1
|
Pellicanò R, Brunetti R, Toscano T, Smeraldo S, Baldi L, Cavallo S, Capone S, Colarusso G. Risk valuation for E. coli contamination in Campania region shellfish from 2016 to 2021. Heliyon 2023; 9:e21716. [PMID: 38027549 PMCID: PMC10658277 DOI: 10.1016/j.heliyon.2023.e21716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
This study set out to assess the microbiological quality of shellfish collected over a six-year period of time in the Campania Region Sea. A total of 1459 samples were examined in order to determine whether Escherichia coli was present. To investigate potential correlations between the E. coli counts and environmental parameters (salinity, pH, dissolved oxygen, seawater temperature, turbidity, rainfall) and pollution variables (density and distance of heavy and light discharges), data were gathered. With only roughly 19% of the samples not meeting European and Italian criteria (E. coli counts more than 230 most likely number MPN per 100 g of pulp and intravalvar liquid), the results showed that the microbiological quality of the shellfish was good. A correlation between microbial contamination, season, rainfall, and dissolved oxygen was found using statistical analysis. However, the discharge density along the coast per spatial unit (a 200 × 200 MT cell), which was determined using the "quartic" Kernel function, showed found to be the primary factor determining the E. coli concentration in the shellfish. An increase in rain millimeters was found to be associated with a higher risk of heightened E. coli contamination, according to a model that was fitted to assess the probability of detecting a higher E. coli count in connection to environmental parameters. This outcome could be explained by the discharge density near the coast as well as the increased availability of coliforms, particularly E. coli, and nutrients during periods of heavier rainfall.
Collapse
Affiliation(s)
- Roberta Pellicanò
- Department of Epidemiology and Biostatistics, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, 80055 Naples, Italy
| | - Roberta Brunetti
- Department of Epidemiology and Biostatistics, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, 80055 Naples, Italy
| | - Tecla Toscano
- Department of Epidemiology and Biostatistics, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, 80055 Naples, Italy
| | - Sonia Smeraldo
- Department of Epidemiology and Biostatistics, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, 80055 Naples, Italy
| | - Loredana Baldi
- Department of Epidemiology and Biostatistics, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, 80055 Naples, Italy
| | - Stefania Cavallo
- Department of Epidemiology and Biostatistics, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, 80055 Naples, Italy
| | - Stefano Capone
- Regional Agency for the Environmental Protection ARPA Campania - U.O.C. SOA, Italy
| | - Germana Colarusso
- Department of Epidemiology and Biostatistics, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, 80055 Naples, Italy
| |
Collapse
|
2
|
Thines M, Sharma R, Rodenburg SYA, Gogleva A, Judelson HS, Xia X, van den Hoogen J, Kitner M, Klein J, Neilen M, de Ridder D, Seidl MF, van den Ackerveken G, Govers F, Schornack S, Studholme DJ. The Genome of Peronospora belbahrii Reveals High Heterozygosity, a Low Number of Canonical Effectors, and TC-Rich Promoters. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:742-753. [PMID: 32237964 DOI: 10.1094/mpmi-07-19-0211-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Along with Plasmopara destructor, Peronosopora belbahrii has arguably been the economically most important newly emerging downy mildew pathogen of the past two decades. Originating from Africa, it has started devastating basil production throughout the world, most likely due to the distribution of infested seed material. Here, we present the genome of this pathogen and results from comparisons of its genomic features to other oomycetes. The assembly of the nuclear genome was around 35.4 Mbp in length, with an N50 scaffold length of around 248 kbp and an L50 scaffold count of 46. The circular mitochondrial genome consisted of around 40.1 kbp. From the repeat-masked genome, 9,049 protein-coding genes were predicted, out of which 335 were predicted to have extracellular functions, representing the smallest secretome so far found in peronosporalean oomycetes. About 16% of the genome consists of repetitive sequences, and, based on simple sequence repeat regions, we provide a set of microsatellites that could be used for population genetic studies of P. belbahrii. P. belbahrii has undergone a high degree of convergent evolution with other obligate parasitic pathogen groups, reflecting its obligate biotrophic lifestyle. Features of its secretome, signaling networks, and promoters are presented, and some patterns are hypothesized to reflect the high degree of host specificity in Peronospora species. In addition, we suggest the presence of additional virulence factors apart from classical effector classes that are promising candidates for future functional studies.
Collapse
Affiliation(s)
- Marco Thines
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323 Frankfurt (Main), Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt (Main), Germany
- Integrative Fungal Research (IPF) and Translational Biodiversity Genomics (TBG), Georg-Voigt-Str. 14-16, 60325 Frankfurt (Main), Germany
| | - Rahul Sharma
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323 Frankfurt (Main), Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt (Main), Germany
- Integrative Fungal Research (IPF) and Translational Biodiversity Genomics (TBG), Georg-Voigt-Str. 14-16, 60325 Frankfurt (Main), Germany
| | - Sander Y A Rodenburg
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Anna Gogleva
- University of Cambridge, Sainsbury Laboratory, 47 Bateman Street, Cambridge, CB2 1LR, U.K
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521 U.S.A
| | - Xiaojuan Xia
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323 Frankfurt (Main), Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt (Main), Germany
| | - Johan van den Hoogen
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Miloslav Kitner
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Joël Klein
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Manon Neilen
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Guido van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Sebastian Schornack
- University of Cambridge, Sainsbury Laboratory, 47 Bateman Street, Cambridge, CB2 1LR, U.K
| | - David J Studholme
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K
| |
Collapse
|
3
|
Rossi CC, Pereira MF, Giambiagi-deMarval M. Underrated Staphylococcus species and their role in antimicrobial resistance spreading. Genet Mol Biol 2020; 43:e20190065. [PMID: 32052827 PMCID: PMC7198029 DOI: 10.1590/1678-4685-gmb-2019-0065] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/06/2019] [Indexed: 01/06/2023] Open
Abstract
The increasing threat of antimicrobial resistance has shed light on the interconnection between humans, animals, the environment, and their roles in the exchange and spreading of resistance genes. In this review, we present evidences that show that Staphylococcus species, usually referred to as harmless or opportunistic pathogens, represent a threat to human and animal health for acting as reservoirs of antimicrobial resistance genes. The capacity of genetic exchange between isolates of different sources and species of the Staphylococcus genus is discussed with emphasis on mobile genetic elements, the contribution of biofilm formation, and evidences obtained either experimentally or through genome analyses. We also discuss the involvement of CRISPR-Cas systems in the limitation of horizontal gene transfer and its suitability as a molecular clock to describe the history of genetic exchange between staphylococci.
Collapse
Affiliation(s)
- Ciro César Rossi
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Microbiologia Molecular, Rio de Janeiro, RJ, Brazil
| | | | - Marcia Giambiagi-deMarval
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Microbiologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Song AX, Mao YH, Siu KC, Tai WCS, Wu JY. Protective effects of exopolysaccharide of a medicinal fungus on probiotic bacteria during cold storage and simulated gastrointestinal conditions. Int J Biol Macromol 2019; 133:957-963. [DOI: 10.1016/j.ijbiomac.2019.04.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
|
5
|
Righi V, Constantinou C, Kesarwani M, Rahme LG, Tzika AA. Effects of a small, volatile bacterial molecule on Pseudomonas aeruginosa bacteria using whole cell high-resolution magic angle spinning nuclear magnetic resonance spectroscopy and genomics. Int J Mol Med 2018; 42:2129-2136. [PMID: 30015850 PMCID: PMC6108874 DOI: 10.3892/ijmm.2018.3760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/19/2015] [Indexed: 01/07/2023] Open
Abstract
In the present study, high-resolution magic-angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy was applied to live Pseudomonas aeruginosa (PA) bacterial cells to determine the metabolome of this opportunistic Gram-negative human pathogen, and in particular, its response to the volatile aromatic low molecular weight signaling molecule, 2-aminoacetophenone (2-AA). Multi-dimensional HRMAS NMR is a promising method which may be used to determine the in vivo metabolome of live intact bacterial cells; 2-AA is produced by PA and triggers the emergence of phenotypes that promote chronic infection phenotypes in in vitro and in vivo (animal) models. In the present study, we applied one-dimensional and two-dimensional proton (1H) HRMAS NMR to PA cells which were grown with or without 2-AA in order to examine the associations between metabolites and cellular processes in response to 2-AA. We also compared whole-genome transcriptome profiles of PA cells grown with or without 2-AA and found that 2-AA promoted profound metabolic changes in the PA cells. By comparing the whole-genome transcriptome profiles and metabolomic analysis, we demonstrated that 2-AA profoundly reprogramed the gene expression and metabolic profiles of the cells. Our in vivo1H HRMAS NMR spectroscopy may prove to be a helpful tool in the validation of gene functions, the study of pathogenic mechanisms, the classification of microbial strains into functional/clinical groups and the testing of anti-bacterial agents.
Collapse
Affiliation(s)
- Valeria Righi
- NMR Surgical Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA
| | - Caterina Constantinou
- NMR Surgical Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA
| | - Meenu Kesarwani
- Molecular Surgery Laboratory, Department of Surgery, Microbiology and Immunobiology, Harvard Medical School and Molecular Surgery Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Boston, MA 02114, USA
| | - Laurence G Rahme
- Molecular Surgery Laboratory, Department of Surgery, Microbiology and Immunobiology, Harvard Medical School and Molecular Surgery Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Boston, MA 02114, USA
| | - A Aria Tzika
- NMR Surgical Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
6
|
Karslake J, Maltas J, Brumm P, Wood KB. Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections. PLoS Comput Biol 2016; 12:e1005098. [PMID: 27764095 PMCID: PMC5072716 DOI: 10.1371/journal.pcbi.1005098] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/10/2016] [Indexed: 11/19/2022] Open
Abstract
The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments.
Collapse
Affiliation(s)
- Jason Karslake
- Department of Biophysics, University of Michigan, Ann Arbor, MI
| | - Jeff Maltas
- Department of Biophysics, University of Michigan, Ann Arbor, MI
| | - Peter Brumm
- Department of Biophysics, University of Michigan, Ann Arbor, MI
| | - Kevin B. Wood
- Department of Biophysics, University of Michigan, Ann Arbor, MI
- Department of Physics, University of Michigan, Ann Arbor, MI
- * E-mail:
| |
Collapse
|
7
|
Le TTA, McEvoy J, Khan E. Mitigation of bactericidal effect of carbon nanotubes by cell entrapment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 565:787-794. [PMID: 27178755 DOI: 10.1016/j.scitotenv.2016.04.180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/14/2016] [Accepted: 04/25/2016] [Indexed: 06/05/2023]
Abstract
This study investigated the effects of the alginate and polyvinyl alcohol (PVA) entrapment on the viability of Escherichia coli cells exposed to single wall carbon nanotubes (SWCNTs) with a diameter of 1-2nm. Viability was examined using a galactosidase enzyme assay, LIVE/DEAD BacLight assay, and total ribonucleic acid quantity. Variables studied included SWCNT concentration (5, 10, 20, 50, 100, 200, 500, and 1000μg/ml), SWCNT length (0.5-2μm for short SWCNTs and 5-30μm for long SWCNTs), and initial bacterial concentration (6.5 log10 CFU and 9 log10 CFU per test). Results showed that both alginate and PVA entrapments mitigate the bactericidal effect of SWCNTs. At the highest SWCNT concentration tested (1000μg/ml), the viability of the cells relative to controls (systems with only E. coli, no SWCNTs), was 0-60% for free cells and 60-90% for alginate and PVA entrapped cells. The bactericidal effect depended on SWCNT type and concentration, and bacterial concentration. In general, long SWCNTs (5-30μm) caused significantly greater reductions in the viability of entrapped cells than the short SWCNTs except for the two highest SWCNT concentrations studied, 500 and 1000μg/ml. Microscopy showed that the entrapment matrices prevented SWCNTs from entering the beads. This study shows that bacterial entrapment is effective at limiting the bactericidal effect of SWCNTs.
Collapse
Affiliation(s)
- Tu Thi Anh Le
- Environmental and Conservation Sciences Program, North Dakota State University, Fargo, ND 58108, USA; Biology Department, Da Lat University, Da Lat, Vietnam
| | - John McEvoy
- Veterinary and Microbiological Sciences Department, North Dakota State University, Fargo, ND 58108, USA
| | - Eakalak Khan
- Civil and Environmental Engineering Department, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
8
|
Xue T, Yu L, Shang F, Li W, Zhang M, Ni J, Chen X. Short communication: The role of autoinducer 2 (AI-2) on antibiotic resistance regulation in an Escherichia coli strain isolated from a dairy cow with mastitis. J Dairy Sci 2016; 99:4693-4698. [PMID: 27060825 DOI: 10.3168/jds.2015-10543] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/02/2016] [Indexed: 12/27/2022]
Abstract
Extended spectrum β-lactamase (ESBL)-positive Escherichia coli is a major etiological organism responsible for bovine mastitis. The autoinducer 2 (AI-2) quorum sensing system is widely present in many species of gram-negative and gram-positive bacteria and has been proposed to be involved in interspecies communication. In E. coli model strains, the functional mechanisms of AI-2 have been well studied; however, in clinical antibiotic-resistant E. coli strains, whether AI-2 affects the expression of antibiotic resistance genes has not been reported. In this study, we report that exogenous AI-2 increased the antibiotic resistance of a clinical E. coli strain isolated from a dairy cow with mastitis by upregulating the expression of TEM-type enzyme in an LsrR (LuxS regulated repressor)-dependent manner.
Collapse
Affiliation(s)
- Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Lumin Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wenchang Li
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ming Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jingtian Ni
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaolin Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
9
|
Righi V, Constantinou C, Kesarwani M, Rahme LG, Tzika AA. Live-cell high resolution magic angle spinning magnetic resonance spectroscopy for in vivo analysis of Pseudomonas aeruginosa metabolomics. Biomed Rep 2013; 1:707-712. [PMID: 24649014 DOI: 10.3892/br.2013.148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/03/2013] [Indexed: 01/26/2023] Open
Abstract
Pseudomonas aeruginosa (PA) is a pathogenic gram-negative bacterium that is widespread in nature, inhabiting soil, water, plants and animals. PA is a prevalent cause of deleterious human infections, particularly in patients whose host defense mechanisms have been compromised. Metabolomics is an important tool used to study host-pathogen interactions and to identify novel therapeutic targets and corresponding compounds. The aim of the present study was to report the metabolic profile of live PA bacteria using in vivo high-resolution magic angle spinning (HRMAS) nuclear magnetic resonance spectroscopy (NMR), in combination with 1- and 2-dimensional HRMAS NMR. This methodology provides a new and powerful technique to rapidly interrogate the metabolome of intact bacterial cells and has several advantages over traditional techniques that identify metabolome components from disrupted cells. Furthermore, application of multidimensional HRMAS NMR, in combination with the novel technique total through-Bond correlation Spectroscopy (TOBSY), is a promising approach that may be used to obtain in vivo metabolomics information from intact live bacterial cells and can mediate such analyses in a short period of time. Moreover, HRMAS 1H NMR enables the investigation of the associations between metabolites and cell processes. In the present study, we detected and quantified several informative metabolic molecules in live PA cells, including N-acetyl, betaine, citrulline, alanine and glycine, which are important in peptidoglycan synthesis. The results provided a complete metabolic profile of PA for future studies of PA clinical isolates and mutants. In addition, this in vivo NMR biomedical approach might have clinical utility and should prove useful in gene function validation, the study of pathogenetic mechanisms, the classification of microbial strains into functional/clinical groups, the testing of anti-bacterial agents and the determination of metabolic profiles of bacterial mutants.
Collapse
Affiliation(s)
- Valeria Righi
- Nuclear Magnetic Resonance Surgical Laboratory, Department of Surgery, Division of Burns, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, MA 02114, USA ; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA ; Department for Life Quality, University of Bologna, Rimini 47921, Italy
| | - Caterina Constantinou
- Nuclear Magnetic Resonance Surgical Laboratory, Department of Surgery, Division of Burns, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, MA 02114, USA ; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Meenu Kesarwani
- Molecular Surgery Laboratory, Department of Surgery, Division of Burns, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Laurence G Rahme
- Molecular Surgery Laboratory, Department of Surgery, Division of Burns, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Aria A Tzika
- Nuclear Magnetic Resonance Surgical Laboratory, Department of Surgery, Division of Burns, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, MA 02114, USA ; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
10
|
Bacteriocin immunity proteins play a role in quorum-sensing system regulated antimicrobial sensitivity of Streptococcus mutans UA159. Arch Oral Biol 2013; 58:384-90. [DOI: 10.1016/j.archoralbio.2012.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/27/2012] [Accepted: 09/02/2012] [Indexed: 12/19/2022]
|
11
|
Ryall B, Eydallin G, Ferenci T. Culture history and population heterogeneity as determinants of bacterial adaptation: the adaptomics of a single environmental transition. Microbiol Mol Biol Rev 2012; 76:597-625. [PMID: 22933562 PMCID: PMC3429624 DOI: 10.1128/mmbr.05028-11] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diversity in adaptive responses is common within species and populations, especially when the heterogeneity of the frequently large populations found in environments is considered. By focusing on events in a single clonal population undergoing a single transition, we discuss how environmental cues and changes in growth rate initiate a multiplicity of adaptive pathways. Adaptation is a comprehensive process, and stochastic, regulatory, epigenetic, and mutational changes can contribute to fitness and overlap in timing and frequency. We identify culture history as a major determinant of both regulatory adaptations and microevolutionary change. Population history before a transition determines heterogeneities due to errors in translation, stochastic differences in regulation, the presence of aged, damaged, cheating, or dormant cells, and variations in intracellular metabolite or regulator concentrations. It matters whether bacteria come from dense, slow-growing, stressed, or structured states. Genotypic adaptations are history dependent due to variations in mutation supply, contingency gene changes, phase variation, lateral gene transfer, and genome amplifications. Phenotypic adaptations underpin genotypic changes in situations such as stress-induced mutagenesis or prophage induction or in biofilms to give a continuum of adaptive possibilities. Evolutionary selection additionally provides diverse adaptive outcomes in a single transition and generally does not result in single fitter types. The totality of heterogeneities in an adapting population increases the chance that at least some individuals meet immediate or future challenges. However, heterogeneity complicates the adaptomics of single transitions, and we propose that subpopulations will need to be integrated into future population biology and systems biology predictions of bacterial behavior.
Collapse
Affiliation(s)
- Ben Ryall
- School of Molecular Bioscience, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
12
|
Cabeça TK, Pizzolitto AC, Pizzolitto EL. Activity of disinfectants against foodborne pathogens in suspension and adhered to stainless steel surfaces. Braz J Microbiol 2012; 43:1112-9. [PMID: 24031935 PMCID: PMC3768867 DOI: 10.1590/s1517-838220120003000038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 04/04/2010] [Accepted: 06/07/2012] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to investigate and compare the efficacy of various disinfectants on planktonic cells and biofilm cells of Listeria monocytogenes, Staphylococcus aureus and Escherichia coli. Numbers of viable biofilm cells decreased after treatment with all tested disinfectants (iodine, biguanide, quaternary ammonium compounds, peracetic acid and sodium hypochlorite). Sodium hypochlorite was the most effective disinfectant against biofilm cells, while biguanide was the least effective. Scanning electron microscopy observations revealed that cells adhered on stainless steel surface after treatment with the disinfectants. No viable planktonic cells were observed after treatment with the same disinfectants. Based on our findings, we concluded that biofilm cells might be more resistant to disinfectants than plancktonic cells.
Collapse
Affiliation(s)
- Tatiane Karen Cabeça
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Araraquara, Sao Paulo, Brasil
| | | | | |
Collapse
|
13
|
De Paepe M, Gaboriau-Routhiau V, Rainteau D, Rakotobe S, Taddei F, Cerf-Bensussan N. Trade-off between bile resistance and nutritional competence drives Escherichia coli diversification in the mouse gut. PLoS Genet 2011; 7:e1002107. [PMID: 21698140 PMCID: PMC3116916 DOI: 10.1371/journal.pgen.1002107] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 04/10/2011] [Indexed: 12/12/2022] Open
Abstract
Bacterial diversification is often observed, but underlying mechanisms are difficult to disentangle and remain generally unknown. Moreover, controlled diversification experiments in ecologically relevant environments are lacking. We studied bacterial diversification in the mammalian gut, one of the most complex bacterial environments, where usually hundreds of species and thousands of bacterial strains stably coexist. Herein we show rapid genetic diversification of an Escherichia coli strain upon colonisation of previously germ-free mice. In addition to the previously described mutations in the EnvZ/OmpR operon, we describe the rapid and systematic selection of mutations in the flagellar flhDC operon and in malT, the transcriptional activator of the maltose regulon. Moreover, within each mouse, the three mutant types coexisted at different levels after one month of colonisation. By combining in vivo studies and determination of the fitness advantages of the selected mutations in controlled in vitro experiments, we provide evidence that the selective forces that drive E. coli diversification in the mouse gut are the presence of bile salts and competition for nutrients. Altogether our results indicate that a trade-off between stress resistance and nutritional competence generates sympatric diversification of the gut microbiota. These results illustrate how experimental evolution in natural environments enables identification of both the selective pressures that organisms face in their natural environment and the diversification mechanisms.
Collapse
|
14
|
Mehla J, Sood SK. Substantiation in Enterococcus faecalis of dose-dependent resistance and cross-resistance to pore-forming antimicrobial peptides by use of a polydiacetylene-based colorimetric assay. Appl Environ Microbiol 2011; 77:786-93. [PMID: 21115699 PMCID: PMC3028714 DOI: 10.1128/aem.01496-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 11/15/2010] [Indexed: 11/20/2022] Open
Abstract
A better understanding of the antimicrobial peptide (AMP) resistance mechanisms of bacteria will facilitate the design of effective and potent AMPs. Therefore, to understand resistance mechanisms and for in vitro assessment, variants of Enterococcus faecalis that are resistant to different doses of the fungal AMP alamethicin (Alm(r)) were selected and characterized. The resistance developed was dose dependent, as both doses of alamethicin and degrees of resistance were colinear. The formation of bacterial cell aggregates observed in resistant cells may be the prime mechanism of resistance because overall, a smaller cell surface in aggregated cells is exposed to AMPs. Increased rigidity of the membranes of Alm(r) variants, because of their altered fatty acids, was correlated with limited membrane penetration by alamethicin. Thus, resistance developed against alamethicin was an adaptation of the bacterial cells through changes in their morphological features and physiological activity and the composition of membrane phospholipids. The Alm(r) variants showed cross-resistance to pediocin, which indicated that resistance developed against both AMPs may share a mechanism, i.e., an alteration in the cell membrane. High percentages of colorimetric response by both AMPs against polydiacetylene/lipid biomimetic membranes of Alm(r) variants confirmed that altered phospholipid and fatty acid compositions were responsible for acquisition of resistance. So far, this is the only report of quantification of resistance and cross-resistance using an in vitro colorimetric approach. Our results imply that a single AMP or AMP analog may be effective against bacterial strains having a common mechanism of resistance. Therefore, an understanding of resistance would contribute to the development of a single efficient, potent AMP against resistant strains that share a mechanism of resistance.
Collapse
Affiliation(s)
- Jitender Mehla
- Animal Biochemistry Division, National Dairy Research Institute, Karnal-132001, Haryana, India.
| | | |
Collapse
|
15
|
Kaderbhai NN, Broadhurst DI, Ellis DI, Goodacre R, Kell DB. Functional genomics via metabolic footprinting: monitoring metabolite secretion by Escherichia coli tryptophan metabolism mutants using FT-IR and direct injection electrospray mass spectrometry. Comp Funct Genomics 2010; 4:376-91. [PMID: 18629082 PMCID: PMC2447367 DOI: 10.1002/cfg.302] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Revised: 04/23/2003] [Accepted: 05/22/2003] [Indexed: 12/14/2022] Open
Abstract
We sought to test the hypothesis that mutant bacterial strains could be discriminated from each other on the basis of the metabolites they secrete into the medium (their
‘metabolic footprint’), using two methods of ‘global’ metabolite analysis (FT–IR and
direct injection electrospray mass spectrometry). The biological system used was
based on a published study of Escherichia coli tryptophan mutants that had been
analysed and discriminated by Yanofsky and colleagues using transcriptome analysis.
Wild-type strains supplemented with tryptophan or analogues could be discriminated
from controls using FT–IR of 24 h broths, as could each of the mutant strains in both
minimal and supplemented media. Direct injection electrospray mass spectrometry
with unit mass resolution could also be used to discriminate the strains from each
other, and had the advantage that the discrimination required the use of just two
or three masses in each case. These were determined via a genetic algorithm. Both
methods are rapid, reagentless, reproducible and cheap, and might beneficially be
extended to the analysis of gene knockout libraries.
Collapse
Affiliation(s)
- Naheed N Kaderbhai
- Institute of Biological Sciences, University of Wales, Aberystwyth, Wales Ceredigion SY23 3DD, UK
| | | | | | | | | |
Collapse
|
16
|
OpnS, an outer membrane porin of Xenorhabdus nematophila, confers a competitive advantage for growth in the insect host. J Bacteriol 2009; 191:5471-9. [PMID: 19465651 DOI: 10.1128/jb.00148-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The gammaproteobacterium Xenorhabdus nematophila engages in a mutualistic association with an entomopathogenic nematode and also functions as a pathogen toward different insect hosts. We studied the role of the growth-phase-regulated outer membrane protein OpnS in host interactions. OpnS was shown to be a 16-stranded beta-barrel porin. opnS was expressed during growth in insect hemolymph and expression was elevated as the cell density increased. When wild-type and opnS deletion strains were coinjected into insects, the wild-type strain was predominantly recovered from the insect cadaver. Similarly, an opnS-complemented strain outcompeted the DeltaopnS strain. Coinjection of the wild-type and DeltaopnS strains together with uncolonized nematodes into insects resulted in nematode progeny that were almost exclusively colonized with the wild-type strain. Likewise, nematode progeny recovered after coinjection of a mixture of nematodes carrying either the wild-type or DeltaopnS strain were colonized by the wild-type strain. In addition, the DeltaopnS strain displayed a competitive growth defect when grown together with the wild-type strain in insect hemolymph but not in defined culture medium. The DeltaopnS strain displayed increased sensitivity to antimicrobial compounds, suggesting that deletion of OpnS affected the integrity of the outer membrane. These findings show that the OpnS porin confers a competitive advantage for the growth and/or the survival of X. nematophila in the insect host and provides a new model for studying the biological relevance of differential regulation of porins in a natural host environment.
Collapse
|
17
|
Nagano K, Nikaido H. Kinetic behavior of the major multidrug efflux pump AcrB of Escherichia coli. Proc Natl Acad Sci U S A 2009; 106:5854-8. [PMID: 19307562 PMCID: PMC2667059 DOI: 10.1073/pnas.0901695106] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Indexed: 11/18/2022] Open
Abstract
Multidrug efflux transporters, especially those that belong to the resistance-nodulation-division (RND) family, often show very broad substrate specificity and play a major role both in the intrinsic antibiotic resistance and, with increased levels of expression, in the elevated resistance of Gram-negative bacteria. However, it has not been possible to determine the kinetic behavior of these important pumps so far. This is partly because these pumps form a tripartite complex traversing both the cytoplasmic and outer membranes, with an outer membrane channel and a periplasmic adaptor protein, and it is uncertain if the behavior of an isolated component protein reflects that of the protein in this multiprotein complex. Here we use intact cells of Escherichia coli containing the intact multiprotein complex AcrB-AcrA-TolC, and measure the kinetic constants for various cephalosporins, by assessing the periplasmic concentration of the drug from their rate of hydrolysis by periplasmic beta-lactamase and the rate of efflux as the difference between the influx rate and the hydrolysis rate. Nitrocefin efflux showed a K(m) of about 5 microM with little sign of cooperativity. For other compounds (cephalothin, cefamandole, and cephaloridine) that showed lower affinity to the pump, however, kinetics showed strong positive cooperativity, which is consistent with the rotating catalysis model of this trimeric pump. For the very hydrophilic cefazolin there was little sign of efflux.
Collapse
Affiliation(s)
- Keiji Nagano
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
18
|
Development and application of a differential method for reliable metabolome analysis in Escherichia coli. Anal Biochem 2008; 386:9-19. [PMID: 19084496 DOI: 10.1016/j.ab.2008.11.018] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 11/07/2008] [Accepted: 11/10/2008] [Indexed: 11/24/2022]
Abstract
Quantitative metabolomics of microbial cultures requires well-designed sampling and quenching procedures. We successfully developed and applied a differential method to obtain a reliable set of metabolome data for Escherichia coli K12 MG1655 grown in steady-state, aerobic, glucose-limited chemostat cultures. From a rigorous analysis of the commonly applied quenching procedure based on cold aqueous methanol, it was concluded that it was not applicable because of release of a major part of the metabolites from the cells. No positive effect of buffering or increasing the ionic strength of the quenching solution was observed. Application of a differential method in principle requires metabolite measurements in total broth and filtrate for each measurement. Different methods for sampling of culture filtrate were examined, and it was found that direct filtration without cooling of the sample was the most appropriate. Analysis of culture filtrates revealed that most of the central metabolites and amino acids were present in significant amounts outside the cells. Because the turnover time of the pools of extracellular metabolites is much larger than that of the intracellular pools, the differential method should also be applicable to short-term pulse response experiments without requiring measurement of metabolites in the supernatant during the dynamic period.
Collapse
|
19
|
Dedieu L, Pagès JM, Bolla JM. The omp50 gene is transcriptionally controlled by a temperature-dependent mechanism conserved among thermophilic Campylobacter species. Res Microbiol 2008; 159:270-8. [PMID: 18485677 DOI: 10.1016/j.resmic.2008.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/05/2008] [Accepted: 03/10/2008] [Indexed: 12/25/2022]
Abstract
The thermophilic Campylobacters are enteropathogenic for humans. We recently showed that Omp50 is a Campylobacter species-specific porin produced in Campylobacter jejuni and Campylobacter lari but not in Campylobacter coli. In the present study, we investigated regulation of the omp50 gene and found that its expression in C. jejuni was temperature-dependent, but independent of growth phase or medium viscosity. The use of RT-PCR and omp50::lacZ fusions showed that growth temperature control occurred at the transcriptional level. The promoter and the coding sequence were cloned in an Escherichia coli-Campylobacter shuttle plasmid and transferred to E. coli and to a C. jejuni Omp50-deficient strain. Regulation of omp50 gene expression by growth temperature was observed in the recombinant C. jejuni strain, but not in E. coli. The same regulation was also observed in wild-type C. lari strains and in a C. coli strain supplemented by the plasmid, suggesting that omp50 expression is controlled by a mechanism conserved among Campylobacter species.
Collapse
Affiliation(s)
- Luc Dedieu
- UMR-MD-1, IFR 48, Faculté de Médecine, Université de la Méditerranée, 27 Boulevard Jean Moulin, Marseille Cedex 5, France
| | | | | |
Collapse
|
20
|
Lara AR, Caspeta L, Gosset G, Bolívar F, Ramírez OT. Utility of an Escherichia coli strain engineered in the substrate uptake system for improved culture performance at high glucose and cell concentrations: an alternative to fed-batch cultures. Biotechnol Bioeng 2008; 99:893-901. [PMID: 17929322 DOI: 10.1002/bit.21664] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Overflow metabolism is an undesirable characteristic of aerobic cultures of Escherichia coli. It results from elevated glucose consumption rates that cause a high substrate conversion to acetate, severely affecting cell physiology and bioprocess performance. Such phenomenon typically occurs in batch cultures under high glucose concentration. Fed-batch culture, where glucose uptake rate is controlled by external addition of glucose, is the classical bioprocessing alternative to prevent overflow metabolism. Despite its wide-spread use, fed-batch mode presents drawbacks that could be overcome by simpler batch cultures at high initial glucose concentration, only if overflow metabolism is effectively prevented. In this study, an E. coli strain (VH32) lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) with a modified glucose transport system was cultured at glucose concentrations of up to 100 g/L in batch mode, while expressing the recombinant green fluorescence protein (GFP). At the highest glucose concentration tested, acetate accumulated to a maximum of 13.6 g/L for the parental strain (W3110), whereas a maximum concentration of only 2 g/L was observed for VH32. Consequently, high cell and GFP concentrations of 52 and 8.2 g/L, respectively, were achieved in VH32 cultures at 100 g/L of glucose. In contrast, maximum biomass and GFP in W3110 cultures only reached 65 and 48%, respectively, of the values attained by the engineered strain. A comparison of this culture strategy against traditional fed-batch culture of W3110 is presented. This study shows that high cell and recombinant protein concentrations are attainable in simple batch cultures by circumventing overflow metabolism through metabolic engineering. This represents a novel and valuable alternative to classical bioprocessing approaches.
Collapse
Affiliation(s)
- Alvaro R Lara
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, AP 510-3, Morelos 62250, Mexico
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Ferenci T. Bacterial physiology, regulation and mutational adaptation in a chemostat environment. Adv Microb Physiol 2007; 53:169-229. [PMID: 17707145 DOI: 10.1016/s0065-2911(07)53003-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemostat was devised over 50 years ago and rapidly adopted for studies of bacterial physiology and mutation. Despite the long history and earlier analyses, the complexity of events in continuous cultures is only now beginning to be resolved. The application of techniques for following regulatory and mutational changes and the identification of mutated genes in chemostat populations has provided new insights into bacterial behaviour. Inoculation of bacteria into a chemostat culture results in a population competing for a limiting amount of a particular resource. Any utilizable carbon source or ion can be a limiting nutrient and bacteria respond to limitation through a regulated nutrient-specific hunger response. In addition to transcriptional responses to nutrient limitation, a second regulatory influence in a chemostat culture is the reduced growth rate fixed by the dilution rate in individual experiments. Sub-maximal growth rates and hunger result in regulation involving sigma factors and alarmones like cAMP and ppGpp. Reduced growth rate also results in increased mutation frequencies. The combination of a strongly selective environment (where mutants able to compete for limiting nutrient have a major fitness advantage) and elevated mutation rates (both endogenous and through the secondary enrichment of mutators) results in a population that changes rapidly and persistently over many generations. Contrary to common belief, the chemostat environment is never in "steady state" with fixed bacterial characteristics usable for clean comparisons of physiological or regulatory states. Adding to the complexity, chemostat populations do not simply exhibit a succession of mutational sweeps leading to a dominant winner clone. Instead, within 100 generations large populations become heterogeneous and evolving bacteria adopt alternative, parallel fitness strategies. Transport physiology, metabolism and respiration, as well as growth yields, are highly diverse in chemostat-evolved bacteria. The rich assortment of changes in an evolving chemostat provides an excellent experimental system for understanding bacterial evolution. The adaptive radiation or divergence of populations into a collection of individuals with alternative solutions to the challenge of chemostat existence provides an ideal model system for testing evolutionary and ecological theories on adaptive radiations and the generation of bacterial diversity.
Collapse
Affiliation(s)
- Thomas Ferenci
- School of Molecular and Microbial Biosciences G08, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
23
|
Abstract
Escherichia coli is among the simplest and best-understood free-living organisms. It has served as a valuable model for numerous biological processes, including cellular metabolism. Just as E. coli stood at the front of the genomic revolution, it is playing a leading role in the development of cellular metabolomics: the study of the complete metabolic contents of cells, including their dynamic concentration changes and fluxes. This review briefly describes the essentials of cellular metabolomics and its fundamental differentiation from biomarker metabolomics and lipidomics. Key technologies for metabolite quantitation from E. coli are described, with a focus on those involving mass spectrometry. In particular emphasis is given to the cell handling and sample preparation steps required for collecting data of high biological reliability, such as fast metabolome quenching. Future challenges, both in terms of data collection and application of the data to obtain a comprehensive understanding of metabolic dynamics, are discussed.
Collapse
Affiliation(s)
- Joshua D Rabinowitz
- Princeton University, Department of Chemistry & Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ 08544, USA.
| |
Collapse
|
24
|
Ahmed NAAM, Petersen FC, Scheie AA. AI-2 quorum sensing affects antibiotic susceptibility in Streptococcus anginosus. J Antimicrob Chemother 2007; 60:49-53. [PMID: 17491000 DOI: 10.1093/jac/dkm124] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The concern over rising antibiotic resistance necessitates exploration of alternative approaches in antimicrobial therapy. Bacterial communities use the auto-inducer 2 (AI-2) quorum sensing signal at a specific threshold level for intra- and interspecies communication in order to regulate virulence behaviour. AI-2 signal production occurs in bacteria that possess a luxS homologue. In this study, we investigate for the first time the association between AI-2 signalling and susceptibility to antibiotics. METHODS Streptococcus anginosus wild-type and its isogenic luxS mutant SA001 were exposed to erythromycin and ampicillin. Susceptibility to erythromycin and ampicillin was determined by measuring the cell density and viability. Complementation assays were conducted by exposing the mutant to wild-type supernatant or to the AI-2 precursor molecule dihydroxy-2,3-pentanedione (DPD). RESULTS Disruption of luxS in S. anginosus resulted in a mutant with increased susceptibility to erythromycin and ampicillin. Supernatant from S. anginosus wild-type partially restored growth of SA001 in the presence of the two antibiotics. DPD restored growth of the luxS mutant in the presence of erythromycin and ampicillin to values similar to that of S. anginosus wild-type. CONCLUSIONS Our results indicate that luxS-based AI-2 communication is associated with antibiotic susceptibility. Targeting the AI-2 signal communication may present a novel approach in antimicrobial therapy.
Collapse
Affiliation(s)
- Nibras A A M Ahmed
- Department of Oral Biology, University of Oslo, PO Box 1052 Blindern, Oslo N-0316, Norway.
| | | | | |
Collapse
|
25
|
Ge YH, Pei DL, Feng PY, Huang XQ, Xu YQ. Autoinduction of RpoS biosynthesis in the biocontrol strain Pseudomonas sp. M18. Curr Microbiol 2007; 54:97-101. [PMID: 17200803 DOI: 10.1007/s00284-006-0072-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2006] [Accepted: 05/29/2006] [Indexed: 10/23/2022]
Abstract
The rpoS gene from Pseudomonas sp. M18, which encodes predicted protein (an alternative sigma factor s, sigma(S), or sigma(38)) with 99.5% sequence identity with RpoS from Pseudomonas aeruginosa PAO1, was first cloned. In order to investigate the mechanism of rpoS expression, an rpoS null mutant, named M18S, was constructed with insertion of aacC1 cassette bearing a gentamycin resistance gene. With introduction of a plasmid containing an rpoS'-'lacZ translational fusion (pMERS) to wild-type strain M18 or M18S, it was first found that beta-galactosidase activity expressed in strain M18S (pMERS) decreased to fourfold of that expressed in the strain M18 (pMERS). When strain M18S (pMERS) was introduced with another plasmid pBBS containing the wild-type rpoS gene, its beta-galactosidase expression level was enhanced and almost restored to that in strain M18 (pMERS). Similarly, expression of beta-galactosidase from a chromosomal fusion of the promoter of the wild-type rpoS gene with lacZ (rpoS-lacZ) was enhanced fivefold in the presence of a plasmid with the wild-type rpoS gene. With these findings, it is suggested that RpoS sigma factor may be involved in autoinducing its own gene expression in Pseudomonas sp. M18.
Collapse
Affiliation(s)
- Yi-He Ge
- College of Life Science and Biotechnology, Shanghai Jiaotong University, 800, Dongchuan Rd, Shanghai, 200240, PR China
| | | | | | | | | |
Collapse
|
26
|
Suen G, Arshinoff BI, Taylor RG, Welch RD. Practical Applications of Bacterial Functional Genomics. Biotechnol Genet Eng Rev 2007; 24:213-42. [DOI: 10.1080/02648725.2007.10648101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
E. coli metabolomics: capturing the complexity of a “simple” model. TOPICS IN CURRENT GENETICS 2007. [DOI: 10.1007/4735_2007_0221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
King T, Seeto S, Ferenci T. Genotype-by-environment interactions influencing the emergence of rpoS mutations in Escherichia coli populations. Genetics 2006; 172:2071-9. [PMID: 16489226 PMCID: PMC1456365 DOI: 10.1534/genetics.105.053892] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polymorphisms in rpoS are common in Escherichia coli. rpoS status influences a trade-off between nutrition and stress resistance and hence fitness across different environments. To analyze the selective pressures acting on rpoS, measurement of glucose transport rates in rpoS+ and rpoS bacteria was used to estimate the role of F(nc), the fitness gain due to improved nutrient uptake, in the emergence of rpoS mutations in nutrient-limited chemostat cultures. Chemostats with set atmospheres, temperatures, pH's, antibiotics, and levels of osmotic stress were followed. F(nc) was reduced under anaerobiosis, high osmolarity, and with chloramphenicol, consistent with a reduced rate of rpoS enrichment in these conditions. F(nc) remained high, however, with alkaline pH and low temperature but rpoS sweeps were diminished. Under these conditions, F(sp), the fitness reduction due to lowered stress protection, became significant. We also estimated whether the fitness need for the gene was related to its regulation. No consistent pattern emerged between the level of RpoS and the loss of rpoS function in particular environments. This dissection allows an unprecedented view of the genotype-by-environment interactions controlling a mutational sweep and shows that both F(nc) and F(sp) are influenced by individual stresses and that additional factors contribute to selection pressure in some environments.
Collapse
Affiliation(s)
- Thea King
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|
29
|
Denef VJ, Patrauchan MA, Florizone C, Park J, Tsoi TV, Verstraete W, Tiedje JM, Eltis LD. Growth substrate- and phase-specific expression of biphenyl, benzoate, and C1 metabolic pathways in Burkholderia xenovorans LB400. J Bacteriol 2005; 187:7996-8005. [PMID: 16291673 PMCID: PMC1291281 DOI: 10.1128/jb.187.23.7996-8005.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 09/14/2005] [Indexed: 11/20/2022] Open
Abstract
Recent microarray experiments suggested that Burkholderia xenovorans LB400, a potent polychlorinated biphenyl (PCB)-degrading bacterium, utilizes up to three apparently redundant benzoate pathways and a C(1) metabolic pathway during biphenyl and benzoate metabolism. To better characterize the roles of these pathways, we performed quantitative proteome profiling of cells grown on succinate, benzoate, or biphenyl and harvested during either mid-logarithmic growth or the transition between the logarithmic and stationary growth phases. The Bph enzymes, catabolizing biphenyl, were approximately 16-fold more abundant in biphenyl- versus succinate-grown cells. Moreover, the upper and lower bph pathways were independently regulated. Expression of each benzoate pathway depended on growth substrate and phase. Proteins specifying catabolism via benzoate dihydroxylation and catechol ortho-cleavage (ben-cat pathway) were approximately an order of magnitude more abundant in benzoate- versus biphenyl-grown cells at the same growth phase. The chromosomal copy of the benzoyl-coenzyme A (CoA) (box(C)) pathway was also expressed during growth on biphenyl: Box(C) proteins were approximately twice as abundant as Ben and Cat proteins under these conditions. By contrast, proteins of the megaplasmid copy of the benzoyl-CoA (box(M)) pathway were only detected in transition-phase benzoate-grown cells. Other proteins detected at increased levels in benzoate- and biphenyl-grown cells included general stress response proteins potentially induced by reactive oxygen species formed during aerobic aromatic catabolism. Finally, C(1) metabolic enzymes were present in biphenyl-grown cells during transition phase. This study provides insights into the physiological roles and integration of apparently redundant catabolic pathways in large-genome bacteria and establishes a basis for investigating the PCB-degrading abilities of this strain.
Collapse
Affiliation(s)
- V J Denef
- Center for Microbial Ecology, Michigan State University, East Lansing, 48824, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Gade D, Stührmann T, Reinhardt R, Rabus R. Growth phase dependent regulation of protein composition in Rhodopirellula baltica. Environ Microbiol 2005; 7:1074-84. [PMID: 16011746 DOI: 10.1111/j.1462-2920.2005.00784.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Growth phase dependent changes of protein composition in the marine bacterium Rhodopirellula baltica were quantitatively monitored by applying the two-dimensional difference gel electrophoresis (2D DIGE) technology. The number of regulated proteins (fold changes in protein abundance > absolute value(2)) increased from early (10) to late stationary growth phase (179), with fold changes reaching maximal values of 40. About 110 of these regulated protein spots were analysed by MALDI-TOF-MS and identified by mapping of peptide masses. Results indicate an opposing regulation of tricarboxylic acid cycle and oxidative pentose phosphate cycle, a downregulation of several enzymes involved in amino acid biosynthesis and an upregulation of the alternative sigma factor sigmaH in stationary phase. Interestingly, 26 proteins of unknown function were up- or downregulated in the stationary phase. Several proteins were specifically regulated during growth on solid surface (agar plates). These proteins could possibly be involved in the development of the different R. baltica morphotypes, i.e. motile swarmer cells and sessile cell aggregates (so-called rosettes).
Collapse
Affiliation(s)
- Dörte Gade
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | | | | |
Collapse
|
31
|
Bundy JG, Willey TL, Castell RS, Ellar DJ, Brindle KM. Discrimination of pathogenic clinical isolates and laboratory strains of Bacillus cereus by NMR-based metabolomic profiling. FEMS Microbiol Lett 2005; 242:127-36. [PMID: 15621429 DOI: 10.1016/j.femsle.2004.10.048] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 10/29/2004] [Indexed: 11/30/2022] Open
Abstract
Six different Bacillus cereus strains were selected from two different ecotypes: (1) three commonly used laboratory strains that are considered avirulent, and (2) three clinical isolates from meningitis patients. Screening of genomic DNA for the presence of genes encoding known toxins gave no candidate genes that were unambiguously able to distinguish between the two groups. However, the application of multivariate pattern-recognition methods to metabolite profiles derived from the different strains using 1H nuclear magnetic resonance spectroscopy (metabolomics) was able to classify the different profiles. The two different ecotypes were clearly separated on the basis of their metabolite profiles, showing that it is possible to use metabolomic methods to classify pathogens on the basis of their expressed physiology, even when it is not possible to infer a direct mechanistic link to specific virulence factors. This metabolomic approach could also have a wide range of possible applications in both general microbiology and microbial ecology for distinguishing and identifying different functional/physiological ecotypes of bacterial strains or species.
Collapse
Affiliation(s)
- Jacob G Bundy
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | | | | | | | | |
Collapse
|
32
|
van der Werf MJ, Jellema RH, Hankemeier T. Microbial metabolomics: replacing trial-and-error by the unbiased selection and ranking of targets. J Ind Microbiol Biotechnol 2005; 32:234-52. [PMID: 15895265 DOI: 10.1007/s10295-005-0231-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 03/10/2005] [Indexed: 01/01/2023]
Abstract
Microbial production strains are currently improved using a combination of random and targeted approaches. In the case of a targeted approach, potential bottlenecks, feed-back inhibition, and side-routes are removed, and other processes of interest are targeted by overexpressing or knocking-out the gene(s) of interest. To date, the selection of these targets has been based at its best on expert knowledge, but to a large extent also on 'educated guesses' and 'gut feeling'. Therefore, time and thus money is wasted on targets that later prove to be irrelevant or only result in a very minor improvement. Moreover, in current approaches, biological processes that are not known to be involved in the formation of a specific product are overlooked and it is impossible to rank the relative importance of the different targets postulated. Metabolomics, a technology that involves the non-targeted, holistic analysis of the changes in the complete set of metabolites in the cell in response to environmental or cellular changes, in combination with multivariate data analysis (MVDA) tools like principal component discriminant analysis and partial least squares, allow the replacement of current empirical approaches by a scientific approach towards the selection and ranking of targets. In this review, we describe the technological challenges in setting up the novel metabolomics technology and the principle of MVDA algorithms in analyzing biomolecular data sets. In addition to strain improvement, the combined metabolomics and MVDA approach can also be applied to growth medium optimization, predicting the effect of quality differences of different batches of complex media on productivity, the identification of bioactives in complex mixtures, the characterization of mutant strains, the exploration of the production potential of strains, the assignment of functions to orphan genes, the identification of metabolite-dependent regulatory interactions, and many more microbiological issues.
Collapse
|
33
|
Abstract
Modern medicine is facing the spread of biofilm-related infections. Bacterial biofilms are difficult to detect in routine diagnostics and are inherently tolerant to host defenses and antibiotic therapies. In addition, biofilms facilitate the spread of antibiotic resistance by promoting horizontal gene transfer. We review current concepts of biofilm tolerance with special emphasis on the role of the biofilm matrix and the physiology of biofilm-embedded cells. The heterogeneity in metabolic and reproductive activity within a biofilm correlates with a non-uniform susceptibility of enclosed bacteria. Recent studies have documented similar heterogeneity in planktonic cultures. Nutritional starvation and high cell density, two key characteristics of biofilm physiology, also mediate antimicrobial tolerance in stationary-phase planktonic cultures. Advances in characterizing the role of stress response genes, quorum sensing and phase variation in stationary-phase planktonic cultures have shed new light on tolerance mechanisms within biofilm communities.
Collapse
Affiliation(s)
- C A Fux
- Center for Biofilm Engineering, Montana State University, 366 EPS Building - P.O. Box 173980, Bozeman, MT 59717, USA.
| | | | | | | |
Collapse
|
34
|
Danchin A. The bag or the spindle: the cell factory at the time of systems' biology. Microb Cell Fact 2004; 3:13. [PMID: 15537427 PMCID: PMC534799 DOI: 10.1186/1475-2859-3-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Accepted: 11/10/2004] [Indexed: 11/10/2022] Open
Abstract
Genome programs changed our view of bacteria as cell factories, by making them amenable to systematic rational improvement. As a first step, isolated genes (including those of the metagenome), or small gene clusters are improved and expressed in a variety of hosts. New techniques derived from functional genomics (transcriptome, proteome and metabolome studies) now allow users to shift from this single-gene approach to a more integrated view of the cell, where it is more and more considered as a factory. One can expect in the near future that bacteria will be entirely reprogrammed, and perhaps even created de novo from bits and pieces, to constitute man-made cell factories. This will require exploration of the landscape made of neighbourhoods of all the genes in the cell. Present work is already paving the way for that futuristic view of bacteria in industry.
Collapse
Affiliation(s)
- Antoine Danchin
- Genetics of Bacterial Genomes, Institut Pasteur, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
35
|
Ihssen J, Egli T. Specific growth rate and not cell density controls the general stress response in Escherichia coli. Microbiology (Reading) 2004; 150:1637-1648. [PMID: 15184550 DOI: 10.1099/mic.0.26849-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In batch cultures ofEscherichia coli, the intracellular concentration of the general stress response sigma factor RpoS typically increases during the transition from the exponential to the stationary growth phase. However, because this transition is accompanied by complex physico-chemical and biological changes, which signals predominantly elicit this induction is still the subject of debate. Careful design of the growth environment in chemostat and batch cultures allowed the separate study of individual factors affecting RpoS. Specific growth rate, and not cell density or the nature of the growth-limiting nutrient, controlled RpoS expression and RpoS-dependent hydroperoxidase activity. Furthermore, it was demonstrated that the standardE. coliminimal medium A (MMA) is not suitable for high-cell-density cultivation because it lacks trace elements. Previously reported cell-density effects in chemostat cultures ofE. colican be explained by a hidden, secondary nutrient limitation, which points to the importance of medium design and appropriate experimental set-up for studying cell-density effects.
Collapse
Affiliation(s)
- Julian Ihssen
- Swiss Federal Institute for Environmental Science and Technology, PO Box 611, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Thomas Egli
- Swiss Federal Institute for Environmental Science and Technology, PO Box 611, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
36
|
Sharma M, Beuchat LR. Sensitivity of Escherichia coli O157:H7 to commercially available alkaline cleaners and subsequent resistance to heat and sanitizers. Appl Environ Microbiol 2004; 70:1795-803. [PMID: 15006806 PMCID: PMC368313 DOI: 10.1128/aem.70.3.1795-1803.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 12/08/2003] [Indexed: 11/20/2022] Open
Abstract
The effects of seven commercially available alkaline cleaners used in the food processing industry, 0.025 M NaOH, and 0.025 M KOH on viability of wild-type (EDL 933) and rpoS-deficient (FRIK 816-3) strains of Escherichia coli O157:H7 in logarithmic and stationary phases of growth were determined. Cells were treated at 4 or 23 degrees C for 2, 10, or 30 min. Cleaners 2, 4, 6, and 7, which contained hypochlorite and <11% NaOH and/or KOH (pH 11.2 to 11.7), killed significantly higher numbers of cells than treatment with cleaner 3, containing sodium metasilicate (pH 11.4) and <10% KOH, and cleaner 5, containing ethylene glycol monobutyl ether (pH 10.4). There were no differences in the sensitivities of logarithmic and stationary-phase cells to the alkaline cleaners. Treatment with KOH or NaOH (pH 12.2) was not as effective as four out of seven commercial cleaners in killing E. coli O157:H7, indicating that chlorine and other cleaner components have bactericidal activity at high pH. Stationary-phase cells of strain EDL 933 that had been exposed to cleaner 7 at 4 or 23 degrees C and strain FRIK 816-3 exposed to cleaner 7 at 23 degrees C had significantly higher D(55 degrees C) (decimal reduction time, minutes at 55 degrees C) values than control cells or cells exposed to cleaner 5, indicating that exposure to cleaner 7 confers cross-protection to heat. Cells of EDL 933 treated with cleaner 7 at 12 degrees C showed significantly higher D(55 degrees C) values than cells of FRIK 816-3, indicating that rpoS may play a role in cross-protection. Stationary-phase cells treated with cleaner 5 or cleaner 7 at 4 or 12 degrees C were not cross-protected against subsequent exposure to sanitizers containing quaternary ammonium compounds or sodium hypochlorite, or to cetylpyridinium chloride and benzalkonium chloride.
Collapse
Affiliation(s)
- Manan Sharma
- Center for Food Safety and Department of Food Science and Technology, University of Georgia, Griffin, Georgia 30223-1797, USA
| | | |
Collapse
|
37
|
Yoon SH, Han MJ, Lee SY, Jeong KJ, Yoo JS. Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol Bioeng 2003; 81:753-67. [PMID: 12557308 DOI: 10.1002/bit.10626] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Combined transcriptome and proteome analysis was carried out to understand metabolic and physiological changes of Escherichia coli during the high cell density cultivation (HCDC). The expression of genes of TCA cycle enzymes, NADH dehydrogenase and ATPase, was up-regulated during the exponential fed-batch period and was down-regulated afterward. However, expression of most of the genes involved in glycolysis and pentose phosphate pathway was up-regulated at the stationary phase. The expression of most of amino acid biosynthesis genes was down-regulated as cell density increased, which seems to be the major reason for the reduced specific productivity of recombinant proteins during HCDC. The expression of chaperone genes increased with cell density, suggesting that the high cell density condition itself can be stressful to the cells. Severe competition for oxygen at high cell density seemed to make cells use cytochrome bd, which is less efficient but has a high oxygen affinity than cytochrome bo(3). Population cell density itself strongly affected the expression of porin protein genes, especially ompF, and hence the permeability of the outer membrane. Expression of phosphate starvation genes was most strongly up-regulated toward the end of cultivation. It was also found that sigma(E) (rpoE) plays a more important role than sigma(S) (rpoS) at the stationary phase of HCDC. These findings should be invaluable in designing metabolic engineering and fermentation strategies for the production of recombinant proteins and metabolites by HCDC of E. coli.
Collapse
Affiliation(s)
- Sung Ho Yoon
- Department of Chemical and Biomolecular Engineering, and BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
| | | | | | | | | |
Collapse
|
38
|
Maharjan RP, Ferenci T. Global metabolite analysis: the influence of extraction methodology on metabolome profiles of Escherichia coli. Anal Biochem 2003; 313:145-54. [PMID: 12576070 DOI: 10.1016/s0003-2697(02)00536-5] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The global pool of all metabolites in a cell, or metabolome, is a reflection of all the metabolic functions of an organism under any particular growth condition. In the absence of in situ methods capable of universally measuring metabolite pools, intracellular metabolite measurements need to be performed in vitro after extraction. In the past, a variety of cell lysis methods were adopted for assays of individual metabolites or groups of intermediates in pathways. In this study, metabolites were extracted from Escherichia coli using six different commonly used procedures including acid or alkaline treatments, permeabilization by freezing with methanol, high-temperature extraction in the presence of ethanol or methanol, and by lysis with chloroform-methanol. Metabolites were extracted by the six methods from cells grown under identical conditions and labeled with [14C]glucose. The metabolomes were compared after 2-dimensional thin-layer chromatography of labeled compounds. For global analysis, extraction with cold (-40 degrees C) methanol showed the greatest promise, allowing simultaneous resolution of more than 95 metabolite spots. In contrast, 80 or less spots were obtained with other extraction methods. Extraction also influenced quantitative analysis of particular compounds. Metabolites such as adenosine exhibited up to 20-fold higher abundance after cold methanol extraction than after extraction with acid, alkali, or chloroform. The simplicity, rapidity, and universality of cold methanol extraction offer great promise if a single method of lysis is to be adopted in metabolome analysis.
Collapse
Affiliation(s)
- Ram Prasad Maharjan
- School of Molecular and Microbial Biosciences G08, University of Sydney, New South Wales, Sydney 2006, Australia
| | | |
Collapse
|
39
|
Jeong KJ, Lee SY. Excretion of human beta-endorphin into culture medium by using outer membrane protein F as a fusion partner in recombinant Escherichia coli. Appl Environ Microbiol 2002; 68:4979-85. [PMID: 12324347 PMCID: PMC126437 DOI: 10.1128/aem.68.10.4979-4985.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli BL21 strains were found to excrete a large amount of outer membrane protein F (OmpF) into culture medium during high-cell-density cultivation. From this interesting phenomenon, a novel and efficient OmpF fusion system was developed for the excretion of recombinant proteins by E. coli. The ompF gene of E. coli BL21(DE3) was first knocked out by using the red operon of bacteriophage lambda to construct E. coli MBEL-BL101. For the excretion of human beta-endorphin as a model protein, the beta-endorphin gene was fused to the C terminus of the E. coli ompF gene by using a linker containing the Factor Xa recognition site. To develop a fed-batch culture condition that allows efficient production of OmpF-beta-endorphin fusion protein, three different feeding strategies, an exponential feeding strategy and two pH-stat strategies with defined and complex nutrient feeding solutions, were examined. Among these, the pH-stat feeding strategy with the complex nutrient feeding solution resulted in the highest productivity (0.33 g of protein per liter per h). Under this condition, up to 5.6 g of OmpF-beta-endorphin fusion protein per liter was excreted into culture medium. The fusion protein was purified by anion-exchange chromatography and cleaved by Factor Xa to yield beta-endorphin, which was finally purified by reverse-phase chromatography. From 2.7 liters of culture supernatant, 545.4 mg of beta-endorphin was obtained.
Collapse
Affiliation(s)
- Ki Jun Jeong
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering and BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Korea
| | | |
Collapse
|
40
|
Vulić M, Kolter R. Alcohol-induced delay of viability loss in stationary-phase cultures of Escherichia coli. J Bacteriol 2002; 184:2898-905. [PMID: 12003929 PMCID: PMC135059 DOI: 10.1128/jb.184.11.2898-2905.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During prolonged incubation in stationary phase Escherichia coli undergoes starvation-induced differentiation, resulting in highly resistant cells. In rich medium with high amino acid content further incubation of cultures at high cell density leads to the generation of a population of cells no longer able to form colonies. The viability loss is due to some component of spent medium, active at high pH and high cell density, and can be prevented either by keeping the pH close to neutrality, by washing off the nonsalt components of the medium, or by keeping the saturating cell density low. Exposure to short-chain n-alcohols within a specific time window in stationary phase also prevents viability loss, in an rpoS-dependent fashion. The development of stress resistance, a hallmark of stationary-phase cells, is affected following alcohol treatment, as is the response to extracellular factors in spent medium. Alcohols seem to block cells in an early phase of starvation-induced differentiation, most likely by interfering with processes important for regulation of sigma(s) such as cell density signals and sensing the nutrient content of the medium.
Collapse
Affiliation(s)
- Marin Vulić
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
41
|
Li YH, Hanna MN, Svensäter G, Ellen RP, Cvitkovitch DG. Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J Bacteriol 2001; 183:6875-84. [PMID: 11698377 PMCID: PMC95529 DOI: 10.1128/jb.183.23.6875-6884.2001] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans normally colonizes dental biofilms and is regularly exposed to continual cycles of acidic pH during ingestion of fermentable dietary carbohydrates. The ability of S. mutans to survive at low pH is an important virulence factor in the pathogenesis of dental caries. Despite a few studies of the acid adaptation mechanism of this organism, little work has focused on the acid tolerance of S. mutans growing in high-cell-density biofilms. It is unknown whether biofilm growth mode or high cell density affects acid adaptation by S. mutans. This study was initiated to examine the acid tolerance response (ATR) of S. mutans biofilm cells and to determine the effect of cell density on the induction of acid adaptation. S. mutans BM71 cells were first grown in broth cultures to examine acid adaptation associated with growth phase, cell density, carbon starvation, and induction by culture filtrates. The cells were also grown in a chemostat-based biofilm fermentor for biofilm formation. Adaptation of biofilm cells to low pH was established in the chemostat by the acid generated from excess glucose metabolism, followed by a pH 3.5 acid shock for 3 h. Both biofilm and planktonic cells were removed to assay percentages of survival. The results showed that S. mutans BM71 exhibited a log-phase ATR induced by low pH and a stationary-phase acid resistance induced by carbon starvation. Cell density was found to modulate acid adaptation in S. mutans log-phase cells, since pre-adapted cells at a higher cell density or from a dense biofilm displayed significantly higher resistance to the killing pH than the cells at a lower cell density. The log-phase ATR could also be induced by a neutralized culture filtrate collected from a low-pH culture, suggesting that the culture filtrate contained an extracellular induction component(s) involved in acid adaptation in S. mutans. Heat or proteinase treatment abolished the induction by the culture filtrate. The results also showed that mutants defective in the comC, -D, or -E genes, which encode a quorum sensing system essential for cell density-dependent induction of genetic competence, had a diminished log-phase ATR. Addition of synthetic competence stimulating peptide (CSP) to the comC mutant restored the ATR. This study demonstrated that cell density and biofilm growth mode modulated acid adaptation in S. mutans, suggesting that optimal development of acid adaptation in this organism involves both low pH induction and cell-cell communication.
Collapse
Affiliation(s)
- Y H Li
- Dental Research Institute, University of Toronto, 124 Edward St., Toronto, Ontario M5G 1G6, Canada
| | | | | | | | | |
Collapse
|
42
|
Liu X, Ferenci T. An analysis of multifactorial influences on the transcriptional control of ompF and ompC porin expression under nutrient limitation. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2981-9. [PMID: 11700349 DOI: 10.1099/00221287-147-11-2981] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Expression of the major outer-membrane porins in Escherichia coli is transcriptionally controlled during nutrient limitation. Expression of ompF was more than 40-fold higher under glucose limitation than under nitrogen (ammonia) limitation in chemostat cultures at the same growth rate. In contrast, ompC expression was higher under N limitation. The basis of regulation by nutrient limitation was investigated using mutations affecting expression of porin genes. The influence of cyaA, rpoS, ackA and pta, as well as the two-component envZ-ompR system, was studied under glucose and N limitation in chemostat cultures. A major contributor to low ompF expression under N limitation was negative control by the RpoS sigma factor. RpoS levels were high under N limitation and loss of RpoS resulted in a 19-fold increase in ompF transcription, but little change was observed with ompC. Lack of RpoS under glucose limitation had a lesser stimulatory effect on ompF expression. Porin production was minimally dependent on EnvZ under N limitation due to OmpR phosphorylation by acetyl phosphate. Evidence obtained with pta and ackA mutants suggested that the acetyl phosphate level also regulates porins independently and indirectly via RpoS and other pathways. pta-envZ double mutants had a residual level of porin transcription, implicating alternative means of OmpR phosphorylation under nutrient limitation. Another critical factor in regulation was the level of cAMP, as a cyaA mutant hardly expressed ompF under glucose limitation but boosted ompC. In addition, the role of DNA-binding proteins encoded by hns and himA was tested under glucose limitation: the hns mutation reduced the glucose-limitation peak, but the himA mutation suppressed the hns effect, suggesting a complex web of interrelationships between the DNA-binding proteins. Indeed, multiple inputs and no single regulator were responsible for the high peak of ompF expression under glucose limitation.
Collapse
Affiliation(s)
- X Liu
- Department of Microbiology G08, University of Sydney, Sydney, New South Wales 2006, Australia
| | | |
Collapse
|
43
|
Watkins SM, Hammock BD, Newman JW, German JB. Individual metabolism should guide agriculture toward foods for improved health and nutrition. Am J Clin Nutr 2001; 74:283-6. [PMID: 11522549 DOI: 10.1093/ajcn/74.3.283] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genomics and bioinformatics have the vast potential to identify genes that cause disease by investigating whole-genome databases. Comparison of an individual's geno-type with a genomic database will allow the prescription of drugs to be tailored to an individual's genotype. This same bioinformatic approach, applied to the study of human metabolites, has the potential to identify and validate targets to improve personalized nutritional health and thus serve to define the added value for the next generation of foods and crops. Advances in high-throughput analytic chemistry and computing technologies make the creation of a vast database of metabolites possible for several subsets of metabolites, including lipids and organic acids. In creating integrative databases of metabolites for bioinformatic investigation, the current concept of measuring single biomarkers must be expanded to 3 dimensions to 1) include a highly comprehensive set of metabolite measurements (a profile) by multiparallel analyses, 2) measure the metabolic profile of individuals over time rather than simply in the fasted state, and 3) integrate these metabolic profiles with genomic, expression, and proteomic databases. Application of the knowledge of individual metabolism will revolutionize the ability of nutrition to deliver health benefits through food in the same way that knowledge of genomics will revolutionize individual treatment of dis-ease with pharmaceuticals.
Collapse
Affiliation(s)
- S M Watkins
- Department of Food Science and Technology, University of California, Davis, USA.
| | | | | | | |
Collapse
|
44
|
Werf M, Schuren F, Bijlsma S, Tas A, Ommen BV. Nutrigenomics: Application of Genomics Technologies in Nutritional Sciences and Food Technology. J Food Sci 2001. [DOI: 10.1111/j.1365-2621.2001.tb15171.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Abstract
Starved cultures of Escherichia coli are highly dynamic, undergoing frequent population shifts. The shifts result from the spread of mutants able to grow under conditions that impose growth arrest on the ancestral population. To analyze competitive interactions underlying this dynamic we measured the survival of a typical mutant and the wild type during such population shifts. Here we show that the survival advantage of the mutant at any given time during a takeover is inversely dependent on its frequency in the population, its growth adversely affects the survival of the wild type, and its ability to survive in stationary phase at fixation is lower than that of its ancestor. These mutants do not enter, or exit early, the nondividing stationary-phase state, cooperatively maintained by the wild type. Thus they end up overrepresented as compared to their initial frequency at the onset of the stationary phase, and subsequently they increase disproportionately their contribution in terms of progeny to the succeeding generation in the next growth cycle, which is a case of evolutionary cheating. If analyzed through the game theory framework, these results might be explained by the prisoner's dilemma type of conflict, which predicts that selfish defection is favored over cooperation.
Collapse
Affiliation(s)
- M Vulic
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
46
|
Abstract
SecG is an auxiliary protein in the Sec-dependent protein export pathway of Escherichia coli. Although the precise function of SecG is unknown, it stimulates translocation activity and has been postulated to enhance the membrane insertion-deinsertion cycle of SecA. Deletion of secG was initially reported to result in a severe export defect and cold sensitivity. Later results demonstrated that both of these phenotypes were strain dependent, and it was proposed that an additional mutation was required for manifestation of the cold-sensitive phenotype. The results presented here demonstrate that the cold-sensitive secG deletion strain also contains a mutation in glpR that causes constitutive expression of the glp regulon. Introduction of both the glpR mutation and the secG deletion into a wild-type strain background produced a cold-sensitive phenotype, confirming the hypothesis that a second mutation (glpR) contributes to the cold-sensitive phenotype of secG deletion strains. It was speculated that the glpR mutation causes an intracellular depletion of glycerol-3-phosphate due to constitutive synthesis of GlpD and subsequent channeling of glycerol-3-phosphate into metabolic pathways. In support of this hypothesis, it was demonstrated that addition of glycerol-3-phosphate to the growth medium ameliorated the cold sensitivity, as did introduction of a glpD mutation. This depletion of glycerol-3-phosphate is predicted to limit phospholipid biosynthesis, causing an imbalance in the levels of membrane phospholipids. It is hypothesized that this state of phospholipid imbalance imparts a dependence on SecG for proper function or stabilization of the translocation apparatus.
Collapse
Affiliation(s)
- A M Flower
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037, USA.
| |
Collapse
|
47
|
Abstract
Biofilms are communities of microorganisms attached to a surface. It has become clear that biofilm-grown cells express properties distinct from planktonic cells, one of which is an increased resistance to antimicrobial agents. Recent work has indicated that slow growth and/or induction of an rpoS-mediated stress response could contribute to biocide resistance. The physical and/or chemical structure of exopolysaccharides or other aspects of biofilm architecture could also confer resistance by exclusion of biocides from the bacterial community. Finally, biofilm-grown bacteria might develop a biofilm-specific biocide-resistant phenotype. Owing to the heterogeneous nature of the biofilm, it is likely that there are multiple resistance mechanisms at work within a single community. Recent research has begun to shed light on how and why surface-attached microbial communities develop resistance to antimicrobial agents.
Collapse
Affiliation(s)
- T F Mah
- Dept of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|