1
|
Yamaguchi S, Ishikawa K, Furuta K, Kaito C. Enterobacterial common antigen repeat-unit flippase WzxE is required for Escherichia coli growth under acidic conditions, low temperature, and high osmotic stress conditions. Appl Environ Microbiol 2025; 91:e0259524. [PMID: 40207904 DOI: 10.1128/aem.02595-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025] Open
Abstract
Colanic acid and enterobacterial common antigen (ECA) are cell-surface polysaccharides that are produced by many Escherichia coli isolates. Colanic acid is induced under acidic, low temperature, and high-salt conditions and is important for E. coli resistance to these stresses; however, the role of ECA in these stresses is less clear. Here, we observed that knockout of flippase wzxE, which translocates lipid-linked ECA repeat units from the cytoplasmic side of the inner membrane to the periplasmic side, resulted in the sensitivity of E. coli BW25113 to acidic conditions. The wzxE-knockout mutant showed reduced growth potential and viable counts in vegetable extracts with acidic environments, including cherry tomatoes, carrots, celery, lettuce, and spinach. A double-knockout strain of wzxE and wecF (glycosyltransferase that adds the third-and-final sugar of the lipid-linked ECA repeat unit) was not sensitive to acidic conditions, with similar results obtained for a double-knockout strain of wzxE and wcaJ (glycosyltransferase that initiates colanic acid lipid-linked repeat-unit biosynthesis). The wzxE-knockout mutant was sensitive to low temperatures or high-salt conditions, which induced colanic acid synthesis, and these sensitivities were abolished by the additional knockout of wcaJ. These results suggest that lipid-linked ECA repeat units confer E. coli susceptibility to acidic, low temperatures, and high-salt conditions in a colanic acid-dependent manner and that wzxE suppresses this negative effect.IMPORTANCEThe role of the common enterobacterial antigen, a polysaccharide that is conserved throughout enterobacteria, in stress resistance is unclear. Our results suggest that lipid-linked enterobacterial common antigen repeat units (which are typically translocated across the inner membrane by the flippase WzxE) cause sensitivity of Escherichia coli to acidic, low-temperature, and high-salt conditions in a manner dependent on colanic acid. The wzxE-knockout mutant was sensitive to crude vegetable extracts, suggesting that the development of WzxE inhibitors could lead to novel food poisoning prevention agents. Considering previous findings that lipid-linked ECA repeat units are flipped by both WzxE and the flippase for colanic acid lipid-linked repeat-unit, the colanic acid-dependence of the wzxE-knockout phenotype proposes a model in which a large amount of colanic acid under stress conditions occupies the flippase for colanic acid lipid-linked repeat unit, leading to accumulation of lipid-linked ECA repeat units on the inner membrane.
Collapse
Affiliation(s)
- Saki Yamaguchi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuya Ishikawa
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuyuki Furuta
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chikara Kaito
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
2
|
Piché LC, Bories S, Liato V, Paquet VE, Saucier L, Létourneau-Montminy MP, Charette SJ, Dubar R, Labrie SJ, Lagüe P, Vincent AT. Evolutionary responses of Escherichia coli to phage pressure: insights into mucoidy and colanic acid overexpression. BMC Genomics 2025; 26:448. [PMID: 40329173 PMCID: PMC12057083 DOI: 10.1186/s12864-025-11605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Antibiotic resistance is a major issue affecting all spheres of human activity, including agriculture. One significant example is the Avian Pathogenic Escherichia coli (APEC), a bacterium that infects poultry and leads to substantial economic losses in the farming industry. As antibiotics lose efficacity, bacteriophages (phages) -viruses that specifically target bacteria-are emerging as a promising alternative to antibiotics for treating and preventing bacterial infections. However, bacteria can develop resistance to phages through various mechanisms. Studying the coevolution between a phage and its host bacterium is important to gain insight into the phage's potential as a therapeutic agent. This study investigates the evolutionary responses of an APEC strain and a laboratory E. coli strain to a commercial phage originally isolated from APEC. RESULTS In most cases, phage resistance resulted in a significant increase in mucoidy. Genomic analysis revealed that this resistance consistently correlated with amino acid changes, particularly in proteins involved in colanic acid production, such as YrfF. Further investigation of a mutation found in the YrfF protein demonstrated that this mutation altered the protein's structure and its interaction with the membrane. Transcriptomic analysis confirmed that the genes involved in colanic acid production were significantly overexpressed. Although the strains possessed a CRISPR-Cas system, it did not contribute to phage resistance. CONCLUSIONS This study suggests that specific amino acid changes in key proteins may be a mechanism employed by E. coli, including APEC, to defend against phage infections.
Collapse
Affiliation(s)
- Laurie C Piché
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, QC, G1V 0A6, Canada
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Pavillon Paul-Comtois, 2425 Rue de L'Agriculture, Quebec City, QC, G1V 0A6, Canada
- Swine and Poultry Infectious Diseases Research Center, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Sophie Bories
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, QC, G1V 0A6, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, 1045, avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | | | - Valérie E Paquet
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, QC, G1V 0A6, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Linda Saucier
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Pavillon Paul-Comtois, 2425 Rue de L'Agriculture, Quebec City, QC, G1V 0A6, Canada
- Swine and Poultry Infectious Diseases Research Center, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Marie-Pierre Létourneau-Montminy
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Pavillon Paul-Comtois, 2425 Rue de L'Agriculture, Quebec City, QC, G1V 0A6, Canada
- Swine and Poultry Infectious Diseases Research Center, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Steve J Charette
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, QC, G1V 0A6, Canada
- Swine and Poultry Infectious Diseases Research Center, Saint-Hyacinthe, QC, J2S 2M2, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | | | | | - Patrick Lagüe
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, QC, G1V 0A6, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, 1045, avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - Antony T Vincent
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, QC, G1V 0A6, Canada.
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Pavillon Paul-Comtois, 2425 Rue de L'Agriculture, Quebec City, QC, G1V 0A6, Canada.
- Swine and Poultry Infectious Diseases Research Center, Saint-Hyacinthe, QC, J2S 2M2, Canada.
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| |
Collapse
|
3
|
Fierling N, Billard P, Dluzniewski A, Sohm B, Bauda P, Blaudez D. Importance of the envelope in Escherichia coli resistance to lithium. CHEMOSPHERE 2025; 374:144234. [PMID: 39983623 DOI: 10.1016/j.chemosphere.2025.144234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
The increasing use of lithium (Li) in emerging technologies has prompted concerns about its effects on living microorganisms. To enhance our understanding of the bacterial cytotoxicity of Li, we conducted a deletomic analysis using the bacterial model Escherichia coli. A screen of 3,985 knockout mutants under Li stress highlighted 27 Li-sensitive and 15 Li-resistant mutants. The synthesis of peptidoglycan and the capsule, along with the secretion of colanic acid, contributed to resistance to Li. Ribosomes and the stringent response also seem to play a role in mitigating Li cytotoxicity. A cross-metal comparison revealed that the Li-sensitive phenotype of the mutants was shared with Ca, whereas the resistant phenotype was shared with Mg, Na and K. Moreover, this allowed the identification of ΔacrA as a Li sensitivity-specific mutant. AcrA is a subunit of the AcrAB-TolC efflux pump, which is responsible for the efflux of various xenobiotics. We demonstrate that ΔacrB-ΔtolC accumulates approximately 1.5 times more Li than the WT, indicating that this pump could also facilitate the efflux of Li. This study offers a more comprehensive insight into the mechanisms involved in the Li response in E. coli.
Collapse
Affiliation(s)
| | | | | | - Bénédicte Sohm
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | - Pascale Bauda
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France.
| |
Collapse
|
4
|
Elling L. Enzyme cascades for nucleotide sugar regeneration in glycoconjugate synthesis. Appl Microbiol Biotechnol 2025; 109:51. [PMID: 40014108 PMCID: PMC11868170 DOI: 10.1007/s00253-025-13432-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/28/2025]
Abstract
Leloir glycosyltransferases are instrumental in the synthesis of glycoconjugates. Nucleotide sugars as their donor substrates are still considered expensive making preparative enzymatic syntheses economically unattractive. The review highlights the development and advancements of in situ regeneration cycles that utilize nucleotides as byproducts from glycosyltransferase reactions to synthesize respective nucleotide sugars. This approach reduces costs and avoids inhibition of Leloir glycosyltransferases. Regeneration cycles for ten nucleotide sugars are explored emphasizing enzyme cascades from salvage pathways and nucleotide biosynthesis. Additionally, the review highlights advancements involving sucrose synthase for the in situ regeneration of nucleotide sugars from sucrose. Sucrose synthase as the first example of a reversible glycosyltransferase reaction paved the way to establish economic syntheses of glycosylated natural products. Important aspects like enzyme immobilization and protein fusion to optimize processes are discussed. Overall, the review underscores the significance of advanced in situ regeneration cycles for nucleotide sugars for cost-effective access to high-value glycoconjugates. KEY POINTS: • Enzyme cascades for in situ regeneration of nucleotide sugars • Effective cycles for large-scale synthesis of glycoconjugates • Regeneration of nucleotide sugars from sucrose by sucrose synthase.
Collapse
Affiliation(s)
- Lothar Elling
- Laboratory for Biomaterials, Institute of Biotechnology, and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany.
| |
Collapse
|
5
|
Vu NT, Kim H, Hwang IS, Oh CS. Colanic acid and lipopolysaccharide in Pectobacterium carotovorum Pcc21 serve as receptors for the bacteriophage phiPccP-2. Microbiol Res 2025; 290:127939. [PMID: 39471582 DOI: 10.1016/j.micres.2024.127939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Bacteriophages (phages) are viruses that specifically bind to and infect target bacteria. The phage phiPccP-2, belonging to the Myoviridae family, efficiently controls Pectobacterium spp. In the present study, we aimed to elucidate the mechanism of recognition of P. carotovorum Pcc21 by phiPccP-2. The EZ-Tn5 transposon mutant library of Pcc21 was used to screen for phage-resistant mutants. Among 4072 mutants screened, 12 harbored disruptions in genes associated with the biosynthesis of either colanic acid (CA) or lipopolysaccharide (LPS) showed resistance to phiPccP-2. Complementation of 4 representative phage-resistant mutants with the corresponding genes fully restored the binding ability and lytic activity of PhiPccP-2. The amounts of CA or LPS structure in these mutants were significantly altered compared with those in the wild-type strain. Adsorption competition assays between CA and LPS extracted from Pcc21 and the natural receptors in Pcc21 showed that unbound phages were significantly increased, indicating that both CA and LPS are associated with the adsorption of the phiPccP-2 to Pcc21. In contrast, the adsorption of phiPccP-2 to extracted CA or LPS did not inactivate the lytic activity of phiPccP-2, indicating that the adsorption to the extracted CA or LPS is not sufficient for DNA injection. Treatment with polymyxin B, which disrupts LPS, interfered with phiPccP-2 adsorption to Pcc21. Furthermore, phage-resistant mutants showed reduced virulence in the host plant, suggesting a trade-off between phage resistance and bacterial virulence. Overall, our results indicate that both CA and LPS serve as receptors for the binding of phiPccP-2 to P. carotovorum Pcc21.
Collapse
Affiliation(s)
- Nguyen Trung Vu
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeongsoon Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - In Sun Hwang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang-Sik Oh
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, Seoul National University. Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Programs in Agricultural Genomics, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
6
|
Le Bas A, Clarke BR, Teelucksingh T, Lee M, El Omari K, Giltrap AM, McMahon SA, Liu H, Beale JH, Mykhaylyk V, Duman R, Paterson NG, Ward PN, Harrison PJ, Weckener M, Pardon E, Steyaert J, Liu H, Quigley A, Davis BG, Wagner A, Whitfield C, Naismith JH. Structure of WzxE the lipid III flippase for Enterobacterial Common Antigen polysaccharide. Open Biol 2025; 15:240310. [PMID: 39772807 PMCID: PMC11706664 DOI: 10.1098/rsob.240310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
The enterobacterial common antigen (ECA) is conserved in Gram-negative bacteria of the Enterobacterales order although its function is debated. ECA biogenesis depends on the Wzx/Wzy-dependent strategy whereby the newly synthesized lipid-linked repeat units, lipid III, are transferred across the inner membrane by the lipid III flippase WzxE. WzxE is part of the Wzx family and required in many glycan assembly systems, but an understanding of its molecular mechanism is hindered due to a lack of structural evidence. Here, we present the first X-ray structures of WzxE from Escherichia coli in complex with nanobodies. Both inward- and outward-facing conformations highlight two pairs of arginine residues that move in a reciprocal fashion, enabling flipping. One of the arginine pairs coordinated to a glutamate residue is essential for activity along with the C-terminal arginine rich tail located close to the entrance of the lumen. This work helps understand the translocation mechanism of the Wzx flippase family.
Collapse
Affiliation(s)
- Audrey Le Bas
- Rosalind Franklin Institute, Harwell Campus, Didcot, UK
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Bradley R. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Tanisha Teelucksingh
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Micah Lee
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Andrew M. Giltrap
- Rosalind Franklin Institute, Harwell Campus, Didcot, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Stephen A. McMahon
- Biomedical Sciences Research Complex, North Haugh, University of St Andrews, St Andrews, UK
| | - Hui Liu
- Biomedical Sciences Research Complex, North Haugh, University of St Andrews, St Andrews, UK
| | - John H. Beale
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Vitaliy Mykhaylyk
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Ramona Duman
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Neil G. Paterson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | | | - Peter J. Harrison
- Membrane Protein Laboratory, Diamond Light Source, Research Complex at Harwell, Didcot, UK
| | | | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, BrusselsB-1050, Belgium
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, BrusselsB-1050, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, BrusselsB-1050, Belgium
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, BrusselsB-1050, Belgium
| | - Huanting Liu
- Biomedical Sciences Research Complex, North Haugh, University of St Andrews, St Andrews, UK
| | - Andrew Quigley
- Membrane Protein Laboratory, Diamond Light Source, Research Complex at Harwell, Didcot, UK
| | - Benjamin G. Davis
- Rosalind Franklin Institute, Harwell Campus, Didcot, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Armin Wagner
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - James H. Naismith
- Rosalind Franklin Institute, Harwell Campus, Didcot, UK
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, UK
| |
Collapse
|
7
|
Hoang J, Stoebel DM. The transcriptional response to low temperature is weakly conserved across the Enterobacteriaceae. mSystems 2024; 9:e0078524. [PMID: 39589147 DOI: 10.1128/msystems.00785-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024] Open
Abstract
Bacteria respond to changes in their external environment, such as temperature, by changing the transcription of their genes. We know little about how these regulatory patterns evolve. We used RNA-seq to study the transcriptional response to a shift from 37°C to 15°C in wild-type Escherichia coli, Salmonella enterica, Citrobacter rodentium, Enterobacter cloacae, Klebsiella pneumoniae, and Serratia marcescens, as well as ∆rpoS strains of E. coli and S. enterica. We found that these species change the transcription of between 626 and 1057 genes in response to the temperature shift, but there were only 16 differentially expressed genes in common among the six species. Species-specific transcriptional patterns of shared genes were a prominent cause of this lack of conservation. Gene ontology enrichment of regulated genes suggested many species-specific phenotypic responses to temperature changes, but enriched terms associated with iron metabolism, central metabolism, and biofilm formation were implicated in at least half of the species. The alternative sigma factor RpoS regulated about 200 genes between 37°C and 15°C in both E. coli and S. enterica, with only 83 genes in common between the two species. Overall, there was limited conservation of the response to low temperature generally, or the RpoS-regulated part of the response specifically. This study suggests that species-specific patterns of transcription of shared genes, rather than horizontal acquisition of unique genes, are the major reason for the lack of conservation of the transcriptomic response to low temperature. IMPORTANCE We studied how different species of bacteria from the same Family (Enterobacteriaceae) change the expression of their genes in response to a decrease in temperature. Using de novo-generated parallel RNA-seq data sets, we found that the six species in this study change the level of expression of many of their genes in response to a shift from human body temperature (37°C) to a temperature that might be found out of doors (15°C). Surprisingly, there were very few genes that change expression in all six species. This was due in part to differences in gene content, and in part due to shared genes with distinct expression profiles between the species. This study is important to the field because it illustrates that closely related species can share many genes but not use those genes in the same way in response to the same environmental change.
Collapse
Affiliation(s)
- Johnson Hoang
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Daniel M Stoebel
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| |
Collapse
|
8
|
Li Z, Wang J, Yousaf M, Rehman A, Wang F. Biogenic ROS mediated degradation mechanism of marine toxin domoic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176039. [PMID: 39241870 DOI: 10.1016/j.scitotenv.2024.176039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Domoic acid (DA) is a compound generated as a secondary metabolite during harmful algal blooms, has historically received attention as the potent neurotoxicity in marine environment. However, the aerobic degradation mechanism of DA and the DA-degrader remain largely unknown. Here, we revealed the mechanism of aerobic degradation of DA by a ubiquitous marine Pseudoalteromonas sp., and more importantly, we confirmed that the degradation of DA is mediated by biogenic reactive oxygen species (ROS), rather than direct enzyme-mediated as traditionally conceived. Results indicated that DA degradation was caused by biogenic O2- and OH, where DA underwent reactions of decarboxylation, hydroxylation, and oxidation to yield the detoxification terminal product. Besides, whole genome sequencing and RT-qPCR analysis revealed that the genes conferring to encoding leucine dehydrogenase (ldh) and Na+-translocated NADH-quinone oxidoreductase (nqrA, nqrF) are responsible for biogenic ROS production. Finally, we found through comparative proteomic analysis that biogenic ROS mediated the DA degradation may be prevalent in the environment. Overall, this work not only reveals aerobic biotransformation mechanism of DA, but also identifies a novel mechanism of DA degradation, which provides new perspective into the environmental fate of DA and the artificial bioremediation of DA.
Collapse
Affiliation(s)
- Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Mariam Yousaf
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Arbaz Rehman
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Fengbo Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China; Dongguan Vanke Building Technique Research Co. Ltd., Dongguan 523808, PR China.
| |
Collapse
|
9
|
Bain W, Ahn B, Peñaloza HF, McElheny CL, Tolman N, van der Geest R, Gonzalez-Ferrer S, Chen N, An X, Hosuru R, Tabary M, Papke E, Kohli N, Farooq N, Bachman W, Olonisakin TF, Xiong Z, Griffith MP, Sullivan M, Franks J, Mustapha MM, Iovleva A, Suber T, Shanks RQ, Ferreira VP, Stolz DB, Van Tyne D, Doi Y, Lee JS. In Vivo Evolution of a Klebsiella pneumoniae Capsule Defect With wcaJ Mutation Promotes Complement-Mediated Opsonophagocytosis During Recurrent Infection. J Infect Dis 2024; 230:209-220. [PMID: 39052750 PMCID: PMC11272070 DOI: 10.1093/infdis/jiae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae carbapenemase-producing K pneumoniae (KPC-Kp) bloodstream infections are associated with high mortality. We studied clinical bloodstream KPC-Kp isolates to investigate mechanisms of resistance to complement, a key host defense against bloodstream infection. METHODS We tested growth of KPC-Kp isolates in human serum. In serial isolates from a single patient, we performed whole genome sequencing and tested for complement resistance and binding by mixing study, direct enzyme-linked immunosorbent assay, flow cytometry, and electron microscopy. We utilized an isogenic deletion mutant in phagocytosis assays and an acute lung infection model. RESULTS We found serum resistance in 16 of 59 (27%) KPC-Kp clinical bloodstream isolates. In 5 genetically related bloodstream isolates from a single patient, we noted a loss-of-function mutation in the capsule biosynthesis gene, wcaJ. Disruption of wcaJ was associated with decreased polysaccharide capsule, resistance to complement-mediated killing, and surprisingly, increased binding of complement proteins. Furthermore, an isogenic wcaJ deletion mutant exhibited increased opsonophagocytosis in vitro and impaired in vivo control in the lung after airspace macrophage depletion in mice. CONCLUSIONS Loss of function in wcaJ led to increased complement resistance, complement binding, and opsonophagocytosis, which may promote KPC-Kp persistence by enabling coexistence of increased bloodstream fitness and reduced tissue virulence.
Collapse
Affiliation(s)
- William Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Brian Ahn
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus School of Medicine, Denver
| | - Hernán F Peñaloza
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | | | - Nathanial Tolman
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Rick van der Geest
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Shekina Gonzalez-Ferrer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Nathalie Chen
- Division of Infectious Diseases, Department of Medicine
| | - Xiaojing An
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Ria Hosuru
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Mohammadreza Tabary
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Erin Papke
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Naina Kohli
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | | | | | - Tolani F Olonisakin
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Zeyu Xiong
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | | | - Mara Sullivan
- Center for Biologic Imaging, Department of Cell Biology
| | | | | | - Alina Iovleva
- Division of Infectious Diseases, Department of Medicine
| | - Tomeka Suber
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Robert Q Shanks
- Department of Ophthalmology, University of Pittsburgh, Pennsylvania
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Ohio
| | - Donna B Stolz
- Center for Biologic Imaging, Department of Cell Biology
| | | | - Yohei Doi
- Division of Infectious Diseases, Department of Medicine
| | - Janet S Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
- Division of Pulmonary and Critical Care Medicine, Washington University in St Louis, Missouri
| |
Collapse
|
10
|
Wu J, Huang M, Liu H, Wu Y, Hu X, Wang J, Wang X. Engineering Escherichia coli to Efficiently Produce Colanic Acid with Low Molecular Mass and Viscosity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15811-15822. [PMID: 38975865 DOI: 10.1021/acs.jafc.4c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Colanic acid (CA) is exopolysaccharide that presents growing potential in the food and healthcare industry as a versatile polymer. Previously, we have constructed the Escherichia coli strain WWM16 which can efficiently produce CA. In this study, WWM16 has been further engineered to produce a higher yield of CA with low molecular mass and viscosity. The gene mcbR encoding a transcriptional factor, and the genes opgD, opgG, and opgH related to the biosynthesis of osmoregulated periplasmic glucans were deleted in E. coli WWM16, and the resulting strain WWM166 produced 18.1 g/L CA. The expression level of wcaD encoding the polymerase in WWM166 was downregulated using CRISPRi. As a result, the strain WWM166/pWpD1 could produce 49.9 g/L CA with lower molecular mass. CA products were purified from both WWM166 and WWM166/pWpD1, and their molecular mass, viscosity, fluidity, hygroscopicity, and antioxidant activity were determined and compared. These findings demonstrate the potential application of CA with different molecular masses to prolong life and protect skin in the food and cosmetic industries.
Collapse
Affiliation(s)
- Jiaxin Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ming Huang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - He Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yuanming Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Hu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianli Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Zeng Y, Shen M, Liu S, Zhou X. Characterization and resistance mechanism of phage-resistant strains of Salmonella enteritidis. Poult Sci 2024; 103:103756. [PMID: 38652948 PMCID: PMC11063523 DOI: 10.1016/j.psj.2024.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/25/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024] Open
Abstract
In the face of the increasingly severe problem of antibiotic resistance, phage therapy is regarded as a highly potential alternative. Compared with traditional antimicrobial agents, a key research area of phage therapy is the study of phage-resistant mutant bacteria. To effectively monitor and prevent this resistance, it is crucial to conduct in-depth exploration of the mechanism behind phage resistance. In this study, a strain of Salmonella enteritidis (sm140) and the corresponding phage (Psm140) were isolated from chicken liver and sewage, respectively. Using the double-layer plate method, successfully screened out phage-resistant mutant strains. Whole-genome resequencing of 3 resistant strains found that the wbaP gene of all 3 strains had mutations at a specific position (1,118), with the base changing from G to A. This mutation causes the gene-encoded glycine to be replaced by aspartic acid. Subsequent studies found that the frequency of this gene mutation is extremely high, reaching 84%, and all mutations occur at the same position. To further explore the relationship between the wbaP gene and phage resistance, knockout strains and complement strains of the wbaP gene were constructed. The experimental results confirmed the association between the wbaP gene and phage resistance. At the same time, biological characteristics and virulence were evaluated for wild strains, resistant strains, knockout strains, and complement strains. It was found that mutations or deletions of the wbaP gene lead to a decrease in bacterial environmental adaptability and virulence. Through systematic research on the mechanism and biological characteristics of phage resistance, this study provides important references and guidance for the development of new phage therapies, promoting progress in the field of antimicrobial treatment. At the same time, the emergence of phage resistance due to wbaP gene mutations is reported for the first time in salmonella, providing a new perspective and ideas for further studying phage resistance mechanisms.
Collapse
Affiliation(s)
- Yukun Zeng
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Mangmang Shen
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Liu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
12
|
Gucwa K, Wons E, Wisniewska A, Jakalski M, Dubiak Z, Kozlowski LP, Mruk I. Lethal perturbation of an Escherichia coli regulatory network is triggered by a restriction-modification system's regulator and can be mitigated by excision of the cryptic prophage Rac. Nucleic Acids Res 2024; 52:2942-2960. [PMID: 38153127 PMCID: PMC11014345 DOI: 10.1093/nar/gkad1234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023] Open
Abstract
Bacterial gene regulatory networks orchestrate responses to environmental challenges. Horizontal gene transfer can bring in genes with regulatory potential, such as new transcription factors (TFs), and this can disrupt existing networks. Serious regulatory perturbations may even result in cell death. Here, we show the impact on Escherichia coli of importing a promiscuous TF that has adventitious transcriptional effects within the cryptic Rac prophage. A cascade of regulatory network perturbations occurred on a global level. The TF, a C regulatory protein, normally controls a Type II restriction-modification system, but in E. coli K-12 interferes with expression of the RacR repressor gene, resulting in de-repression of the normally-silent Rac ydaT gene. YdaT is a prophage-encoded TF with pleiotropic effects on E. coli physiology. In turn, YdaT alters expression of a variety of bacterial regulons normally controlled by the RcsA TF, resulting in deficient lipopolysaccharide biosynthesis and cell division. At the same time, insufficient RacR repressor results in Rac DNA excision, halting Rac gene expression due to loss of the replication-defective Rac prophage. Overall, Rac induction appears to counteract the lethal toxicity of YdaT. We show here that E. coli rewires its regulatory network, so as to minimize the adverse regulatory effects of the imported C TF. This complex set of interactions may reflect the ability of bacteria to protect themselves by having robust mechanisms to maintain their regulatory networks, and/or suggest that regulatory C proteins from mobile operons are under selection to manipulate their host's regulatory networks for their own benefit.
Collapse
Affiliation(s)
- Katarzyna Gucwa
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Ewa Wons
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Aleksandra Wisniewska
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Marcin Jakalski
- 3P-Medicine Laboratory, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Zuzanna Dubiak
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Lukasz Pawel Kozlowski
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Iwona Mruk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| |
Collapse
|
13
|
Liang S, He Z, Liu D, Yang S, Yan Q, Jiang Z. Construction of an engineered Escherichia coli for effective synthesis of 2'-fucosyllactose via the salvage pathway. Synth Syst Biotechnol 2024; 9:108-114. [PMID: 38292762 PMCID: PMC10825923 DOI: 10.1016/j.synbio.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
2'-Fucosyllactose (2'-FL) is one of the important functional oligosaccharides in breast milk. So far, few attempts on biosynthesis of 2'-FL by the salvage pathway have been reported. Herein, the salvage pathway enzyme genes were introduced into the E. coli BL21star(DE3) for synthesis of 2'-FL. The 2'-FL titer increased from 1.56 to 2.13 g/L by deleting several endogenous genes on competitive pathways. The α-1,2-fucosyltransferase (WbgL) was selected, and improved the 2'-FL titer to 2.88 g/L. Additionally, the expression level of pathway enzyme genes was tuned through optimizing the plasmid copy number. Furthermore, the spatial distribution of WbgL was enhanced by fusing with the MinD C-tag. After optimizing the fermentation conditions, the 2'-FL titer reached to 7.13 g/L. The final strain produced 59.22 g/L of 2'-FL with 95% molar conversion rate of lactose and 92% molar conversion rate of fucose in a 5 L fermenter. These findings will contribute to construct a highly efficient microbial cell factory to produce 2'-FL or other HMOs.
Collapse
Affiliation(s)
- Shanquan Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Food Laboratory of Zhongyuan, Luohe, 462300, Henan, China
| | - Zi He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Dan Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Food Laboratory of Zhongyuan, Luohe, 462300, Henan, China
| |
Collapse
|
14
|
Abstract
This review is focused on describing and analyzing means by which Salmonella enterica serotype strains have been genetically modified with the purpose of developing safe, efficacious vaccines to present Salmonella-induced disease in poultry and to prevent Salmonella colonization of poultry to reduce transmission through the food chain in and on eggs and poultry meat. Emphasis is on use of recently developed means to generate defined deletion mutations to eliminate genetic sequences conferring antimicrobial resistance or residual elements that might lead to genetic instability. Problems associated with prior means to develop vaccines are discussed with presentation of various means by which these problems have been lessened, if not eliminated. Practical considerations are also discussed in hope of facilitating means to move lab-proven successful vaccination procedures and vaccine candidates to the marketplace to benefit the poultry industry.
Collapse
Affiliation(s)
- Roy Curtiss
- College of Veterinary Medicine, University of Florida, Gainesville, Florida,
| |
Collapse
|
15
|
Sheu DS, Chen JL, Sheu SY, Jane WN. Enhancing polyhydroxyalkanoate production in Cupriavidus sp. L7L through wcaJ gene deletion. Int J Biol Macromol 2023; 253:127439. [PMID: 37848111 DOI: 10.1016/j.ijbiomac.2023.127439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Cupriavidus sp. L7L synthesizes a high content of ductile polyhydroxyalkanoate. However, during fermentation, the medium's viscosity gradually increases, eventually reaching a level similar to 93 % glycerol, leading to fermentation termination and difficulties in cell harvest. A non-mucoid variant was isolated from a mini-Tn5 mutant library with the transposon inserted at the promoter sequence upstream of the wcaJ gene. Deletion of wcaJ eliminated the mucoid-colony appearance. The complementation experiment confirmed the association between wcaJ gene expression and mucoid-colony formation. Additionally, the wild-type strain exhibited a faster specific growth rate than the deletion strain using levulinate (Lev) as a carbon source. In fed-batch fermentation, Cupriavidus sp. L7L∆wcaJ showed similar PHA content and monomer composition to the wild-type strain. However, the extended fermentation time resulted in a 42 % increase in PHA concentration. After fed-batch fermentation, the deletion strain's medium had only 8.75 % of the wild-type strain's extracellular polymeric substance content. Moreover, the deletion strain's medium had a much lower viscosity (1.04 mPa·s) than the wild-type strain (194.7 mPa·s), making bacterial cell collection easier through centrifugation. In summary, Cupriavidus sp. L7L∆wcaJ effectively addressed difficulties in cell harvest, increased PHA production, and Lev-to-PHA conversion efficiency, making these characteristics advantageous for industrial-scale PHA production.
Collapse
Affiliation(s)
- Der-Shyan Sheu
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Ji-Long Chen
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Shih-Yi Sheu
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Wann-Neng Jane
- Plant Cell Biology Core Lab, Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
16
|
Wu T, Gómez-Coronado PA, Kubis A, Lindner SN, Marlière P, Erb TJ, Bar-Even A, He H. Engineering a synthetic energy-efficient formaldehyde assimilation cycle in Escherichia coli. Nat Commun 2023; 14:8490. [PMID: 38123535 PMCID: PMC10733421 DOI: 10.1038/s41467-023-44247-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
One-carbon (C1) substrates, such as methanol or formate, are attractive feedstocks for circular bioeconomy. These substrates are typically converted into formaldehyde, serving as the entry point into metabolism. Here, we design an erythrulose monophosphate (EuMP) cycle for formaldehyde assimilation, leveraging a promiscuous dihydroxyacetone phosphate dependent aldolase as key enzyme. In silico modeling reveals that the cycle is highly energy-efficient, holding the potential for high bioproduct yields. Dissecting the EuMP into four modules, we use a stepwise strategy to demonstrate in vivo feasibility of the modules in E. coli sensor strains with sarcosine as formaldehyde source. From adaptive laboratory evolution for module integration, we identify key mutations enabling the accommodation of the EuMP reactions with endogenous metabolism. Overall, our study demonstrates the proof-of-concept for a highly efficient, new-to-nature formaldehyde assimilation pathway, opening a way for the development of a methylotrophic platform for a C1-fueled bioeconomy in the future.
Collapse
Affiliation(s)
- Tong Wu
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Biochemistry, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul A Gómez-Coronado
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Armin Kubis
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Biochemistry, Charitéplatz 1, 10117, Berlin, Germany
| | - Philippe Marlière
- TESSSI, The European Syndicate of Synthetic Scientists and Industrialists, 81 rue Réaumur, 75002, Paris, France
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Hai He
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany.
| |
Collapse
|
17
|
Zhu L, Li H, Luo T, Deng Z, Li J, Zheng L, Zhang B. Human Milk Oligosaccharides: A Critical Review on Structure, Preparation, Their Potential as a Food Bioactive Component, and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15908-15925. [PMID: 37851533 DOI: 10.1021/acs.jafc.3c04412] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Human milk is the gold standard for infant feeding. Human milk oligosaccharides (HMOs) are a unique group of oligosaccharides in human milk. Great interest in HMOs has grown in recent years due to their positive effects on various aspects of infant health. HMOs provide various physiologic functions, including establishing a balanced infant's gut microbiota, strengthening the gastrointestinal barrier, preventing infections, and potential support to the immune system. However, the clinical application of HMOs is challenging due to their specificity to human milk and the difficulties and high costs associated with their isolation and synthesis. Here, the differences in oligosaccharides in human and other mammalian milk are compared, and the synthetic strategies to access HMOs are summarized. Additionally, the potential use and molecular mechanisms of HMOs as a new food bioactive component in different diseases, such as infection, necrotizing enterocolitis, diabetes, and allergy, are critically reviewed. Finally, the current challenges and prospects of HMOs in basic research and application are discussed.
Collapse
Affiliation(s)
- Liuying Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
18
|
Mavroidi A, Gartzonika K, Spanakis N, Froukala E, Kittas C, Vrioni G, Tsakris A. Comprehensive Analysis of Virulence Determinants and Genomic Islands of blaNDM-1-Producing Enterobacter hormaechei Clinical Isolates from Greece. Antibiotics (Basel) 2023; 12:1549. [PMID: 37887250 PMCID: PMC10604629 DOI: 10.3390/antibiotics12101549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Nosocomial outbreaks of multidrug-resistant (MDR) Enterobacter cloacae complex (ECC) are often reported worldwide, mostly associated with a small number of multilocus-sequence types of E. hormaechei and E. cloacae strains. In Europe, the largest clonal outbreak of blaNDM-1-producing ECC has been recently reported, involving an ST182 E. hormaechei strain in a Greek teaching hospital. In the current study, we aimed to further investigate the genetic make-up of two representative outbreak isolates. Comparative genomics of whole genome sequences (WGS) was performed, including whole genome-based taxonomic analysis and in silico prediction of virulence determinants of the bacterial cell surface, plasmids, antibiotic resistance genes and virulence factors present on genomic islands. The enterobacterial common antigen and the colanic antigen of the cell surface were identified in both isolates, being similar to the gene clusters of the E. hormaechei ATCC 49162 and E. cloacae ATCC 13047 type strains, whereas the two strains possessed different gene clusters encoding lipopolysaccharide O-antigens. Other virulence factors of the bacterial cell surface, such as flagella, fimbriae and pili, were also predicted to be encoded by gene clusters similar to those found in Enterobacter spp. and other Enterobacterales. Secretion systems and toxin-antitoxin systems, which also contribute to pathogenicity, were identified. Both isolates harboured resistance genes to multiple antimicrobial classes, including β-lactams, aminoglycosides, quinolones, chloramphenicol, trimethoprim, sulfonamides and fosfomycin; they carried blaTEM-1, blaOXA-1, blaNDM-1, and one of them also carried blaCTXM-14, blaCTXM-15 and blaLAP-2 plasmidic alleles. Our comprehensive analysis of the WGS assemblies revealed that blaNDM-1-producing outbreak isolates possess components of the bacterial cell surface as well as genomic islands, harbouring resistance genes to several antimicrobial classes and various virulence factors. Differences in the plasmids carrying β-lactamase genes between the two strains have also shown diverse modes of acquisition and an ongoing evolution of these mobile elements.
Collapse
Affiliation(s)
- Angeliki Mavroidi
- Department of Microbiology, General University Hospital of Patras, 26504 Patras, Greece;
| | - Konstantina Gartzonika
- Department of Microbiology, Medical School, Ioannina University Hospital, 45110 Ioannina, Greece; (K.G.); (C.K.)
| | - Nick Spanakis
- Department of Microbiology, Medical School, University of Athens, 11527 Athens, Greece; (N.S.); (E.F.); (G.V.)
| | - Elisavet Froukala
- Department of Microbiology, Medical School, University of Athens, 11527 Athens, Greece; (N.S.); (E.F.); (G.V.)
| | - Christos Kittas
- Department of Microbiology, Medical School, Ioannina University Hospital, 45110 Ioannina, Greece; (K.G.); (C.K.)
| | - Georgia Vrioni
- Department of Microbiology, Medical School, University of Athens, 11527 Athens, Greece; (N.S.); (E.F.); (G.V.)
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, University of Athens, 11527 Athens, Greece; (N.S.); (E.F.); (G.V.)
| |
Collapse
|
19
|
Wang J, Qin C, Xu Y, Yin J, Hu J, Guo X. Structural and Genetic Identification of the O-Antigen from an Escherichia coli Isolate, SD2019180, Representing a Novel Serogroup. Int J Mol Sci 2023; 24:15040. [PMID: 37894721 PMCID: PMC10606467 DOI: 10.3390/ijms242015040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
The O-antigen is one of the outermost surface components of Gram-negative bacteria. Its large structural variation provides the molecular basis for bacterial serological diversity. Here, we established the structure of the O-antigen from an Escherichia coli strain, SD2019180, which appeared to be completely different from the known E. coli serogroups. The O-antigen tetrasaccharide biological repeating unit was identified as → 2)-[β-d-GlcpA-(1 → 4)]-[α-d-Galp-(1 → 3)]-α-l-Fucp-(1 → 3)-α-d-GlcpNAc-(1 →. Furthermore, we analyzed the O-antigen gene cluster of SD2019180 and confirmed its role in O-antigen synthesis by using deletion and complementation experiments. Our findings indicate that SD2019180 is a novel serogroup of Escherichia coli.
Collapse
Affiliation(s)
- Jing Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Ave. 1800, Wuxi 214122, China
| | - Yujuan Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Ave. 1800, Wuxi 214122, China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Ave. 1800, Wuxi 214122, China
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Ave. 1800, Wuxi 214122, China
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China
| |
Collapse
|
20
|
Jimoh AA, Booysen E, van Zyl L, Trindade M. Do biosurfactants as anti-biofilm agents have a future in industrial water systems? Front Bioeng Biotechnol 2023; 11:1244595. [PMID: 37781531 PMCID: PMC10540235 DOI: 10.3389/fbioe.2023.1244595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilms are bacterial communities embedded in exopolymeric substances that form on the surfaces of both man-made and natural structures. Biofilm formation in industrial water systems such as cooling towers results in biofouling and biocorrosion and poses a major health concern as well as an economic burden. Traditionally, biofilms in industrial water systems are treated with alternating doses of oxidizing and non-oxidizing biocides, but as resistance increases, higher biocide concentrations are needed. Using chemically synthesized surfactants in combination with biocides is also not a new idea; however, these surfactants are often not biodegradable and lead to accumulation in natural water reservoirs. Biosurfactants have become an essential bioeconomy product for diverse applications; however, reports of their use in combating biofilm-related problems in water management systems is limited to only a few studies. Biosurfactants are powerful anti-biofilm agents and can act as biocides as well as biodispersants. In laboratory settings, the efficacy of biosurfactants as anti-biofilm agents can range between 26% and 99.8%. For example, long-chain rhamnolipids isolated from Burkholderia thailandensis inhibit biofilm formation between 50% and 90%, while a lipopeptide biosurfactant from Bacillus amyloliquefaciens was able to inhibit biofilms up to 96% and 99%. Additionally, biosurfactants can disperse preformed biofilms up to 95.9%. The efficacy of antibiotics can also be increased by between 25% and 50% when combined with biosurfactants, as seen for the V9T14 biosurfactant co-formulated with ampicillin, cefazolin, and tobramycin. In this review, we discuss how biofilms are formed and if biosurfactants, as anti-biofilm agents, have a future in industrial water systems. We then summarize the reported mode of action for biosurfactant molecules and their functionality as biofilm dispersal agents. Finally, we highlight the application of biosurfactants in industrial water systems as anti-fouling and anti-corrosion agents.
Collapse
Affiliation(s)
| | | | | | - Marla Trindade
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
21
|
Jenkins CH, Scott AE, O’Neill PA, Norville IH, Prior JL, Ireland PM. The Arabinose 5-Phosphate Isomerase KdsD Is Required for Virulence in Burkholderia pseudomallei. J Bacteriol 2023; 205:e0003423. [PMID: 37458584 PMCID: PMC10448790 DOI: 10.1128/jb.00034-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/06/2023] [Indexed: 08/25/2023] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, which is endemic primarily in Southeast Asia and northern Australia but is increasingly being seen in other tropical and subtropical regions of the world. Melioidosis is associated with high morbidity and mortality rates, which is mediated by the wide range of virulence factors encoded by B. pseudomallei. These virulence determinants include surface polysaccharides such as lipopolysaccharide (LPS) and capsular polysaccharides (CPS). Here, we investigated a predicted arabinose-5-phosphate isomerase (API) similar to KdsD in B. pseudomallei strain K96243. KdsD is required for the production of the highly conserved 3-deoxy-d-manno-octulosonic acid (Kdo), a key sugar in the core region of LPS. Recombinant KdsD was expressed and purified, and API activity was determined. Although a putative API paralogue (KpsF) is also predicted to be encoded, the deletion of kdsD resulted in growth defects, loss of motility, reduced survival in RAW 264.7 murine macrophages, and attenuation in a BALB/c mouse model of melioidosis. Suppressor mutations were observed during a phenotypic screen for motility, revealing single nucleotide polymorphisms or indels located in the poorly understood CPS type IV cluster. Crucially, suppressor mutations did not result in reversion of attenuation in vivo. This study demonstrates the importance of KdsD for B. pseudomallei virulence and highlights further the complex nature of the polysaccharides it produces. IMPORTANCE The intrinsic resistance of B. pseudomallei to many antibiotics complicates treatment. This opportunistic pathogen possesses a wide range of virulence factors, resulting in severe and potentially fatal disease. Virulence factors as targets for drug development offer an alternative approach to combat pathogenic bacteria. Prior to initiating early drug discovery approaches, it is important to demonstrate that disruption of the target gene will prevent the development of disease. This study highlights the fact that KdsD is crucial for virulence of B. pseudomallei in an animal model of infection and provides supportive phenotypic characterization that builds a foundation for future therapeutic development.
Collapse
Affiliation(s)
- Christopher H. Jenkins
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory, Salisbury, Wiltshire, United Kingdom
| | - Andrew E. Scott
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory, Salisbury, Wiltshire, United Kingdom
| | - Paul A. O’Neill
- University of Exeter Sequencing Service, Exeter, United Kingdom
| | - Isobel H. Norville
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory, Salisbury, Wiltshire, United Kingdom
- Biosciences Department, University of Exeter, Exeter, United Kingdom
| | - Joann L. Prior
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory, Salisbury, Wiltshire, United Kingdom
- Biosciences Department, University of Exeter, Exeter, United Kingdom
- Southampton General Hospital, Southampton, United Kingdom
| | - Philip M. Ireland
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory, Salisbury, Wiltshire, United Kingdom
| |
Collapse
|
22
|
Wu J, Huang M, Zhan Y, Liu M, Hu X, Wu Y, Qiao J, Wang Z, Li H, Wang J, Wang X. Regulating Cardiolipin Biosynthesis for Efficient Production of Colanic Acid in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37235531 DOI: 10.1021/acs.jafc.3c01414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Colanic acid has broad application prospects in the food and healthcare market due to its excellent physical properties and biological activities. In this study, we discovered that colonic acid production in Escherichia coli could be enhanced by regulating cardiolipin biosynthesis. Single deletion of clsA, clsB, or clsC related to cardiolipin biosynthesis in E. coli MG1655 only slightly increased colonic acid production, but double or triple deletion of these three genes in E. coli MG1655 increased colonic acid production up to 2.48-fold. Previously, we have discovered that truncating lipopolysaccharide by deletion of the waaLUZYROBSPGQ gene cluster and enhancing RcsA by deletion of genes lon and hns can increase colonic acid production in E. coli. Therefore, these genes together with clsA, clsB, or/and clsC were deleted in E. coli, and all the resulting mutants showed increased colonic acid production. The best colonic acid production was observed in the mutant WWM16, which is 126-fold higher than in the control MG1655. To further improve colonic acid production, the genes rcsA and rcsD1-466 were overexpressed in WWM16, and the resulting recombinant E. coli WWM16/pWADT could produce 44.9 g/L colonic acid, which is the highest titer reported to date.
Collapse
Affiliation(s)
- Jiaxin Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ming Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yi Zhan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Minmin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yuanming Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hedan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
23
|
Sadler J, Brewster RC, Kjeldsen A, González AF, Nirkko JS, Varzandeh S, Wallace S. Overproduction of Native and Click-able Colanic Acid Slime from Engineered Escherichia coli. JACS AU 2023; 3:378-383. [PMID: 36873680 PMCID: PMC9976346 DOI: 10.1021/jacsau.2c00583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The fundamental biology and application of bacterial exopolysaccharides is gaining increasing attention. However, current synthetic biology efforts to produce the major component of Escherichia sp. slime, colanic acid, and functional derivatives thereof have been limited. Herein, we report the overproduction of colanic acid (up to 1.32 g/L) from d-glucose in an engineered strain of Escherichia coli JM109. Furthermore, we report that chemically synthesized l-fucose analogues containing an azide motif can be metabolically incorporated into the slime layer via a heterologous fucose salvage pathway from Bacteroides sp. and used in a click reaction to attach an organic cargo to the cell surface. This molecular-engineered biopolymer has potential as a new tool for use in chemical, biological, and materials research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stephen Wallace
- Institute
of Quantitative Biology,
Biochemistry and Biotechnology, School of Biological Sciences, Roger
Land Building, Alexander Crum Brown Road, The King’s Buildings,
Edinburgh, EH9 3FF.
| |
Collapse
|
24
|
Dai P, Hu D. The making of hypervirulent Klebsiella pneumoniae. J Clin Lab Anal 2022; 36:e24743. [PMID: 36347819 PMCID: PMC9757020 DOI: 10.1002/jcla.24743] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/01/2022] [Accepted: 10/09/2022] [Indexed: 10/08/2023] Open
Abstract
Klebsiella pneumoniae is a notorious bacterium in clinical practice. Virulence, carbapenem-resistance and their convergence among K. pneumoniae are extensively discussed in this article. Hypervirulent K. pneumoniae (HvKP) has spread from the Asian Pacific Rim to the world, inducing various invasive infections, such as pyogenic liver abscess, endophthalmitis, and meningitis. Furthermore, HvKP has acquired more and more drug resistance. Among multidrug-resistant HvKP, hypervirulent carbapenem-resistant K. pneumoniae (Hv-CRKP), and carbapenem-resistant hypervirulent K. pneumoniae (CR-HvKP) are both devastating for their extreme drug resistance and virulence. The hypervirulence of HvKP is primarily attributed to hypercapsule, macromolecular exopolysaccharides, or excessive siderophores, although it has many other factors, for example, lipopolysaccharides, fimbriae, and porins. In contrast with classical determination of HvKP, that is, animal lethality test, molecular determination could be an optional and practical method after improvement. HvKP, including Hv-CRKP and CR-HvKP, has been progressing. R-M and CRISPR-Cas systems may play pivotal roles in such evolutions. Hv-CRKP and CR-HvKP, in particular the former, should be of severe concern due to their being more and more prevalent.
Collapse
Affiliation(s)
- Piaopiao Dai
- Department of Laboratory MedicineTaizhou Municipal HospitalTaizhouChina
| | - Dakang Hu
- Department of Laboratory MedicineTaizhou Municipal HospitalTaizhouChina
| |
Collapse
|
25
|
Development of a Bacteriophage Cocktail against Pectobacterium carotovorum Subsp. carotovorum and Its Effects on Pectobacterium Virulence. Appl Environ Microbiol 2022; 88:e0076122. [PMID: 36165651 PMCID: PMC9552609 DOI: 10.1128/aem.00761-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pectobacterium carotovorum subsp. carotovorum is a necrotrophic plant pathogen that secretes plant cell wall-degrading enzymes (PCWDEs) that cause soft rot disease in various crops. Bacteriophages have been under consideration as harmless antibacterial agents to replace antibiotics and copper-based pesticides. However, the emergence of bacteriophage resistance is one of the main concerns that should be resolved for practical phage applications. In this study, we developed a phage cocktail with three lytic phages that recognize colanic acid (phage POP12) or flagella (phages POP15 and POP17) as phage receptors to minimize phage resistance. The phage cocktail effectively suppressed the emergence of phage-resistant P. carotovorum subsp. carotovorum compared with single phages in in vitro challenge assays. The application of the phage cocktail to napa cabbage (Brassica rapa subsp. pekinensis) resulted in significant growth retardation of P. carotovorum subsp. carotovorum (P < 0.05) and prevented the symptoms of soft rot disease. Furthermore, phage cocktail treatments of young napa cabbage leaves in a greenhouse environment indicated effective prevention of soft rot disease compared to that in the nonphage negative control. We isolated 15 phage-resistant mutants after a phage cocktail treatment to assess the virulence-associated phenotypes compared to those of wild-type (WT) strain Pcc27. All mutants showed reduced production of four different PCWDEs, leading to lower levels of tissue softening. Ten of the 15 phage-resistant mutants additionally exhibited decreased swimming motility. Taken together, these results show that the phage cocktail developed here, which targets two different types of phage receptors, provides an effective strategy for controlling P. carotovorum subsp. carotovorum in agricultural products, with a potential ability to attenuate P. carotovorum subsp. carotovorum virulence. IMPORTANCE Pectobacterium carotovorum subsp. carotovorum is a phytopathogen that causes soft rot disease in various crops by producing plant cell wall-degrading enzymes (PCWDEs). Although antibiotics and copper-based pesticides have been extensively applied to inhibit P. carotovorum subsp. carotovorum, the emergence of antibiotic-resistant bacteria and demand for harmless antimicrobial products have emphasized the necessity of finding alternative therapeutic strategies. To address this problem, we developed a phage cocktail consisting of three P. carotovorum subsp. carotovorum-specific phages that recognize colanic acids and flagella of P. carotovorum subsp. carotovorum. The phage cocktail treatments significantly decreased P. carotovorum subsp. carotovorum populations, as well as soft rot symptoms in napa cabbage. Simultaneously, they resulted in virulence attenuation in phage-resistant P. carotovorum subsp. carotovorum, which was represented by decreased PCWDE production and decreased flagellum-mediated swimming motility. These results suggested that preparations of phage cocktails targeting multiple receptors would be an effective approach to biocontrol of P. carotovorum subsp. carotovorum in crops.
Collapse
|
26
|
He S, Yang Z, Li X, Wu H, Zhang L, Wang J, Shan A. Optimized proteolytic resistance motif (DabW)-based U1-2WD: A membrane-induced self-aggregating peptide to trigger bacterial agglutination and death. Acta Biomater 2022; 153:540-556. [PMID: 36162762 DOI: 10.1016/j.actbio.2022.09.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 12/13/2022]
Abstract
The biggest application bottleneck of antimicrobial peptides (AMPs) is the low oral bioavailability caused by the poor stability of digestive enzymes in the gastrointestinal tract. However, the research methods and evaluation criteria of available studies about anti-proteolytic strategies are not uniform and far from the actual environment in vivo. Here, we developed a research system and evaluation criteria for proteolytic resistance and systematically evaluated the effectiveness of different strategies for improving the protease stability of AMPs on the same platform for the first time. After a comprehensive analysis, Dab modification is identified as the most effective strategy to improve the trypsin stability of AMPs. By further modulating the proteolytic resistance optimization motif (DabW)n, U1-2WD is obtained with ideal stability and antimicrobial properties in vivo and in vitro. Notably, U1-2WD has a unique antibacterial mechanism, which forms amorphous aggregates in the bacteria environment to trigger the agglutination of bacterial cells to prevent bacterial escape. It then kills bacteria by disrupting bacterial membranes and inhibiting bacterial energy metabolism. Overall, our work has led to a new understanding of the effectiveness of proteolytic resistance strategies and accelerated the development of anti-proteolytic AMPs to combat multidrug-resistant bacterial infections. STATEMENT OF SIGNIFICANCE: We developed research system and evaluation criteria for proteolytic resistance and systematically evaluated the effectiveness of different strategies for improving protease stability of AMPs on the same platform for the first time. we found effective strategies to resist trypsin hydrolysis: modification with backbone (β-Arg), D-enantiomer (D-Arg) and L-2,4-diaminobutanoic acid (Dab). Further, the proteolytic resistance optimization motif (DabW)n was designed. When n=3, derivative U1-2WD was obtained with desirable stability and antimicrobial properties in vivo and in vitro. Notably, U1-2WD has a unique antibacterial mechanism, which can self-aggregate into amorphous aggregates in the bacteria environment to mediate the agglutination and sedimentation of bacterial cells to prevent bacterial escape, and then kill bacteria by destroying bacterial membranes and inhibiting bacterial energy metabolism.
Collapse
Affiliation(s)
- Shiqi He
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhanyi Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xuefeng Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hua Wu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Licong Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jiajun Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China.
| |
Collapse
|
27
|
|
28
|
Topolski C, Divo E, Li X, Hicks J, Chavez A, Castillo H. Phenotypic and transcriptional changes in Escherichia coli K12 in response to simulated microgravity on the EagleStat, a new 2D microgravity analog for bacterial studies. LIFE SCIENCES IN SPACE RESEARCH 2022; 34:1-8. [PMID: 35940684 DOI: 10.1016/j.lssr.2022.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Understanding the impacts of microgravity on bacteria is vital for successful long duration space missions. In this environment, bacteria have been shown to become more virulent, more resistant to antibiotics and to regulate biofilm formation. Since the study of these phenomena under true microgravity is cost- and time challenging, the use of ground-based analogs might allow researchers to test hypotheses before planning and executing experiments in the space environment. We designed and developed a 2D clinostat with capabilities robust enough for bacterial studies to allow for multiple simultaneous replicates of treatment and control conditions, thus permitting the generation of growth curves, in a single run. We used computational fluid dynamics (CFD), biofilm growth measurement and differential gene expression analysis on Escherichia coli cultures grown to late exponential phase (24 h) to validate the system's ability to simulate microgravity conditions. The CFD model with a rotational speed of 8 rpm projected cells growing homogeneously distributed along the tube, while the static condition showed the accumulation of the cells at the bottom of the container. These results were empirically validated with cultures on nutrient broth. Additionally, crystal violet assays showed that higher biofilm biomass grew on the internal walls of the gravity control tubes, compared to the simulated microgravity treatment. In contrast, when cells from both treatments were grown under standard conditions, those exposed to simulated microgravity formed significantly more biofilms than their gravity counterparts. Consistent with this result, transcriptome analysis showed the upregulation of several gene families related to biofilm formation and development such as cells adhesion, aggregation and regulation of cell motility, which provides a potential transcriptional explanation for the differential phenotype observed. Our results show that when operated under parameters for simulated microgravity, our 2D clinostat creates conditions that maintain a proportion of the cells in a constant free-falling state, consistent with the effect of microgravity. Also, the high-throughput nature of our instrument facilitates, significantly, bacterial experiments that require multiple sampling timepoints and small working volumes, making this new instrument extremely efficient.
Collapse
Affiliation(s)
- Collin Topolski
- Mechanical Engineering Department, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA
| | - Eduardo Divo
- Mechanical Engineering Department, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA
| | - Xiaoping Li
- Virginia Tech Hampton Roads Agriculture Research and Extension Center, Virginia Tech, Blacksburg, VA, USA
| | - Janelle Hicks
- Human Factors and Behavioral Neurobiology Department, Embry-Riddle Aeronautical University, 1 Aerospace Blvd, COAS 401.03, Deland, Florida, 32724 USA
| | - Alba Chavez
- Human Factors and Behavioral Neurobiology Department, Embry-Riddle Aeronautical University, 1 Aerospace Blvd, COAS 401.03, Deland, Florida, 32724 USA
| | - Hugo Castillo
- Human Factors and Behavioral Neurobiology Department, Embry-Riddle Aeronautical University, 1 Aerospace Blvd, COAS 401.03, Deland, Florida, 32724 USA.
| |
Collapse
|
29
|
Zhan Y, Qiao J, Chen S, Dong X, Wu Y, Wang Z, Wang X. Metabolic Engineering for Overproduction of Colanic Acid in Escherichia coli Mutant with Short Lipopolysaccharide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8351-8364. [PMID: 35773212 DOI: 10.1021/acs.jafc.2c03053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Colanic acid is a major exopolysaccharide existing in most Enterobacteriaceae when exposed to an extreme environment. Colanic acid possesses excellent physical properties and biological activities, which makes it a candidate in the food and healthcare market. Previous strategies for colanic acid overproduction in E. coli mainly focus on removing the negative regulator on colanic acid biosynthesis or overexpressing the rcsA gene to up-regulate the cps operon. In this study, modifications in metabolic pathways were implemented in E. coli mutant strains with shortened lipopolysaccharides to improve colanic acid production. First, ackA was deleted to remove the byproduct acetate and the effect of accumulated acetyl-phosphate on colanic acid production was investigated. Second, 11 genes responsible for O-antigen synthesis were deleted to reduce its competition for glucose-1-phosphate and UDP-galactose with colanic acid production. Third, uppS was overexpressed to supply lipid carriers for synthesizing a colanic acid repeat unit. Colanic acid production in the final engineered strain WZM008/pTrcS reached 11.68 g/L in a 2.0 L bioreactor, 3.54 times the colanic acid production by the WQM001 strain. The results provide insights for further engineering E. coli to maximize CA production.
Collapse
Affiliation(s)
- Yi Zhan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shanshan Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaofei Dong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuanming Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
30
|
Jahan F, Chinni SV, Samuggam S, Reddy LV, Solayappan M, Su Yin L. The Complex Mechanism of the Salmonella typhi Biofilm Formation That Facilitates Pathogenicity: A Review. Int J Mol Sci 2022; 23:6462. [PMID: 35742906 PMCID: PMC9223757 DOI: 10.3390/ijms23126462] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Salmonella enterica serovar Typhi (S. typhi) is an intracellular pathogen belonging to the Enterobacteriaceae family, where biofilm (aggregation and colonization of cells) formation is one of their advantageous traits. Salmonella typhi is the causative agent of typhoid fever in the human body and is exceptionally host specific. It is transmitted through the fecal-oral route by consuming contaminated food or water. This subspecies is quite intelligent to evade the innate detection and immune response of the host body, leading to systemic dissemination. Consequently, during the period of illness, the gallbladder becomes a harbor and may develop antibiotic resistance. Afterwards, they start contributing to the continuous damage of epithelium cells and make the host asymptomatic and potential carriers of this pathogen for an extended period. Statistically, almost 5% of infected people with Salmonella typhi become chronic carriers and are ready to contribute to future transmission by biofilm formation. Biofilm development is already recognized to link with pathogenicity and plays a crucial role in persistency within the human body. This review seeks to discuss some of the crucial factors related to biofilm development and its mechanism of interaction causing pathogenicity. Understanding the connections between these things will open up a new avenue for finding therapeutic approaches to combat pathogenicity.
Collapse
Affiliation(s)
- Fahmida Jahan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
| | - Suresh V. Chinni
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
- Biochemistry Unit, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia
| | - Sumitha Samuggam
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
| | | | - Maheswaran Solayappan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
| | - Lee Su Yin
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
| |
Collapse
|
31
|
Helal DS, El-Khawas H, Elsayed TR. Molecular characterization of endophytic and ectophytic plant growth promoting bacteria isolated from tomato plants (Solanum lycopersicum L.) grown in different soil types. J Genet Eng Biotechnol 2022; 20:79. [PMID: 35608711 PMCID: PMC9130443 DOI: 10.1186/s43141-022-00361-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/02/2022] [Indexed: 11/24/2022]
Abstract
Background Successful rhizosphere colonization by plant growth promoting rhizobacteria (PGPR) is of crucial importance to perform the desired plant growth promoting activities. Since rhizocompetence is a dynamic process influenced by surrounding environmental conditions. In the present study, we hypothesized that bacterial isolates obtained from different tomato plant microhabitats (balk soil, rhizosphere, endorhiza, phyllosphere, and endoshoot) grown in different soils (sand, clay, and peat moss) will show different rhizocompetence abilities. Results To evaluate this hypothesis, bacterial isolates were obtained from different plant microhabitats and screened for their phosphate solubilizing and nitrogen fixing activates. BOX-PCR fingerprint profiles showed high genotypic diversity among the tested isolates and that same genotypes were shared between different soils and/or plant microhabitats. 16S rRNA gene sequences of 25 PGP isolates, representing different plant spheres and soil types, were affiliated to eight genera: Enterobacter, Paraburkholderia, Klebsiella, Bacillus, Paenibacillus, Stenotrophomonas, Pseudomonas, and Kosakonia. The rhizocompetence of each isolate was evaluated in the rhizosphere of tomato plants grown on a mixture of the three soils. Different genotypes of the same bacterial species displayed different rhizocompetence potentials. However, isolates obtained from the above-ground parts of the plant showed high rhizocompetence. In addition, biological control-related genes, ituD and srfC, were detected in the obtained spore forming bacterial isolates. Conclusion This study evaluates, for the first time, the relationship between plant microhabitat and the rhizocompetence ability in tomato rhizosphere. The results indicated that soil type and plant sphere can influence both the genotypic diversity and rhizocompetence ability of the same bacterial species. Bacterial isolates obtained in this study are promising to be used as an environmentally friendly substitution of chemical fertilizers. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00361-0.
Collapse
Affiliation(s)
- Donia S Helal
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Hussein El-Khawas
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Tarek R Elsayed
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Cairo, Egypt.
| |
Collapse
|
32
|
Lu J, Hu X, Ren L. Biofilm control strategies in food industry: Inhibition and utilization. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Kaur H, Kaur A, Soni SK, Rishi P. Microbially-derived cocktail of carbohydrases as an anti-biofouling agents: a 'green approach'. BIOFOULING 2022; 38:455-481. [PMID: 35673761 DOI: 10.1080/08927014.2022.2085566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Enzymes, also known as biocatalysts, display vital properties like high substrate specificity, an eco-friendly nature, low energy inputs, and cost-effectiveness. Among their numerous known applications, enzymes that can target biofilms or their components are increasingly being investigated for their anti-biofouling action, particularly in healthcare, food manufacturing units and environmental applications. Enzymes can target biofilms at different levels like during the attachment of microorganisms, formation of exopolymeric substances (EPS), and their disruption thereafter. In this regard, a consortium of carbohydrases that can target heterogeneous polysaccharides present in the EPS matrix may provide an effective alternative to conventional chemical anti-biofouling methods. Further, for complete annihilation of biofilms, enzymes can be used alone or in conjunction with other antimicrobial agents. Enzymes hold the promise to replace the conventional methods with greener, more economical, and more efficient alternatives. The present article explores the potential and future perspectives of using carbohydrases as effective anti-biofilm agents.
Collapse
Affiliation(s)
- Harmanpreet Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Arashdeep Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | | | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
34
|
Li S, Xu X, Lv X, Liu Y, Li J, Du G, Liu L. Combinatorial Metabolic Engineering and Enzymatic Catalysis Enable Efficient Production of Colanic Acid. Microorganisms 2022; 10:877. [PMID: 35630322 PMCID: PMC9143390 DOI: 10.3390/microorganisms10050877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Colanic acid can promote the lifespan of humans by regulating mitochondrial homeostasis, and it has widespread applications in the field of health. However, colanic acid is produced at a low temperature (20 °C) with low titer. Using Escherichia coli K-12 MG1655, we constructed the SRP-4 strain with high colanic acid production at 30 °C by enhancing the precursor supply and relieving the regulation of transcription for colanic acid synthesis genes by the RCS system. After media optimization, the colanic acid titer increased by 579.9-fold and reached 12.2 g/L. Subsequently, we successfully purified the colanic acid hydrolase and reduced the molecular weight of colanic acid (106.854 kDa), thereby eliminating the inhibition of high-molecular-weight colanic acid on strain growth. Finally, after adding the colanic acid hydrolase (4000 U/L), the colanic acid with low molecular weight reached 24.99 g/L in 3-L bioreactor, the highest titer reported so far. This high-producing strain of colanic acid will promote the application of low-molecular-weight colanic acid in the field of health.
Collapse
Affiliation(s)
- Suwei Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.L.); (X.X.); (X.L.); (Y.L.); (J.L.); (G.D.)
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.L.); (X.X.); (X.L.); (Y.L.); (J.L.); (G.D.)
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.L.); (X.X.); (X.L.); (Y.L.); (J.L.); (G.D.)
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.L.); (X.X.); (X.L.); (Y.L.); (J.L.); (G.D.)
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.L.); (X.X.); (X.L.); (Y.L.); (J.L.); (G.D.)
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.L.); (X.X.); (X.L.); (Y.L.); (J.L.); (G.D.)
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.L.); (X.X.); (X.L.); (Y.L.); (J.L.); (G.D.)
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
35
|
Fang Q, Feng Y, McNally A, Zong Z. Characterization of phage resistance and phages capable of intestinal decolonization of carbapenem-resistant Klebsiella pneumoniae in mice. Commun Biol 2022; 5:48. [PMID: 35027665 PMCID: PMC8758719 DOI: 10.1038/s42003-022-03001-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/22/2021] [Indexed: 02/05/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) has emerged as a severe global health challenge. We isolate and characterize two previously unidentified lytic phages, P24 and P39, with large burst sizes active against ST11 KL64, a major CRKP lineage. P24 and P39 represent species of the genera Przondovirus (Studiervirinae subfamily) and Webervirus (Drexlerviridae family), respectively. P24 and P39 together restrain CRKP growth to nearly 8 h. Phage-resistant mutants exhibit reduced capsule production and decreased virulence. Modifications in mshA and wcaJ encoding capsule polysaccharide synthesis mediate P24 resistance whilst mutations in epsJ encoding exopolysaccharide synthesis cause P39 resistance. We test P24 alone and together with P39 for decolonizing CRKP using mouse intestinal colonization models. Bacterial load shed decrease significantly in mice treated with P24 and P39. In conclusion, we report the characterization of two previously unidentified lytic phages against CRKP, revealing phage resistance mechanisms and demonstrating the potential of lytic phages for intestinal decolonization. Fang et al. characterized two previously unidentified phage species that could inhibit growth and decrease virulence of carbapenem-resistant Klebsiella pneumoniae (CRKP). They also showed that CRKP develop phage resistance but could still be decolonized in a mouse intestinal colonization model, highlighting phage therapy as potential treatment against drug-resistant pathogens.
Collapse
Affiliation(s)
- Qingqing Fang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, Sichuan, China.,Center for Pathogen Research, Sichuan University, Chengdu, China
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China. .,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, Sichuan, China. .,Center for Pathogen Research, Sichuan University, Chengdu, China. .,Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
36
|
Evseev PV, Shneider MM, Mikhailova Y, Shelenkov AA, Yanushevich Y, Karlova MG, Moiseenko AV, Sokolova OS, Shagin DA. Novel Klebsiella pneumoniae virulent bacteriophage KPPK108.1 capable of infecting the K108 serotype strains. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2021. [DOI: 10.24075/brsmu.2021.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multidrug-resistant Klebsiella pneumoniae strains are one of the major causes of nosocomial infections caused by the antibiotic-resistant bacteria. There are different options for dealing with this threat, among which is the clinical application of bacteriophages. The study was aimed to isolate and describe a virulent bactriophage, having the potential for therapeutic use. The standard phage biology and bioinformatic methods were used, which included the advanced techniques for protein structure prediction (AlphaFold software), and electron microscopy. The virulent podovirus KPPK108.1, being the member of genus Drulisvirus, which is able to specifically infect the K. pneumoniae strains with the KL108 type capsular polysaccharide, has been isolated from the wastewater. The sequence of the bactriophage genome has been defined, the biological properties have been investigated, and the genetic features have been described.
Collapse
Affiliation(s)
- PV Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - MM Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - YuV Mikhailova
- Central Research Institute of Epidemiology of Rospotrebnadzor, Moscow, Russia
| | - AA Shelenkov
- Central Research Institute of Epidemiology of Rospotrebnadzor, Moscow, Russia
| | - YuG Yanushevich
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - MG Karlova
- Lomonosov Moscow State University, Moscow, Russia
| | - AV Moiseenko
- Lomonosov Moscow State University, Moscow, Russia
| | - OS Sokolova
- Lomonosov Moscow State University, Moscow, Russia
| | - DA Shagin
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
37
|
Qiao J, Zhan Y, Tan X, Liu Y, Hu X, Wang X. Colanic Acid: Biosynthetic Overproduction by Engineering Escherichia coli and Physical Property Characterization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13881-13894. [PMID: 34763421 DOI: 10.1021/acs.jafc.1c04823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colanic acid has promising applications in food, cosmetic, and healthcare fields. In this study, a recombinant WQM003/pRAU was constructed by deleting genes lon and hns and overexpressing genes rcsA and galU in E. coli MG1655Δ(L-Q). After systematic optimization of fermentation conditions, colanic acid yield in WQM003/pRAU reached 19.79 g/L, the highest yield reported so far. The colanic acid produced by WQM003/pRAU was purified and its structure and physical properties were determined. This colanic acid shows a triple-helical structure and is stable up to 102 °C, and its melting temperature is 253.9 °C. This colanic acid shows a sphere-like chain conformation in aqueous solution. The viscosity of this colanic acid solution is related to concentration, shear rate, salt, temperature, and pH. At high concentrations, this colanic acid shows both viscous and elastic behaviors. These results suggest that the colanic acid produced by WQM003/pRAU has broad application prospects.
Collapse
Affiliation(s)
- Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yi Zhan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuantao Liu
- Hulunbeier Northeast Fufeng Biotechnology Co., Ltd., Hulunbeier 162650, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
38
|
Lee JW, Kwak S, Liu JJ, Yun EJ, Jin YS. 2'-Fucosyllactose production in engineered Escherichia coli with deletion of waaF and wcaJ and overexpression of FucT2. J Biotechnol 2021; 340:30-38. [PMID: 34450187 DOI: 10.1016/j.jbiotec.2021.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
2'-Fucosyllactose (2'-FL), a major oligosaccharide of human breast milk, and is currently supplemented into infant formula. For the overproduction of 2'-FL via fucosylation of lactose, conventional approaches have focused on the episomal overexpression of de novo or salvage GDP-L-fucose biosynthetic pathway and α-1,2-fucosyltransferase (FucT2) through T7 RNA polymerase expression system in engineered E. coli. However, these approaches have drawbacks of metabolic burden, plasmid instability, and inclusion body formation. In this study, a deletion mutant of waaF coding for ADP-heptose:LPS heptosyltransferase II was employed for 2'-FL production. As the waaF deletion induces accumulation of colanic acid, additional deletion of wcaJ coding for UDP-glucose-1-phosphate transferase in the waaF deletion mutant resulted in enhanced accumulation of GDP-L-fucose. Besides, 2'-FL yields and titers were drastically improved when T7 promoter was replaced with Trc promoter for α-1,2 fucosyltransferase expressions in the waaF and wcaJ deleted strain. As a result, when FucT2 was expressed under Trc promoter in the E. coli JM109(DE3) ΔwaaFΔwcaJ, 14.7 g/L of 2'-FL was produced with a productivity of 0.31 g/L/h in a fed-batch fermentation. We envision that the deletion-based metabolic design and decreased promoter strength for fucosyltransferase expression can resolve the drawbacks of T7 RNA polymerase-based expression design for 2'-FL production in E. coli.
Collapse
Affiliation(s)
- Jae Won Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Suryang Kwak
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jing-Jing Liu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Eun Ju Yun
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
39
|
Wan L, Zhu Y, Chen G, Luo G, Zhang W, Mu W. Efficient Production of 2'-Fucosyllactose from l-Fucose via Self-Assembling Multienzyme Complexes in Engineered Escherichia coli. ACS Synth Biol 2021; 10:2488-2498. [PMID: 34415729 DOI: 10.1021/acssynbio.1c00102] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
2'-Fucosyllactose (2'-FL) has been widely used as a nutritional additive in infant formula due to its multifarious nutraceutical and pharmaceutical functions in neonate health. As such, it is essential to develop an efficient and extensive microbial fermentation platform to cater to the needs of the 2'-FL market. In this study, a spatial synthetic biology strategy was employed to promote 2'-FL biosynthesis in recombinant Escherichia coli. First, the salvage pathway for 2'-FL production from l-fucose and lactose was constructed by introducing a bifunctional enzyme l-fucokinase/GDP-l-fucose pyrophosphorylase (Fkp) derived from Bacteroides fragilis and an α-1,2-fucosyltransferase (FutC) derived from Helicobacter pylori into engineered E. coli BL21(DE3). Next, the endogenous genes involved in the degradation and shunting of the substrate and key intermediate were inactivated to improve the availability of precursors for 2'-FL biosynthesis. Moreover, to further improve the yield and titer of 2'-FL, a short peptide pair (RIAD-RIDD) was used to form self-assembling multienzyme complexes in vivo. The spatial localization of peptides and stoichiometry of enzyme assemblies were subsequently optimized to further improve 2'-FL production. Finally, cofactor regeneration was also considered to alleviate the potential cofactor deficiency and redox flux imbalance in the biocatalysis process. Fed-batch fermentation of the final WLS20 strain accumulated 30.5 g/L extracellular 2'-FL with the yield and productivity of 0.661 mol/mol fucose and 0.48 g/L/h, respectively. This research has demonstrated that the application of spatial synthetic biology and metabolic engineering strategies can dramatically enlarge the titer and yield of 2'-FL biosynthesis in engineered E. coli.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Geng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guocong Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
40
|
Abstract
Accumulation of phosphorylated intermediates during cellular metabolism can have wide-ranging toxic effects on many organisms, including humans and the pathogens that infect them. These toxicities can be induced by feeding an upstream metabolite (a sugar, for instance) while simultaneously blocking the appropriate metabolic pathway with either a mutation or an enzyme inhibitor. Here, we survey the toxicities that can arise in the metabolism of glucose, galactose, fructose, fructose-asparagine, glycerol, trehalose, maltose, mannose, mannitol, arabinose, and rhamnose. Select enzymes in these metabolic pathways may serve as novel therapeutic targets. Some are conserved broadly among prokaryotes and eukaryotes (e.g., glucose and galactose) and are therefore unlikely to be viable drug targets. However, others are found only in bacteria (e.g., fructose-asparagine, rhamnose, and arabinose), and one is found in fungi but not in humans (trehalose). We discuss what is known about the mechanisms of toxicity and how resistance is achieved in order to identify the prospects and challenges associated with targeted exploitation of these pervasive metabolic vulnerabilities.
Collapse
|
41
|
Increased Production of Colanic Acid by an Engineered Escherichia coli Strain, Mediated by Genetic and Environmental Perturbations. Appl Biochem Biotechnol 2021; 193:4083-4096. [PMID: 34542821 DOI: 10.1007/s12010-021-03671-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
Colanic acid (CA) is a major exopolysaccharide synthesized by Escherichia coli that serves as a constituent of biofilm matrices. CA demonstrates potential applications in the food, cosmetics, and pharmaceutical industry. Moreover, L-fucose, a monomeric constituent of CA, exhibits various physiological activities, such as antitumor, anti-inflammatory, and skin-whitening. Here, the effects of genetic and environmental perturbations were investigated for improving CA production by E. coli. When rcsF, a positive regulator gene of CA synthesis, was expressed in E. coli ΔwaaF, a CA-producing strain constructed previously, the CA titer increased to 3051.2 mg/L as compared to 2052.8 mg/L observed with E. coli ΔwaaF. Among the environmental factors tested, namely, osmotic and oxidative stresses and pH, pH was a primary factor that significantly improved CA production. When the pH of the culture medium of E. coli ΔwaaF + rcsF was maintained at 7, the CA titer significantly increased to 4351.6 mg/L. The CA yield obtained with E. coli ΔwaaF + rcsF grown at pH 7 was 5180.4 mg CA/g dry cell weight, which is the highest yield of CA reported so far. This engineered E. coli system with optimization of environmental conditions can be employed for fast and economically-feasible production of CA.
Collapse
|
42
|
Akum FN, Kumar R, Lai G, Williams CH, Doan HK, Leveau JH. Identification of Collimonas gene loci involved in the biosynthesis of a diffusible secondary metabolite with broad-spectrum antifungal activity and plant-protective properties. Microb Biotechnol 2021; 14:1367-1384. [PMID: 33347710 PMCID: PMC8313283 DOI: 10.1111/1751-7915.13716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
In greenhouse and field trials, a bacterial mixture of Collimonas arenae Cal35 and Bacillus velezensis FZB42, but not Cal35 alone or FZB42 alone, was able to protect tomato plants from challenge with the soilborne fungal pathogen Fusarium oxysporum f.sp. lycopersici (Fol). To identify genes and mechanisms underlying this property in Cal35, we screened a random transposon insertion library for loss of function and identified two mutants that were impaired completely or partially in their ability to halt the growth of a wide range of fungal species. In mutant 46A06, the transposon insertion was located in a biosynthetic gene cluster that was predicted to code for a hybrid polyketide synthase-non-ribosomal peptide synthetase, while mutant 60C09 was impacted in a gene cluster for the synthesis and secretion of sugar repeat units. Our data are consistent with a model in which both gene clusters are necessary for the production of an antifungal compound we refer to as carenaemins. We also show that the ability to produce carenaemin contributed significantly to the observed synergy between Cal35 and FZB42 in protecting tomato plants from Fol. We discuss the potential for supplementing Bacillus-based biocontrol products with Collimonas bacteria to boost efficacy of such products.
Collapse
Affiliation(s)
- Fidele N. Akum
- Department of Plant PathologyUniversity of California DavisDavisCAUSA
| | | | - Gary Lai
- Novozymes Inc1445 Drew AvenueDavisCAUSA
| | | | - Hung K. Doan
- Department of Plant PathologyUniversity of California DavisDavisCAUSA
| | - Johan H.J. Leveau
- Department of Plant PathologyUniversity of California DavisDavisCAUSA
| |
Collapse
|
43
|
Reid AJ, Eade CR, Jones KJ, Jorgenson MA, Troutman JM. Tracking Colanic Acid Repeat Unit Formation from Stepwise Biosynthesis Inactivation in Escherichia coli. Biochemistry 2021; 60:2221-2230. [PMID: 34159784 DOI: 10.1021/acs.biochem.1c00314] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Colanic acid is a glycopolymer loosely associated with the outer membrane of Escherichia coli that plays a role in pathogen survival. For nearly six decades since its discovery, the functional identities of the enzymes necessary to synthesize colanic acid have yet to be assessed in full. Herein, we developed a method for detecting the lipid-linked intermediates from each step of colanic acid biosynthesis in E. coli. The accumulation of each enzyme product was made possible by inactivating sequential genes involved in colanic acid biosynthesis and upregulating the colanic acid operon by inducing rcsA transcription. LC-MS analysis revealed that these accumulated materials were consistent with the well-documented composition analysis. Recapitulating the native bioassembly of colanic acid enabled us to identify the functional roles of the last two enzymes, WcaL and WcaK, associated with the formation of the lipid-linked oligosaccharide repeating unit of colanic acid. Importantly, biochemical evidence is provided for the formation of the final glycosylation hexasaccharide product formed by WcaL and the addition of a pyruvate moiety to form a pyruvylated hexasaccharide by WcaK. These findings provide insight into the development of methods for the identification of enzyme functions during cell envelope synthesis.
Collapse
Affiliation(s)
| | | | | | - Matthew A Jorgenson
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, United States
| | | |
Collapse
|
44
|
Aavani F, Biazar E, Heshmatipour Z, Arabameri N, Kamalvand M, Nazbar A. Applications of bacteria and their derived biomaterials for repair and tissue regeneration. Regen Med 2021; 16:581-605. [PMID: 34030458 DOI: 10.2217/rme-2020-0116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microorganisms such as bacteria and their derived biopolymers can be used in biomaterials and tissue regeneration. Various methods have been applied to regenerate damaged tissues, but using probiotics and biomaterials derived from bacteria with improved economic-production efficiency and highly applicable properties can be a new solution in tissue regeneration. Bacteria can synthesize numerous types of biopolymers. These biopolymers possess many desirable properties such as biocompatibility and biodegradability, making them good candidates for tissue regeneration. Here, we reviewed different types of bacterial-derived biopolymers and highlight their applications for tissue regeneration.
Collapse
Affiliation(s)
- Farzaneh Aavani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), 15916-34311 Tehran, Iran
| | - Esmaeil Biazar
- Department of Biomedical Engineering, Tissue Engineering Group, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Zoheir Heshmatipour
- Department of Microbiology, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Nasibeh Arabameri
- Department of Microbiology, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Mahshad Kamalvand
- Department of Biomedical Engineering, Tissue Engineering Group, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Abolfazl Nazbar
- National Cell Bank, Pasteur Institute of Iran, 13169-43551 Tehran, Iran
| |
Collapse
|
45
|
Abstract
By evolving strains of E. coli that hyper-resist sedimentation, we discovered an uncharacterized mechanism that bacteria can use to remain in suspension indefinitely without expending energy. This unusual phenotype was traced to the anchoring of long colanic acid polymers (CAP) that project from the cell surface. Although each characterized mutant activated this same mechanism, the genes responsible and the strengths of the phenotypes varied. Mutations in rcsC, lpp, igaA, or the yjbEFGH operon were sufficient to stimulate sedimentation resistance, while mutations altering the cps promoter, cdgI, or yjbF provided phenotypic enhancements. The sedimentation resistances changed in response to temperature, growth phase, and carbon source and each mutant exhibited significantly reduced biofilm formation. We discovered that the degree of colony mucoidy exhibited by these mutants was not related to the degree of Rcs pathways activation or to the amount of CAP that was produced; rather, it was related to the fraction of CAP that was shed as a true exopolysaccharide. Therefore, these and other mutations that activate this phenotype are likely to be absent from genetic screens that relied on centrifugation to harvest bacteria. We also found that this anchored CAP form is not linked to LPS cores and may not be attached to the outer membrane.IMPORTANCEBacteria can partition in aqueous environments between surface-dwelling, planktonic, sedimentary, and biofilm forms. Residence in each location provides an advantage depending on nutritional and environmental stresses and a community of a single species is often observed to be distributed throughout two or more of these niches. Another adaptive strategy is to produce an extracellular capsule, which provides an environmental shield for the microbe and can allow escape from predators and immune systems. We discovered that bacteria can either shed or stably anchor capsules to dramatically alter their propensity to sediment. The degree to which the bacteria anchor their capsule is controlled by a stress sensing system, suggesting that anchoring may be used as an adaptive response to severe environmental challenges.
Collapse
|
46
|
Lauxen AI, Kobauri P, Wegener M, Hansen MJ, Galenkamp NS, Maglia G, Szymanski W, Feringa BL, Kuipers OP. Mechanism of Resistance Development in E. coli against TCAT, a Trimethoprim-Based Photoswitchable Antibiotic. Pharmaceuticals (Basel) 2021; 14:ph14050392. [PMID: 33919397 PMCID: PMC8143356 DOI: 10.3390/ph14050392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
During the last decades, a continuous rise of multi-drug resistant pathogens has threatened antibiotic efficacy. To tackle this key challenge, novel antimicrobial therapies are needed with increased specificity for the site of infection. Photopharmacology could enable such specificity by allowing for the control of antibiotic activity with light, as exemplified by trans/cis-tetra-ortho-chloroazobenzene-trimethoprim (TCAT) conjugates. Resistance development against the on (irradiated, TCATa) and off (thermally adapted, TCATd) states of TCAT were compared to that of trimethoprim (TMP) in Escherichia coli mutant strain CS1562. Genomics and transcriptomics were used to explore the acquired resistance. Although TCAT shows TMP-like dihydrofolate reductase (DHFR) inhibition in vitro, transcriptome analyses show different responses in acquired resistance. Resistance against TCATa (on) relies on the production of exopolysaccharides and overexpression of TolC. While resistance against TCATd (off) follows a slightly different gene expression profile, both indicate hampering the entrance of the molecule into the cell. Conversely, resistance against TMP is based on alterations in cell metabolism towards a more persister-like phenotype, as well as alteration of expression levels of enzymes involved in the folate biosynthesis. This study provides a deeper understanding of the development of new therapeutic strategies and the consequences on resistance development against photopharmacological drugs.
Collapse
Affiliation(s)
- Anna I. Lauxen
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands;
| | - Piermichele Kobauri
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (P.K.); (M.W.); (M.J.H.)
| | - Michael Wegener
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (P.K.); (M.W.); (M.J.H.)
| | - Mickel J. Hansen
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (P.K.); (M.W.); (M.J.H.)
| | - Nicole S. Galenkamp
- Groningen Biomolecular Science & Biotechnology Institute, University of Groningen, Nijenborg 4, 9747 AG Groningen, The Netherlands; (N.S.G.); (G.M.)
| | - Giovanni Maglia
- Groningen Biomolecular Science & Biotechnology Institute, University of Groningen, Nijenborg 4, 9747 AG Groningen, The Netherlands; (N.S.G.); (G.M.)
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (P.K.); (M.W.); (M.J.H.)
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Correspondence: (W.S.); (B.L.F.); (O.P.K.)
| | - Ben L. Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (P.K.); (M.W.); (M.J.H.)
- Correspondence: (W.S.); (B.L.F.); (O.P.K.)
| | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands;
- Correspondence: (W.S.); (B.L.F.); (O.P.K.)
| |
Collapse
|
47
|
Absence of osmoregulated periplasmic glucan confers antimicrobial resistance and increases virulence in Escherichia coli. J Bacteriol 2021; 203:e0051520. [PMID: 33846116 DOI: 10.1128/jb.00515-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clarifying the molecular mechanisms by which bacteria acquire virulence traits is important toward understanding the bacterial virulence system. In the present study, we utilized a bacterial evolution method in a silkworm-infection model and revealed that deletion of the opgGH operon encoding synthases for osmoregulated periplasmic glucan (OPG) increased the virulence of non-pathogenic laboratory strain of Escherichia coli against silkworms. The opgGH knockout mutant exhibited resistance to the host antimicrobial peptides and antibiotics. Compared with the parent strain, the opgGH knockout mutant produced greater amounts of colanic acid, which is involved in E. coli resistance to antibiotics. RNA sequence analysis revealed that the opgGH knockout altered the expression of various genes, including the evgS/evgA two-component system that functions in antibiotic resistance. In both a colanic acid-negative background and evgS-null background, the opgGH knockout increased E. coli resistance to antibiotics and increased the silkworm killing activity of E. coli In the null background of the envZ/ompR two-component system, which genetically interacts with opgGH, the opgGH knockout increased the antibiotic resistance and the virulence in silkworms. These findings suggest that the absence of OPG confers antimicrobial resistance and virulence of E. coli in a colanic acid-, evgS/evgA-, and envZ/ompR- independent manner.IMPORTANCEThe gene mutation types that increase bacterial virulence of Escherichia coli remain unclear, in part due to the limited number of methods available for isolating bacterial mutants with increased virulence. We utilized a bacterial evolution method in the silkworm infection model, in which silkworms were infected with mutagenized bacteria and highly virulent bacterial mutants were isolated from dead silkworms. We revealed that knockout of OPG synthases increases E. coli virulence against silkworms. The OPG-knockout mutants were resistant to host antimicrobial peptides as well as antibiotics. Our findings not only suggest a novel mechanism for virulence acquisition in E. coli, but also support the usefulness of utilizing the bacterial experimental evolution method in the silkworm infection model.
Collapse
|
48
|
Rodríguez-Rojas A, Baeder DY, Johnston P, Regoes RR, Rolff J. Bacteria primed by antimicrobial peptides develop tolerance and persist. PLoS Pathog 2021; 17:e1009443. [PMID: 33788905 PMCID: PMC8041211 DOI: 10.1371/journal.ppat.1009443] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 04/12/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial peptides (AMPs) are key components of innate immune defenses. Because of the antibiotic crisis, AMPs have also come into focus as new drugs. Here, we explore whether prior exposure to sub-lethal doses of AMPs increases bacterial survival and abets the evolution of resistance. We show that Escherichia coli primed by sub-lethal doses of AMPs develop tolerance and increase persistence by producing curli or colanic acid, responses linked to biofilm formation. We develop a population dynamic model that predicts that priming delays the clearance of infections and fuels the evolution of resistance. The effects we describe should apply to many AMPs and other drugs that target the cell surface. The optimal strategy to tackle tolerant or persistent cells requires high concentrations of AMPs and fast and long-lasting expression. Our findings also offer a new understanding of non-inherited drug resistance as an adaptive response and could lead to measures that slow the evolution of resistance. Animals and plants defend themselves with ancient molecules called antimicrobial peptides (AMPs) against pathogens. As more and more bacterial diseases have become drug resistant, these AMPs are considered as promising alternatives. In natural situation such as on the skin, bacteria are often exposed to low concentrations of AMPs that do no kill. Here we show that the bacterium Escherichia coli when exposed to such low concentrations becomes recalcitrant to killing concentrations of the same AMPs. We report the ways in which the bacteria alter their surface to do so. We then use a mathematical model to show that these effects caused by low concentrations can drive the evolution of resistance. From the perspective of an organism using AMPs in self-defense, the best option is to deploy high concentrations of AMPs for long. Our findings also offer a new understanding of similar drug resistance mechanisms.
Collapse
Affiliation(s)
| | | | - Paul Johnston
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Roland R. Regoes
- Institute of Integrative Biology, Zürich, Switzerland
- * E-mail: (RRR); (JR)
| | - Jens Rolff
- Freie Universität Berlin, Institut für Biologie, Evolutionary Biology, Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- * E-mail: (RRR); (JR)
| |
Collapse
|
49
|
Ageorges V, Monteiro R, Leroy S, Burgess CM, Pizza M, Chaucheyras-Durand F, Desvaux M. Molecular determinants of surface colonisation in diarrhoeagenic Escherichia coli (DEC): from bacterial adhesion to biofilm formation. FEMS Microbiol Rev 2021; 44:314-350. [PMID: 32239203 DOI: 10.1093/femsre/fuaa008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Escherichia coli is primarily known as a commensal colonising the gastrointestinal tract of infants very early in life but some strains being responsible for diarrhoea, which can be especially severe in young children. Intestinal pathogenic E. coli include six pathotypes of diarrhoeagenic E. coli (DEC), namely, the (i) enterotoxigenic E. coli, (ii) enteroaggregative E. coli, (iii) enteropathogenic E. coli, (iv) enterohemorragic E. coli, (v) enteroinvasive E. coli and (vi) diffusely adherent E. coli. Prior to human infection, DEC can be found in natural environments, animal reservoirs, food processing environments and contaminated food matrices. From an ecophysiological point of view, DEC thus deal with very different biotopes and biocoenoses all along the food chain. In this context, this review focuses on the wide range of surface molecular determinants acting as surface colonisation factors (SCFs) in DEC. In the first instance, SCFs can be broadly discriminated into (i) extracellular polysaccharides, (ii) extracellular DNA and (iii) surface proteins. Surface proteins constitute the most diverse group of SCFs broadly discriminated into (i) monomeric SCFs, such as autotransporter (AT) adhesins, inverted ATs, heat-resistant agglutinins or some moonlighting proteins, (ii) oligomeric SCFs, namely, the trimeric ATs and (iii) supramolecular SCFs, including flagella and numerous pili, e.g. the injectisome, type 4 pili, curli chaperone-usher pili or conjugative pili. This review also details the gene regulatory network of these numerous SCFs at the various stages as it occurs from pre-transcriptional to post-translocational levels, which remains to be fully elucidated in many cases.
Collapse
Affiliation(s)
- Valentin Ageorges
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Ricardo Monteiro
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Sabine Leroy
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | - Frédérique Chaucheyras-Durand
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,Lallemand Animal Nutrition SAS, F-31702 Blagnac Cedex, France
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| |
Collapse
|
50
|
L-arabinose induces the formation of viable non-proliferating spheroplasts in Vibrio cholerae. Appl Environ Microbiol 2021; 87:AEM.02305-20. [PMID: 33355111 PMCID: PMC8090878 DOI: 10.1128/aem.02305-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae, the agent of the deadly human disease cholera, propagates as a curved rod-shaped bacterium in warm waters. It is sensitive to cold, but persists in cold waters under the form of viable but non-dividing coccoidal shaped cells. Additionally, V. cholerae is able to form non-proliferating spherical cells in response to cell wall damage. It was recently reported that L-arabinose, a component of the hemicellulose and pectin of terrestrial plants, stops the growth of V. cholerae. Here, we show that L-arabinose induces the formation of spheroplasts that lose the ability to divide and stop growing in volume over time. However, they remain viable and upon removal of L-arabinose they start expanding in volume, form branched structures and give rise to cells with a normal morphology after a few divisions. We further show that WigKR, a histidine kinase/response regulator pair implicated in the induction of a high expression of cell wall synthetic genes, prevents the lysis of the spheroplasts during growth restart. Finally, we show that the physiological perturbations result from the import and catabolic processing of L-arabinose by the V. cholerae homolog of the E. coli galactose transport and catabolic system. Taken together, our results suggest that the formation of non-growing spherical cells is a common response of Vibrios exposed to detrimental conditions. They also permit to define conditions preventing any physiological perturbation of V. cholerae when using L-arabinose to induce gene expression from the tightly regulated promoter of the Escherichia coli araBAD operon.Importance Vibrios among other bacteria form transient cell wall deficient forms as a response to different stresses and revert to proliferating rods when permissive conditions have been restored. Such cellular forms have been associated to antimicrobial tolerance, chronic infections and environmental dispersion.The effect of L-Ara on V. cholerae could provide an easily tractable model to study the ability of Vibrios to form viable reversible spheroplasts. Indeed, the quick transition to spheroplasts and reversion to proliferating rods by addition or removal of L-Ara is ideal to understand the genetic program governing this physiological state and the spatial rearrangements of the cellular machineries during cell shape transitions.
Collapse
|