggvidsson GO, Hjorleifsdottir S, Kristjansson JK, Dabrowski S, Kaczorowski T. Discovery and characterization of RecA protein of thermophilic bacterium Thermus thermophilus MAT72 phage Tt72 that increases specificity of a PCR-based DNA amplification. J Biotechnol 2014; 182-183:1-10. [PMID: 24786823 DOI: 10.1016/j.jbiotec.2014.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/21/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
Abstract
The recA gene of newly discovered Thermus thermophilus MAT72 phage Tt72 (Myoviridae) was cloned and overexpressed in Escherichia coli. The 1020-bp gene codes for a 339-amino-acid polypeptide with an Mr of 38,155 which shows 38.7% positional identity to the E. coli RecA protein. When expressed in E. coli, the Tt72 recA gene did not confer the ability to complement the ultraviolet light (254nm) sensitivity of an E. coli recA mutant. Tt72 RecA protein has been purified with good yield to catalytic and electrophoretic homogeneity using a three-step chromatography procedure. Biochemical characterization indicated that the protein can pair and promote ATP-dependent strand exchange reaction resulting in formation of a heteroduplex DNA at 60°C under conditions otherwise optimal for E. coli RecA. When the Tt72 RecA protein was included in a standard PCR-based DNA amplification reaction, the specificity of the PCR assays was significantly improved by eliminating non-specific products.
Collapse
Affiliation(s)
- Aleksandra Stefanska
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Magdalena Plotka
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | | | - Gudmundur O Hreggvidsson
- Matis ohf, Vinlandsleid 12, Reykjavik 113, Iceland; Faculty of Life and Environmental Sciences, University of Iceland, Sæmundargötu 2, Reykjavik 101, Iceland.
| | | | | | | | - Tadeusz Kaczorowski
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| |
Collapse
|
12
|
Cuong ND, Nicolaisen MH, Sørensen J, Olsson S. Hyphae-colonizing Burkholderia sp.--a new source of biological control agents against sheath blight disease (Rhizoctonia solani AG1-IA) in rice. MICROBIAL ECOLOGY 2011; 62:425-434. [PMID: 21365233 DOI: 10.1007/s00248-011-9823-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 02/09/2011] [Indexed: 05/30/2023]
Abstract
Sheath blight infection of rice by Rhizoctonia solani Kühn AG1-IA often results in serious yield losses in intensive rice cultivation. Biological control agents (BCAs) have previously been isolated but poor efficiency is often observed when applied under field conditions. This study compares a traditional dual-culture plate assay and a new water-surface microcosm assay for isolation of antagonistic soil bacteria. In the water-surface microcosm assay, floating pathogen mycelium is used as a source for isolation of hyphae-colonizing soil bacteria (HCSB), which are subsequently screened for antagonism. Ten antagonistic soil bacteria (ASB) isolated from a variety of Vietnamese rice soils using dual-culture plates were found to be affiliated with Bacillus based on 16S rRNA gene sequencing. However, all the ASB isolates grew poorly and showed no antagonism in the water-surface microcosm assay. In contrast, 11 (out of 13) HCSB isolates affiliated with Burkholderia sp. all grew well by colonizing the hyphae in the microcosms. Two of the Burkholderia sp. isolates, assigned to B. vietnamiensis based on recA gene sequencing, strongly inhibited fungal growth in both the dual-culture and water-surface microcosm assays; HCSB isolates affiliated to other species or species groups showed limited or no inhibition of R. solani in the microcosms. Our results suggest that HCSB obtained from floating pathogen hyphae can be a new source for isolation of efficient BCAs against R. solani, as the isolation assay mimics the natural habitat for fungal-bacterial interaction in the fields.
Collapse
Affiliation(s)
- Nguyen Duc Cuong
- Section of Genetics and Microbiology, Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
13
|
Phylogeny and molecular signatures for the phylum Thermotogae and its subgroups. Antonie van Leeuwenhoek 2011; 100:1-34. [DOI: 10.1007/s10482-011-9576-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 03/11/2011] [Indexed: 11/25/2022]
|
14
|
Noisangiam R, Nuntagij A, Pongsilp N, Boonkerd N, Denduangboripant J, Ronson C, Teaumroong N. Heavy metal tolerant Metalliresistens boonkerdii gen. nov., sp. nov., a new genus in the family Bradyrhizobiaceae isolated from soil in Thailand. Syst Appl Microbiol 2010; 33:374-82. [PMID: 20663625 DOI: 10.1016/j.syapm.2010.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Revised: 06/02/2010] [Accepted: 06/04/2010] [Indexed: 11/22/2022]
Abstract
Bacterial strains from inoculated soybean field soil in Thailand were directly isolated using Bradyrhizobium japonicum selective medium (BJSM), on the basis of Zn(2+) and Co(2+) resistance of B. japonicum and B. elkanii. The isolates were classified into symbiotic and non-symbiotic groups by inoculation assays and Southern hybridization of nod and nif genes. In this study, a nearly full-length 16S rRNA gene sequence showed that the non-symbiotic isolates were more closely related to members of Rhodopseudomonas and to a number of uncultured bacterial clones than to members of Bradyrhizobium. Therefore, a polyphasic study was performed to determine the taxonomic positions of four representatives of the non-symbiotic isolates. Multilocus phylogenetic analysis of individual genes and a combination of the 16S rRNA and three housekeeping genes (atpD, recA and glnII) supported the placement of the non-symbiotic isolates in a different genus. The ability of heavy metal resistance in conjunction with phenotypic analyses, including cellular fatty acid content and biochemical characteristics, showed that the non-symbiotic isolates were differentiated from the other related genera in the family Bradyrhizobiaceae. Therefore, the non-symbiotic isolates represented a novel genus and species, for which the name Metalliresistens boonkerdii gen. nov., sp. nov. is proposed. The type strain is NS23 (= NBRC 106595(T)=BCC 40155(T)).
Collapse
Affiliation(s)
- Rujirek Noisangiam
- Institute of Agricultural Technology, School of Biotechnology, Suranaree University of Technology, Nakhonrachasima 30000, Thailand
| | | | | | | | | | | | | |
Collapse
|
15
|
Mercier A, Bertolla F, Passelègue-Robe E, Simonet P. Influence of DNA conformation and role of comA and recA on natural transformation in Ralstonia solanacearum. Can J Microbiol 2009; 55:762-70. [PMID: 19767847 DOI: 10.1139/w09-025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Naturally competent bacteria such as the plant pathogen Ralstonia solanacearum are characterized by their ability to take up free DNA from their surroundings. In this study, we investigated the efficiency of various DNA types including chromosomal linear DNA and circular or linearized integrative and (or) replicative plasmids to naturally transform R. solanacearum. To study the respective regulatory role of DNA transport and maintenance in the definite acquisition of new DNA by bacteria, the natural transformation frequencies were compared with those obtained when the bacterial strain was transformed by electroporation. An additional round of electrotransformation and natural transformation was carried out with the same set of donor DNAs and with R. solanacearum disrupted mutants that were potentially affected in competence (comA gene) and recombination (recA gene) functions. Our results confirmed the critical role of the comA gene for natural transformation and that of recA for recombination and, more surprisingly, for the maintenance of an autonomous plasmid in the host cell. Finally, our results showed that homologous recombination of chromosomal linear DNA fragments taken up by natural transformation was the most efficient way for R. solanacearum to acquire new DNA, in agreement with previous data showing competence development and natural transformation between R. solanacearum cells in plant tissues.
Collapse
|
16
|
Dos Vultos T, Mestre O, Tonjum T, Gicquel B. DNA repair inMycobacterium tuberculosisrevisited. FEMS Microbiol Rev 2009; 33:471-87. [DOI: 10.1111/j.1574-6976.2009.00170.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
17
|
Persson OP, Pinhassi J, Riemann L, Marklund BI, Rhen M, Normark S, González JM, Hagström A. High abundance of virulence gene homologues in marine bacteria. Environ Microbiol 2009; 11:1348-57. [PMID: 19207573 PMCID: PMC2702493 DOI: 10.1111/j.1462-2920.2008.01861.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Marine bacteria can cause harm to single-celled and multicellular eukaryotes. However, relatively little is known about the underlying genetic basis for marine bacterial interactions with higher organisms. We examined whole-genome sequences from a large number of marine bacteria for the prevalence of homologues to virulence genes and pathogenicity islands known from bacteria that are pathogenic to terrestrial animals and plants. As many as 60 out of 119 genomes of marine bacteria, with no known association to infectious disease, harboured genes of virulence-associated types III, IV, V and VI protein secretion systems. Type III secretion was relatively uncommon, while type IV was widespread among alphaproteobacteria (particularly among roseobacters) and type VI was primarily found among gammaproteobacteria. Other examples included homologues of the Yersinia murine toxin and a phage-related ‘antifeeding’ island. Analysis of the Global Ocean Sampling metagenomic data indicated that virulence genes were present in up to 8% of the planktonic bacteria, with highest values in productive waters. From a marine ecology perspective, expression of these widely distributed genes would indicate that some bacteria infect or even consume live cells, that is, generate a previously unrecognized flow of organic matter and nutrients directly from eukaryotes to bacteria.
Collapse
Affiliation(s)
- Olof P Persson
- Marine Microbiology, Department of Natural Sciences, University of Kalmar, Kalmar, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Roca AI, Almada AE, Abajian AC. ProfileGrids as a new visual representation of large multiple sequence alignments: a case study of the RecA protein family. BMC Bioinformatics 2008; 9:554. [PMID: 19102758 PMCID: PMC2663765 DOI: 10.1186/1471-2105-9-554] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 12/22/2008] [Indexed: 01/12/2023] Open
Abstract
Background Multiple sequence alignments are a fundamental tool for the comparative analysis of proteins and nucleic acids. However, large data sets are no longer manageable for visualization and investigation using the traditional stacked sequence alignment representation. Results We introduce ProfileGrids that represent a multiple sequence alignment as a matrix color-coded according to the residue frequency occurring at each column position. JProfileGrid is a Java application for computing and analyzing ProfileGrids. A dynamic interaction with the alignment information is achieved by changing the ProfileGrid color scheme, by extracting sequence subsets at selected residues of interest, and by relating alignment information to residue physical properties. Conserved family motifs can be identified by the overlay of similarity plot calculations on a ProfileGrid. Figures suitable for publication can be generated from the saved spreadsheet output of the colored matrices as well as by the export of conservation information for use in the PyMOL molecular visualization program. We demonstrate the utility of ProfileGrids on 300 bacterial homologs of the RecA family – a universally conserved protein involved in DNA recombination and repair. Careful attention was paid to curating the collected RecA sequences since ProfileGrids allow the easy identification of rare residues in an alignment. We relate the RecA alignment sequence conservation to the following three topics: the recently identified DNA binding residues, the unexplored MAW motif, and a unique Bacillus subtilis RecA homolog sequence feature. Conclusion ProfileGrids allow large protein families to be visualized more effectively than the traditional stacked sequence alignment form. This new graphical representation facilitates the determination of the sequence conservation at residue positions of interest, enables the examination of structural patterns by using residue physical properties, and permits the display of rare sequence features within the context of an entire alignment. JProfileGrid is free for non-commercial use and is available from . Furthermore, we present a curated RecA protein collection that is more diverse than previous data sets; and, therefore, this RecA ProfileGrid is a rich source of information for nanoanatomy analysis.
Collapse
Affiliation(s)
- Alberto I Roca
- Department of Molecular Biology and Biochemistry, 560 Steinhaus Hall, University of California, Irvine, California 92697-3900, USA.
| | | | | |
Collapse
|
19
|
Abstract
Cells rely on diffusion to move metabolites and biomolecules. Diffusion is highly efficient but only over short distances. Although eukaryotic cells have broken free of diffusion-dictated constraints on cell size, most bacteria and archaea are forced to remain small. Exceptions to this rule are found among the bacterial symbionts of surgeonfish; Epulopiscium spp. are cigar-shaped cells that reach lengths in excess of 600 mum. A large Epulopiscium contains thousands of times more DNA than a bacterium such as Escherichia coli, but the composition of this DNA is not well understood. Here, we present evidence that Epulopiscium contains tens of thousands of copies of its genome. Using quantitative, single-cell PCR assays targeting single-copy genes, we have determined that copy number is positively correlated with Epulopiscium cell size. Although other bacteria are known to possess multiple genomes, polyploidy of the magnitude observed in Epulopiscium is unprecedented. The arrangement of genomes around the cell periphery may permit regional responses to local stimuli, thus allowing Epulopiscium to maintain its unusually large size. Surveys of the sequences of single-copy genes (dnaA, recA, and ftsZ) revealed genetic homogeneity within a cell consistent with only a small amount ( approximately 1%) of the parental DNA being transferred to the next generation. The results also suggest that the abundance of genome copies in Epulopiscium may allow for an unstable genetic feature, a long mononucleotide tract, in an essential gene. With the evolution of extreme polyploidy and large cell size, Epulopiscium has acquired some of the advantages of eukaryotic cells.
Collapse
|
20
|
Soria-Carrasco V, Valens-Vadell M, Peña A, Antón J, Amann R, Castresana J, Rosselló-Mora R. Phylogenetic position of Salinibacter ruber based on concatenated protein alignments. Syst Appl Microbiol 2007; 30:171-9. [PMID: 16971080 DOI: 10.1016/j.syapm.2006.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Indexed: 10/24/2022]
Abstract
A total of 22 genes from the genome of Salinibacter ruber strain M31 were selected in order to study the phylogenetic position of this species based on protein alignments. The selection of the genes was based on their essential function for the organism, dispersion within the genome, and sufficient informative length of the final alignment. For each gene, an individual phylogenetic analysis was performed and compared with the resulting tree based on the concatenation of the 22 genes, which rendered a single alignment of 10,757 homologous positions. In addition to the manually chosen genes, an automatically selected data set of 74 orthologous genes was used to reconstruct a tree based on 17,149 homologous positions. Although single genes supported different topologies, the tree topology of both concatenated data sets was shown to be identical to that previously observed based on small subunit (SSU) rRNA gene analysis, in which S. ruber was placed together with Bacteroidetes. In both concatenated data sets the bootstrap was very high, but an analysis with a gradually lower number of genes indicated that the bootstrap was greatly reduced with less than 12 genes. The results indicate that tree reconstructions based on concatenating large numbers of protein coding genes seem to produce tree topologies with similar resolution to that of the single 16S rRNA gene trees. For classification purposes, 16S rRNA gene analysis may remain as the most pragmatic approach to infer genealogic relationships.
Collapse
Affiliation(s)
- Victor Soria-Carrasco
- Department of Physiology and Molecular Biodiversity, Institute of Molecular Biology of Barcelona, CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Roux CM, Booth NJ, Bellaire BH, Gee JM, Roop RM, Kovach ME, Tsolis RM, Elzer PH, Ennis DG. RecA and RadA proteins of Brucella abortus do not perform overlapping protective DNA repair functions following oxidative burst. J Bacteriol 2006; 188:5187-95. [PMID: 16816190 PMCID: PMC1539968 DOI: 10.1128/jb.01994-05] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Very little is known about the role of DNA repair networks in Brucella abortus and its role in pathogenesis. We investigated the roles of RecA protein, DNA repair, and SOS regulation in B. abortus. While recA mutants in most bacterial species are hypersensitive to UV damage, surprisingly a B. abortus recA null mutant conferred only modest sensitivity. We considered the presence of a second RecA protein to account for this modest UV sensitivity. Analyses of the Brucella spp. genomes and our molecular studies documented the presence of only one recA gene, suggesting a RecA-independent repair process. Searches of the available Brucella genomes revealed some homology between RecA and RadA, a protein implicated in E. coli DNA repair. We considered the possibility that B. abortus RadA might be compensating for the loss of RecA by promoting similar repair activities. We present functional analyses that demonstrated that B. abortus RadA complements a radA defect in E. coli but could not act in place of the B. abortus RecA. We show that RecA but not RadA was required for survival in macrophages. We also discovered that recA was expressed at high constitutive levels, due to constitutive LexA cleavage by RecA, with little induction following DNA damage. Higher basal levels of RecA and its SOS-regulated gene products might protect against DNA damage experienced following the oxidative burst within macrophages.
Collapse
Affiliation(s)
- Christelle M Roux
- Department of Biology, P.O. Box 42451, University of Louisiana, Lafayette, LA 70504-2451, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
La Scola B, Gundi VAKB, Khamis A, Raoult D. Sequencing of the rpoB gene and flanking spacers for molecular identification of Acinetobacter species. J Clin Microbiol 2006; 44:827-32. [PMID: 16517861 PMCID: PMC1393131 DOI: 10.1128/jcm.44.3.827-832.2006] [Citation(s) in RCA: 274] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acinetobacter species are defined on the basis of several phenotypic characters, results of DNA-DNA homology, and more recently, similarities or dissimilarities in 16S rRNA gene sequences. However, the 16S rRNA gene is not polymorphic enough to clearly distinguish all Acinetobacter species. We used an RNA polymerase beta-subunit gene (rpoB)-based identification scheme for the delineation of species within the genus Acinetobacter, and towards that end, we determined the complete rpoB gene and flanking spacer (rplL-rpoB and rpoB-rpoC) sequences of the 17 reference strains of Acinetobacter species and 7 unnamed genomospecies. By using complete gene sequences (4,089 bp), we clearly separated all species and grouped them into different clusters. A phylogenetic tree constructed using these sequences was supported by bootstrap values higher than those obtained with 16S rRNA or the gyrB or recA gene. Four pairs of primers enabled us to amplify and sequence two highly polymorphic partial sequences (350 and 450 bp) of the rpoB gene. These and flanking spacers were designed and tested for rapid identification of the 17 reference strains of Acinetobacter species and 7 unnamed genomospecies. Each of these four variable sequences enabled us to delineate most species. Sequences of at least two polymorphic sequences should be used to distinguish Acinetobacter grimontii, Acinetobacter junii, Acinetobacter baylyi, and genomic species 9 from one another. Finally, 21 clinical isolates of Acinetobacter baumannii were tested for intraspecies relationships and assigned correctly to the same species by comparing the partial sequences of the rpoB gene and its flanking spacers.
Collapse
Affiliation(s)
- Bernard La Scola
- Unité des Rickettsies, CNRS UPRESA 6020, Faculté de Médecine, Université de la Méditerrannée, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
| | | | | | | |
Collapse
|
23
|
Iguchi A, Iyoda S, Terajima J, Watanabe H, Osawa R. Spontaneous recombination between homologous prophage regions causes large-scale inversions within the Escherichia coli O157:H7 chromosome. Gene 2006; 372:199-207. [PMID: 16516407 DOI: 10.1016/j.gene.2006.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 12/22/2005] [Accepted: 01/04/2006] [Indexed: 11/23/2022]
Abstract
It is known that XbaI-digested chromosomal DNAs of strains of Escherichia coli O157:H7 exhibit a wide variety in pulsed-field gel electrophoresis (PFGE) fragment patterns, which is used for epidemiological surveillance of this important pathogen. The variety in the restriction enzyme-digestion patterns suggests a wide genomic diversity, however, only a few studies have been conducted to investigate involvement of large-scale chromosomal rearrangements in development of the diversity. In this study, through rounds of subculturing E. coli O157:H7 strain EDL933, naturally occurring genome variation in the isolated derivatives was investigated. By comparing the PFGE patterns among clonally related derivatives, we found five types of large-scale inversions taking place within the chromosome. The five inversions found were across the replication axis and ranged from 250-kb to 1.4-Mb long, and all the corresponding recombination sites were associated with prophages or phage-like regions. Four inversions out of the five were resulted from recombination between pairs of lambda-like prophages disturbing the symmetry of the origin and terminus of the replication axis. These observations indicate that those prophage regions represent some of the hot spots for intrachromosomal recombination within the E. coli O157:H7 chromosome, where recombination between the prophage regions results not only in the large chromosomal inversions but might also in generation of chimeric phages.
Collapse
Affiliation(s)
- Atsushi Iguchi
- Department of Bioscience, Graduate School of Science and Technology, Kobe University, 1-1 Rokko-dai, Kobe, Hyogo, 657-8501, Japan
| | | | | | | | | |
Collapse
|
24
|
Spies M, Kowalczykowski SC. The RecA Binding Locus of RecBCD Is a General Domain for Recruitment of DNA Strand Exchange Proteins. Mol Cell 2006; 21:573-80. [PMID: 16483938 DOI: 10.1016/j.molcel.2006.01.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 12/08/2005] [Accepted: 01/03/2006] [Indexed: 10/25/2022]
Abstract
RecBCD enzyme facilitates loading of RecA protein onto ssDNA produced by its helicase/nuclease activity. This process is essential for RecBCD-mediated homologous recombination. Here, we establish that the C-terminal nuclease domain of the RecB subunit (RecBnuc) forms stable complexes with RecA. Interestingly, RecBnuc also interacts with and loads noncognate DNA strand exchange proteins. Interaction is with a conserved element of the RecA-fold, but because the binding to noncognate proteins decreases in a phylogenetically consistent way, species-specific interactions are also present. RecBnuc does not impede activities of RecA that are important to DNA strand exchange, consistent with its role in targeting of RecA. Modeling predicts the interaction interface for the RecA-RecBCD complex. Because a similar interface is involved in the binding of human Rad51 to the conserved BRC repeat of BRCA2 protein, the RecB-domain may be one of several structural domains that interact with and recruit DNA strand exchange proteins to DNA.
Collapse
Affiliation(s)
- Maria Spies
- Section of Microbiology, Center for Genetics and Development, University of California, Davis, Davis, California 95616, USA
| | | |
Collapse
|
25
|
Lee KB, Liu CT, Anzai Y, Kim H, Aono T, Oyaizu H. The hierarchical system of the 'Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 2005; 55:1907-1919. [PMID: 16166687 DOI: 10.1099/ijs.0.63663-0] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phylogenetic analysis of the class 'Alphaproteobacteria', including physiologically diverse species, was conducted by using small-subunit rRNA gene sequences. The 16S rRNA gene sequences of 261 species in the class 'Alphaproteobacteria' were obtained from GenBank/EMBL/DDBJ for constructing a phylogenetic tree by using maximum-likelihood analysis. In the resulting tree, members of the class 'Alphaproteobacteria' were subdivided into five major clusters, which were compared with the taxonomic outline of Bergey's Manual of Systematic Biology and the arb tree. Based on this phylogenetic tree, three novel families are proposed: Hyphomonadaceae fam. nov. to accommodate the bacterial genera Hyphomonas, Hirschia, Maricaulis and Oceanicaulis, Xanthobacteraceae fam. nov. to include the genera Xanthobacter, Azorhizobium, Ancylobacter, Labrys and Starkeya, and Erythrobacteraceae fam. nov. to accommodate the genera Erythrobacter, Porphyrobacter and Erythromicrobium. The phylogenetic tree of 16S rRNA gene sequences established in this study may provide a sound basis for future taxonomic reconstruction of the class 'Alphaproteobacteria'.
Collapse
Affiliation(s)
- Kyung-Bum Lee
- Department of Plant Biotechnology, Biotechnology Research Center, University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, Japan
| | - Chi-Te Liu
- Department of Plant Biotechnology, Biotechnology Research Center, University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, Japan
| | - Yojiro Anzai
- School of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Hongik Kim
- Department of Plant Biotechnology, Biotechnology Research Center, University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, Japan
| | - Toshihiro Aono
- Department of Plant Biotechnology, Biotechnology Research Center, University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Oyaizu
- Department of Plant Biotechnology, Biotechnology Research Center, University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
26
|
Pushker R, D'Auria G, Alba-Casado JC, Rodríguez-Valera F. Micro-Mar: a database for dynamic representation of marine microbial biodiversity. BMC Bioinformatics 2005; 6:222. [PMID: 16153293 PMCID: PMC1242345 DOI: 10.1186/1471-2105-6-222] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 09/09/2005] [Indexed: 11/19/2022] Open
Abstract
Background The cataloging of marine prokaryotic DNA sequences is a fundamental aspect for bioprospecting and also for the development of evolutionary and speciation models. However, large amount of DNA sequences used to quantify prokaryotic biodiversity requires proper tools for storing, managing and analyzing these data for research purposes. Description The Micro-Mar database has been created to collect DNA diversity information from marine prokaryotes for biogeographical and ecological analyses. The database currently includes 11874 sequences corresponding to high resolution taxonomic genes (16S rRNA, ITS and 23S rRNA) and many other genes including CDS of marine prokaryotes together with available biogeographical and ecological information. Conclusion The database aims to integrate molecular data and taxonomic affiliation with biogeographical and ecological features that will allow to have a dynamic representation of the marine microbial diversity embedded in a user friendly web interface. It is available online at .
Collapse
Affiliation(s)
- Ravindra Pushker
- Evolutionary Genomics Group, Universidad Miguel Hernández, Apartado 18, 03550 San Juan de Alicante, Alicante, Spain
| | - Giuseppe D'Auria
- Evolutionary Genomics Group, Universidad Miguel Hernández, Apartado 18, 03550 San Juan de Alicante, Alicante, Spain
| | - Jose Carlos Alba-Casado
- Evolutionary Genomics Group, Universidad Miguel Hernández, Apartado 18, 03550 San Juan de Alicante, Alicante, Spain
| | - Francisco Rodríguez-Valera
- Evolutionary Genomics Group, Universidad Miguel Hernández, Apartado 18, 03550 San Juan de Alicante, Alicante, Spain
| |
Collapse
|
27
|
Payne GW, Vandamme P, Morgan SH, Lipuma JJ, Coenye T, Weightman AJ, Jones TH, Mahenthiralingam E. Development of a recA gene-based identification approach for the entire Burkholderia genus. Appl Environ Microbiol 2005; 71:3917-27. [PMID: 16000805 PMCID: PMC1169057 DOI: 10.1128/aem.71.7.3917-3927.2005] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 02/04/2005] [Indexed: 11/20/2022] Open
Abstract
Burkholderia is an important bacterial genus containing species of ecological, biotechnological, and pathogenic interest. With their taxonomy undergoing constant revision and the phenotypic similarity of several species, correct identification of Burkholderia is difficult. A genetic scheme based on the recA gene has greatly enhanced the identification of Burkholderia cepacia complex species. However, the PCR developed for the latter approach was limited by its specificity for the complex. By alignment of existing and novel Burkholderia recA sequences, we designed new PCR primers and evaluated their specificity by testing a representative panel of Burkholderia strains. PCR followed by restriction fragment length polymorphism analysis of an 869-bp portion of the Burkholderia recA gene was not sufficiently discriminatory. Nucleotide sequencing followed by phylogenetic analysis of this recA fragment differentiated both putative and known Burkholderia species and all members of the B. cepacia complex. In addition, it enabled the design of a Burkholderia genus-specific recA PCR that produced a 385-bp amplicon, the sequence of which was also able to discriminate all species examined. Phylogenetic analysis of 188 novel recA genes enabled clarification of the taxonomic position of several important Burkholderia strains and revealed the presence of four novel B. cepacia complex recA lineages. Although the recA phylogeny could not be used as a means to differentiate B. cepacia complex strains recovered from clinical infection versus the natural environment, it did facilitate the identification of clonal strain types of B. cepacia, B. stabilis, and B. ambifaria capable of residing in both niches.
Collapse
Affiliation(s)
- George W Payne
- Cardiff School of Biosciences, Main Building, Museum Avenue, PO Box 915, Cardiff University, Cardiff, Wales CF10 3TL, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Galkin VE, Esashi F, Yu X, Yang S, West SC, Egelman EH. BRCA2 BRC motifs bind RAD51-DNA filaments. Proc Natl Acad Sci U S A 2005; 102:8537-42. [PMID: 15937124 PMCID: PMC1150802 DOI: 10.1073/pnas.0407266102] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Germ-line mutations in BRCA2 account for approximately half the cases of autosomal dominant familial breast cancers. BRCA2 has been shown to interact directly with RAD51, an essential component of the cellular machinery for homologous recombination and the maintenance of genome stability. Interactions between BRCA2 and RAD51 take place by means of the conserved BRC repeat regions of BRCA2. Previously, it was shown that peptides corresponding to BRC3 or BRC4 bind RAD51 monomers and block RAD51-DNA filament formation. In this work, we further analyze these interactions and find that at lower molar ratios BRC3 or BRC4 actually bind and form stable complexes with RAD51-DNA nucleoprotein filaments. Only at high concentrations of the BRC repeats are filaments disrupted. The specific protein-protein contacts occur in the RAD51 filament by means of the N-terminal domain of RAD51 for BRC3 and the nucleotide-binding core of RAD51 for BRC4. These observations show that the BRC repeats bind distinct regions of RAD51 and are nonequivalent in their mode of interaction. The results provide insight into why mutation in just one of the eight BRC repeats would affect the way that BRCA2 protein interacts with the RAD51 filament. Disruption of a single RAD51 interaction site, one of several simultaneous interactions occurring throughout the BRC repeat-containing exon 11 of BRCA2, might modulate the ability of RAD51 to promote recombinational repair and lead to an increased risk of breast cancer.
Collapse
Affiliation(s)
- Vitold E Galkin
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, VA 22908-0733, USA
| | | | | | | | | | | |
Collapse
|
29
|
Nahrstedt H, Schröder C, Meinhardt F. Evidence for two recA genes mediating DNA repair in Bacillus megaterium. Microbiology (Reading) 2005; 151:775-787. [PMID: 15758224 DOI: 10.1099/mic.0.27626-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Isolation and subsequent knockout of arecA-homologous gene inBacillus megateriumDSM 319 resulted in a mutant displaying increased sensitivity to mitomycin C. However, this mutant did not exhibit UV hypersensitivity, a finding which eventually led to identification of a second functionalrecAgene. Evidence forrecAduplicates was also obtained for two otherB. megateriumstrains. In agreement with potential DinR boxes located within their promoter regions, expression of both genes (recA1andrecA2) was found to be damage-inducible. Transcription from therecA2promoter was significantly higher than that ofrecA1. Since arecA2knockout could not be achieved, functional complementation studies were performed inEscherichia coli. Heterologous expression in a RecA null mutant resulted in increased survival after UV irradiation and mitomycin C treatment, proving bothrecAgene products to be functional in DNA repair. Thus, there is evidence for an SOS-like pathway inB. megateriumthat differs from that ofBacillus subtilis.
Collapse
Affiliation(s)
- Hannes Nahrstedt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, 48149 Münster, Germany
| | - Christine Schröder
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, 48149 Münster, Germany
| | - Friedhelm Meinhardt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, 48149 Münster, Germany
| |
Collapse
|
30
|
McDowell A, Valanne S, Ramage G, Tunney MM, Glenn JV, McLorinan GC, Bhatia A, Maisonneuve JF, Lodes M, Persing DH, Patrick S. Propionibacterium acnes types I and II represent phylogenetically distinct groups. J Clin Microbiol 2005; 43:326-34. [PMID: 15634990 PMCID: PMC540145 DOI: 10.1128/jcm.43.1.326-334.2005] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although two phenotypes of the opportunistic pathogen Propionibacterium acnes (types I and II) have been described, epidemiological investigations of their roles in different infections have not been widely reported. Using immunofluorescence microscopy with monoclonal antibodies (MAbs) QUBPa1 and QUBPa2, specific for types I and II, respectively, we investigated the prevalences of the two types among 132 P. acnes isolates. Analysis of isolates from failed prosthetic hip implants (n = 40) revealed approximately equal numbers of type I and II organisms. Isolates from failed prosthetic hip-associated bone (n = 6) and tissue (n = 38) samples, as well as isolates from acne (n = 22), dental infections (n = 8), and skin removed during surgical incision (n = 18) were predominately of type I. A total of 11 (8%) isolates showed atypical MAb labeling and could not be conclusively identified. Phylogenetic analysis of P. acnes by nucleotide sequencing revealed the 16S rRNA gene to be highly conserved between types I and II. In contrast, sequence analysis of recA and a putative hemolysin gene (tly) revealed significantly greater type-specific polymorphisms that corresponded to phylogenetically distinct cluster groups. All 11 isolates with atypical MAb labeling were identified as type I by sequencing. Within the recA and tly phylogenetic trees, nine of these isolates formed a cluster distinct from other type I organisms, suggesting a further phylogenetic subdivision within type I. Our study therefore demonstrates that the phenotypic differences between P. acnes types I and II reflect deeper differences in their phylogeny. Furthermore, nucleotide sequencing provides an accurate method for identifying the type status of P. acnes isolates.
Collapse
Affiliation(s)
- Andrew McDowell
- Department of Microbiology and Immunobiology, School of Medicine, Queen's University, Grosvenor Road, Belfast, BT12 6BN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mishra S, Mazumdar PA, Dey J, Das AK. Molecular modeling of RecX reveals its mode of interaction with RecA. Biochem Biophys Res Commun 2004; 312:615-22. [PMID: 14680809 DOI: 10.1016/j.bbrc.2003.10.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Indexed: 11/28/2022]
Abstract
The protein RecA is involved in homologous recombination, DNA repair and also catalyzes DNA strand exchange. RecX gene is downstream of recA and the gene product RecX is supposed to be important for RecA regulation. Recombinant RecX is purified to homogeneity, and circular dichroism (CD) and FTIR spectroscopy show the protein to exist mostly in helical conformation. The fluorescence emission maxima of the native and the denatured protein and the steady-state fluorescence quenching studies with acrylamide indicate the presence of tryptophan residues partially exposed to the bulk solvent. Denaturation studies with urea and guanidine hydrochloride by use of spectroscopic methods, fluorescence, and CD also confirm the instability of the protein and unfolding occurs following a two-state model. Mass spectrometry and gel permeation chromatography suggest the monomeric form of the protein. Molecular modeling of RecX represents the molecule as extended and helical bundle in conformity with the spectroscopic results. To understand the mechanism of RecX in the regulation of RecA the structural model of RecA-RecX has been discussed. In this proposed model, entry of RecX into hexameric RecA filament prevents binding of ssDNA and also inhibits ATPase activity.
Collapse
Affiliation(s)
- Subhra Mishra
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | | | | | | |
Collapse
|
32
|
SHUHAIMI M, ALI AM, NORJIHAN A, SALEH NM, YAZID AM. Characterisation of Bifidobacterium Species—A Review. Biosci Microflora 2004. [DOI: 10.12938/bifidus.23.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Mustafa SHUHAIMI
- Department of Biochemistry and Microbiology, Universiti Putra Malaysia
| | - Abdul M. ALI
- Institute of Bioscience, Universiti Putra Malaysia
| | | | | | - Abdul M. YAZID
- Department of Food Technology, Universiti Putra Malaysia
| |
Collapse
|
33
|
Gopaul KK, Brooks PC, Prost JF, Davis EO. Characterization of the two Mycobacterium tuberculosis recA promoters. J Bacteriol 2003; 185:6005-15. [PMID: 14526011 PMCID: PMC225015 DOI: 10.1128/jb.185.20.6005-6015.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recA gene of Mycobacterium tuberculosis is unusual in that it is expressed from two promoters, one of which, P1, is DNA damage inducible independently of LexA and RecA, while the other, P2, is regulated by LexA in the classical way (E. O. Davis, B. Springer, K. K. Gopaul, K. G. Papavinasasundaram, P. Sander, and E. C. Böttger, Mol. Microbiol. 46:791-800, 2002). In this study we characterized these two promoters in more detail. Firstly, we localized the promoter elements for each of the promoters, and in so doing we identified a mutation in each promoter which eliminates promoter activity. Interestingly, a motif with similarity to Escherichia coli sigma(70) -35 elements but located much closer to the -10 element is important for optimal expression of P1, whereas the sequence at the -35 location is not. Secondly, we found that the sequences flanking the promoters can have a profound effect on the expression level directed by each of the promoters. Finally, we examined the contribution of each of the promoters to recA expression and compared their kinetics of induction following DNA damage.
Collapse
Affiliation(s)
- Krishna K Gopaul
- Division of Mycobacterial Research, National Institute for Medical Research, London NW7 1AA, England
| | | | | | | |
Collapse
|
34
|
Chan CH, Stead DE, Coutts RHA. Development of a species-specific recA-based PCR test for Burkholderia fungorum. FEMS Microbiol Lett 2003; 224:133-8. [PMID: 12855180 DOI: 10.1016/s0378-1097(03)00443-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The genus Burkholderia comprises over 28 species and species-specific, recA-based polymerase chain reaction (PCR) tests are available for several species, but not for some soil-inhabiting species including B. fungorum. Previous analysis of several novel rhizospheric, environmental isolates belonging to the B. cepacia complex suggested they may be closely related to B. fungorum. To discover any relationship between these isolates and B. fungorum we set out to clone and sequence a portion of the B. fungorum recA gene in order to design species-specific primer pairs for use in a recA-based PCR assay. Using a similar procedure we extended the recA-based PCR assay to identify B. sacchari and B. caledonica, two additional soil-inhabiting Burkholderia spp.
Collapse
Affiliation(s)
- Chun-Han Chan
- Department of Biological Sciences, Imperial College London, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK
| | | | | |
Collapse
|
35
|
Gutacker M, Conza N, Benagli C, Pedroli A, Bernasconi MV, Permin L, Aznar R, Piffaretti JC. Population genetics of Vibrio vulnificus: identification of two divisions and a distinct eel-pathogenic clone. Appl Environ Microbiol 2003; 69:3203-12. [PMID: 12788717 PMCID: PMC161503 DOI: 10.1128/aem.69.6.3203-3212.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic relationships among 62 Vibrio vulnificus strains of different geographical and host origins were analyzed by multilocus enzyme electrophoresis (MLEE), random amplification of polymorphic DNA (RAPD), and sequence analyses of the recA and glnA genes. Out of 15 genetic loci analyzed by MLEE, 11 were polymorphic. Cluster analysis identified 43 distinct electrophoretic types (ETs) separating the V. vulnificus population into two divisions (divisions I and II). One ET (ET 35) included all indole-negative isolates from diseased eels worldwide (biotype 2). A second ET (ET 2) marked all of the strains from Israel isolated from patients who handled St. Peter's fish (biotype 3). RAPD analysis of the 62 V. vulnificus isolates identified 26 different profiles separated into two divisions as well. In general, this subdivision was comparable (but not identical) to that observed by MLEE. Phylogenetic analysis of 543 bp of the recA gene and of 402 bp of the glnA gene also separated the V. vulnificus population into two major divisions in a manner similar to that by MLEE and RAPD. Sequence data again indicated the overall subdivision of the V. vulnificus population into different biotypes. In particular, indole-negative eel-pathogenic isolates (biotype 2) on one hand and the Israeli isolates (biotype 3) on the other tended to cluster together in both gene trees. None of the methods showed an association between distinct clones and human clinical manifestations. Furthermore, except for the Israeli strains, only minor clusters comprising geographically related isolates were observed. In conclusion, all three approaches (MLEE, RAPD, and DNA sequencing) generated comparable but not always equivalent results. The significance of the two divisions (divisions I and II) still remains to be clarified, and a reevaluation of the definition of the biotypes is also needed.
Collapse
|
36
|
Lusetti SL, Wood EA, Fleming CD, Modica MJ, Korth J, Abbott L, Dwyer DW, Roca AI, Inman RB, Cox MM. C-terminal deletions of the Escherichia coli RecA protein. Characterization of in vivo and in vitro effects. J Biol Chem 2003; 278:16372-80. [PMID: 12598539 DOI: 10.1074/jbc.m212917200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A set of C-terminal deletion mutants of the RecA protein of Escherichia coli, progressively removing 6, 13, 17, and 25 amino acid residues, has been generated, expressed, and purified. In vivo, the deletion of 13 to 17 C-terminal residues results in increased sensitivity to mitomycin C. In vitro, the deletions enhance binding to duplex DNA as previously observed. We demonstrate that much of this enhancement involves the deletion of residues between positions 339 and 346. In addition, the C-terminal deletions cause a substantial upward shift in the pH-reaction profile of DNA strand exchange reactions. The C-terminal deletions of more than 13 amino acid residues result in strong inhibition of DNA strand exchange below pH 7, where the wild-type protein promotes a proficient reaction. However, at the same time, the deletion of 13-17 C-terminal residues eliminates the reduction in DNA strand exchange seen with the wild-type protein at pH values between 7.5 and 9. The results suggest the existence of extensive interactions, possibly involving multiple salt bridges, between the C terminus and other parts of the protein. These interactions affect the pK(a) of key groups involved in DNA strand exchange as well as the direct binding of RecA protein to duplex DNA.
Collapse
Affiliation(s)
- Shelley L Lusetti
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Self-splicing introns are rarely found in bacteria and bacteriophages. They are classified into group I and II according to their structural features and splicing mechanisms. While the group I introns are occasionally found in protein-coding regions of phage genomes and in several tRNA genes of cyanobacteria and proteobacteria, they had not been found in protein-coding regions of bacterial genomes. Here we report a group I intron in the recA gene of Bacillus anthracis which was initially found by DNA sequencing as an intervening sequence (IVS). By using reverse transcriptase PCR, the IVS was shown to be removable from the recA precursor mRNA for RecA that was being translated in E. coli. The splicing was visualized in vitro with labeled free GTP, indicating that it is a group I intron, which is also implied by its predicted secondary structure. The RecA protein of B. anthracis expressed in E. coli was functional in its ability to complement a recA defect. When recA-negative E. coli cells were irradiated with UV, the Bacillus RecA reduced the UV susceptibility of the recA mutant, regardless of the presence of intron.
Collapse
Affiliation(s)
- Minsu Ko
- National Creative Research Initiative Center for Behavioral Genetics, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yusong-Ku, Taejon 305-701, Republic of Korea
| | | | | |
Collapse
|
38
|
Klucar L, Nováková R, Homérová D, Sevcíková B, Turna J, Kormanec J. Phylogenetic analysis of the rplA genes encoding ribosomal protein L1. Folia Microbiol (Praha) 2002; 46:99-106. [PMID: 11501409 DOI: 10.1007/bf02873585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previously we have identified the rplA gene encoding ribosomal protein L1 in Streptomyces aureofaciens. Sequence comparison of ribosomal protein L1 among several bacterial genera revealed a high level of conservation. Based on this conservation, these proteins were used as a phylogenetic tool to compare evolutionary relationships among eubacteria and archaebacteria. This phylogenetic analysis of L1 ribosomal proteins including the S. aureofaciens rplA gene product revealed, except similar bacterial groupings, some new evolutionary relationships.
Collapse
Affiliation(s)
- L Klucar
- Institute of Molecular Biology, Slovak Academy of Sciences, 842 51 Bratislava, Slovakia
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
To understand bacterial phylogeny, it is essential that the following two critical issues be resolved: (i) development of well-defined (molecular) criteria for identifying the main groups within Bacteria, and (ii) to understand how the different main groups are related to each other and how they branched off from a common ancestor. These issues are not resolved at present. We have recently described a new approach, based on shared conserved inserts and deletions (indels or signature sequences) found in various proteins, that provides a reliable means for understanding these issues. A large number of conserved indels that are shared by different groups of bacteria have been identified. Using these indels, and based simply on their presence or absence, all of the main groups within Bacteria can be defined in clear molecular terms and new species could be assigned to them with minimal ambiguity. The analysis of these indels also permits one to logically deduce that the various main bacterial groups have branched off from a common ancestor in the following order: Low G+C Gram-positive ==> High G+C Gram-positive ==> Clostridium-Fusobacteria-Thermotoga ==> Deinococcus-Thermus-Green nonsulfur bacteria ==> Cyanobacteria ==> Spirochetes ==> Chlamydia-Cytophaga-Bacteroides-Green sulfur bacteria ==> Aquifex ==> Proteobacteria 1 (epsilon and delta) ==> Proteobacteria-2. (alpha) ==> Proteobacteria-3 (beta) and ==> Proteobacteria-4 (gamma). The validity of this approach was tested using sequence data from bacterial genomes. By making use of 18 conserved indels, species from all 60 completed bacterial genomes were assigned to different groups. The observed distribution of these indels in different species was then compared with that predicted by the model. Of the 936 observations concerning the placement of these indels in various species, all except one were in accordance with the model. The placement of bacteria into different groups using this approach also showed excellent correlation with the 16S rRNA phylogenies with nearly all of the species assigned to the same groups by both methods. These results provide strong evidence that the genes containing these indels have not been affected by factors such as lateral gene transfers. However, such events are readily detected by this means and some examples are provided. The approach described here thus provides a reliable and internally consistent means for understanding various critical and long outstanding issues in bacterial phylogeny.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada L8N 3Z5.
| | | |
Collapse
|
40
|
Waleron M, Waleron K, Podhajska AJ, Łojkowska E. Genotyping of bacteria belonging to the former Erwinia genus by PCR-RFLP analysis of a recA gene fragment. MICROBIOLOGY (READING, ENGLAND) 2002; 148:583-595. [PMID: 11832521 DOI: 10.1099/00221287-148-2-583] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Genotypic characterization, based on the analysis of restriction fragment length polymorphism of the recA gene fragment PCR product (recA PCR-RFLP), was performed on members of the former Erwinia genus. PCR primers deduced from published recA gene sequences of Erwinia carotovora allowed the amplification of an approximately 730 bp DNA fragment from each of the 19 Erwinia species tested. Amplified recA fragments were compared using RFLP analysis with four endonucleases (AluI, HinfI, TasI and Tru1I), allowing the detection of characteristic patterns of RFLP products for most of the Erwinia species. Between one and three specific RFLP groups were identified among most of the species tested (Erwinia amylovora, Erwinia ananas, Erwinia cacticida, Erwinia cypripedii, Erwinia herbicola, Erwinia mallotivora, Erwinia milletiae, Erwinia nigrifluens, Erwinia persicina, Erwinia psidii, Erwinia quercina, Erwinia rhapontici, Erwinia rubrifaciens, Erwinia salicis, Erwinia stewartii, Erwinia tracheiphila, Erwinia uredovora, Erwinia carotovora subsp. atroseptica, Erwinia carotovora subsp. betavasculorum, Erwinia carotovora subsp. odorifera and Erwinia carotovora subsp. wasabiae). However, in two cases, Erwinia chrysanthemi and Erwinia carotovora subsp. carotovora, 15 and 18 specific RFLP groups were detected, respectively. The variability of genetic patterns within these bacteria could be explained in terms of their geographic origin and/or wide host-range. The results indicated that PCR-RFLP analysis of the recA gene fragment is a useful tool for identification of species and subspecies belonging to the former Erwinia genus, as well as for differentiation of strains within E. carotovora subsp. carotovora and E. chrysanthemi.
Collapse
Affiliation(s)
- Małgorzata Waleron
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kładki 24, 80-822 Gdansk, Poland1
| | - Krzysztof Waleron
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kładki 24, 80-822 Gdansk, Poland1
| | - Anna J Podhajska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kładki 24, 80-822 Gdansk, Poland1
| | - Ewa Łojkowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kładki 24, 80-822 Gdansk, Poland1
| |
Collapse
|
41
|
Krawczyk B, Lewandowski K, Kur J. Comparative studies of the Acinetobacter genus and the species identification method based on the recA sequences. Mol Cell Probes 2002; 16:1-11. [PMID: 12005442 DOI: 10.1006/mcpr.2001.0388] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recA gene is indispensable for a maintaining and diversification of the bacterial genetic material. Given its important role in ensuring cell viability, it is not surprising that the RecA protein is both ubiquitous and well conserved among a range of prokaryotes. Previously, we reported Acinetobacter genomic species identification method based on PCR amplification of an internal fragment of the recA gene with subsequent restriction analysis (RFLP) with HinfI and MboI enzymes. In present study, the PCR products containing the internal fragment of the recA gene, for 25 Acinetobacter strains belonging to all genomic species, were sequenced. Based on the nucleotide sequences the restriction maps and phylogenetic tree were prepared. The restriction maps revealed that Tsp509I restriction enzyme is the most discriminating for RFLP. To verify the computer analysis, the amplified DNAs from all reference genomic species available (43 strains) and 34 clinical strains were digested with each of the three restriction endonucleases mentioned. The results of digestion confirmed the computer analysis. The reconstructed phylogenetic tree showed linkages between genomic species 1 (Acinetobacter calcoaceticus), 2 (Acinetobacter baumannii), 3, 'between 1 and 3', TU13 and 'close to TU13'; genomic species 4, 6, BJ13, BJ14, BJ15, BJ16 and BJ17; genomic species 7 (Acinetobacter johnsonii) and TU14; genomic species 10 and 11; genomic species 8 (Acinetobacter Iwoffii), 9, 12 (Acinetobacter radioresistens) and TU15; and genomic species 5 (Acinetobacter junii). It is interesting that one branch in the phylogenetic tree contains haemolytic species-genomic species 4 (A. haemolyticus), BJ13, BJ14, BJ15, BJ16 and BJ17. The proposed genotypic method clearly revealed that the RFLP profiles obtained with Tsp509I enzyme might be useful for species identification of Acinetobacter strains. In this context, recA/RFLP genotypic method should be seen as an ideal preliminary screening method for large numbers of isolates, with the ultimate confirmatory role reserved for DNA hybridization analysis.
Collapse
Affiliation(s)
- B Krawczyk
- Department of Microbiology, Technical University of Gdańsk, Poland.
| | | | | |
Collapse
|
42
|
Yang S, Yu X, Seitz EM, Kowalczykowski SC, Egelman EH. Archaeal RadA protein binds DNA as both helical filaments and octameric rings. J Mol Biol 2001; 314:1077-85. [PMID: 11743724 DOI: 10.1006/jmbi.2000.5213] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Escherichia coli RecA protein has been a model for understanding homologous eukaryotic recombination proteins such as Rad51. The active form of both RecA and Rad51 appear to be helical filaments polymerized on DNA, in which an unusual helical structure is induced in the DNA. Surprisingly, the human meiosis-specific homolog of RecA, Dmc1, has thus far only been observed to bind DNA as an octameric ring. Sequence analysis and biochemical studies have shown that archaeal RadA proteins are more closely related to Rad51 and Dmc1 than the bacterial RecA proteins. We find that the Sulfolobus solfataricus RadA protein binds DNA in the absence of nucleotide cofactor as an octameric ring and in the presence of ATP as a helical filament. Since it is likely that RadA is closely related to a common ancestral protein of both Rad51 and Dmc1, the two DNA-binding forms of RadA may provide insight into the divergence that has taken place between Rad51 and Dmc1.
Collapse
Affiliation(s)
- S Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, VA 22908-0733, USA
| | | | | | | | | |
Collapse
|
43
|
Yang S, VanLoock MS, Yu X, Egelman EH. Comparison of bacteriophage T4 UvsX and human Rad51 filaments suggests that RecA-like polymers may have evolved independently. J Mol Biol 2001; 312:999-1009. [PMID: 11580245 DOI: 10.1006/jmbi.2001.5025] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The UvsX protein from bacteriophage T4 is a member of the RecA/Rad51/RadA family of recombinases active in homologous genetic recombination. Like RecA, Rad51 and RadA, UvsX forms helical filaments on DNA. We have used electron microscopy and a novel method for image analysis of helical filaments to show that UvsX-DNA filaments exist in two different conformations: an ADP state and an ATP state. As with RecA protein, these two states have a large difference in pitch. Remarkably, even though UvsX is only weakly homologous to RecA, both UvsX filament states are more similar to the RecA crystal structure than are RecA-DNA filaments. We use this similarity to fit the RecA crystal structure into the UvsX filament, and show that two of the three previously described blocks of similarity between UvsX and RecA are involved in the subunit-subunit interface in both the UvsX filament and the RecA crystal filament. Conversely, we show that human Rad51-DNA filaments have a different subunit-subunit interface than is present in the RecA crystal, and this interface involves two blocks of sequence similarity between Rad51 and RecA that do not overlap with those found between UvsX and RecA. This suggests that helical filaments in the RecA/Rad51/RadA family may have arisen from convergent evolution, with a conserved core structure that has assembled into multimeric filaments in a number of different ways.
Collapse
Affiliation(s)
- S Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, VA 22908-0733, USA
| | | | | | | |
Collapse
|
44
|
Rashid N, Morikawa M, Kanaya S, Atomi H, Imanaka T. RecA/Rad51 homolog from Thermococcus kodakaraensis KODI. Methods Enzymol 2001; 334:261-70. [PMID: 11398468 DOI: 10.1016/s0076-6879(01)34474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- N Rashid
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University Graduate School of Engineering, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
45
|
O'Sullivan DJ. Screening of intestinal microflora for effective probiotic bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2001; 49:1751-1760. [PMID: 11308322 DOI: 10.1021/jf0012244] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Increasing consumer awareness of health-promoting intestinal bacteria has fueled the addition of viable probiotic bacteria as functional ingredients in certain foods. However, to effectively market the enhanced attributes of these foods, the added probiotic bacteria need to have scientific credibility. The scientific rationale for using many of the strains of probiotic bacteria currently on the market is weak. Furthering the current understanding of what features a bacterium needs to have for effective probiotic functionality will enable the selection of strains with a more credible scientific rationale. To screen for effective strains, one must understand the microbial diversity in the intestines of healthy individuals. The advent of molecular tools has greatly enhanced our ability to accomplish this. These tools comprise genetic fingerprinting, specific probes, molecular speciation, and techniques for the in situ analysis of specific microbial groups in the intestine. This review will detail these scientific approaches and how their impact will improve criteria for selection of probiotic bacteria.
Collapse
Affiliation(s)
- D J O'Sullivan
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, Minnesota 55108, USA.
| |
Collapse
|
46
|
Karlin S, Brocchieri L. Heat shock protein 60 sequence comparisons: duplications, lateral transfer, and mitochondrial evolution. Proc Natl Acad Sci U S A 2000; 97:11348-53. [PMID: 11027334 PMCID: PMC17203 DOI: 10.1073/pnas.97.21.11348] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2000] [Indexed: 01/20/2023] Open
Abstract
Heat shock proteins 60 (GroEL) are highly expressed essential proteins in eubacterial genomes and in eukaryotic organelles. These chaperone proteins have been advanced as propitious marker sequences for tracing the evolution of mitochondrial (Mt) genomes. Similarities among HSP60 sequences based on significant segment pair alignment calculations are used to deduce associations of sequences taking into account GroEL functional/structural domain differences and to relate HSP60 duplications pervasive in alpha-proteobacterial lineages to the dynamics of lateral transfer and plasmid integration. Multiple alignments with consensuses are determined for 10 natural groups. The group consensuses sharpen the similarity contrasts among individual sequences. In particular, the Mt group matches best with the classical alpha-proteobacteria and closely with Rickettsia but significantly worse with the rickettsial groups Ehrlichia and Orientia. However, across broad protein sequence comparisons, there appears to be no consistent prokaryote whose protein sequences align best with animal Mt genomes. There are plausible scenarios indicating that the nuclear-encoded HSP60 (and HSP70) sequences functioning in Mt are results of lateral transfer and are probably derived from an alpha-proteobacterium. This hypothesis relates to the plethora of duplicated HSP60 sequences among the classical alpha-proteobacteria contrasted with no duplications of HSP60 among other clades of proteobacterial genomes. Evolutionary relations are confounded by differential selection pressures, convergence, variable mutational rates, site variability, and lateral gene transfer.
Collapse
Affiliation(s)
- S Karlin
- Department of Mathematics, Stanford University, Stanford, CA 94305-2125, USA.
| | | |
Collapse
|
47
|
Gupta RS. The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev 2000; 24:367-402. [PMID: 10978543 DOI: 10.1111/j.1574-6976.2000.tb00547.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The evolutionary relationships of proteobacteria, which comprise the largest and phenotypically most diverse division among prokaryotes, are examined based on the analyses of available molecular sequence data. Sequence alignments of different proteins have led to the identification of numerous conserved inserts and deletions (referred to as signature sequences), which either are unique characteristics of various proteobacterial species or are shared by only members from certain subdivisions of proteobacteria. These signature sequences provide molecular means to define the proteobacterial phyla and their various subdivisions and to understand their evolutionary relationships to the other groups of eubacteria as well as the eukaryotes. Based on signature sequences that are present in different proteins it is now possible to infer that the various eubacterial phyla evolved from a common ancestor in the following order: low-G+C Gram-positive-->high-G+C Gram-positive-->Deinococcus-Thermus (green nonsulfur bacteria)-->cyanobacteria-->Spirochetes-->Chlamydia-Cytophaga-Aquifex -green sulfur bacteria-->Proteobacteria-1 (epsilon and delta)-->Proteobacteria-2 (alpha)-->Proteobacteria-3 (beta)-->Proteobacteria-4 (gamma). An unexpected but important aspect of the relationship deduced here is that the main eubacterial phyla are related to each other linearly rather than in a tree-like manner, suggesting that the major evolutionary changes within Bacteria have taken place in a directional manner. The identified signatures permit placement of prokaryotes into different groups/divisions and could be used for determinative purposes. These signatures generally support the origin of mitochondria from an alpha-proteobacterium and provide evidence that the nuclear cytosolic homologs of many genes are also derived from proteobacteria.
Collapse
Affiliation(s)
- R S Gupta
- Department of Biochemistry, McMaster University, L8N 3Z5, Hamilton, Ont., Canada.
| |
Collapse
|
48
|
Mahenthiralingam E, Bischof J, Byrne SK, Radomski C, Davies JE, Av-Gay Y, Vandamme P. DNA-Based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. J Clin Microbiol 2000; 38:3165-73. [PMID: 10970351 PMCID: PMC87345 DOI: 10.1128/jcm.38.9.3165-3173.2000] [Citation(s) in RCA: 369] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2000] [Accepted: 06/12/2000] [Indexed: 11/20/2022] Open
Abstract
Bacteria of the Burkholderia cepacia complex consist of five discrete genomic species, including genomovars I and III and three new species: Burkholderia multivorans (formerly genomovar II), Burkholderia stabilis (formerly genomovar IV), and Burkholderia vietnamiensis (formerly genomovar V). Strains of all five genomovars are capable of causing opportunistic human infection, and microbiological identification of these closely related species is difficult. The 16S rRNA gene (16S rDNA) and recA gene of these bacteria were examined in order to develop rapid tests for genomovar identification. Restriction fragment length polymorphism (RFLP) analysis of PCR-amplified 16S rDNA revealed sequence polymorphisms capable of identifying B. multivorans and B. vietnamiensis but insufficient to discriminate strains of B. cepacia genomovars I and III and B. stabilis. RFLP analysis of PCR-amplified recA demonstrated sufficient nucleotide sequence variation to enable separation of strains of all five B. cepacia complex genomovars. Complete recA nucleotide sequences were obtained for 20 strains representative of the diversity of the B. cepacia complex. Construction of a recA phylogenetic tree identified six distinct clusters (recA groups): B. multivorans, B. vietnamiensis, B. stabilis, genomovar I, and the subdivision of genomovar III isolates into two recA groups, III-A and III-B. Alignment of recA sequences enabled the design of PCR primers for the specific detection of each of the six latter recA groups. The recA gene was found on the largest chromosome within the genome of B. cepacia complex strains and, in contrast to the findings of a previous study, only a single copy of the gene was present. In conclusion, analysis of the recA gene of the B. cepacia complex provides a rapid and robust nucleotide sequence-based approach to identify and classify this taxonomically complex group of opportunistic pathogens.
Collapse
Affiliation(s)
- E Mahenthiralingam
- Department of Pediatrics, University of British Columbia and British Columbia's Children's Hospital, British Columbia's Research Institute for Children's and Women's Health, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | |
Collapse
|
49
|
van Waasbergen LG, Balkwill DL, Crocker FH, Bjornstad BN, Miller RV. Genetic diversity among Arthrobacter species collected across a heterogeneous series of terrestrial deep-subsurface sediments as determined on the basis of 16S rRNA and recA gene sequences. Appl Environ Microbiol 2000; 66:3454-63. [PMID: 10919806 PMCID: PMC92170 DOI: 10.1128/aem.66.8.3454-3463.2000] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was undertaken in an effort to understand how the population structure of bacteria within terrestrial deep-subsurface environments correlates with the physical and chemical structure of their environment. Phylogenetic analysis was performed on strains of Arthrobacter that were collected from various depths, which included a number of different sedimentary units from the Yakima Barricade borehole at the U.S. Department of Energy's Hanford site, Washington, in August 1992. At the same time that bacteria were isolated, detailed information on the physical, chemical, and microbiological characteristics of the sediments was collected. Phylogenetic trees were prepared from the 39 deep-subsurface Arthrobacter isolates (as well as 17 related type strains) based on 16S rRNA and recA gene sequences. Analyses based on each gene independently were in general agreement. These analyses showed that, for all but one of the strata (sedimentary layers characterized by their own unifying lithologic composition), the deep-subsurface isolates from the same stratum are largely monophyletic. Notably, the layers for which this is true were composed of impermeable sediments. This suggests that the populations within each of these strata have remained isolated under constant, uniform conditions, which have selected for a particular dominant genotype in each stratum. Conversely, the few strains isolated from a gravel-rich layer appeared along several lineages. This suggests that the higher-permeability gravel decreases the degree of isolation of this population (through greater groundwater flow), creating fluctuations in environmental conditions or allowing migration, such that a dominant population has not been established. No correlation was seen between the relationship of the strains and any particular chemical or physical characteristics of the sediments. Thus, this work suggests that within sedimentary deep-subsurface environments, permeability of the deposits plays a major role in determining the genetic structure of resident bacterial populations.
Collapse
|
50
|
Brocchieri L, Karlin S. Conservation among HSP60 sequences in relation to structure, function, and evolution. Protein Sci 2000; 9:476-86. [PMID: 10752609 PMCID: PMC2144576 DOI: 10.1110/ps.9.3.476] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The chaperonin HSP60 (GroEL) proteins are essential in eubacterial genomes and in eukaryotic organelles. Functional regions inferred from mutation studies and the Escherichia coli GroEL 3D crystal complexes are evaluated in a multiple alignment across 43 diverse HSP60 sequences, centering on ATP/ADP and Mg2+ binding sites, on residues interacting with substrate, on GroES contact positions, on interface regions between monomers and domains, and on residues important in allosteric conformational changes. The most evolutionary conserved residues relate to the ATP/ADP and Mg2+ binding sites. Hydrophobic residues that contribute in substrate binding are also significantly conserved. A large number of charged residues line the central cavity of the GroEL-GroES complex in the substrate-releasing conformation. These span statistically significant intra- and inter-monomer three-dimensional (3D) charge clusters that are highly conserved among sequences and presumably play an important role interacting with the substrate. Unaligned short segments between blocks of alignment are generally exposed at the outside wall of the Anfinsen cage complex. The multiple alignment reveals regions of divergence common to specific evolutionary groups. For example, rickettsial sequences diverge in the ATP/ADP binding domain and gram-positive sequences diverge in the allosteric transition domain. The evolutionary information of the multiple alignment proffers attractive sites for mutational studies.
Collapse
Affiliation(s)
- L Brocchieri
- Department of Mathematics, Stanford University, California 94305-2125, USA
| | | |
Collapse
|