1
|
Chen Y, Ke W, Qin H, Chen S, Qin L, Yang Y, Yu H, Tan Y. Effect of dithiocyano-methane on hexose monophosphate pathway in the respiratory metabolism of Escherichia coli. AMB Express 2020; 10:205. [PMID: 33175252 PMCID: PMC7658277 DOI: 10.1186/s13568-020-01142-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022] Open
Abstract
This paper studied the inhibitory effects of dithiocyano-methane (DM) on the glucose decomposition pathway in the respiratory metabolism of Escherichia coli. We investigated the effects of DM on the activities of key enzymes (ATPase and glucose-6-phosphate dehydrogenase, G6PDH), the levels of key product (nicotinamide adenosine denucleotide hydro-phosphoric acid, NADPH), and gene expression in the hexose monophosphate pathway (HMP). The results showed that the minimum inhibitory concentration (MIC) and the minimum bactericide concentration (MBC) of DM against the tested strains were 5.86 mg/L and 11.72 mg/L, respectively. Bacteria exposed to DM at MIC demonstrated an increase in bacterial ATPase and G6PDH activities, NADPH levels, and gene expression in the HMP pathway compared to bacteria in the control group, which could be interpreted as a behavioral response to stress introduced by DM. However, DM at a lethal concentration of 10 × MIC affected glucose decomposition by inhibiting mainly the HMP pathway in E. coli.
Collapse
|
2
|
Betaine supplementation improved l-threonine fermentation of Escherichia coli THRD by upregulating zwf (glucose-6-phosphate dehydrogenase) expression. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
3
|
Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria. Nat Commun 2018; 9:2489. [PMID: 29950558 PMCID: PMC6021436 DOI: 10.1038/s41467-018-04901-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/01/2018] [Indexed: 02/06/2023] Open
Abstract
Methods to regulate gene expression programs in bacterial cells are limited by the absence of effective gene activators. To address this challenge, we have developed synthetic bacterial transcriptional activators in E. coli by linking activation domains to programmable CRISPR-Cas DNA binding domains. Effective gene activation requires target sites situated in a narrow region just upstream of the transcription start site, in sharp contrast to the relatively flexible target site requirements for gene activation in eukaryotic cells. Together with existing tools for CRISPRi gene repression, these bacterial activators enable programmable control over multiple genes with simultaneous activation and repression. Further, the entire gene expression program can be switched on by inducing expression of the CRISPR-Cas system. This work will provide a foundation for engineering synthetic bacterial cellular devices with applications including diagnostics, therapeutics, and industrial biosynthesis. The absence of effective gene activators in bacteria limits regulated expression programs. Here the authors design synthetic bacterial CRISPR-Cas transcriptional activators that can be used to construct multi-gene programs of activation and repression.
Collapse
|
4
|
Piras C, Soggiu A, Greco V, Martino PA, Del Chierico F, Putignani L, Urbani A, Nally JE, Bonizzi L, Roncada P. Mechanisms of antibiotic resistance to enrofloxacin in uropathogenic Escherichia coli in dog. J Proteomics 2015; 127:365-76. [PMID: 26066767 DOI: 10.1016/j.jprot.2015.05.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/12/2015] [Accepted: 05/29/2015] [Indexed: 01/25/2023]
Abstract
Escherichia coli (E. coli) urinary tract infections (UTIs) are becoming a serious problem both for pets and humans (zoonosis) due to the close contact and to the increasing resistance to antibiotics. This study has been performed in order to unravel the mechanism of induced enrofloxacin resistance in canine E. coli isolates that represent a good tool to study this pathology. The isolated E. coli has been induced with enrofloxacin and studied through 2D DIGE and shotgun MS. Discovered differentially expressed proteins are principally involved in antibiotic resistance and linked to oxidative stress response, to DNA protection and to membrane permeability. Moreover, since enrofloxacin is an inhibitor of DNA gyrase, the overexpression of DNA starvation/stationary phase protection protein (Dsp) could be a central point to discover the mechanism of this clone to counteract the effects of enrofloxacin. In parallel, the dramatic decrease of the synthesis of the outer membrane protein W, which represents one of the main gates for enrofloxacin entrance, could explain additional mechanism of E. coli defense against this antibiotic. All 2D DIGE and MS data have been deposited into the ProteomeXchange Consortium with identifier PXD002000 and DOI http://dx.doi.org/10.6019/PXD002000. This article is part of a Special Issue entitled: HUPO 2014.
Collapse
Affiliation(s)
- Cristian Piras
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | - Alessio Soggiu
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | - Viviana Greco
- Fondazione Santa Lucia - IRCCS, Rome, Italy; Dipartimento di Medicina Sperimentale e Chirurgia, Università degli Studi di Roma "Tor Vergata", Italy
| | - Piera Anna Martino
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | | | - Lorenza Putignani
- Parasitology and Metagenomics Units, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Urbani
- Fondazione Santa Lucia - IRCCS, Rome, Italy; Dipartimento di Medicina Sperimentale e Chirurgia, Università degli Studi di Roma "Tor Vergata", Italy
| | - Jarlath E Nally
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, United States
| | - Luigi Bonizzi
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | - Paola Roncada
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy; Istituto Sperimentale Italiano L. Spallanzani, Milano, Italy.
| |
Collapse
|
5
|
Role of intracellular carbon metabolism pathways in Shigella flexneri virulence. Infect Immun 2014; 82:2746-55. [PMID: 24733092 DOI: 10.1128/iai.01575-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri, which replicates in the cytoplasm of intestinal epithelial cells, can use the Embden-Meyerhof-Parnas, Entner-Doudoroff, or pentose phosphate pathway for glycolytic carbon metabolism. To determine which of these pathways is used by intracellular S. flexneri, mutants were constructed and tested in a plaque assay for the ability to invade, replicate intracellularly, and spread to adjacent epithelial cells. Mutants blocked in the Embden-Meyerhof-Parnas pathway (pfkAB and pykAF mutants) invaded the cells but formed very small plaques. Loss of the Entner-Doudoroff pathway gene eda resulted in small plaques, but the double eda edd mutant formed normal-size plaques. This suggested that the plaque defect of the eda mutant was due to buildup of the toxic intermediate 2-keto-3-deoxy-6-phosphogluconic acid rather than a specific requirement for this pathway. Loss of the pentose phosphate pathway had no effect on plaque formation, indicating that it is not critical for intracellular S. flexneri. Supplementation of the epithelial cell culture medium with pyruvate allowed the glycolysis mutants to form larger plaques than those observed with unsupplemented medium, consistent with data from phenotypic microarrays (Biolog) indicating that pyruvate metabolism was not disrupted in these mutants. Interestingly, the wild-type S. flexneri also formed larger plaques in the presence of supplemental pyruvate or glucose, with pyruvate yielding the largest plaques. Analysis of the metabolites in the cultured cells showed increased intracellular levels of the added compound. Pyruvate increased the growth rate of S. flexneri in vitro, suggesting that it may be a preferred carbon source inside host cells.
Collapse
|
6
|
Shimizu K. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism. ISRN BIOCHEMISTRY 2013; 2013:645983. [PMID: 25937963 PMCID: PMC4393010 DOI: 10.1155/2013/645983] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/25/2012] [Indexed: 12/19/2022]
Abstract
It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Fukuoka, Iizuka 820-8502, Japan
- Institute of Advanced Bioscience, Keio University, Yamagata, Tsuruoka 997-0017, Japan
| |
Collapse
|
7
|
Fàbrega A, Rosner JL, Martin RG, Solé M, Vila J. SoxS-dependent coregulation of ompN and ydbK in a multidrug-resistant Escherichia coli strain. FEMS Microbiol Lett 2012; 332:61-7. [PMID: 22515487 DOI: 10.1111/j.1574-6968.2012.02577.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/06/2012] [Accepted: 04/12/2012] [Indexed: 11/29/2022] Open
Abstract
SoxS, MarA, and Rob are homologous transcriptional activators of numerous superoxide- and antibiotic resistance genes but many of the regulated genes are yet to be characterized. In this study, microarrays and RT-PCR analysis were used to show the overexpression of the ompN porin and its upstream gene, ydbK, in an Escherichia coli multidrug-resistant mutant and in a strain constitutive for SoxS. However, transcriptional fusions revealed that SoxS (not MarA or Rob) only activated the ydbK promoter but not the ompN upstream region. RT-PCR experiments showed the overexpression of a combined ydbK - ompN transcript in the SoxS-overexpressing strain. Surprisingly, a bioinformatic approach revealed no soxbox upstream of the ydbK promoter. Thus, the ydbK and ompN genes are coexpressed in an operon and are likely activated by SoxS indirectly. It is known that YdbK is involved in superoxide resistance. Thus, individual ompN and ydbK mutants were tested for superoxide susceptibility. Nonetheless, only the ydbK mutant was susceptible to paraquat, a superoxide generator. These mutants, as well as an OmpN-overproducing strain, were further tested for antibiotic resistance. No significant decreased susceptibility was observed. Thus, ydbK plays a role in superoxide resistance but no role for either gene is found in resistance to the antibiotics tested.
Collapse
Affiliation(s)
- Anna Fàbrega
- Barcelona Centre for International Health Research, CRESIB, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
8
|
Taliaferro LP, Keen EF, Sanchez-Alberola N, Wolf RE. Transcription activation by Escherichia coli Rob at class II promoters: protein-protein interactions between Rob's N-terminal domain and the σ(70) subunit of RNA polymerase. J Mol Biol 2012; 419:139-57. [PMID: 22465792 DOI: 10.1016/j.jmb.2012.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/18/2012] [Accepted: 03/20/2012] [Indexed: 11/16/2022]
Abstract
Bacterial transcription activators regulate transcription by making essential protein-protein interactions with RNA polymerase, for example, with region 4 of the σ(70) subunit (σ(70) R4). Rob, SoxS, and MarA comprise a closely related subset of members of the AraC/XylS family of transcription factors that activate transcription of both class I and class II promoters. Recently, we showed that interactions between SoxS and σ(70) R4 occlude the binding of σ(70) R4 to the -35 promoter element of class II promoters. Although Rob shares many similarities with SoxS, it contains a C-terminal domain (CTD) that the other paralogs do not. Thus, a goal of this study was to determine whether Rob makes protein-protein interactions with σ(70) R4 at class II promoters and, if so, whether the interactions occlude the binding of σ(70) R4 to the -35 hexamer despite the presence of the CTD. We found that although Rob makes fewer interactions with σ(70) R4 than SoxS, the two proteins make the same, unusual, position-dependent interactions. Importantly, we found that Rob occludes σ(70) R4 from binding the -35 hexamer, just as does SoxS. Thus, the CTD does not substantially alter the way Rob interacts with σ(70) R4 at class II promoters. Moreover, in contrast to inferences drawn from the co-crystal structure of Rob bound to robbox DNA, which showed that only one of Rob's dual helix-turn-helix (HTH) DNA binding motifs binds a recognition element of the promoter's robbox, we determined that the two HTH motifs each bind a recognition element in vivo.
Collapse
Affiliation(s)
- Lanyn P Taliaferro
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | | | | | |
Collapse
|
9
|
Fu Q, Lemmens K, Sanchez-Rodriguez A, Thijs IM, Meysman P, Sun H, Fierro AC, Engelen K, Marchal K. Directed module detection in a large-scale expression compendium. Methods Mol Biol 2012; 804:131-165. [PMID: 22144152 DOI: 10.1007/978-1-61779-361-5_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Public online microarray databases contain tremendous amounts of expression data. Mining these data sources can provide a wealth of information on the underlying transcriptional networks. In this chapter, we illustrate how the web services COLOMBOS and DISTILLER can be used to identify condition-dependent coexpression modules by exploring compendia of public expression data. COLOMBOS is designed for user-specified query-driven analysis, whereas DISTILLER generates a global regulatory network overview. The user is guided through both web services by means of a case study in which condition-dependent coexpression modules comprising a gene of interest (i.e., "directed") are identified.
Collapse
Affiliation(s)
- Qiang Fu
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Meier S, Jensen PR, Duus JØ. Direct observation of metabolic differences in living Escherichia coli strains K-12 and BL21. Chembiochem 2011; 13:308-10. [PMID: 22190455 DOI: 10.1002/cbic.201100654] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Indexed: 01/02/2023]
Affiliation(s)
- Sebastian Meier
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, 1799 Copenhagen V, Denmark.
| | | | | |
Collapse
|
11
|
Meier S, Jensen PR, Duus JØ. Real-time detection of central carbon metabolism in living Escherichia coli and its response to perturbations. FEBS Lett 2011; 585:3133-8. [PMID: 21907715 DOI: 10.1016/j.febslet.2011.08.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/17/2011] [Accepted: 08/29/2011] [Indexed: 01/23/2023]
Abstract
The direct tracking of cellular reactions in vivo has been facilitated with recent technologies that strongly enhance NMR signals in substrates of interest. This methodology can be used to assay intracellular reactions that occur within seconds to few minutes, as the NMR signal enhancement typically fades on this time scale. Here, we show that the enhancement of (13)C nuclear spin polarization in deuterated glucose allows to directly follow the flux of glucose signal through rather extended reaction networks of central carbon metabolism in living Escherichia coli. Alterations in central carbon metabolism depending on the growth phase or upon chemical perturbations are visualized with minimal data processing by instantaneous observation of cellular reactions.
Collapse
|
12
|
Zafar MA, Sanchez-Alberola N, Wolf RE. Genetic evidence for a novel interaction between transcriptional activator SoxS and region 4 of the σ(70) subunit of RNA polymerase at class II SoxS-dependent promoters in Escherichia coli. J Mol Biol 2010; 407:333-53. [PMID: 21195716 DOI: 10.1016/j.jmb.2010.12.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 11/30/2022]
Abstract
Escherichia coli SoxS activates transcription of the genes of the soxRS regulon, which provide the cell's defense against oxidative stress. In response to this stress, SoxS is synthesized de novo. Because the DNA binding site of SoxS is highly degenerate, SoxS efficiently activates transcription by the mechanism of prerecruitment. In prerecruitment, newly synthesized SoxS first forms binary complexes with RNA polymerase. These complexes then scan the chromosome for class I and II SoxS-dependent promoters, using the specific DNA-recognition properties of SoxS and σ(70) to distinguish SoxS-dependent promoters from the vast excess of sequence-equivalent soxboxes that do not reside in promoters. Previously, we determined that SoxS interacts with RNA polymerase in two ways: by making protein-protein interactions with the DNA-binding determinant of the α subunit and by interacting with σ(70) region 4 (σ(70) R4) both "on-DNA" and "off-DNA." Here, we address the question of how SoxS and σ(70) R4 coexist at class II promoters, where the binding site for SoxS either partially or completely overlaps the -35 region of the promoter, which is usually bound by σ(70) R4. To do so, we created a tri-alanine scanning library that covers all of σ(70) R4. We determined that interactions between σ(70) R4 and the DNA in the promoter's -35 region are required for activation of class I promoters, where the binding site lies upstream of the -35 hexamer, but they are not required at class II promoters. In contrast, specific three-amino-acid stretches are required for activation of class I (lac) and class II (galP1) cyclic AMP receptor protein-dependent promoters. We conclude from these data that SoxS and σ(70) R4 interact with each other in a novel way at class II SoxS-dependent promoters such that the two proteins do not accommodate one another in the -35 region but instead SoxS binding there occludes the binding of σ(70) R4.
Collapse
Affiliation(s)
- M Ammar Zafar
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
13
|
Jozefczuk S, Klie S, Catchpole G, Szymanski J, Cuadros-Inostroza A, Steinhauser D, Selbig J, Willmitzer L. Metabolomic and transcriptomic stress response of Escherichia coli. Mol Syst Biol 2010; 6:364. [PMID: 20461071 PMCID: PMC2890322 DOI: 10.1038/msb.2010.18] [Citation(s) in RCA: 348] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 03/05/2010] [Indexed: 12/14/2022] Open
Abstract
GC-MS-based analysis of the metabolic response of Escherichia coli exposed to four different stress conditions reveals reduction of energy expensive pathways. Time-resolved response of E. coli to changing environmental conditions is more specific on the metabolite as compared with the transcript level. Cease of growth during stress response as compared with stationary phase response invokes similar transcript but dissimilar metabolite responses. Condition-dependent associations between metabolites and transcripts are revealed applying co-clustering and canonical correlation analysis.
The response of biological systems to environmental perturbations is characterized by a fast and appropriate adjusting of physiology on every level of the cellular and molecular network. Stress response is usually represented by a combination of both specific responses, aimed at minimizing deleterious effects or repairing damage (e.g. protein chaperones under temperature stress) and general responses which, in part, comprise the downregulation of genes related to translation and ribosome biogenesis. This in turn is reflected by growth cessation or reduction observed under essentially all stress conditions and is an important strategy to adjust cellular physiology to the new condition. E. coli has been intensively investigated in relation to stress responses. Thus far, however, the majority of global analyses of E. coli stress responses have been limited to just one level, gene expression. To better understand system response to perturbation, we designed a time-resolved experiment to compare and integrate metabolic and transcript changes of E. coli using four stress conditions including non-lethal temperature shifts, oxidative stress, and carbon starvation relative to cultures grown under optimal conditions covering both states before and directly after stress application, resumption of growth after stress-induced lag phase, and finally the stationary phase. Metabolic changes occurring after stress application were characterized by a reduction in metabolites of central metabolism (TCA cycle and glycolysis) as well as an increase in free amino acids. Whereas the latter is probably due to protein degradation and stalling of translation, the former supports and extends conclusions based on transcriptome data demonstrating a major decrease in energy-consuming processes as a general stress response. Further comparative analysis of the response on the metabolome and transcriptome, however, revealed in addition to these similarities major differences. Thus, the response on the metabolome displayed a significantly higher specificity towards the specific stress as compared with the transcriptome. Further, when comparing the metabolome of cells ceasing growth due to stress application with cells ceasing growth due to reaching stationary phase the metabolome response differed to a significant extent between both growth arrest phases, whereas the transcriptome response showed significant overlap again, suggesting that the response of E. coli on the metabolome level displays a higher level of significance as compared with the transcriptome level. Subsequently, both data sets were jointly analyzed using co-clustering and canonical correlation approaches to identify coordinated changes on the transcriptome and the metabolite level indicative metabolite–transcript associations. A first outcome of this study was that no association was preserved during all conditions analyzed but rather condition-specific associations were observed. One set of associations found was between metabolites from the oxidative pentose phosphate pathway such as glc-6-P, 6-P-gluconic acid, ribose-5-P, and E-4-P and metabolites from the glycolytic pathway (3PGA and PEP in addition to glc-6-P with two genes encoding pathway enzymes, that is rpe encoding ribulose phosphate 3-epimerase and pps encoding PEP synthase. A second example comprises metabolites of the TCA cycle such as pyruvic acid, 2-ketoglutaric acid, fumaric acid, malic acid, and succinic acid and the mqo gene encoding malate-quinone oxidoreductase (MQO). MQO catalyses the irreversible oxidation of malate to oxaloacetate that in turn regulates the activity of citrate synthase, which is a major rate determining enzyme of the TCA cycle. The strong association between mqo gene expression and multiple members of the TCA cycle as well as pyruvate suggest mqo expression to have a major function for the regulation of the TCA cycle, which need to be experimentally validated. Multiple further associations identified show on the one hand the power of integrative systems oriented approaches for developing new hypothesis, on the other hand their condition-dependent behavior shows the extreme flexibility of the biological systems studied thus requesting a much more intense effort toward parallel analysis of biological systems under several environmental conditions. Environmental fluctuations lead to a rapid adjustment of the physiology of Escherichia coli, necessitating changes on every level of the underlying cellular and molecular network. Thus far, the majority of global analyses of E. coli stress responses have been limited to just one level, gene expression. Here, we incorporate the metabolite composition together with gene expression data to provide a more comprehensive insight on system level stress adjustments by describing detailed time-resolved E. coli response to five different perturbations (cold, heat, oxidative stress, lactose diauxie, and stationary phase). The metabolite response is more specific as compared with the general response observed on the transcript level and is reflected by much higher specificity during the early stress adaptation phase and when comparing the stationary phase response to other perturbations. Despite these differences, the response on both levels still follows the same dynamics and general strategy of energy conservation as reflected by rapid decrease of central carbon metabolism intermediates coinciding with downregulation of genes related to cell growth. Application of co-clustering and canonical correlation analysis on combined metabolite and transcript data identified a number of significant condition-dependent associations between metabolites and transcripts. The results confirm and extend existing models about co-regulation between gene expression and metabolites demonstrating the power of integrated systems oriented analysis.
Collapse
Affiliation(s)
- Szymon Jozefczuk
- Molecular Plant Physiology, Max-Planck-Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Toward systematic metabolic engineering based on the analysis of metabolic regulation by the integration of different levels of information. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Karsten V, Murray SR, Pike J, Troy K, Ittensohn M, Kondradzhyan M, Low KB, Bermudes D. msbB deletion confers acute sensitivity to CO2 in Salmonella enterica serovar Typhimurium that can be suppressed by a loss-of-function mutation in zwf. BMC Microbiol 2009; 9:170. [PMID: 19689794 PMCID: PMC2745414 DOI: 10.1186/1471-2180-9-170] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 08/18/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pathogens tolerate stress conditions that include low pH, oxidative stress, high salt and high temperature in order to survive inside and outside their hosts. Lipopolysaccharide (LPS), which forms the outer-leaflet of the outer membrane in Gram-negative bacteria, acts as a permeability barrier. The lipid A moiety of LPS anchors it to the outer membrane bilayer. The MsbB enzyme myristoylates the lipid A precursor and loss of this enzyme, in Salmonella, is correlated with reduced virulence and severe growth defects that can both be compensated with extragenic suppressor mutations. RESULTS We report here that msbB (or msbB somA) Salmonella are highly sensitive to physiological CO2 (5%), resulting in a 3-log reduction in plating efficiency. Under these conditions, msbB Salmonella form long filaments, bulge and lyse. These bacteria are also sensitive to acidic pH and high osmolarity. Although CO2 acidifies LB broth media, buffering LB to pH 7.5 did not restore growth of msbB mutants in CO2, indicating that the CO2-induced growth defects are not due to the effect of CO2 on the pH of the media. A transposon insertion in the glucose metabolism gene zwf compensates for the CO2 sensitivity of msbB Salmonella. The msbB zwf mutants grow on agar, or in broth, in the presence of 5% CO2. In addition, msbB zwf strains show improved growth in low pH or high osmolarity media compared to the single msbB mutant. CONCLUSION These results demonstrate that msbB confers acute sensitivity to CO2, acidic pH, and high osmolarity. Disruption of zwf in msbB mutants restores growth in 5% CO2 and results in improved growth in acidic media or in media with high osmolarity. These results add to a growing list of phenotypes caused by msbB and mutations that suppress specific growth defects.
Collapse
|
16
|
Gil F, Hernández-Lucas I, Polanco R, Pacheco N, Collao B, Villarreal JM, Nardocci G, Calva E, Saavedra CP. SoxS regulates the expression of the Salmonella enterica serovar Typhimurium ompW gene. MICROBIOLOGY-SGM 2009; 155:2490-2497. [PMID: 19460824 DOI: 10.1099/mic.0.027433-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OmpW of Salmonella enterica serovar Typhimurium has been described as a minor porin involved in osmoregulation, and is also affected by environmental conditions. Biochemical and genetic evidence from our laboratory indicates that OmpW is involved in efflux of and resistance towards paraquat (PQ), and its expression has been shown to be activated in response to oxidative stress. In this study we have explored ompW expression in response to PQ. Primer extension and transcriptional fusions showed that its expression was induced in the presence of PQ. In silico analyses suggested a putative binding site for the SoxS transcriptional factor at the ompW regulatory region. Electrophoretic mobility shift assays (EMSAs) and footprinting experiments showed that SoxS binds at a region that starts close to -54 and ends at about -197 upstream of the transcription start site. Transcriptional fusions support the relevance of this region in ompW activation. The SoxS site is in the forward orientation and its location suggests that the ompW gene has a class I SoxS-dependent promoter.
Collapse
Affiliation(s)
- F Gil
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - R Polanco
- Laboratorio de Bioquímica, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - N Pacheco
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - B Collao
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - J M Villarreal
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - G Nardocci
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - E Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - C P Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
17
|
Lemmens K, De Bie T, Dhollander T, De Keersmaecker SC, Thijs IM, Schoofs G, De Weerdt A, De Moor B, Vanderleyden J, Collado-Vides J, Engelen K, Marchal K. DISTILLER: a data integration framework to reveal condition dependency of complex regulons in Escherichia coli. Genome Biol 2009; 10:R27. [PMID: 19265557 PMCID: PMC2690998 DOI: 10.1186/gb-2009-10-3-r27] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 01/15/2009] [Accepted: 03/06/2009] [Indexed: 11/13/2022] Open
Abstract
DISTILLER, a data integration framework for the inference of transcriptional module networks, is presented and used to investigate the condition dependency and modularity in Escherichia coli networks. We present DISTILLER, a data integration framework for the inference of transcriptional module networks. Experimental validation of predicted targets for the well-studied fumarate nitrate reductase regulator showed the effectiveness of our approach in Escherichia coli. In addition, the condition dependency and modularity of the inferred transcriptional network was studied. Surprisingly, the level of regulatory complexity seemed lower than that which would be expected from RegulonDB, indicating that complex regulatory programs tend to decrease the degree of modularity.
Collapse
Affiliation(s)
- Karen Lemmens
- Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Critzer FJ, Dsouza DH, Golden DA. Transcription analysis of stx1, marA, and eaeA genes in Escherichia coli O157:H7 treated with sodium benzoate. J Food Prot 2008; 71:1469-74. [PMID: 18680949 DOI: 10.4315/0362-028x-71.7.1469] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Expression of the multiple antibiotic resistance (mar) operon causes increased antimicrobial resistance in bacterial pathogens. The activator of this operon, MarA, can alter expression of >60 genes in Escherichia coli K-12. However, data on the expression of virulence and resistance genes when foodborne pathogens are exposed to antimicrobial agents are lacking. This study was conducted to determine transcription of marA (mar activator), stx1 (Shiga toxin 1), and eaeA (intimin) genes of E. coli O157:H7 EDL933 as affected by sodium benzoate. E. coli O157:H7 was grown in Luria-Bertani broth containing 0 (control) and 1% sodium benzoate at 37 degrees C for 24 h, and total RNA was extracted. Primers were designed for hemX (209 bp; housekeeping gene), marA (261 bp), and eaeA (223 bp) genes; previously reported primers were used for stx1. Tenfold dilutions of RNA were used in a real-time one-step reverse transcriptase PCR to determine transcription levels. All experiments were conducted in triplicate, and product detection was validated by gel electrophoresis. For marA and stx1, real-time one-step reverse transcriptase PCR products were detected at a 1-log-greater dilution in sodium benzoate-treated cells than in control cells, although cell numbers for each were similar (7.28 and 7.57 log CFU/ml, respectively). This indicates a greater (albeit slight) level of their transcription in treated cells than in control cells. No difference in expression of eaeA was observed. HemX is a putative uroporphyrinogen III methylase. The hemX gene was expressed at the same level in control and treated cells, validating hemX as an appropriate housekeeping marker. These data indicate that stx1 and marA genes could play a role in pathogen virulence and survival when treated with sodium benzoate, whereas eaeA expression is not altered. Understanding adaptations of E. coli O157:H7 during antimicrobial exposure is essential to better understand and implement methods to inhibit or control survival of this pathogen in foods.
Collapse
Affiliation(s)
- Faith J Critzer
- Department of Food Science and Technology, University of Tennessee, 2605 River Drive, Knoxville, Tennessee 37996-4591, USA
| | | | | |
Collapse
|
19
|
Blanchard JL, Wholey WY, Conlon EM, Pomposiello PJ. Rapid changes in gene expression dynamics in response to superoxide reveal SoxRS-dependent and independent transcriptional networks. PLoS One 2007; 2:e1186. [PMID: 18000553 PMCID: PMC2064960 DOI: 10.1371/journal.pone.0001186] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 10/14/2007] [Indexed: 12/03/2022] Open
Abstract
Background SoxR and SoxS constitute an intracellular signal response system that rapidly detects changes in superoxide levels and modulates gene expression in E. coli. A time series microarray design was used to identify co-regulated SoxRS-dependent and independent genes modulated by superoxide minutes after exposure to stress. Methodology/Principal Findings soxS mRNA levels surged to near maximal levels within the first few minutes of exposure to paraquat, a superoxide-producing compound, followed by a rise in mRNA levels of known SoxS-regulated genes. Based on a new method for determining the biological significance of clustering results, a total of 138 genic regions, including several transcription factors and putative sRNAs were identified as being regulated through the SoxRS signaling pathway within 10 minutes of paraquat treatment. A statistically significant two-block SoxS motif was identified through analysis of the SoxS-regulated genes. The SoxRS-independent response included members of the OxyR, CysB, IscR, BirA and Fur regulons. Finally, the relative sensitivity to superoxide was measured in 94 strains carrying deletions in individual, superoxide-regulated genes. Conclusions/Significance By integrating our microarray time series results with other microarray data, E. coli databases and the primary literature, we propose a model of the primary transcriptional response containing 226 protein-coding and sRNA sequences. From the SoxS dependent network the first statistically significant SoxS-related motif was identified.
Collapse
Affiliation(s)
- Jeffrey L Blanchard
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America.
| | | | | | | |
Collapse
|
20
|
Dardenne F, Van Dongen S, Nobels I, Smolders R, De Coen W, Blust R. Mode of action clustering of chemicals and environmental samples on the bases of bacterial stress gene inductions. Toxicol Sci 2007; 101:206-14. [PMID: 17951611 DOI: 10.1093/toxsci/kfm262] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over the years, environment and the human population have seen an increasing exposure to both existing and newly developed chemicals. It is generally accepted that at least some of those are toxic, albeit as pure compound or in combination with others. In response to a growing public awareness and scientific data, the new European chemicals legislation (Registration, Evaluation and Authorization of Chemicals) is under implementation at the moment. As a consequence, during the coming years about 30,000 chemicals have to be assessed on their potential hazard for man and biota. Part of this assessment will be done using existing and new in vitro tests offering insight into the toxicity of chemicals and into their toxicological mode of action. This study presents data on a battery of 14 bacterial reporter gene assay allowing mode of action determination and statistical grouping of chemicals based on their induction profile. Gene induction results are used to group reference chemicals in a statistical cascade employing hierarchical tree and k-means clustering for initial grouping. Both complementary, yet mathematically different, algorithms are consequently confirmed by principal component analysis (PCA). The gene induction profiles of an environmental extract with documented in vivo effects and a chemical with limited toxicological are data available and projected in the PCA vector space. The projection allows correct mode of action grouping and indicates that effect predictions based on the known toxicological effects of the reference compounds can be made.
Collapse
Affiliation(s)
- Freddy Dardenne
- University of Antwerp, Department of Biology, Ecophysiology, Biochemistry and Toxicology Group, B-2020 Antwerp, Belgium.
| | | | | | | | | | | |
Collapse
|
21
|
Niazi JH, Kim BC, Gu MB. Characterization of superoxide-stress sensing recombinant Escherichia coli constructed using promoters for genes zwf and fpr fused to lux operon. Appl Microbiol Biotechnol 2007; 74:1276-83. [PMID: 17216460 DOI: 10.1007/s00253-006-0758-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 11/07/2006] [Accepted: 11/09/2006] [Indexed: 10/23/2022]
Abstract
To measure the toxicity experienced by superoxide-generating compounds, two plasmids were constructed in which the superoxide-inducible fpr and zwf promoters from Escherichia coli were fused to promoterless Vibrio fischeri luxCDABE operon present in plasmid pUCD615. The bioluminescent response of E. coli harboring these constructs was studied as a function of the toxicity and was shown to be specific for superoxide generating chemicals. The two promoters employed, fpr and zwf, responded differentially to the redox-chemicals tested. Furthermore, a DeltamarA strain bearing the fpr::luxCDABE fusion had a weaker response to paraquat (methyl viologen) than its isogenic parent strain, whereas zwf induction was not inhibited in DeltamarA or Deltarob strains. The fpr and zwf promoters were also induced by alkylating agents but were unresponsive in DeltamarA or Deltarob strains. Using optimized assay conditions, the abilities of these strains to differentially respond to superoxide stress and alkylating agents that may be present in contaminants proves them to be good biosensor candidates for monitoring toxicity.
Collapse
Affiliation(s)
- Javed H Niazi
- College of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | | | | |
Collapse
|
22
|
Dardenne F, Smolders R, De Coen W, Blust R. Prokaryotic gene profiling assays to detect sediment toxicity: evaluating the ecotoxicological relevance of a cell-based assay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:1790-6. [PMID: 17396675 DOI: 10.1021/es062162m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Despite their complexity, ecotoxicological measurements using higher level responses remain a major tool in the assessment of ecosystem integrity. Nevertheless, the past decade saw an increasing number of cell based testing systems have found widespread application in ecotoxicology. One such test is bacterial bioreporters carrying a stress sensitive promoter fused to an easily detectable reporter gene. In the presence of a specific toxic stress,the expression cassette is switched on and the reporter gene is produced. This study evaluated the use of 14 different Escherichia coli bioreporter strains sensitive to different types of toxicity in the assessment of the ecological status of a small river basin in Flanders, Belgium. The river is fed at two geographically separate locations by two distinct and well-described effluents, one from a household sewage treatment facility and one from the discharge of the wastewater treatment facility of a large chemical plant. The results of the bacterial gene profiling assay were related to active biomonitoring results obtained through higher-level responses of caged Dreissena polymorpha, Chironomus riparius, and Cyprinus carpio deployed at the locations sampled for the bacterial assay. The results of the gene induction assay and the active biomonitoring data correlated well and corresponded to the flow dilution data, which is used here as a surrogate forthe chemical pollution gradient present in the river basin.
Collapse
Affiliation(s)
- F Dardenne
- Department of Biology, Ecophysiology, Biochemistry and Toxicology Group, University of Antwerp, Groenenborgerlaan 171/U7, B-2020 Antwerp, Belgium.
| | | | | | | |
Collapse
|
23
|
Dardenne F, Nobels I, De Coen W, Blust R. Dose-response relationships and statistical performance of a battery of bacterial gene profiling assays. Appl Microbiol Biotechnol 2007; 75:223-34. [PMID: 17225096 DOI: 10.1007/s00253-006-0808-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 12/08/2006] [Accepted: 12/11/2006] [Indexed: 11/29/2022]
Abstract
Because of increasing awareness and legislative demands, there is a demand for the development and use of biological assays for the assessment of the toxicity of chemicals, environmental samples. Recently, a growing number of bacterial reporter assays have been developed and implemented. Nevertheless, little data is published on the performance of these assays in terms of analytical parameters. We present results on a battery of 14 transgenic Escherichia coli strains carrying different promoter::reporter fusions. Growth characteristics and basal expression levels were modeled and fitted, data show that growth curves should be taken into account during test development. Our study shows that the induction profiles reflect the mode of action, e.g., paraquat clearly induces the soxRS operon. The sensitivity of the assay compares well to that of whole organism tests, e.g., fish and Daphnia for polar organics. Metal toxicity is detected less efficiently, e.g., cadmium is detected near the LC50 of carp, considered a relatively insensitive species towards cadmium. The assay variability ranges from 10 to 40% depending on the strain, comparable to that of other bioassays. The variability was shown to be determined by the intrinsic traits of the promoter-strain combination, not by operating conditions.
Collapse
Affiliation(s)
- F Dardenne
- Department of Biology, Ecophysiology, Biochemistry and Toxicology Group, University of Antwerp, Groenenborgerlaan 171/U7, Antwerp, Belgium.
| | | | | | | |
Collapse
|
24
|
Kabir MM, Shimizu K. Investigation into the effect of soxR and soxS genes deletion on the central metabolism of Escherichia coli based on gene expressions and enzyme activities. Biochem Eng J 2006. [DOI: 10.1016/j.bej.2006.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Abstract
Central metabolism of carbohydrates uses the Embden-Meyerhof-Parnas (EMP), pentose phosphate (PP), and Entner-Doudoroff (ED) pathways. This review reviews the biological roles of the enzymes and genes of these three pathways of E. coli. Glucose, pentoses, and gluconate are primarily discussed as the initial substrates of the three pathways, respectively. The genetic and allosteric regulatory mechanisms of glycolysis and the factors that affect metabolic flux through the pathways are considered here. Despite the fact that a lot of information on each of the reaction steps has been accumulated over the years for E. coli, surprisingly little quantitative information has been integrated to analyze glycolysis as a system. Therefore, the review presents a detailed description of each of the catalytic steps by a systemic approach. It considers both structural and kinetic aspects. Models that include kinetic information of the reaction steps will always contain the reaction stoichiometry and therefore follow the structural constraints, but in addition to these also kinetic rate laws must be fulfilled. The kinetic information obtained on isolated enzymes can be integrated using computer models to simulate behavior of the reaction network formed by these enzymes. Successful examples of such approaches are the modeling of glycolysis in S. cerevisiae, the parasite Trypanosoma brucei, and the red blood cell. With the rapid developments in the field of Systems Biology many new methods have been and will be developed, for experimental and theoretical approaches, and the authors expect that these will be applied to E. coli glycolysis in the near future.
Collapse
Affiliation(s)
- Tony Romeo
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jacky L Snoep
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa, and Department of Molecular Cell Physiology, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Griffith KL, Becker SM, Wolf RE. Characterization of TetD as a transcriptional activator of a subset of genes of the Escherichia coli SoxS/MarA/Rob regulon. Mol Microbiol 2005; 56:1103-17. [PMID: 15853893 DOI: 10.1111/j.1365-2958.2005.04599.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Escherichia coli, SoxS, MarA and Rob form a closely related subset of the AraC/XylS family of positive regulators, sharing approximately 42% amino acid sequence identity over the length of SoxS and the ability to activate transcription of a common set of target genes that provide resistance to redox-cycling compounds and antibiotics. On the basis of its approximately 43% amino acid sequence identity with SoxS, MarA and Rob, TetD, encoded by transposon Tn10, appears to be a fourth member of the subset. However, although its expression has been shown to be negatively regulated by TetC and not inducible by tetracycline, the physiological function of TetD is unknown. Accordingly, in the work presented here, we initiate a molecular characterization of TetD. We show that expression of TetD activates transcription of a subset of the SoxS/MarA/Rob regulon genes and confers resistance to redox-cycling compounds and antibiotics. We show that mutations in the putative TetD binding site of a TetD-activatable promoter and a mutation in the protein's N-terminal DNA recognition helix interfere with transcription activation, thereby indicating that TetD directly activates target gene transcription. Finally, we show that TetD, like SoxS and MarA, is intrinsically unstable; however, unlike SoxS and MarA, TetD is not degraded by Lon or any of the cell's known cytoplasmic ATP-dependent proteases. Thus, we conclude that TetD is a bona fide member of the SoxS/MarA/Rob subfamily of positive regulators.
Collapse
Affiliation(s)
- Kevin L Griffith
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
27
|
Lu C, Albano CR, Bentley WE, Rao G. Quantitative and kinetic study of oxidative stress regulons using green fluorescent protein. Biotechnol Bioeng 2005; 89:574-87. [PMID: 15672380 DOI: 10.1002/bit.20389] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Potentially damaging reactive oxygen species (ROS) are involved in a number of pathways ranging from signal transduction to apoptosis. Cells have adapted this alteration in redox status into a complex regulatory mechanism. ROS are specifically able to induce the expression of a multitude of genes. We constructed and characterized "oxidative stress probes" consisting of promoter fusions of several ROS-induced genes and the green fluorescent protein (GFP) reporter gene. Specifically, the sodA, fumC, zwf, acnA, acrAB, and soxS genes from the SoxRS regulon and the katG and ahpC genes from OxyR regulon, which respond to the superoxide anion and hydrogen peroxide, were studied. Our results revealed not only different levels of background transcription, but different induction levels both in terms of timing and strength. These systematic studies were performed under a uniform parallel platform and have provided insight into the complicated gene regulation of the oxidative stress regulons.
Collapse
Affiliation(s)
- Canghai Lu
- Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | | | | | | |
Collapse
|
28
|
Dangi B, Gronenborn AM, Rosner JL, Martin RG. Versatility of the carboxy-terminal domain of the alpha subunit of RNA polymerase in transcriptional activation: use of the DNA contact site as a protein contact site for MarA. Mol Microbiol 2004; 54:45-59. [PMID: 15458404 DOI: 10.1111/j.1365-2958.2004.04250.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transcriptional activator, MarA, interacts with RNA polymerase (RNAP) to activate promoters of the mar regulon. Here, we identify the interacting surfaces of MarA and of the carboxy-terminal domain of the alpha subunit of RNAP (alpha-CTD) by NMR-based chemical shift mapping. Spectral changes were monitored for a MarA-DNA complex upon titration with alpha-CTD, and for alpha-CTD upon titration with MarA-DNA. The mapping results were confirmed by mutational studies and retention chromatography. A model of the ternary complex shows that alpha-CTD uses a '265-like determinant' to contact MarA at a surface distant from the DNA. This is unlike the interaction of alpha-CTD with the CRP or Fis activators where the '265 determinant' contacts DNA while another surface of the same alpha-CTD molecule contacts the activator. These results reveal a new versatility for alpha-CTD in transcriptional activation.
Collapse
Affiliation(s)
- Bindi Dangi
- Laboratory of Chemical Physics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
29
|
Griffith KL, Wolf RE. Genetic Evidence for Pre-recruitment as the Mechanism of Transcription Activation by SoxS of Escherichia coli: The Dominance of DNA Binding Mutations of SoxS. J Mol Biol 2004; 344:1-10. [PMID: 15504398 DOI: 10.1016/j.jmb.2004.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 08/03/2004] [Accepted: 09/07/2004] [Indexed: 11/26/2022]
Abstract
SoxS, the direct transcriptional activator of the Escherichia coli superoxide (SoxRS) regulon, displays several unusual characteristics which suggest that it is unlikely to activate transcription by the ususal recruitment mechanism. Thus, agents that generate superoxide endogenously and thereby provoke the defense response elicit the de novo synthesis of SoxS, and with the SoxS binding site being highly degenerate, the number of SoxS binding sites per cell far exceeds the number of SoxS molecules per cell. To account for these distinctive features of the SoxRS system, we proposed "pre-recruitment" as the mechanism by which SoxS activates transcription of the regulon's genes. In pre-recruitment, newly synthesized SoxS molecules form binary complexes with RNA polymerase in solution. These complexes provide the information content to allow the 2500 molecules of SoxS per cell to scan the 65,000 SoxS binding sites per cell for the 200 binding sites per cell that reside within SoxS-dependent promoters. As a test of whether SoxS activates transcription by recruitment or pre-recruitment, we determined the dominance relationships of SoxS mutations conferring defective DNA binding. We found that soxS DNA binding mutations are dominant to the wild-type allele, a result consistent with the pre-recruitment hypothesis, but opposite to that expected for an activator that functions by recruitment. Moreover, whereas positive control mutations of activators functioning by recruitment are usually dominant, a soxS positive control mutation was not. Lastly, with the SoxRS system as an example, we discuss the physiological requirement for stringent regulation of transcriptional activators that function by pre-recruitment.
Collapse
Affiliation(s)
- Kevin L Griffith
- Department of Biological Sciences, University of Maryland-Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | |
Collapse
|
30
|
Barra L, Pica N, Gouffi K, Walker GC, Blanco C, Trautwetter A. Glucose 6-phosphate dehydrogenase is required for sucrose and trehalose to be efficient osmoprotectants in Sinorhizobium meliloti. FEMS Microbiol Lett 2004; 229:183-8. [PMID: 14680697 DOI: 10.1016/s0378-1097(03)00819-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Inactivation of the zwf gene in Sinorhizobium meliloti induces an osmosensitive phenotype and the loss of osmoprotection by trehalose and sucrose, but not by ectoine and glycine betaine. This phenotype is not linked to a defect in the biosynthesis of endogenous solutes. zwf expression is induced by high osmolarity, sucrose and trehalose, but is repressed by betaine. A zwf mutant is more sensitive than its parental strain to superoxide ions, suggesting that glucose 6-phosphate dehydrogenase involvement in the osmotic response most likely results from the production of reactive oxygen species during osmotic stress.
Collapse
Affiliation(s)
- Lise Barra
- Osmorégulation chez les bactéries, CNRS UMR 6026, Université de Rennes I, Campus de Beaulieu, Av. du Général Leclerc, 35042 Rennes, France
| | | | | | | | | | | |
Collapse
|
31
|
Jung IL, Kim IG. Thiamine protects against paraquat-induced damage: scavenging activity of reactive oxygen species. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2003; 15:19-26. [PMID: 21782675 DOI: 10.1016/j.etap.2003.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2003] [Accepted: 08/07/2003] [Indexed: 05/31/2023]
Abstract
To demonstrate the superoxide anion (O(2)(-)) scavenging activity of thiamine, we comparatively investigated the inhibition of cell growth reduction and repression of the oxidative stress-inducible gene expression (soxS, sodA, zwf and soi-19::lacZ) triggered by paraquat, intracellular O(2)(-) generator, using an Escherichia coli system. When thiamine (>1 μM) was added to the culture, a decrease of growth rate caused by paraquat was significantly recovered. Paraquat treatment (1 μM) to aerobically grown E. coli highly increased the expression of soxS and its regulons sodA and zwf, genes for manganese-containing superoxide dismutase (Mn-SOD) and glucose-6-phosphate dehydrogenase (G6PDH) to cope with the oxidative stress. However, the induction of Mn-SOD and G6PDH was suppressed by the thiamine supplement. The induction of the soi-19::lacZ gene, whose expression was dependent on paraquat, was also repressed by more than 10 μM of the thiamine addition to the culture. To characterize the role of thiamine, which challenges the paraquat toxicity, an in vitro experiment of nitroblue tetrazolium (NBT) reduction was performed. The NBT reduction by O(2)(-) generated in the xanthine/hypoxanthine system was inhibited by the thiamine supplement in a dose-dependent manner. Moreover, it competed with the 2-deoxy-d-ribose in absorbing the hydroxyl radical (OH) generated by γ-irradiation (800 Gy) and thus inhibited the formation of malondialdehyde in vitro. In conclusion, this evidence suggests that thiamine may partly act as an antioxidant to scavenge O(2)(-) (or OH) directly and thus affect the cellular response to oxidative stress induced by reactive oxygen species.
Collapse
Affiliation(s)
- Il Lae Jung
- Department of Radiation Biology, Environment Radiation Research Group, Korea Atomic Energy Research Institute, P.O. Box 105, Yusong, Taejon 305-600, Republic of Korea
| | | |
Collapse
|
32
|
Vergauwen B, Pauwels F, Vaneechoutte M, Van Beeumen JJ. Exogenous glutathione completes the defense against oxidative stress in Haemophilus influenzae. J Bacteriol 2003; 185:1572-81. [PMID: 12591874 PMCID: PMC148052 DOI: 10.1128/jb.185.5.1572-1581.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since they are equipped with several strategies by which they evade the antimicrobial defense of host macrophages, it is surprising that members of the genus Haemophilus appear to be deficient in common antioxidant systems that are well established to protect prokaryotes against oxidative stress. Among others, no genetic evidence for glutathione (gamma-Glu-Cys-Gly) (GSH) biosynthesis or for alkyl hydroperoxide reduction (e.g., the Ahp system characteristic or enteric bacteria) is apparent from the Haemophilus influenzae Rd genome sequence, suggesting that the organism relies on alternative systems to maintain redox homeostasis or to reduce small alkyl hydroperoxides. In this report we address this apparent paradox for the nontypeable H. influenzae type strain NCTC 8143. Instead of biosynthesis, we could show that this strain acquires GSH by importing the thiol tripeptide from the growth medium. Although such GSH accumulation had no effect on growth rates, the presence of cellular GSH protected against methylglyoxal, tert-butyl hydroperoxide (t-BuOOH), and S-nitrosoglutathione toxicity and regulated the activity of certain antioxidant enzymes. H. influenzae NCTC 8143 extracts were shown to contain GSH-dependent peroxidase activity with t-BuOOH as the peroxide substrate. The GSH-mediated protection against t-BuOOH stress is most probably catalyzed by the product of open reading frame HI0572 (Prx/Grx), which we isolated from a genomic DNA fragment that confers wild-type resistance to t-BuOOH toxicity in the Ahp-negative Escherichia coli strain TA4315 and that introduces GSH-dependent alkyl hydroperoxide reductase activity into naturally GSH peroxidase-negative E. coli. Finally, we demonstrated that cysteine is an essential amino acid for growth and that cystine, GSH, glutathione amide, and cysteinylglycine can be catabolized in order to complement cysteine deficiency.
Collapse
Affiliation(s)
- Bjorn Vergauwen
- Laboratory for Protein Biochemistry and Protein Engineering, Ghent University, Belgium
| | | | | | | |
Collapse
|
33
|
Barbosa TM, Levy SB. Activation of the Escherichia coli nfnB gene by MarA through a highly divergent marbox in a class II promoter. Mol Microbiol 2002; 45:191-202. [PMID: 12100559 DOI: 10.1046/j.1365-2958.2002.03006.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
MarA is a global regulator that mediates resistance to multiple environmental hazards such as antibiotics, disinfectants and oxidative stress agents by modulating the expression of a large number of genes in the Escherichia coli chromosome. Two E. coli MarA homologues, SoxS and Rob also control, to different extents, genes in the mar/sox/rob regulon. The controlling element for these proteins is a 20 bp 'marbox' sequence in the promoter region of regulated genes. Using in vitro assays and mutagenesis of promoter fusions in whole cells, we identified the cis regulatory element involved in MarA upregulation of the oxygen-insensitive nitroreductase nfnB gene. MarA binds to a marbox that is highly divergent from the previously proposed consensus (eight differences out of 14 specified nucleotides). Although purified SoxS and Rob proteins, like MarA, activated nfnB transcription in vitro, only constitutive expression of chromosomal marA, but not of soxS and rob genes, affected nfnB expression in whole cells. Increased expression, but limited as compared with MarA, was only achieved by plasmid-mediated overexpression of SoxS and Rob. This study shows that MarA can regulate gene expression through a functional marbox that is considerably divergent from the current consensus sequence. The data suggest that MarA is preferred over SoxS and Rob in upregulating nfnB. The findings imply that other different but physiologically important marbox DNA-MarA interactions take place in the regulation of still uncharacterized members of the mar regulon.
Collapse
Affiliation(s)
- Teresa M Barbosa
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
34
|
Griffith KL, Shah IM, Myers TE, O'Neill MC, Wolf RE. Evidence for "pre-recruitment" as a new mechanism of transcription activation in Escherichia coli: the large excess of SoxS binding sites per cell relative to the number of SoxS molecules per cell. Biochem Biophys Res Commun 2002; 291:979-86. [PMID: 11866462 DOI: 10.1006/bbrc.2002.6559] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In response to the oxidative stress imposed by redox-cycling compounds like paraquat, Escherichia coli induces the synthesis of SoxS, which then activates the transcription of approximately 100 genes. The DNA binding site for SoxS-dependent transcription activation, the "soxbox," is highly degenerate, suggesting that the genome contains a large number of SoxS binding sites. To estimate the number of soxboxes in the cell, we searched the E. coli genome for SoxS binding sites using as query sequence the previously determined optimal SoxS binding sequence. We found approximately 12,500 sequences that match the optimal binding sequence under the conditions of our search; this agrees with our previous estimate, based on information theory, that a random sequence the size of the E. coli genome contains approximately 13,000 soxboxes. Thus, fast-growing cells with 4-6 genomes per cell have approximately 65,000 soxboxes. This large number of potential SoxS binding sites per cell raises the interesting question of how SoxS distinguishes between the functional soxboxes located within the promoters of target genes and the plethora of equivalent but nonfunctional binding sites scattered throughout the chromosome. To address this question, we treated cells with paraquat and used Western blot analysis to determine the kinetics of SoxS accumulation per cell; we also determined the kinetics of SoxS-activated gene expression. The abundance of SoxS reached a maximum of 2,500 molecules per cell 20 min after induction and gradually declined to approximately 500 molecules per cell over the next 1.5 h. Given that activation of target gene expression began almost immediately and given the large disparity between the number of SoxS molecules per cell, 2,500, and the number of SoxS binding sites per cell, 65,000, we infer that SoxS is not likely to activate transcription by the usual "recruitment" pathway, as this mechanism would require a number of SoxS molecules similar to the number of soxboxes. Instead, we propose that SoxS first interacts in solution with RNA polymerase and then the binary complex scans the chromosome for promoters that contain a soxbox properly positioned and oriented for transcription activation. We name this new pathway "pre-recruitment."
Collapse
Affiliation(s)
- Kevin L Griffith
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| | | | | | | | | |
Collapse
|
35
|
Griffith KL, Wolf RE. Measuring beta-galactosidase activity in bacteria: cell growth, permeabilization, and enzyme assays in 96-well arrays. Biochem Biophys Res Commun 2002; 290:397-402. [PMID: 11779182 DOI: 10.1006/bbrc.2001.6152] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe a high-throughput procedure for measuring beta-galactosidase activity in bacteria. This procedure is unique because all manipulations, including bacterial growth and cell permeabilization, are performed in a 96-well format. Cells are permeabilized by chloroform/SDS treatment directly in the 96-well blocks and then transferred to 96-well microplates for standard colorimetric assay of beta-galactosidase activity as described by Miller [J. H. Miller (1972) Experiments in Molecular Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY]. Absorbance data are collected with a microplate reader and analyzed using a Microsoft Excel spreadsheet. The beta-galactosidase specific activity values obtained with the high-throughput procedure are identical to those obtained by the traditional single-tube method of Miller. Thus, values obtained with this procedure may be expressed as Miller units and compared directly to Miller units reported in the literature. The 96-well format for permeabilization and assay of enzyme specific activity together with the use of 12-channel and repeater pipettors enables efficient processing of hundreds of samples in an 8-h day.
Collapse
Affiliation(s)
- Kevin L Griffith
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | |
Collapse
|
36
|
Yu RR, DiRita VJ. Regulation of gene expression in Vibrio cholerae by ToxT involves both antirepression and RNA polymerase stimulation. Mol Microbiol 2002; 43:119-34. [PMID: 11849541 DOI: 10.1046/j.1365-2958.2002.02721.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Co-ordinate expression of many virulence genes in the human pathogen Vibrio cholerae is under the direct control of the ToxT protein, including genes whose products are required for the biogenesis of the toxin-co-regulated pilus (TCP) and cholera toxin (CTX). This work examined interactions between ToxT and the promoters of ctx and tcpA genes. We found that a minimum of three direct repeats of the sequence TTTTGAT is required for ToxT-dependent activation of the ctx promoter, and that the region from -85 to -41 of the tcpA promoter contains elements that are responsive to ToxT-dependent activation. The role of H-NS in transcription of ctx and tcpA was also analysed. The level of activation of ctx-lacZ in an E. coli hns- strain was greatly increased even in the absence of ToxT, and was further enhanced in the presence of ToxT. In contrast, H-NS plays a lesser role in the regulation of the tcpA promoter. Electrophoretic mobility shift assays demonstrated that 6x His-tagged ToxT directly, and specifically, interacts with both the ctx and tcpA promoters. DNase I footprinting analysis suggests that there may be two ToxT binding sites with different affinity in the ctx promoter and that ToxT binds to -84 to -41 of the tcpA promoter. In vitro transcription experiments demonstrated that ToxT alone is able to activate transcription from both promoters. We hypothesize that under conditions appropriate for ToxT-dependent gene expression, ToxT binds to AT-rich promoters that may have a specific secondary conformation, displaces H-NS and stimulates RNA polymerase resulting in transcription activation.
Collapse
Affiliation(s)
- Rosa R Yu
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
37
|
Martin RG, Gillette WK, Martin NI, Rosner JL. Complex formation between activator and RNA polymerase as the basis for transcriptional activation by MarA and SoxS in Escherichia coli. Mol Microbiol 2002; 43:355-70. [PMID: 11985714 DOI: 10.1046/j.1365-2958.2002.02748.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcriptional activation in Escherichia coli is generally considered to proceed via the formation of an activator-DNA-RNA polymerase (RNP) ternary complex. Although the order of assembly of the three elements is thermodynamically irrelevant, a prevalent idea is that the activator-DNA complex is formed first, and recruitment of RNP to the binary complex occurs subsequently. We show here that the closely related activators, MarA, SoxS and Rob, which activate the same family of genes, are capable of forming complexes with RNP core or holoenzyme in the absence of DNA. In addition, we find that the ternary MarA-DNA-RNP and SoxS-DNA-RNP complexes are more stable than the corresponding Rob-DNA-RNP complex, although the binary Rob-DNA complex is often more stable than the corresponding MarA- or SoxS-DNA complexes. These results may help to explain certain puzzling aspects of the MarA/SoxS/Rob system. We suggest that activator-RNP complexes scan the chromosome and bind promoters of the regulon more efficiently than either RNP or the activators alone.
Collapse
Affiliation(s)
- Robert G Martin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0560, USA.
| | | | | | | |
Collapse
|
38
|
Griffith KL, Wolf RE. Systematic mutagenesis of the DNA binding sites for SoxS in the Escherichia coli zwf and fpr promoters: identifying nucleotides required for DNA binding and transcription activation. Mol Microbiol 2001; 40:1141-54. [PMID: 11401718 DOI: 10.1046/j.1365-2958.2001.02456.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SoxS is the direct transcriptional activator of at least 15 genes of the Escherichia coli superoxide regulon. SoxS is small (107 amino acids), binds DNA as a monomer and recognizes a highly degenerate DNA binding site, termed 'soxbox'. Like other members of the AraC/XylS family, SoxS has two putative helix-turn-helix (HTH) DNA-binding motifs, and it has been proposed that each HTH motif recognizes a highly conserved recognition element of the soxbox. To determine which nucleotides are important for SoxS binding, we conducted a systematic mutagenesis of the DNA binding sites for SoxS in the zwf and fpr promoters and determined the effect of the soxbox mutations on SoxS DNA binding and transcription activation in vivo by measuring beta-galactosidase activity in strains with fusions to lacZ. We found that the sequences GCAC and CAAA, termed recognition elements 1 and 2 (RE 1 and RE 2), respectively, are critical for SoxS binding, as mutations within these elements severely hinder or eliminate SoxS-dependent transcription activation; substitutions within RE 2 (CAAA), however, are tolerated better than changes within RE 1 (GCAC). Although substitutions at the seven positions separating the two REs had only a modest effect on SoxS binding, AT basepairs were favoured within this 'spacer' region, presumably because, by facilitating DNA bending, they help bring the two recognition elements into proper juxtaposition. We also found that the 'invariant A' present at position 1 of 14/15 functional soxboxes identified thus far is important for SoxS binding, as a change to any other nucleotide at this position reduced SoxS-dependent transcription by approximately 50%. In addition, positions surrounding the REs seem to show a context effect, in that certain substitutions there have little or no effect when the RE has the optimal binding sequence, but produce a pronounced effect when the RE has a suboptimal sequence. We propose that these nucleotides play an important role in effecting differential expression from the various promoters. Lastly, we used gel retardation assays to show that alterations in transcription activation in vivo are caused by effects on DNA binding. Based on this exhaustive mutagenesis, we propose the following optimal sequence for SoxS binding: AnVGCACWWWnKRHCAAAHn (n = A, C, G, T; V = A, C, G; W = A, T; K = G, T; R = A, G; H = A, C, T).
Collapse
Affiliation(s)
- K L Griffith
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | |
Collapse
|
39
|
Touati D. Sensing and protecting against superoxide stress in Escherichia coli--how many ways are there to trigger soxRS response? Redox Rep 2001; 5:287-93. [PMID: 11145103 DOI: 10.1179/135100000101535825] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Reactive oxygen species (ROS) are produced as an inescapable consequence of aerobic life. Their levels are kept low enough to be harmless by specific enzymes, such as superoxide dismutase, which eliminate them. Expression of these defence enzymes is modulated depending on the environmental oxidative threat. This basic protection, however, is not sufficient to protect against sudden large increases in ROS production. To cope with oxidative stress, rapid global responses are induced that enable bacteria to survive the stress period by multiple means: elimination of ROS, repair of oxidative damage, bypass of damaged functions and induction of adapted metabolism. The soxRS response, which protects against superoxide (O2.-)-generating agents and nitric oxide (.NO), is triggered by activation of a sensor molecule, SoxR, containing two essential [2Fe-2S] clusters. The soxRS regulon is induced in a two-stage process. Upon activation, SoxR induces soxS expression and SoxS, in turn, activates transcription of genes of the regulon. The mechanism of signalling has been under debate for years. Evidence for several pathways of SoxR activation, mediated by the modifications of [2Fe-2S] centres, has emerged from recent data. The direct oxidation of [2Fe-2S] centres, any event that may interfere with the pathway maintaining SoxR in a reduced inactive form, and direct nitrosylation by .NO can trigger SoxR activation. The multiple possibilities for SoxR activation, along with signal amplification via the two-stage process, constitute a unique, and particularly sensitive, system enabling cells to induce rapidly a protective response to a broad range of environmental changes indicative of possible oxidative stress.
Collapse
Affiliation(s)
- D Touati
- Laboratoire de Gén ique Moléculaire des Réponses Adaptatives, Institut Jacques Monod, CNRS-Université Paris 6, France.
| |
Collapse
|
40
|
Spolarics Z, Meyenhofer M. Augmented resistance to oxidative stress in fatty rat livers induced by a short-term sucrose-rich diet. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1487:190-200. [PMID: 11018471 DOI: 10.1016/s1388-1981(00)00093-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hepatic steatosis and the accompanying oxidative stress have been associated with a variety of liver diseases. It is not known if fat accumulation per se plays a direct role in the oxidative stress of the organ. This study tested if steatosis induced by a short-term carbohydrate-rich diet results in an increased hepatic sensitivity to oxidative stress. Antioxidant status was determined in a liver perfusion system and in isolated parenchymal, endothelial and Kupffer cells from rats kept on sucrose-rich diet or on regular diet for 48 h. t-Butyl hydroperoxide addition (2 mM) to the perfusion fluid resulted in a release of alanine aminotransferase (ALT) in livers from controls, whereas no ALT release was observed in fatty livers. After t-butyl hydroperoxide addition, oxidized glutathione release was 40% less in fatty than in control livers, whereas reduced glutathione (GSH) release was not different. Sinusoidal oxidant stress was mimicked by the addition of lipopolysaccharide (LPS) from Escherichia coli (10 microg/ml) followed by the addition of opsonized zymosan (8 mg/ml) to the perfusion medium. LPS plus zymosan treatments resulted in the release of ALT in control but not in fatty livers. At the end of perfusion, liver glutathione content was 3-fold elevated, and the tissue content of lipid peroxidation products was approx. 40% less in fatty livers compared to controls. GSH content was doubled and glucose-6-phosphate dehydrogenase (G6PD) expression was elevated by 3- and 10-fold in sinusoidal endothelial and parenchymal cells form fatty livers compared to cells from control animals. Following H(2)O(2) administration in vitro (0.2-1 mM), GSH remained elevated in endothelial and parenchymal cells from fatty livers compared to cells from controls. In contrast, G6PD activity and GSH content were similar in Kupffer cells isolated from fatty or control livers. The study shows that hepatic fat accumulation caused by a short-term sucrose diet is not accompanied by elevated hepatic lipid peroxidation, and an elevated hepatic antioxidant activity can be manifested in the presence of prominent steatosis. The diet-induced increase in G6PD expression and, thus, the efficient maintenance of reduced glutathione in endothelial and parenchymal cells are a supportive mechanism in the observed hepatic resistance against intracellular or sinusoidal oxidative stress.
Collapse
Affiliation(s)
- Z Spolarics
- Department of Anatomy, Cell Biology and Injury Sciences, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA.
| | | |
Collapse
|
41
|
Abstract
Gene regulation mechanisms have evolved allowing cells to finetune the level of "endogenous" oxidative stress and to cope with increased free radicals from external sources. Levels of H2O2 are tightly controlled in E. coli by OxyR, which is activated by H2O2 to increase scavenging activities and limit H2O2 generation by the respiratory chain. Sub-micromolar levels of H2O2 are maintained in mammalian tissues, though the regulatory systems that govern this control are unknown. Excess superoxide triggers the soxRS system in E. coli, which is controlled by the oxidant-sensitive iron-sulfur centers of the SoxR protein. Nitric oxide activates SoxR by a different modification of the iron-sulfur centers. The soxRS regulon mobilizes diverse functions to scavenge free radicals and repair oxidative damage in macromolecules, and other mechanisms that exclude many environmental agents from the cell. Mammalian cells also sense and respond to sub-toxic levels of nitric oxide, activating expression of heme oxygenase 1 through stabilization of its mRNA. These inductions give rise to adaptive resistance to nitric oxide in neuronal and other cell types.
Collapse
Affiliation(s)
- B González-Flecha
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
42
|
Manzanera M, Marqués S, Ramos JL. Mutational analysis of the highly conserved C-terminal residues of the XylS protein, a member of the AraC family of transcriptional regulators. FEBS Lett 2000; 476:312-7. [PMID: 10913634 DOI: 10.1016/s0014-5793(00)01749-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The XylS protein of the TOL plasmid of Pseudomonas putida belongs to the so-called AraC/XylS family of regulators, that includes more than 100 different bacterial proteins. A conserved stretch of about 100 amino acids is present at the C-terminal end. This conserved region is believed to contain seven alpha-helices, including two helix-turn-helix (HTH) DNA binding motifs (alpha(2)-T-alpha(3) and alpha(5)-Talpha-(6)), connected by a linker alpha-helix (alpha(4)), and two flanking alpha-helices (alpha(1) and alpha(7)). The second HTH motif is the region with the highest homology in the proteins of the family, with certain residues showing almost 90% identity. We have constructed XylS single mutants in the most conserved residues and have analysed their ability to stimulate transcription from its cognate promoter, Pm, fused to 'lacZ. The analysis revealed that mutations in the alpha(5)-helix conserved residues had little effect on the XylS transcriptional activity, whereas the distribution of polarity in the alpha(6)-helix was important for the activity. The strongest effect of the mutations was observed in conserved residues located outside the DNA binding domain, namely, Gly-290 in the turn between the two helices, Pro-309 located downstream of alpha(6), and Leu-313, in the small last helix alpha(7), that seems to play an important role in the activation of RNA-polymerase. Our analysis shows that conservation of amino acids in the family reflects structural requirements rather than functionality in specific DNA interactions.
Collapse
Affiliation(s)
- M Manzanera
- CSIC, Estación Experimental del Zaidín, Departamento de Bioquímica y Biología Molecular y Celular de Plantas, Apdo. 419, 18080, Granada, Spain
| | | | | |
Collapse
|
43
|
Martin RG, Gillette WK, Rosner JL. Promoter discrimination by the related transcriptional activators MarA and SoxS: differential regulation by differential binding. Mol Microbiol 2000; 35:623-34. [PMID: 10672184 DOI: 10.1046/j.1365-2958.2000.01732.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
MarA and SoxS are closely related proteins ( approximately 45% identical) that transcriptionally activate a common set of unlinked genes, resulting in multiple antibiotic and superoxide resistance in Escherichia coli. Both proteins bind as monomers to a 20 bp degenerate asymmetric recognition sequence, the 'marbox', located upstream of the promoter. However, the proteins differ widely in the extents to which they activate particular promoters, with the consequence that overexpression of SoxS leads to greater superoxide resistance than does overexpression of MarA. This 'discrimination' between activators by promoters was demonstrated in vivo, using promoters fused to lacZ, and in vitro, using purified RNA polymerase, promoter DNA and MarA or SoxS. The marbox was found to be a critical element in discrimination by in vivo and in vitro assays of hybrid promoters containing the marbox from one gene and the core promoter from another. Furthermore, by sequential mutation of its marbox, a promoter that discriminated 35-fold in favour of SoxS was converted into one that did not discriminate. The relative activation of a promoter by MarA or SoxS was paralleled by the relative binding of the two activators to the promoter's marbox as assayed by band shift experiments. Thus, differential recognition of closely related marbox sequences by the closely related activators is the primary basis for promoter discrimination. Discrimination enables the cell to customize its response to the stresses that trigger synthesis of the activators.
Collapse
Affiliation(s)
- R G Martin
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Bldg. 5, Rm. 333, N.I.H., Bethesda, MD 20892-0560, USA.
| | | | | |
Collapse
|
44
|
Wood TI, Griffith KL, Fawcett WP, Jair KW, Schneider TD, Wolf RE. Interdependence of the position and orientation of SoxS binding sites in the transcriptional activation of the class I subset of Escherichia coli superoxide-inducible promoters. Mol Microbiol 1999; 34:414-30. [PMID: 10564484 DOI: 10.1046/j.1365-2958.1999.01598.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SoxS is the direct transcriptional activator of the member genes of the Escherichia coli superoxide regulon. At class I SoxS-dependent promoters, e.g. zwf and fpr, whose SoxS binding sites ('soxbox') lie upstream of the -35 region of the promoter, activation requires the C-terminal domain of the RNA polymerase alpha-subunit, while at class II SoxS-dependent promoters, e.g. fumC and micF, whose binding sites overlap the -35 region, activation is independent of the alpha-CTD. To determine whether SoxS activation of its class I promoters shows the same helical phase-dependent spacing requirement as class I promoters activated by catabolite gene activator protein, we increased the 7 bp distance between the 20 bp zwf soxbox and the zwf -35 promoter hexamer by 5 bp and 11 bp, and we decreased the 15 bp distance between the 20 bp fpr soxbox and the fpr -35 promoter hexamer by the same amounts. In both cases, displacement of the binding site by a half or full turn of the DNA helix prevented transcriptional activation. With constructs containing the binding site of one gene fused to the promoter of the other, we demonstrated that the positional requirements are a function of the specific binding site, not the promoter. Supposing that opposite orientation of the SoxS binding site at the two promoters might account for the positional requirements, we placed the zwf and fpr soxboxes in the reverse orientation at the various positions upstream of the promoters and determined the effect of orientation on transcription activation. We found that reversing the orientation of the zwf binding site converts its positional requirement to that of the fpr binding site in its normal orientation, and vice versa. Analysis by molecular information theory of DNA sequences known to bind SoxS in vitro is consistent with the opposite orientation of the zwf and fpr soxboxes.
Collapse
Affiliation(s)
- T I Wood
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | | | | | | | | | |
Collapse
|
45
|
Martin RG, Gillette WK, Rhee S, Rosner JL. Structural requirements for marbox function in transcriptional activation of mar/sox/rob regulon promoters in Escherichia coli: sequence, orientation and spatial relationship to the core promoter. Mol Microbiol 1999; 34:431-41. [PMID: 10564485 DOI: 10.1046/j.1365-2958.1999.01599.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The promoters of the mar/sox/rob regulon of Escherichia coli contain a binding site (marbox) for the homologous transcriptional activators MarA, SoxS and Rob. In spite of data from footprinting studies, the marbox has not been precisely defined because of its degeneracy and asymmetry and seemingly variable location with respect to the -10 and -35 hexamers for RNA polymerase (RNP) binding. Here, we use DNA retardation studies and hybrid promoters to identify optimally binding 20 bp minimal marboxes from a number of promoters. This has yielded a more defined marbox consensus sequence (AYnGCACnnWnnRYYAAAYn) and has led to the demonstration that some marboxes are inverted relative to others. Using transcriptional fusions to lacZ, we have found that only one marbox orientation is functional at a given location. Moreover, the functional orientation is determined by marbox location: marboxes that are 15 or more basepairs upstream of the -35 hexamer are oriented opposite those closer to the -35 hexamer. Marbox orientation and the spacing between marbox and signals for RNP binding are critical for transcriptional activation, presumably to align MarA with RNP.
Collapse
Affiliation(s)
- R G Martin
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Bldg. 5, Rm. 333, NIH, Bethesda, MD 20892-0560, USA.
| | | | | | | |
Collapse
|
46
|
Regnström K, Sauge-Merle S, Chen K, Burgess BK. In Azotobacter vinelandii, the E1 subunit of the pyruvate dehydrogenase complex binds fpr promoter region DNA and ferredoxin I. Proc Natl Acad Sci U S A 1999; 96:12389-93. [PMID: 10535932 PMCID: PMC22927 DOI: 10.1073/pnas.96.22.12389] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/1999] [Accepted: 08/25/1999] [Indexed: 11/18/2022] Open
Abstract
In Azotobacter vinelandii, deletion of the fdxA gene that encodes a well characterized seven-iron ferredoxin (FdI) is known to lead to overexpression of the FdI redox partner, NADPH:ferredoxin reductase (FPR). Previous studies have established that this is an oxidative stress response in which the fpr gene is transcriptionally activated to the same extent in response to either addition of the superoxide propagator paraquat to the cells or to fdxA deletion. In both cases, the activation occurs through a specific DNA sequence located upstream of the fpr gene. Here, we report the identification of the A. vinelandii protein that binds specifically to the paraquat activatable fpr promoter region as the E1 subunit of the pyruvate dehydrogenase complex (PDHE1), a central enzyme in aerobic respiration. Sequence analysis shows that PDHE1, which was not previously suspected to be a DNA-binding protein, has a helix-turn-helix motif. The data presented here further show that FdI binds specifically to the DNA-bound PDHE1.
Collapse
Affiliation(s)
- K Regnström
- Department of Molecular Biology, University of California, Irvine, CA 92697-3900, USA
| | | | | | | |
Collapse
|
47
|
González-Pérez MM, Ramos JL, Gallegos MT, Marqués S. Critical nucleotides in the upstream region of the XylS-dependent TOL meta-cleavage pathway operon promoter as deduced from analysis of mutants. J Biol Chem 1999; 274:2286-90. [PMID: 9890992 DOI: 10.1074/jbc.274.4.2286] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Pm promoter, dependent on TOL plasmid XylS regulator, which is activated by benzoate effectors, drives transcription of the meta-cleavage pathway for the metabolism of alkylbenzoates. This promoter is unique in that in vivo transcription is mediated by RNA-polymerase with different sigma factors. In vivo footprinting analysis shows that XylS interacted with nucleotides in the -40 to -70 region. In vivo and in vitro methylation of Pm shows extensive methylation of T at position -42 in the bottom strand, suggesting that it represents a key distortion point that may favor XylS/RNA polymerase interactions. Methylation of T-42 was highest in cells bearing XylS and in the presence of an effector. Gs in the -47 to -61 region appeared to be more protected in cells harboring XylS in the presence than in the absence of the effector. Almost 100 mutants in the Pm region between -41 and -78 were generated; transcriptional analysis of these mutants defined the XylS target as two direct repeats with the sequence TGCAN6GGNCA. These motifs cover the -70 to -56 and the -49 to -35 regions. Single point mutations revealed that nucleotides located at -49 to -46 and at -59, -60, -62, and -70 are the most critical for appropriate XylS-Pm interactions.
Collapse
Affiliation(s)
- M M González-Pérez
- Department of Biochemistry, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Apartado de Correos 419, E-18008 Granada, Spain
| | | | | | | |
Collapse
|
48
|
Lundberg BE, Wolf RE, Dinauer MC, Xu Y, Fang FC. Glucose 6-phosphate dehydrogenase is required for Salmonella typhimurium virulence and resistance to reactive oxygen and nitrogen intermediates. Infect Immun 1999; 67:436-8. [PMID: 9864251 PMCID: PMC96332 DOI: 10.1128/iai.67.1.436-438.1999] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella typhimurium zwf mutants lacking glucose 6-phosphate dehydrogenase (G6PD) activity have increased susceptibility to reactive oxygen and nitrogen intermediates as well as attenuated virulence in mice. Abrogation of the phagocyte respiratory burst oxidase during experimental infection with zwf mutant Salmonella causes a prompt restoration of virulence, while inhibition of inducible nitric oxide synthase results in delayed lethality. These observations suggest that G6PD-dependent bacterial antioxidant defenses play an important pathogenic role during early salmonellosis and additionally may help to antagonize NO-dependent antimicrobial mechanisms later in the course of infection.
Collapse
Affiliation(s)
- B E Lundberg
- Department of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
50
|
Rhee S, Martin RG, Rosner JL, Davies DR. A novel DNA-binding motif in MarA: the first structure for an AraC family transcriptional activator. Proc Natl Acad Sci U S A 1998; 95:10413-8. [PMID: 9724717 PMCID: PMC27908 DOI: 10.1073/pnas.95.18.10413] [Citation(s) in RCA: 233] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A crystal structure for a member of the AraC prokaryotic transcriptional activator family, MarA, in complex with its cognate DNA-binding site is described. MarA consists of two similar subdomains, each containing a helix-turn-helix DNA-binding motif. The two recognition helices of the motifs are inserted into adjacent major groove segments on the same face of the DNA but are separated by only 27 A thereby bending the DNA by approximately 35 degrees. Extensive interactions between the recognition helices and the DNA major groove provide the sequence specificity.
Collapse
Affiliation(s)
- S Rhee
- Laboratory of Molecular Biology, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0560, USA
| | | | | | | |
Collapse
|