1
|
Vázquez R, Gutiérrez D, Criel B, Dezutter Z, Briers Y. Diversity, structure-function relationships and evolution of cell wall-binding domains of staphylococcal phage endolysins. Int J Biol Macromol 2025; 310:143093. [PMID: 40228774 DOI: 10.1016/j.ijbiomac.2025.143093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
In response to the antibiotic resistance crisis, enzyme-based antibiotics like bacteriophage endolysins offer a promising alternative. In their natural context, endolysins lyse bacterial hosts by degrading peptidoglycan at the end of the replication cycle. They have evolved complex modular architectures, particularly in Gram-positive bacteria, featuring variable enzymatically active domains (EADs) and cell wall-binding domains (CBDs). These domains can be combinatorially shuffled to enhance antibacterial properties. CBDs are commonly seen as an important driver for the specificity of wild-type and engineered endolysins, as seen in Listeria and pneumococcal endolysins. This study explores the structural diversity and functional behavior of CBDs in endolysins from staphylococcal phages. Analysis of 182 CBDs reveals greater diversity than expected, classified into three families within the SH3b fold: SH3b_P1 (including the well-known SH3_5 family), and the new SH3b_P2 and SH3b_T families. Experimental specificity profiles of 24 CBDs using eGFP-CBD fusions against various staphylococcal species and strains challenge the notion of high host specificity within the staphylococcal context. Instead, CBDs exhibit a broader and more variable specificity and co-evolve with their accompanying EADs for functional synergy. This work provides insights for rational endolysin engineering and highlights the importance of understanding structure-function relationships to enhance their therapeutic potential.
Collapse
Affiliation(s)
- Roberto Vázquez
- Department of Biotechnology, Ghent University, Ghent, Belgium; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Diana Gutiérrez
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Bjorn Criel
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Zoë Dezutter
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Yves Briers
- Department of Biotechnology, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Dery KJ, Wong Z, Wei M, Kupiec-Weglinski JW. Mechanistic Insights into Alternative Gene Splicing in Oxidative Stress and Tissue Injury. Antioxid Redox Signal 2024; 41:890-909. [PMID: 37776178 PMCID: PMC11631805 DOI: 10.1089/ars.2023.0437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
Significance: Oxidative stress (OS) and inflammation are inducers of tissue injury. Alternative splicing (AS) is an essential regulatory step for diversifying the eukaryotic proteome. Human diseases link AS to OS; however, the underlying mechanisms must be better understood. Recent Advances: Genome‑wide profiling studies identify new differentially expressed genes induced by OS-dependent ischemia/reperfusion injury. Overexpression of RNA-binding protein RBFOX1 protects against inflammation. Hypoxia-inducible factor-1α directs polypyrimidine tract binding protein 1 to regulate mouse carcinoembryonic antigen-related cell adhesion molecule 1 (Ceacam1) AS under OS conditions. Heterogeneous nuclear ribonucleoprotein L variant 1 contains an RGG/RG motif that coordinates with transcription factors to influence human CEACAM1 AS. Hypoxia intervention involving short interfering RNAs directed to long-noncoding RNA 260 polarizes M2 macrophages toward an anti-inflammatory phenotype and alleviates OS by inhibiting IL-28RA gene AS. Critical Issues: Protective mechanisms that eliminate reactive oxygen species (ROS) are important for resolving imbalances that lead to chronic inflammation. Defects in AS can cause ROS generation, cell death regulation, and the activation of innate and adaptive immune factors. We propose that AS pathways link redox regulation to the activation or suppression of the inflammatory response during cellular stress. Future Directions: Emergent studies using molecule-mediated RNA splicing are being conducted to exploit the immunogenicity of AS protein products. Deciphering the mechanisms that connect misspliced OS and pathologies should remain a priority. Controlled release of RNA directly into cells with clinical applications is needed as the demand for innovative nucleic acid delivery systems continues to be demonstrated.
Collapse
Affiliation(s)
- Kenneth J. Dery
- The Dumont-UCLA Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Zeriel Wong
- The Dumont-UCLA Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Megan Wei
- The Dumont-UCLA Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jerzy W. Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
3
|
Advances in Novel Animal Vitamin C Biosynthesis Pathways and the Role of Prokaryote-Based Inferences to Understand Their Origin. Genes (Basel) 2022; 13:genes13101917. [PMID: 36292802 PMCID: PMC9602106 DOI: 10.3390/genes13101917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022] Open
Abstract
Vitamin C (VC) is an essential nutrient required for the optimal function and development of many organisms. VC has been studied for many decades, and still today, the characterization of its functions is a dynamic scientific field, mainly because of its commercial and therapeutic applications. In this review, we discuss, in a comparative way, the increasing evidence for alternative VC synthesis pathways in insects and nematodes, and the potential of myo-inositol as a possible substrate for this metabolic process in metazoans. Methodological approaches that may be useful for the future characterization of the VC synthesis pathways of Caenorhabditis elegans and Drosophila melanogaster are here discussed. We also summarize the current distribution of the eukaryote aldonolactone oxidoreductases gene lineages, while highlighting the added value of studies on prokaryote species that are likely able to synthesize VC for both the characterization of novel VC synthesis pathways and inferences on the complex evolutionary history of such pathways. Such work may help improve the industrial production of VC.
Collapse
|
4
|
Isolation, characterization, and comparative genomic analysis of vB_PlaM_Pd22F, a new bacteriophage of the family Myoviridae. Arch Virol 2022; 167:1269-1284. [PMID: 35366103 DOI: 10.1007/s00705-022-05429-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/26/2022] [Indexed: 11/02/2022]
Abstract
The use of phage and phage-based products for the prevention and treatment of bee disease is one of the promising natural alternatives to chemical or antibiotic treatments in beekeeping. A novel lysogenic bacteriophage, phage Pd22F (vB_PlaM_Pd22F), was isolated from Paenibacillus dendritiformis by the prophage induction method. This phage, which is capable of infecting Paenibacillus larvae and P. dendritiformis strains, was characterized by microbiological and comparative genomic analysis. Transmission electron microscopy images showed that phage Pd22F had the morphology of a myovirus. Whole-genome sequencing results showed that vB_Pla M_Pd22F has an 86,388-bp linear dsDNA genome with a GC content of 50.68%. This genome has 124 coding sequences (CDSs), 53% of which encode functionally unknown proteins and 57 of which encode proteins that show similarity to known proteins. In addition, one tRNA gene was found. The phage Pd22F genome does not contain any antimicrobial resistance genes. The similarity between the genome sequence of phage Pd22F and the whole genome sequences of other Paenibacillus phages available in the NCBI Virus Database was found to be below 50% (42%), indicating that phage Pd22F differs greatly from previously characterized phages at the DNA level. The results of comparative genomics and phylogenetic analysis revealed that Pd22F is a new phage belonging to the family Myoviridae, order Caudovirales. This is the first report of genomic and morphological characterization of a Paenibacillus dendritiformis prophage.
Collapse
|
5
|
Patinios C, Creutzburg SCA, Arifah AQ, Adiego-Pérez B, Gyimah E, Ingham C, Kengen SWM, van der Oost J, Staals RHJ. Streamlined CRISPR genome engineering in wild-type bacteria using SIBR-Cas. Nucleic Acids Res 2021; 49:11392-11404. [PMID: 34614191 PMCID: PMC8565351 DOI: 10.1093/nar/gkab893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
CRISPR-Cas is a powerful tool for genome editing in bacteria. However, its efficacy is dependent on host factors (such as DNA repair pathways) and/or exogenous expression of recombinases. In this study, we mitigated these constraints by developing a simple and widely applicable genome engineering tool for bacteria which we termed SIBR-Cas (Self-splicing Intron-Based Riboswitch-Cas). SIBR-Cas was generated from a mutant library of the theophylline-dependent self-splicing T4 td intron that allows for tight and inducible control over CRISPR-Cas counter-selection. This control delays CRISPR-Cas counter-selection, granting more time for the editing event (e.g. by homologous recombination) to occur. Without the use of exogenous recombinases, SIBR-Cas was successfully applied to knock-out several genes in three wild-type bacteria species (Escherichia coli MG1655, Pseudomonas putida KT2440 and Flavobacterium IR1) with poor homologous recombination systems. Compared to other genome engineering tools, SIBR-Cas is simple, tightly regulated and widely applicable for most (non-model) bacteria. Furthermore, we propose that SIBR can have a wider application as a simple gene expression and gene regulation control mechanism for any gene or RNA of interest in bacteria.
Collapse
Affiliation(s)
- Constantinos Patinios
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Sjoerd C A Creutzburg
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Adini Q Arifah
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Belén Adiego-Pérez
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Evans A Gyimah
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Colin J Ingham
- Hoekmine Besloten Vennootschap, Kenniscentrum Technologie en Innovatie, Hogeschool Utrecht, 3584 CS, Utrecht, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Raymond H J Staals
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
6
|
Buttimer C, Lynch C, Hendrix H, Neve H, Noben JP, Lavigne R, Coffey A. Isolation and Characterization of Pectobacterium Phage vB_PatM_CB7: New Insights into the Genus Certrevirus. Antibiotics (Basel) 2020; 9:E352. [PMID: 32575906 PMCID: PMC7344957 DOI: 10.3390/antibiotics9060352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
To date, Certrevirus is one of two genera of bacteriophage (phage), with phages infecting Pectobacterium atrosepticum, an economically important phytopathogen that causes potato blackleg and soft rot disease. This study provides a detailed description of Pectobacterium phage CB7 (vB_PatM_CB7), which specifically infects P. atrosepticum. Host range, morphology, latent period, burst size and stability at different conditions of temperature and pH were examined. Analysis of its genome (142.8 kbp) shows that the phage forms a new species of Certrevirus, sharing sequence similarity with other members, highlighting conservation within the genus. Conserved elements include a putative early promoter like that of the Escherichia coli sigma70 promoter, which was found to be shared with other genus members. A number of dissimilarities were observed, relating to DNA methylation and nucleotide metabolism. Some members do not have homologues of a cytosine methylase and anaerobic nucleotide reductase subunits NrdD and NrdG, respectively. Furthermore, the genome of CB7 contains one of the largest numbers of homing endonucleases described in a single phage genome in the literature to date, with a total of 23 belonging to the HNH and LAGLIDADG families. Analysis by RT-PCR of the HNH homing endonuclease residing within introns of genes for the large terminase, DNA polymerase, ribonucleotide reductase subunits NrdA and NrdB show that they are splicing competent. Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) was also performed on the virion of CB7, allowing the identification of 26 structural proteins-20 of which were found to be shared with the type phages of the genera of Vequintavirus and Seunavirus. The results of this study provide greater insights into the phages of the Certrevirus genus as well as the subfamily Vequintavirinae.
Collapse
Affiliation(s)
- Colin Buttimer
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland; (C.B.); (C.L.)
- APC Microbiome Institute, University College, T12 YT20 Cork, Ireland
| | - Caoimhe Lynch
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland; (C.B.); (C.L.)
| | - Hanne Hendrix
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium; (H.H.); (R.L.)
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany;
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, Hasselt University, 3590 Hasselt, Belgium;
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium; (H.H.); (R.L.)
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland; (C.B.); (C.L.)
- APC Microbiome Institute, University College, T12 YT20 Cork, Ireland
| |
Collapse
|
7
|
Munnur D, Bartlett E, Mikolčević P, Kirby IT, Matthias Rack JG, Mikoč A, Cohen MS, Ahel I. Reversible ADP-ribosylation of RNA. Nucleic Acids Res 2019; 47:5658-5669. [PMID: 31216043 PMCID: PMC6582358 DOI: 10.1093/nar/gkz305] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/10/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
ADP-ribosylation is a reversible chemical modification catalysed by ADP-ribosyltransferases such as PARPs that utilize nicotinamide adenine dinucleotide (NAD+) as a cofactor to transfer monomer or polymers of ADP-ribose nucleotide onto macromolecular targets such as proteins and DNA. ADP-ribosylation plays an important role in several biological processes such as DNA repair, transcription, chromatin remodelling, host-virus interactions, cellular stress response and many more. Using biochemical methods we identify RNA as a novel target of reversible mono-ADP-ribosylation. We demonstrate that the human PARPs - PARP10, PARP11 and PARP15 as well as a highly diverged PARP homologue TRPT1, ADP-ribosylate phosphorylated ends of RNA. We further reveal that ADP-ribosylation of RNA mediated by PARP10 and TRPT1 can be efficiently reversed by several cellular ADP-ribosylhydrolases (PARG, TARG1, MACROD1, MACROD2 and ARH3), as well as by MACROD-like hydrolases from VEEV and SARS viruses. Finally, we show that TRPT1 and MACROD homologues in bacteria possess activities equivalent to the human proteins. Our data suggest that RNA ADP-ribosylation may represent a widespread and physiologically relevant form of reversible ADP-ribosylation signalling.
Collapse
Affiliation(s)
- Deeksha Munnur
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Edward Bartlett
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Petra Mikolčević
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ilsa T Kirby
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Michael S Cohen
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
8
|
Rogers SO. Integrated evolution of ribosomal RNAs, introns, and intron nurseries. Genetica 2018; 147:103-119. [PMID: 30578455 DOI: 10.1007/s10709-018-0050-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022]
Abstract
The initial components of ribosomes first appeared more than 3.8 billion years ago during a time when many types of RNAs were evolving. While modern ribosomes are complex molecular machines consisting of rRNAs and proteins, they were assembled during early evolution by the association and joining of small functional RNA units. Introns may have provided the means to ligate many of these pieces together. All four classes of introns (group I, group II, spliceosomal, and archaeal) are present in many rRNA gene loci over a broad phylogenetic range. A survey of rRNA intron sequences across the three major life domains suggests that some of the classes of introns may have diverged from one another within rRNA gene loci. Analyses of rRNA sequences revealed self-splicing group I and group II introns are present in ancestral regions of the SSU (small subunit) and LSU (large subunit), whereas spliceosomal and archaeal introns appeared in sections of the rRNA that evolved later. Most classes of introns increased in number for approximately 1 billion years. However, their frequencies are low in the most recently evolved regions added to the SSU and LSU rRNAs. Furthermore, many of the introns appear to have been in the same locations for billions of years, suggesting an ancient origin for these sequences. In this Perspectives paper, I reviewed and analyzed rRNA intron sequences, locations, structural characteristics, and splicing mechanisms; and suggest that rRNA gene loci may have served as evolutionary nurseries for intron formation and diversification.
Collapse
Affiliation(s)
- Scott O Rogers
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA.
| |
Collapse
|
9
|
Brandis G, Cao S, Hughes D. Co-evolution with recombination affects the stability of mobile genetic element insertions within gene families of Salmonella. Mol Microbiol 2018; 108:697-710. [PMID: 29603442 DOI: 10.1111/mmi.13959] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2018] [Indexed: 12/14/2022]
Abstract
Bacteria can have multiple copies of a gene at separate locations on the same chromosome. Some of these gene families, including tuf (translation elongation factor EF-Tu) and rrl (ribosomal RNA), encode functions critically important for bacterial fitness. Genes within these families are known to evolve in concert using homologous recombination to transfer genetic information from one gene to another. This mechanism can counteract the detrimental effects of nucleotide sequence divergence over time. Whether such mechanisms can also protect against the potentially lethal effects of mobile genetic element insertion is not well understood. To address this we constructed two different length insertion cassettes to mimic mobile genetic elements and inserted these into various positions of the tuf and rrl genes. We measured rates of recombinational repair that removed the inserted cassette and studied the underlying mechanism. Our results indicate that homologous recombination can protect the tuf and rrl genes from inactivation by mobile genetic elements, but for insertions within shorter gene sequences the efficiency of repair is very low. Intriguingly, we found that physical distance separating genes on the chromosome directly affects the rate of recombinational repair suggesting that relative location will influence the ability of homologous recombination to maintain homogeneity.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Sha Cao
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Sokolov AS, Latypov OR, Kolosov PM, Shlyapnikov MG, Bezlepkina TA, Kholod NS, Kadyrov FA, Granovsky IE. Phage T4 endonuclease SegD that is similar to group I intron endonucleases does not initiate homing of its own gene. Virology 2018; 515:215-222. [PMID: 29306059 DOI: 10.1016/j.virol.2017.12.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/25/2017] [Accepted: 12/26/2017] [Indexed: 11/30/2022]
Abstract
Homing endonucleases are a group of site-specific endonucleases that initiate homing, a nonreciprocal transfer of its own gene into a new allele lacking this gene. This work describes a novel phage T4 endonuclease, SegD, which is homologous to the GIY-YIG family of homing endonucleases. Like other T4 homing endonucleases SegD recognizes an extended, 16bp long, site, cleaves it asymmetrically to form 3'-protruding ends and digests both unmodified DNA and modified T-even phage DNA with similar efficiencies. Surprisingly, we revealed that SegD cleavage site was identical in the genomes of segD- and segD+ phages. We found that segD gene was expressed during the T4 developmental cycle. Nevertheless, endonuclease SegD was not able to initiate homing of its own gene as well as genetic recombination between phages in its site inserted into the rII locus.
Collapse
Affiliation(s)
- Andrey S Sokolov
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia
| | - Oleg R Latypov
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia
| | - Peter M Kolosov
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia
| | - Michael G Shlyapnikov
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia
| | - Tamara A Bezlepkina
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia
| | - Natalia S Kholod
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia
| | - Farid A Kadyrov
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia
| | - Igor E Granovsky
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia; Laboratory of Molecular and Cellular Biology, Pushchino State Institute of Natural Sciences, 3 Prospekt Nauki, Pushchino 142290, Russia.
| |
Collapse
|
11
|
Belfort M. Mobile self-splicing introns and inteins as environmental sensors. Curr Opin Microbiol 2017; 38:51-58. [PMID: 28482231 DOI: 10.1016/j.mib.2017.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/12/2017] [Indexed: 12/31/2022]
Abstract
Self-splicing introns and inteins are often mobile at the level of the genome. Although these RNA and protein elements, respectively, are generally considered to be selfish parasites, group I and group II introns and inteins can be triggered by environmental cues to splice and/or to mobilize. These cues include stressors such as oxidizing agents, reactive oxygen and nitrogen species, starvation, temperature, osmolarity and DNA damage. Their sensitivity to these stimuli leads to a carefully choreographed dance between the mobile element and its host that is in tune with the cellular environment. This responsiveness to a changing milieu provides strong evidence that these diverse, self-splicing mobile elements have adapted to react to prevailing conditions, to the potential advantage of both the element and its host.
Collapse
Affiliation(s)
- Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, Life Sciences Research Building 2061, 1400 Washington Avenue, Albany, NY 12222, USA.
| |
Collapse
|
12
|
Chand D, Avinash VS, Yadav Y, Pundle AV, Suresh CG, Ramasamy S. Molecular features of bile salt hydrolases and relevance in human health. Biochim Biophys Acta Gen Subj 2017; 1861:2981-2991. [DOI: 10.1016/j.bbagen.2016.09.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 01/18/2023]
|
13
|
Patel S. Drivers of bacterial genomes plasticity and roles they play in pathogen virulence, persistence and drug resistance. INFECTION GENETICS AND EVOLUTION 2016; 45:151-164. [DOI: 10.1016/j.meegid.2016.08.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 12/11/2022]
|
14
|
Macé K, Gillet R. Origins of tmRNA: the missing link in the birth of protein synthesis? Nucleic Acids Res 2016; 44:8041-51. [PMID: 27484476 PMCID: PMC5041485 DOI: 10.1093/nar/gkw693] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022] Open
Abstract
The RNA world hypothesis refers to the early period on earth in which RNA was central in assuring both genetic continuity and catalysis. The end of this era coincided with the development of the genetic code and protein synthesis, symbolized by the apparition of the first non-random messenger RNA (mRNA). Modern transfer-messenger RNA (tmRNA) is a unique hybrid molecule which has the properties of both mRNA and transfer RNA (tRNA). It acts as a key molecule during trans-translation, a major quality control pathway of modern bacterial protein synthesis. tmRNA shares many common characteristics with ancestral RNA. Here, we present a model in which proto-tmRNAs were the first molecules on earth to support non-random protein synthesis, explaining the emergence of early genetic code. In this way, proto-tmRNA could be the missing link between the first mRNA and tRNA molecules and modern ribosome-mediated protein synthesis.
Collapse
Affiliation(s)
- Kevin Macé
- Université de Rennes 1, CNRS UMR 6290 IGDR, Translation and Folding Team, 35042 Rennes cedex, France
| | - Reynald Gillet
- Université de Rennes 1, CNRS UMR 6290 IGDR, Translation and Folding Team, 35042 Rennes cedex, France Institut Universitaire de France
| |
Collapse
|
15
|
Roy AC, Wilson GG, Edgell DR. Perpetuating the homing endonuclease life cycle: identification of mutations that modulate and change I-TevI cleavage preference. Nucleic Acids Res 2016; 44:7350-9. [PMID: 27387281 PMCID: PMC5009752 DOI: 10.1093/nar/gkw614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/27/2016] [Indexed: 11/14/2022] Open
Abstract
Homing endonucleases are sequence-tolerant DNA endonucleases that act as mobile genetic elements. The ability of homing endonucleases to cleave substrates with multiple nucleotide substitutions suggests a high degree of adaptability in that changing or modulating cleavage preference would require relatively few amino acid substitutions. Here, using directed evolution experiments with the GIY-YIG homing endonuclease I-TevI that targets the thymidylate synthase gene of phage T4, we readily isolated variants that dramatically broadened I-TevI cleavage preference, as well as variants that fine-tuned cleavage preference. By combining substitutions, we observed an ∼10 000-fold improvement in cleavage on some substrates not cleaved by the wild-type enzyme, correlating with a decrease in readout of information content at the cleavage site. Strikingly, we were able to change the cleavage preference of I-TevI to that of the isoschizomer I-BmoI which targets a different cleavage site in the thymidylate synthase gene, recapitulating the evolution of cleavage preference in this family of homing endonucleases. Our results define a strategy to isolate GIY-YIG nuclease domains with distinct cleavage preferences, and provide insight into how homing endonucleases may escape a dead-end life cycle in a population of saturated target sites by promoting transposition to different target sites.
Collapse
Affiliation(s)
- Alexander C Roy
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | | | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| |
Collapse
|
16
|
Coevolution Theory of the Genetic Code at Age Forty: Pathway to Translation and Synthetic Life. Life (Basel) 2016; 6:life6010012. [PMID: 26999216 PMCID: PMC4810243 DOI: 10.3390/life6010012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 11/17/2022] Open
Abstract
The origins of the components of genetic coding are examined in the present study. Genetic information arose from replicator induction by metabolite in accordance with the metabolic expansion law. Messenger RNA and transfer RNA stemmed from a template for binding the aminoacyl-RNA synthetase ribozymes employed to synthesize peptide prosthetic groups on RNAs in the Peptidated RNA World. Coevolution of the genetic code with amino acid biosynthesis generated tRNA paralogs that identify a last universal common ancestor (LUCA) of extant life close to Methanopyrus, which in turn points to archaeal tRNA introns as the most primitive introns and the anticodon usage of Methanopyrus as an ancient mode of wobble. The prediction of the coevolution theory of the genetic code that the code should be a mutable code has led to the isolation of optional and mandatory synthetic life forms with altered protein alphabets.
Collapse
|
17
|
Guha TK, Hausner G. Using Group II Introns for Attenuating the In Vitro and In Vivo Expression of a Homing Endonuclease. PLoS One 2016; 11:e0150097. [PMID: 26909494 PMCID: PMC4801052 DOI: 10.1371/journal.pone.0150097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/09/2016] [Indexed: 01/09/2023] Open
Abstract
In Chaetomium thermophilum (DSM 1495) within the mitochondrial DNA (mtDNA) small ribosomal subunit (rns) gene a group IIA1 intron interrupts an open reading frame (ORF) encoded within a group I intron (mS1247). This arrangement offers the opportunity to examine if the nested group II intron could be utilized as a regulatory element for the expression of the homing endonuclease (HEase). Constructs were generated where the codon-optimized ORF was interrupted with either the native group IIA1 intron or a group IIB type intron. This study showed that the expression of the HEase (in vivo) in Escherichia coli can be regulated by manipulating the splicing efficiency of the HEase ORF-embedded group II introns. Exogenous magnesium chloride (MgCl2) stimulated the expression of a functional HEase but the addition of cobalt chloride (CoCl2) to growth media antagonized the expression of HEase activity. Ultimately the ability to attenuate HEase activity might be useful in precision genome engineering, minimizing off target activities, or where pathways have to be altered during a specific growth phase.
Collapse
Affiliation(s)
- Tuhin Kumar Guha
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
- * E-mail:
| |
Collapse
|
18
|
Hu Z, Scott HS, Qin G, Zheng G, Chu X, Xie L, Adelson DL, Oftedal BE, Venugopal P, Babic M, Hahn CN, Zhang B, Wang X, Li N, Wei C. Revealing Missing Human Protein Isoforms Based on Ab Initio Prediction, RNA-seq and Proteomics. Sci Rep 2015; 5:10940. [PMID: 26156868 PMCID: PMC4496727 DOI: 10.1038/srep10940] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/05/2015] [Indexed: 01/02/2023] Open
Abstract
Biological and biomedical research relies on comprehensive understanding of protein-coding transcripts. However, the total number of human proteins is still unknown due to the prevalence of alternative splicing. In this paper, we detected 31,566 novel transcripts with coding potential by filtering our ab initio predictions with 50 RNA-seq datasets from diverse tissues/cell lines. PCR followed by MiSeq sequencing showed that at least 84.1% of these predicted novel splice sites could be validated. In contrast to known transcripts, the expression of these novel transcripts were highly tissue-specific. Based on these novel transcripts, at least 36 novel proteins were detected from shotgun proteomics data of 41 breast samples. We also showed L1 retrotransposons have a more significant impact on the origin of new transcripts/genes than previously thought. Furthermore, we found that alternative splicing is extraordinarily widespread for genes involved in specific biological functions like protein binding, nucleoside binding, neuron projection, membrane organization and cell adhesion. In the end, the total number of human transcripts with protein-coding potential was estimated to be at least 204,950.
Collapse
Affiliation(s)
- Zhiqiang Hu
- 1] School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China [2] Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Pudong District, Shanghai 201203, China
| | - Hamish S Scott
- 1] Department of Genetics and Molecular Pathology, Centre for Cancer Biology, Frome Road, Adelaide, SA 5000 Australia [2] School of Biological Sciences, University of Adelaide, SA 5005, Australia [3] School of Medicine, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia [4] School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, SA, Australia [5] ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, SA 5000, Australia
| | - Guangrong Qin
- Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Pudong District, Shanghai 201203, China
| | - Guangyong Zheng
- 1] Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Pudong District, Shanghai 201203, China [2] CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xixia Chu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Pudong District, Shanghai 201203, China
| | - David L Adelson
- School of Biological Sciences, University of Adelaide, SA 5005, Australia
| | - Bergithe E Oftedal
- 1] Department of Genetics and Molecular Pathology, Centre for Cancer Biology, Frome Road, Adelaide, SA 5000 Australia [2] Department of Biomedical Informatics (DBMI), Vanderbilt University Medical Center (VUMC), 2525 West End Ave, Suite 800, Nashville, TN 37203, USA
| | - Parvathy Venugopal
- 1] Department of Genetics and Molecular Pathology, Centre for Cancer Biology, Frome Road, Adelaide, SA 5000 Australia [2] School of Biological Sciences, University of Adelaide, SA 5005, Australia
| | - Milena Babic
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, Frome Road, Adelaide, SA 5000 Australia
| | - Christopher N Hahn
- 1] Department of Genetics and Molecular Pathology, Centre for Cancer Biology, Frome Road, Adelaide, SA 5000 Australia [2] School of Biological Sciences, University of Adelaide, SA 5005, Australia [3] School of Medicine, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
| | - Bing Zhang
- Department of Biomedical Informatics (DBMI), Vanderbilt University Medical Center (VUMC), 2525 West End Ave, Suite 800, Nashville, TN 37203, USA
| | - Xiaojing Wang
- Department of Biomedical Informatics (DBMI), Vanderbilt University Medical Center (VUMC), 2525 West End Ave, Suite 800, Nashville, TN 37203, USA
| | - Nan Li
- Institute of Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Chaochun Wei
- 1] School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China [2] Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Pudong District, Shanghai 201203, China
| |
Collapse
|
19
|
Biondi EG, Toro N, Bazzicalupo M, Martínez-Abarca F. Spread of the group II intron RmInt1 and its insertion sequence target sites in the plant endosymbiont Sinorhizobium meliloti. Mob Genet Elements 2014; 1:2-7. [PMID: 22016840 DOI: 10.4161/mge.1.1.15316] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 02/22/2011] [Indexed: 11/19/2022] Open
Abstract
RmInt1 is a mobile group II intron from Sinorhizobium meliloti that is exceptionally abundant in this bacterial species. We compared the presence of RmInt1 and two of its insertion sequence homing sites (ISRm2011-2 and ISRm10-2) in two phylogenetic clusters (I and II) identified by AFLP analysis in a collection of S. meliloti field isolates from Italy. Both clusters contained several copies of the ISRm2011-2 element, which is present at high copy number in almost all S. meliloti isolates. By contrast, isolates from cluster I harbored no copies of ISRm10-2 and only a truncated copy of RmInt1, despite the absence of constraints on intron mobility in this genetic background, whereas cluster II strains harbored several copies of this intron. The absence of ISRm10-2 from one of the strains of this cluster suggests that this element was acquired more recently than the other two elements. Furthermore, studies of insertional polymorphisms in cluster II strains revealed the acquisition of ISRm10-2 and subsequent retrohoming of RmInt1 to this homing site. These results highlight the role of intron homing sites (ISs) in facilitating intron dispersal and the dynamic and ongoing nature of the spread of the group II intron RmInt1 in S. meliloti.
Collapse
Affiliation(s)
- Emanuele G Biondi
- Department of Evolutionary Biology; University of Florence; Florence, Italy
| | | | | | | |
Collapse
|
20
|
Tourasse NJ, Stabell FB, Kolstø AB. Survey of chimeric IStron elements in bacterial genomes: multiple molecular symbioses between group I intron ribozymes and DNA transposons. Nucleic Acids Res 2014; 42:12333-51. [PMID: 25324310 PMCID: PMC4227781 DOI: 10.1093/nar/gku939] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
IStrons are chimeric genetic elements composed of a group I intron associated with an insertion sequence (IS). The group I intron is a catalytic RNA providing the IStron with self-splicing ability, which renders IStron insertions harmless to the host genome. The IS element is a DNA transposon conferring mobility, and thus allowing the IStron to spread in genomes. IStrons are therefore a striking example of a molecular symbiosis between unrelated genetic elements endowed with different functions. In this study, we have conducted the first comprehensive survey of IStrons in sequenced genomes that provides insights into the distribution, diversity, origin and evolution of IStrons. We show that IStrons have a restricted phylogenetic distribution limited to two bacterial phyla, the Firmicutes and the Fusobacteria. Nevertheless, diverse IStrons representing two major groups targeting different insertion site motifs were identified. This taken with the finding that while the intron components of all IStrons belong to the same structural class, they are fused to different IS families, indicates that multiple intron–IS symbioses have occurred during evolution. In addition, introns and IS elements related to those that were at the origin of IStrons were also identified.
Collapse
Affiliation(s)
- Nicolas J Tourasse
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, University of Oslo, Oslo, Norway Institut de Biologie Physico-Chimique, UMR CNRS 7141, Université Pierre et Marie Curie, Paris, France
| | - Fredrik B Stabell
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | - Anne-Brit Kolstø
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
21
|
Jin J, Li ZJ, Wang SW, Wang SM, Chen SJ, Huang DH, Zhang G, Li YH, Wang XT, Wang J, Zhao GQ. Genome organisation of the Acinetobacter lytic phage ZZ1 and comparison with other T4-like Acinetobacter phages. BMC Genomics 2014; 15:793. [PMID: 25218338 PMCID: PMC4177764 DOI: 10.1186/1471-2164-15-793] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 09/10/2014] [Indexed: 01/18/2023] Open
Abstract
Background Phage ZZ1, which efficiently infects pathogenic Acinetobacter baumannii strains, is the fifth completely sequenced T4-like Acinetobacter phage to date. To gain a better understanding of the genetic characteristics of ZZ1, bioinformatics and comparative genomic analyses of the T4 phages were performed. Results The 166,687-bp double-stranded DNA genome of ZZ1 has the lowest GC content (34.4%) of the sequenced T4-like Acinetobacter phages. A total of 256 protein-coding genes and 8 tRNA genes were predicted. Forty-three percent of the predicted ZZ1 proteins share up to 73% amino acid identity with T4 proteins, and the homologous genes generally retained the same order and transcriptional direction. Beyond the conserved structural and DNA replication modules, T4 and ZZ1 have diverged substantially by the acquisition and deletion of large blocks of unrelated genes, especially in the first halves of their genomes. In addition, ZZ1 and the four other T4-like Acinetobacter phage genomes (Acj9, Acj61, 133, and Ac42) share a well-organised and highly conserved core genome, particularly in the regions encoding DNA replication and virion structural proteins. Of the ZZ1 proteins, 70, 64, 61, and 56% share up to 86, 85, 81, and 83% amino acid identity with Acj9, Acj61, 133, and Ac42 proteins, respectively. ZZ1 has a different number and types of tRNAs than the other 4 Acinetobacter phages, although some of the ZZ1-encoded tRNAs share high sequence similarity with the tRNAs from these phages. Over half of ZZ1-encoded tRNAs (5 out of 8) are related to optimal codon usage for ZZ1 proteins. However, this correlation was not present in any of the other 4 Acinetobacter phages. Conclusions The comparative genomic analysis of these phages provided some new insights into the evolution and diversity of Acinetobacter phages, which might elucidate the evolutionary origin and host-specific adaptation of these phages. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-793) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pathogen Biology and Immunology, Henan Medical College, Shuanghu Road #8, Zhengzhou 451191, P, R, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hausner G, Hafez M, Edgell DR. Bacterial group I introns: mobile RNA catalysts. Mob DNA 2014; 5:8. [PMID: 24612670 PMCID: PMC3984707 DOI: 10.1186/1759-8753-5-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/24/2014] [Indexed: 12/02/2022] Open
Abstract
Group I introns are intervening sequences that have invaded tRNA, rRNA and protein coding genes in bacteria and their phages. The ability of group I introns to self-splice from their host transcripts, by acting as ribozymes, potentially renders their insertion into genes phenotypically neutral. Some group I introns are mobile genetic elements due to encoded homing endonuclease genes that function in DNA-based mobility pathways to promote spread to intronless alleles. Group I introns have a limited distribution among bacteria and the current assumption is that they are benign selfish elements, although some introns and homing endonucleases are a source of genetic novelty as they have been co-opted by host genomes to provide regulatory functions. Questions regarding the origin and maintenance of group I introns among the bacteria and phages are also addressed.
Collapse
Affiliation(s)
- Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2 N2, Canada
| | - Mohamed Hafez
- Department of Biochemistry, Faculty of Medicine, University of Montreal, Montréal, QC H3C 3 J7, Canada
- Department of Botany, Faculty of Science, Suez University, Suez, Egypt
| | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
23
|
Stoddard BL. Homing endonucleases from mobile group I introns: discovery to genome engineering. Mob DNA 2014; 5:7. [PMID: 24589358 PMCID: PMC3943268 DOI: 10.1186/1759-8753-5-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/13/2014] [Indexed: 12/20/2022] Open
Abstract
Homing endonucleases are highly specific DNA cleaving enzymes that are encoded within genomes of all forms of microbial life including phage and eukaryotic organelles. These proteins drive the mobility and persistence of their own reading frames. The genes that encode homing endonucleases are often embedded within self-splicing elements such as group I introns, group II introns and inteins. This combination of molecular functions is mutually advantageous: the endonuclease activity allows surrounding introns and inteins to act as invasive DNA elements, while the splicing activity allows the endonuclease gene to invade a coding sequence without disrupting its product. Crystallographic analyses of representatives from all known homing endonuclease families have illustrated both their mechanisms of action and their evolutionary relationships to a wide range of host proteins. Several homing endonucleases have been completely redesigned and used for a variety of genome engineering applications. Recent efforts to augment homing endonucleases with auxiliary DNA recognition elements and/or nucleic acid processing factors has further accelerated their use for applications that demand exceptionally high specificity and activity.
Collapse
Affiliation(s)
- Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, N, A3-025, Seattle, WA 98109, USA.
| |
Collapse
|
24
|
Kumar R, Grover S, Kaushik JK, Batish VK. IS30-related transposon mediated insertional inactivation of bile salt hydrolase (bsh1) gene of Lactobacillus plantarum strain Lp20. Microbiol Res 2013; 169:553-60. [PMID: 24332262 DOI: 10.1016/j.micres.2013.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/21/2013] [Accepted: 10/29/2013] [Indexed: 12/25/2022]
Abstract
Lactobacillus plantarum is a flexible and versatile microorganism that inhabits a variety of niches, and its genome may express up to four bsh genes to maximize its survival in the mammalian gut. However, the ecological significance of multiple bsh genes in L. plantarum is still not clearly understood. Hence, this study demonstrated the disruption of bile salt hydrolase (bsh1) gene due to the insertion of a transposable element in L. plantarum Lp20 - a wild strain of human fecal origin. Surprisingly, L. plantarum strain Lp20 produced a ∼2.0 kb bsh1 amplicon against the normal size (∼1.0 kb) bsh1 amplicon of Bsh(+)L. plantarum Lp21. Strain Lp20 exhibited minimal Bsh activity in spite of having intact bsh2, bsh3 and bsh4 genes in its genome and hence had a Bsh(-) phenotype. Cloning and sequence characterization of Lp20 bsh1 gene predicted four individual open reading frames (ORFs) within this region. BLAST analysis of ORF1 and ORF2 revealed significant sequence similarity to the L. plantarum bsh1 gene while ORF3 and ORF4 showed high sequence homology to IS30-family transposases. Since, IS30-related transposon element was inserted within Lp20 bsh1 gene in reverse orientation (3'-5'), it introduced several stop codons and disrupted the protein reading frames of both Bsh1 and transposase. Inverted terminal repeats (GGCAGATTG) of transposon, mediated its insertion at 255-263 nt and 1301-1309 nt positions of Lp20 bsh1 gene. In conclusion, insertion of IS30 related-transposon within the bsh1 gene sequence of L. plantarum strain Lp20 demolished the integrity and functionality of Bsh1 enzyme. Additionally, this transposon DNA sequence remains active among various Lactobacillus spp. and hence harbors the potential to be explored in the development of efficient insertion mutagenesis system.
Collapse
Affiliation(s)
- Rajesh Kumar
- Molecular Biology Unit, Dairy Microbiology Division, National Dairy Research Institute, Karnal 132001, India; Department of Microbiology and Immunology, National Institute of Nutrition, Hyderabad 500007, India; Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, India; Ministry of Environment & Forests, Sector - 31 A, Chandigarh 160030, India.
| | - Sunita Grover
- Molecular Biology Unit, Dairy Microbiology Division, National Dairy Research Institute, Karnal 132001, India
| | - Jai K Kaushik
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, India
| | - Virender Kumar Batish
- Molecular Biology Unit, Dairy Microbiology Division, National Dairy Research Institute, Karnal 132001, India.
| |
Collapse
|
25
|
Evolutionary dynamics of introns and their open reading frames in the U7 region of the mitochondrial rnl gene in species of Ceratocystis. Fungal Biol 2013; 117:791-806. [DOI: 10.1016/j.funbio.2013.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/12/2013] [Accepted: 10/14/2013] [Indexed: 12/31/2022]
|
26
|
Abstract
The abundance of group I introns, intragenic RNA sequences capable of self-splicing, in Gram-positive bacteriophage genomes, is illustrated by various new group I introns recently described in Staphylococcus phage genomes. These introns were found to interrupt DNA metabolism genes as well as late genes. These group I introns often code for homing endonucleases, which promote lateral transfer of group I introns, thereby enabling spread through a population. Homing endonucleases encoded by group I introns in Staphylococcus phage genomes were predicted to belong to the GIY-YIG, LAGLIDADG, HNH or EDxHD family of endonucleases. The group I intron distribution in Staphylococcus phage genomes exemplifies the homology between these introns as well as the encoded endonucleases. Despite several suggested functions, the role of group I introns in bacteriophages remains unclear or might be nonexistent. However, transcriptome analysis might provide additional information to elucidate the possible purpose of group I introns in phage genomes.
Collapse
Affiliation(s)
- Rob Lavigne
- Katholieke Universiteit Leuven, Department of Biosystems, Kasteelpark Arenberg 21, Bus 2462, Leuven, Belgium
| | - Katrien Vandersteegen
- Katholieke Universiteit Leuven, Department of Biosystems, Kasteelpark Arenberg 21, Bus 2462, Leuven, Belgium
| |
Collapse
|
27
|
Kleinstiver BP, Wolfs JM, Edgell DR. The monomeric GIY-YIG homing endonuclease I-BmoI uses a molecular anchor and a flexible tether to sequentially nick DNA. Nucleic Acids Res 2013; 41:5413-27. [PMID: 23558745 PMCID: PMC3664794 DOI: 10.1093/nar/gkt186] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The GIY-YIG nuclease domain is found within protein scaffolds that participate in diverse cellular pathways and contains a single active site that hydrolyzes DNA by a one-metal ion mechanism. GIY-YIG homing endonucleases (GIY-HEs) are two-domain proteins with N-terminal GIY-YIG nuclease domains connected to C-terminal DNA-binding and they are thought to function as monomers. Using I-BmoI as a model GIY-HE, we test mechanisms by which the single active site is used to generate a double-strand break. We show that I-BmoI is partially disordered in the absence of substrate, and that the GIY-YIG domain alone has weak affinity for DNA. Significantly, we show that I-BmoI functions as a monomer at all steps of the reaction pathway and does not transiently dimerize or use sequential transesterification reactions to cleave substrate. Our results are consistent with the I-BmoI DNA-binding domain acting as a molecular anchor to tether the GIY-YIG domain to substrate, permitting rotation of the GIY-YIG domain to sequentially nick each DNA strand. These data highlight the mechanistic differences between monomeric GIY-HEs and dimeric or tetrameric GIY-YIG restriction enzymes, and they have implications for the use of the GIY-YIG domain in genome-editing applications.
Collapse
Affiliation(s)
- Benjamin P Kleinstiver
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
28
|
Vandersteegen K, Kropinski AM, Nash JHE, Noben JP, Hermans K, Lavigne R. Romulus and Remus, two phage isolates representing a distinct clade within the Twortlikevirus genus, display suitable properties for phage therapy applications. J Virol 2013; 87:3237-47. [PMID: 23302893 PMCID: PMC3592175 DOI: 10.1128/jvi.02763-12] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/07/2012] [Indexed: 11/20/2022] Open
Abstract
The renewed interest in controlling Staphylococcus aureus infections using their natural enemies, bacteriophages, has led to the isolation of a limited number of virulent phages so far. These phages are all members of the Twortlikevirus, displaying little variance. We present two novel closely related (95.9% DNA homology) lytic myoviruses, Romulus and Remus, with double-stranded DNA (dsDNA) genomes of 131,333 bp and 134,643 bp, respectively. Despite their relatedness to Staphylococcus phages K, G1, ISP, and Twort and Listeria phages A511 and P100, Romulus and Remus can be proposed as isolates of a new species within the Twortlikevirus genus. A distinguishing feature for these phage genomes is the unique distribution of group I introns compared to that in other staphylococcal myoviruses. In addition, a hedgehog/intein domain was found within their DNA polymerase genes, and an insertion sequence-encoded transposase exhibits splicing behavior and produces a functional portal protein. From a phage therapy application perspective, Romulus and Remus infected approximately 70% of the tested S. aureus isolates and displayed promising lytic activity against these isolates. Furthermore, both phages showed a rapid initial adsorption and demonstrated biofilm-degrading capacity in a proof-of-concept experiment.
Collapse
Affiliation(s)
- Katrien Vandersteegen
- Laboratory of Gene Technology, Division of Gene Technology, University of Leuven, Heverlee, Belgium
| | - Andrew M. Kropinski
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - John H. E. Nash
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, Ontario, Canada
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Katleen Hermans
- Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Merelbeke, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Division of Gene Technology, University of Leuven, Heverlee, Belgium
| |
Collapse
|
29
|
Dwivedi B, Xue B, Lundin D, Edwards RA, Breitbart M. A bioinformatic analysis of ribonucleotide reductase genes in phage genomes and metagenomes. BMC Evol Biol 2013; 13:33. [PMID: 23391036 PMCID: PMC3653736 DOI: 10.1186/1471-2148-13-33] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/24/2013] [Indexed: 01/22/2023] Open
Abstract
Background Ribonucleotide reductase (RNR), the enzyme responsible for the formation of deoxyribonucleotides from ribonucleotides, is found in all domains of life and many viral genomes. RNRs are also amongst the most abundant genes identified in environmental metagenomes. This study focused on understanding the distribution, diversity, and evolution of RNRs in phages (viruses that infect bacteria). Hidden Markov Model profiles were used to analyze the proteins encoded by 685 completely sequenced double-stranded DNA phages and 22 environmental viral metagenomes to identify RNR homologs in cultured phages and uncultured viral communities, respectively. Results RNRs were identified in 128 phage genomes, nearly tripling the number of phages known to encode RNRs. Class I RNR was the most common RNR class observed in phages (70%), followed by class II (29%) and class III (28%). Twenty-eight percent of the phages contained genes belonging to multiple RNR classes. RNR class distribution varied according to phage type, isolation environment, and the host’s ability to utilize oxygen. The majority of the phages containing RNRs are Myoviridae (65%), followed by Siphoviridae (30%) and Podoviridae (3%). The phylogeny and genomic organization of phage and host RNRs reveal several distinct evolutionary scenarios involving horizontal gene transfer, co-evolution, and differential selection pressure. Several putative split RNR genes interrupted by self-splicing introns or inteins were identified, providing further evidence for the role of frequent genetic exchange. Finally, viral metagenomic data indicate that RNRs are prevalent and highly dynamic in uncultured viral communities, necessitating future research to determine the environmental conditions under which RNRs provide a selective advantage. Conclusions This comprehensive study describes the distribution, diversity, and evolution of RNRs in phage genomes and environmental viral metagenomes. The distinct distributions of specific RNR classes amongst phages, combined with the various evolutionary scenarios predicted from RNR phylogenies suggest multiple inheritance sources and different selective forces for RNRs in phages. This study significantly improves our understanding of phage RNRs, providing insight into the diversity and evolution of this important auxiliary metabolic gene as well as the evolution of phages in response to their bacterial hosts and environments.
Collapse
Affiliation(s)
- Bhakti Dwivedi
- College of Marine Science, University of South Florida, St, Petersburg, FL 33701, USA
| | | | | | | | | |
Collapse
|
30
|
Gu J, Liu X, Yang M, Li Y, Sun C, Lu R, Song J, Zhang Q, Lei L, Feng X, Du C, Yu H, Yang Y, Han W. Genomic characterization of lytic Staphylococcus aureus phage GH15: providing new clues to intron shift in phages. J Gen Virol 2012; 94:906-915. [PMID: 23255621 DOI: 10.1099/vir.0.049197-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phage GH15 is a polyvalent phage that shows activity against a wide range of Staphylcoccus aureus strains. This study analysed the genome of GH15. The genome size of GH15 (139 806 bp) was found to be larger than that of the known staphylococcal phages, and the G+C content (30.23 mol%) of GH15 was lower than that of any other staphylococcal myovirus phages. By mass spectrometry, ten structural proteins were identified. Analysis revealed that GH15 was closely related to phages G1, ISP, A5W, Sb-1 and K, and was moderately related to Twort. In light of the variability in identity, coverage, G+C content and genome size, coupled with the large number of mosaicisms, there certainly were close evolutionary relationships from K to Sb-1, A5W, ISP, G1 and finally GH15. Interestingly, all the introns and inteins present in the above phages were absent in GH15 and there appeared to be intron loss in GH15 compared with the intron gain seen in other phages. A comparison of the intron- and intein-related genes demonstrated a clear distinction in the location of the insertion site between intron-containing and intron-free alleles, and this might lead to the establishment of a consensus sequence associated with the presence of an intron or intein. The comparative analysis of the GH15 genome sequence with other phages not only provides compelling evidence for the diversity of staphylococcal myovirus phages but also offers new clues to intron shift in phages.
Collapse
Affiliation(s)
- Jingmin Gu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, PR China
| | - Xiaohe Liu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, PR China
| | - Mei Yang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, PR China
| | - Yue Li
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, PR China
| | - Changjiang Sun
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, PR China
| | - Rong Lu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, PR China
| | - Jun Song
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, PR China
| | - Qingming Zhang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, PR China
| | - Liancheng Lei
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, PR China
| | - Xin Feng
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, PR China
| | - Chongtao Du
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, PR China
| | - Hao Yu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, PR China
| | - Yongjun Yang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, PR China
| | - Wenyu Han
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, PR China
| |
Collapse
|
31
|
I-PfoP3I: a novel nicking HNH homing endonuclease encoded in the group I intron of the DNA polymerase gene in Phormidium foveolarum phage Pf-WMP3. PLoS One 2012; 7:e43738. [PMID: 22952751 PMCID: PMC3428280 DOI: 10.1371/journal.pone.0043738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/27/2012] [Indexed: 11/19/2022] Open
Abstract
Homing endonucleases encoded in a group I self-splicing intron in a protein-coding gene in cyanophage genomes have not been reported, apart from some free-standing homing edonucleases. In this study, a nicking DNA endonuclease, I-PfoP3I, encoded in a group IA2 intron in the DNA polymerase gene of a T7-like cyanophage Pf-WMP3, which infects the freshwater cyanobacterium Phormidium foveolarum is described. The Pf-WMP3 intron splices efficiently in vivo and self-splices in vitro simultaneously during transcription. I-PfoP3I belongs to the HNH family with an unconventional C-terminal HNH motif. I-PfoP3I nicks the intron-minus Pf-WMP3 DNA polymerase gene more efficiently than the Pf-WMP4 DNA polymerase gene that lacks any intervening sequence in vitro, indicating the variable capacity of I-PfoP3I. I-PfoP3I cleaves 4 nt upstream of the intron insertion site on the coding strand of EXON 1 on both intron-minus Pf-WMP3 and Pf-WMP4 DNA polymerase genes. Using an in vitro cleavage assay and scanning deletion mutants of the intronless target site, the minimal recognition site was determined to be a 14 bp region downstream of the cut site. I-PfoP3I requires Mg2+, Ca2+ or Mn2+ for nicking activity. Phylogenetic analysis suggests that the intron and homing endonuclease gene elements might be inserted in Pf-WMP3 genome individually after differentiation from Pf-WMP4. To our knowledge, this is the first report of the presence of a group I self-splicing intron encoding a functional homing endonuclease in a protein-coding gene in a cyanophage genome.
Collapse
|
32
|
Kumar M, Nagpal R, Kumar R, Hemalatha R, Verma V, Kumar A, Chakraborty C, Singh B, Marotta F, Jain S, Yadav H. Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:902917. [PMID: 22611376 PMCID: PMC3352670 DOI: 10.1155/2012/902917] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/10/2012] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases are one of the major causes of deaths in adults in the western world. Elevated levels of certain blood lipids have been reported to be the principal cause of cardiovascular disease and other disabilities in developed countries. Several animal and clinical trials have shown a positive association between cholesterol levels and the risks of coronary heart disease. Current dietary strategies for the prevention of cardiovascular disease advocate adherence to low-fat/low-saturated-fat diets. Although there is no doubt that, in experimental conditions, low-fat diets offer an effective means of reducing blood cholesterol concentrations on a population basis, these appear to be less effective, largely due to poor compliance, attributed to low palatability and acceptability of these diets to the consumers. Due to the low consumer compliance, attempts have been made to identify other dietary components that can reduce blood cholesterol levels. Supplementation of diet with fermented dairy products or lactic acid bacteria containing dairy products has shown the potential to reduce serum cholesterol levels. Various approaches have been used to alleviate this issue, including the use of probiotics, especially Bifidobacterium spp. and Lactobacillus spp.. Probiotics, the living microorganisms that confer health benefits on the host when administered in adequate amounts, have received much attention on their proclaimed health benefits which include improvement in lactose intolerance, increase in natural resistance to infectious disease in gastrointestinal tract, suppression of cancer, antidiabetic, reduction in serum cholesterol level, and improved digestion. In addition, there are numerous reports on cholesterol removal ability of probiotics and their hypocholesterolemic effects. Several possible mechanisms for cholesterol removal by probiotics are assimilation of cholesterol by growing cells, binding of cholesterol to cellular surface, incorporation of cholesterol into the cellular membrane, deconjugation of bile via bile salt hydrolase, coprecipitation of cholesterol with deconjugated bile, binding action of bile by fibre, and production of short-chain fatty acids by oligosaccharides. The present paper reviews the mechanisms of action of anti-cholesterolemic potential of probiotic microorganisms and probiotic food products, with the aim of lowering the risks of cardiovascular and coronary heart diseases.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Microbiology & Immunology, National Institute of Nutrition, Hyderabad 50007, India
| | - Ravinder Nagpal
- Shaheed Udham Singh College of Research & Technology, Punjab, Mohali, Radaur, Haryana, India
| | - Rajesh Kumar
- Department of Microbiology & Immunology, National Institute of Nutrition, Hyderabad 50007, India
| | - R. Hemalatha
- Department of Microbiology & Immunology, National Institute of Nutrition, Hyderabad 50007, India
| | - Vinod Verma
- Research and Development Unit, National Heart Centre, Singapore 1687521
| | - Ashok Kumar
- Department of Zoology, M.L.K. Post-Graduate College, Balrampur 271201, India
| | | | - Birbal Singh
- Indian Veterinary Research Institute, Regional Station, Palampur 176061, India
| | - Francesco Marotta
- Hepato-Gastroenterology Unit, S. Giuseppe Hospital, Vittore, 20123 Milano, Italy
| | - Shalini Jain
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hariom Yadav
- Endocrinology, Diabetes, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Multiple self-splicing introns in the 16S rRNA genes of giant sulfur bacteria. Proc Natl Acad Sci U S A 2012; 109:4203-8. [PMID: 22371583 DOI: 10.1073/pnas.1120192109] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gene encoding the small subunit rRNA serves as a prominent tool for the phylogenetic analysis and classification of Bacteria and Archaea owing to its high degree of conservation and its fundamental function in living organisms. Here we show that the 16S rRNA genes of not-yet-cultivated large sulfur bacteria, among them the largest known bacterium Thiomargarita namibiensis, regularly contain numerous self-splicing introns of variable length. The 16S rRNA genes can thus be enlarged to up to 3.5 kb. Remarkably, introns have never been identified in bacterial 16S rRNA genes before, although they are the most frequently sequenced genes today. This may be caused in part by a bias during the PCR amplification step that discriminates against longer homologs, as we show experimentally. Such length heterogeneity of 16S rRNA genes has so far never been considered when constructing 16S rRNA-based clone libraries, even though an elongation of rRNA genes due to intervening sequences has been reported previously. The detection of elongated 16S rRNA genes has profound implications for common methods in molecular ecology and may cause systematic biases in several techniques. In this study, catalyzed reporter deposition-fluorescence in situ hybridization on both ribosomes and rRNA precursor molecules as well as in vitro splicing experiments were performed and confirmed self-splicing of the introns. Accordingly, the introns do not inhibit the formation of functional ribosomes.
Collapse
|
34
|
Chee GJ, Takami H. Alternative splicing by participation of the group II intron ORF in extremely halotolerant and alkaliphilic Oceanobacillus iheyensis. Microbes Environ 2011; 26:54-60. [PMID: 21487203 DOI: 10.1264/jsme2.me10154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Group II introns inserted into genes often undergo splicing at unexpected sites, and participate in the transcription of host genes. We identified five copies of a group II intron, designated Oi.Int, in the genome of an extremely halotolerant and alkaliphilic bacillus, Oceanobacillus iheyensis. The Oi.Int4 differs from the Oi.Int3 at four bases. The ligated exons of the Oi.Int4 could not be detected by RT-PCR assays in vivo or in vitro although group II introns can generally self-splice in vitro without the involvement of an intron-encoded open reading frame (ORF). In the Oi.Int4 mutants with base substitutions within the ORF, ligated exons were detected by in vitro self-splicing. It was clear that the ligation of exons during splicing is affected by the sequence of the intron-encoded ORF since the splice sites corresponded to the joining sites of the intron. In addition, the mutant introns showed unexpected multiple products with alternative 5' splice sites. These findings imply that alternative 5' splicing which causes a functional change of ligated exons presumably has influenced past adaptations of O. iheyensis to various environmental changes.
Collapse
Affiliation(s)
- Gab-Joo Chee
- Microbial Genome Research Group, Japan Agency for Marine-Earth Science and Technology, 2–15 Natsushima, Yokosuka 237–0061, Japan.
| | | |
Collapse
|
35
|
Stoddard BL. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 2011; 19:7-15. [PMID: 21220111 DOI: 10.1016/j.str.2010.12.003] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 12/23/2022]
Abstract
Homing endonucleases are microbial DNA-cleaving enzymes that mobilize their own reading frames by generating double strand breaks at specific genomic invasion sites. These proteins display an economy of size, and yet recognize long DNA sequences (typically 20 to 30 base pairs). They exhibit a wide range of fidelity at individual nucleotide positions in a manner that is strongly influenced by host constraints on the coding sequence of the targeted gene. The activity of these proteins leads to site-specific recombination events that can result in the insertion, deletion, mutation, or correction of DNA sequences. Over the past fifteen years, the crystal structures of representatives from several homing endonuclease families have been solved, and methods have been described to create variants of these enzymes that cleave novel DNA targets. Engineered homing endonucleases proteins are now being used to generate targeted genomic modifications for a variety of biotech and medical applications.
Collapse
Affiliation(s)
- Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., A3-025, Seattle, WA 98109, USA.
| |
Collapse
|
36
|
Robbins JB, Smith D, Belfort M. Redox-responsive zinc finger fidelity switch in homing endonuclease and intron promiscuity in oxidative stress. Curr Biol 2011; 21:243-8. [PMID: 21256016 DOI: 10.1016/j.cub.2011.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/10/2010] [Accepted: 01/04/2011] [Indexed: 12/24/2022]
Abstract
It is well understood how mobile introns home to allelic sites, but how they are stimulated to transpose to ectopic locations on an evolutionary timescale is unclear. Here we show that a group I intron can move to degenerate sites under oxidizing conditions. The phage T4 td intron endonuclease, I-TevI, is responsible for this infidelity. We demonstrate that I-TevI, which promotes mobility and is subject to autorepression and translational control, is also regulated posttranslationally by a redox mechanism. Redox regulation is exercised by a zinc finger (ZF) in a linker that connects the catalytic domain of I-TevI to the DNA binding domain. Four cysteines coordinate Zn(2+) in the ZF, which ensures that I-TevI cleaves its DNA substrate at a fixed distance, 23-25 nucleotides upstream of the intron insertion site. We show that the fidelity of I-TevI cleavage is controlled by redox-responsive Zn(2+) cycling. When the ZF is mutated, or after exposure of the wild-type I-TevI to H(2)O(2), intron homing to degenerate sites is increased, likely because of indiscriminate DNA cleavage. These results suggest a mechanism for rapid intron dispersal, joining recent descriptions of the activation of biomolecular processes by oxidative stress through cysteine chemistry.
Collapse
Affiliation(s)
- Justin B Robbins
- Wadsworth Center, New York State Department of Health, Center for Medical Science, 150 New Scotland Avenue, Albany, NY 12208, USA
| | | | | |
Collapse
|
37
|
Stoddard B, Belfort M. Social networking between mobile introns and their host genes. Mol Microbiol 2011; 78:1-4. [PMID: 20545861 DOI: 10.1111/j.1365-2958.2010.07217.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Homing endonucleases have long been known as the orchestrators of intron mobility. However, the extent of their influence on the intron and its genetic and cellular environment is still being elucidated. The accompanying paper emphasizes the importance of temporal control of endonuclease expression on splicing, expression of the host gene and cellular metabolism, while it raises questions to guide future inquiry.
Collapse
Affiliation(s)
- Barry Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., PO Box 19024, Seattle, WA 98109, USA
| | | |
Collapse
|
38
|
Edgell DR, Gibb EA, Belfort M. Mobile DNA elements in T4 and related phages. Virol J 2010; 7:290. [PMID: 21029434 PMCID: PMC2988022 DOI: 10.1186/1743-422x-7-290] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/28/2010] [Indexed: 12/30/2022] Open
Abstract
Mobile genetic elements are common inhabitants of virtually every genome where they can exert profound influences on genome structure and function in addition to promoting their own spread within and between genomes. Phage T4 and related phage have long served as a model system for understanding the molecular mechanisms by which a certain class of mobile DNA, homing endonucleases, promote their spread. Homing endonucleases are site-specific DNA endonucleases that initiate mobility by introducing double-strand breaks at defined positions in genomes lacking the endonuclease gene, stimulating repair and recombination pathways that mobilize the endonuclease coding region. In phage T4, homing endonucleases were first discovered as encoded within the self-splicing td, nrdB and nrdD introns of T4. Genomic data has revealed that homing endonucleases are extremely widespread in T-even-like phage, as evidenced by the astounding fact that ~11% of the T4 genome encodes homing endonuclease genes, with most of them located outside of self-splicing introns. Detailed studies of the mobile td intron and its encoded endonuclease, I-TevI, have laid the foundation for genetic, biochemical and structural aspects that regulate the mobility process, and more recently have provided insights into regulation of homing endonuclease function. Here, we summarize the current state of knowledge regarding T4-encoded homing endonucleases, with particular emphasis on the td/I-TevI model system. We also discuss recent progress in the biology of free-standing endonucleases, and present areas of future research for this fascinating class of mobile genetic elements.
Collapse
Affiliation(s)
- David R Edgell
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada.
| | | | | |
Collapse
|
39
|
Petrov VM, Ratnayaka S, Nolan JM, Miller ES, Karam JD. Genomes of the T4-related bacteriophages as windows on microbial genome evolution. Virol J 2010; 7:292. [PMID: 21029436 PMCID: PMC2993671 DOI: 10.1186/1743-422x-7-292] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 10/28/2010] [Indexed: 11/30/2022] Open
Abstract
The T4-related bacteriophages are a group of bacterial viruses that share morphological similarities and genetic homologies with the well-studied Escherichia coli phage T4, but that diverge from T4 and each other by a number of genetically determined characteristics including the bacterial hosts they infect, the sizes of their linear double-stranded (ds) DNA genomes and the predicted compositions of their proteomes. The genomes of about 40 of these phages have been sequenced and annotated over the last several years and are compared here in the context of the factors that have determined their diversity and the diversity of other microbial genomes in evolution. The genomes of the T4 relatives analyzed so far range in size between ~160,000 and ~250,000 base pairs (bp) and are mosaics of one another, consisting of clusters of homology between them that are interspersed with segments that vary considerably in genetic composition between the different phage lineages. Based on the known biological and biochemical properties of phage T4 and the proteins encoded by the T4 genome, the T4 relatives reviewed here are predicted to share a genetic core, or "Core Genome" that determines the structural design of their dsDNA chromosomes, their distinctive morphology and the process of their assembly into infectious agents (phage morphogenesis). The Core Genome appears to be the most ancient genetic component of this phage group and constitutes a mere 12-15% of the total protein encoding potential of the typical T4-related phage genome. The high degree of genetic heterogeneity that exists outside of this shared core suggests that horizontal DNA transfer involving many genetic sources has played a major role in diversification of the T4-related phages and their spread to a wide spectrum of bacterial species domains in evolution. We discuss some of the factors and pathways that might have shaped the evolution of these phages and point out several parallels between their diversity and the diversity generally observed within all groups of interrelated dsDNA microbial genomes in nature.
Collapse
Affiliation(s)
- Vasiliy M Petrov
- Department of Biochemistry, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA, USA
| | | | | | | | | |
Collapse
|
40
|
Brochothrix thermosphacta bacteriophages feature heterogeneous and highly mosaic genomes and utilize unique prophage insertion sites. J Bacteriol 2010; 192:5441-53. [PMID: 20709901 DOI: 10.1128/jb.00709-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brochothrix belongs to the low-GC branch of Gram-positive bacteria (Firmicutes), closely related to Listeria, Staphylococcus, Clostridium, and Bacillus. Brochothrix thermosphacta is a nonproteolytic food spoilage organism, adapted to growth in vacuum-packaged meats. We report the first genome sequences and characterization of Brochothrix bacteriophages. Phage A9 is a myovirus with an 89-nm capsid diameter and a 171-nm contractile tail; it belongs to the Spounavirinae subfamily and shares significant homologies with Listeria phage A511, Staphylococcus phage Twort, and others. The A9 unit genome is 127 kb long with 11-kb terminal redundancy; it encodes 198 proteins and 6 tRNAs. Phages BL3 and NF5 are temperate siphoviruses with a head diameter of 56 to 59 nm. The BL3 tail is 270 nm long, whereas NF5 features a short tail of only 94 nm. The NF5 genome (36.95 kb) encodes 57 gene products, BL3 (41.52 kb) encodes 65 products, and both are arranged in life cycle-specific modules. Surprisingly, BL3 and NF5 show little relatedness to Listeria phages but rather demonstrate relatedness to lactococcal phages. Peptide mass fingerprinting of viral proteins indicate programmed -1 translational frameshifts in the NF5 capsid and the BL3 major tail protein. Both NF5 and BL3 feature circularly permuted, terminally redundant genomes, packaged by a headful mechanism, and integrases of the serine (BL3) and tyrosine (NF5) types. They utilize unique target sequences not previously described: BL3 inserts into the 3' end of a RNA methyltransferase, whereas NF5 integrates into the 5'-terminal part of a putative histidinol-phosphatase. Interestingly, both genes are reconstituted by phage sequence.
Collapse
|
41
|
Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet 2010; 11:345-55. [DOI: 10.1038/nrg2776] [Citation(s) in RCA: 756] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Group I introns and inteins: disparate origins but convergent parasitic strategies. J Bacteriol 2009; 191:6193-202. [PMID: 19666710 DOI: 10.1128/jb.00675-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
43
|
Norris V, Root-Bernstein R. The eukaryotic cell originated in the integration and redistribution of hyperstructures from communities of prokaryotic cells based on molecular complementarity. Int J Mol Sci 2009; 10:2611-2632. [PMID: 19582221 PMCID: PMC2705508 DOI: 10.3390/ijms10062611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/25/2009] [Accepted: 06/03/2009] [Indexed: 11/16/2022] Open
Abstract
In the "ecosystems-first" approach to the origins of life, networks of non-covalent assemblies of molecules (composomes), rather than individual protocells, evolved under the constraints of molecular complementarity. Composomes evolved into the hyperstructures of modern bacteria. We extend the ecosystems-first approach to explain the origin of eukaryotic cells through the integration of mixed populations of bacteria. We suggest that mutualism and symbiosis resulted in cellular mergers entailing the loss of redundant hyperstructures, the uncoupling of transcription and translation, and the emergence of introns and multiple chromosomes. Molecular complementarity also facilitated integration of bacterial hyperstructures to perform cytoskeletal and movement functions.
Collapse
Affiliation(s)
- Vic Norris
- AMMIS Laboratory, EA 3829, University of Rouen, Mont Saint Aignan, 76821 France; E-Mail:
(V.N.)
| | - Robert Root-Bernstein
- Department of Physiology, 2174 BPS, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
44
|
Bonocora RP, Shub DA. A likely pathway for formation of mobile group I introns. Curr Biol 2009; 19:223-8. [PMID: 19200727 DOI: 10.1016/j.cub.2009.01.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 01/11/2009] [Accepted: 01/12/2009] [Indexed: 11/20/2022]
Abstract
Mobile group I introns are RNA splicing elements that have been invaded by endonuclease genes. These endonucleases facilitate intron mobility by a unidirectional, duplicative gene-conversion process known as homing [1]. Survival of the invading endonuclease depends upon its ability to promote intron mobility. Therefore, the endonuclease must either quickly change its cleavage specificity to match the site of intron insertion, or it must already be preadapted to cleave this sequence. Here we show that the group I intron in the DNA polymerase gene of T7-like bacteriophage PhiI is mobile, dependent upon its intronic HNH homing endonuclease gene, I-TslI. We also show that gene 5.3 of phage T3, located adjacent to its intronless DNA polymerase gene, is a homologous homing endonuclease gene whose protein product initiates efficient spread of gene 5.3 into empty sites in related phages. Both of these endonucleases cleave intronless DNA polymerase genes at identical positions. This shared feature between an intronic and free-standing endonuclease is unprecedented. Based on this evidence, we propose that introns and their homing endonucleases evolve separately to target the same highly conserved sequences, uniting afterwards to create a composite mobile element.
Collapse
Affiliation(s)
- Richard P Bonocora
- Department of Biological Sciences, State University of New York at Albany, Albany, NY 12222, USA
| | | |
Collapse
|
45
|
Hoshina R, Imamura N. Phylogenetically Close Group I Introns with Different Positions among Paramecium bursaria Photobionts Imply a Primitive Stage of Intron Diversification. Mol Biol Evol 2009; 26:1309-19. [DOI: 10.1093/molbev/msp044] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Nomura N, Nomura Y, Sussman D, Klein D, Stoddard BL. Recognition of a common rDNA target site in archaea and eukarya by analogous LAGLIDADG and His-Cys box homing endonucleases. Nucleic Acids Res 2008; 36:6988-98. [PMID: 18984620 PMCID: PMC2602781 DOI: 10.1093/nar/gkn846] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The presence of a homing endonuclease gene (HEG) within a microbial intron or intein empowers the entire element with the ability to invade genomic targets. The persistence of a homing endonuclease lineage depends in part on conservation of its DNA target site. One such rDNA sequence has been invaded both in archaea and in eukarya, by LAGLIDADG and His–Cys box homing endonucleases, respectively. The bases encoded by this target include a universally conserved ribosomal structure, termed helix 69 (H69) in the large ribosomal subunit. This region forms the ‘B2a’ intersubunit bridge to the small ribosomal subunit, contacts bound tRNA in the A- and P-sites, and acts as a trigger for ribosome disassembly through its interactions with ribosome recycling factor. We have determined the DNA-bound structure and specificity profile of an archaeal LAGLIDADG homing endonuclease (I-Vdi141I) that recognizes this target site, and compared its specificity with the analogous eukaryal His–Cys box endonuclease I-PpoI. These homodimeric endonuclease scaffolds have arrived at similar specificity profiles across their common biological target and analogous solutions to the problem of accommodating conserved asymmetries within the DNA sequence, but with differences at individual base pairs that are fine-tuned to the sequence conservation of archaeal versus eukaryal ribosomes.
Collapse
Affiliation(s)
- Norimichi Nomura
- Iwata Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Kyoto, Japan
| | | | | | | | | |
Collapse
|
47
|
Toxic introns and parasitic intein in Coxiella burnetii: legacies of a promiscuous past. J Bacteriol 2008; 190:5934-43. [PMID: 18606739 DOI: 10.1128/jb.00602-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The genome of the obligate intracellular pathogen Coxiella burnetii contains a large number of selfish genetic elements, including two group I introns (Cbu.L1917 and Cbu.L1951) and an intervening sequence that interrupts the 23S rRNA gene, an intein (Cbu.DnaB) within dnaB and 29 insertion sequences. Here, we describe the ability of the intron-encoded RNAs (ribozymes) to retard bacterial growth rate (toxicity) and examine the functionality and phylogenetic history of Cbu.DnaB. When expressed in Escherichia coli, both introns repressed growth, with Cbu.L1917 being more inhibitory. Both ribozymes were found to associate with ribosomes of Coxiella and E. coli. In addition, ribozymes significantly reduced in vitro luciferase translation, again with Cbu.L1917 being more inhibitory. We analyzed the relative quantities of ribozymes and genomes throughout a 14-day growth cycle of C. burnetii and found that they were inversely correlated, suggesting that the ribozymes have a negative effect on Coxiella's growth. We determined possible sites for ribozyme associations with 23S rRNA that could explain the observed toxicities. Further research is needed to determine whether the introns are being positively selected because they promote bacterial persistence or whether they were fixed in the population due to genetic drift. The intein, Cbu.DnaB, is able to self-splice, leaving the host protein intact and presumably functional. Similar inteins have been found in two extremophilic bacteria (Alkalilimnicola ehrlichei and Halorhodospira halophila) that are distantly related to Coxiella, making it difficult to determine whether the intein was acquired by horizontal gene transfer or was vertically inherited from a common ancestor.
Collapse
|
48
|
Tourasse NJ, Kolstø AB. Survey of group I and group II introns in 29 sequenced genomes of the Bacillus cereus group: insights into their spread and evolution. Nucleic Acids Res 2008; 36:4529-48. [PMID: 18587153 PMCID: PMC2504315 DOI: 10.1093/nar/gkn372] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Group I and group II introns are different catalytic self-splicing and mobile RNA elements that contribute to genome dynamics. In this study, we have analyzed their distribution and evolution in 29 sequenced genomes from the Bacillus cereus group of bacteria. Introns were of different structural classes and evolutionary origins, and a large number of nearly identical elements are shared between multiple strains of different sources, suggesting recent lateral transfers and/or that introns are under a strong selection pressure. Altogether, 73 group I introns were identified, inserted in essential genes from the chromosome or newly described prophages, including the first elements found within phages in bacterial plasmids. Notably, bacteriophages are an important source for spreading group I introns between strains. Furthermore, 77 group II introns were found within a diverse set of chromosomal and plasmidic genes. Unusual findings include elements located within conserved DNA metabolism and repair genes and one intron inserted within a novel retroelement. Group II introns are mainly disseminated via plasmids and can subsequently invade the host genome, in particular by coupling mobility with host cell replication. This study reveals a very high diversity and variability of mobile introns in B. cereus group strains.
Collapse
Affiliation(s)
- Nicolas J Tourasse
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
49
|
Lambert AR, Sussman D, Shen B, Maunus R, Nix J, Samuelson J, Xu SY, Stoddard BL. Structures of the rare-cutting restriction endonuclease NotI reveal a unique metal binding fold involved in DNA binding. Structure 2008; 16:558-69. [PMID: 18400177 DOI: 10.1016/j.str.2008.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/07/2008] [Accepted: 01/12/2008] [Indexed: 11/19/2022]
Abstract
The structure of the rare-cutting restriction endonuclease NotI, which recognizes the 8 bp target 5'-GCGGCCGC-3', has been solved with and without bound DNA. Because of its specificity (recognizing a site that occurs once per 65 kb), NotI is used to generate large genomic fragments and to map DNA methylation status. NotI contains a unique metal binding fold, found in a variety of putative endonucleases, occupied by an iron atom coordinated within a tetrahedral Cys4 motif. This domain positions nearby protein elements for DNA recognition, and serves a structural role. While recognition of the central six base pairs of the target is accomplished via a saturated hydrogen bond network typical of restriction enzymes, the most peripheral base pairs are engaged in a single direct contact in the major groove, reflecting reduced pressure to recognize those positions. NotI may represent an evolutionary intermediate between mobile endonucleases (which recognize longer target sites) and canonical restriction endonucleases.
Collapse
Affiliation(s)
- Abigail R Lambert
- Graduate Program in Biomolecular Structure and Design, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Brok-Volchanskaya VS, Kadyrov FA, Sivogrivov DE, Kolosov PM, Sokolov AS, Shlyapnikov MG, Kryukov VM, Granovsky IE. Phage T4 SegB protein is a homing endonuclease required for the preferred inheritance of T4 tRNA gene region occurring in co-infection with a related phage. Nucleic Acids Res 2008; 36:2094-105. [PMID: 18281701 PMCID: PMC2330249 DOI: 10.1093/nar/gkn053] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Homing endonucleases initiate nonreciprocal transfer of DNA segments containing their own genes and the flanking sequences by cleaving the recipient DNA. Bacteriophage T4 segB gene, which is located in a cluster of tRNA genes, encodes a protein of unknown function, homologous to homing endonucleases of the GIY-YIG family. We demonstrate that SegB protein is a site-specific endonuclease, which produces mostly 3′ 2-nt protruding ends at its DNA cleavage site. Analysis of SegB cleavage sites suggests that SegB recognizes a 27-bp sequence. It contains 11-bp conserved sequence, which corresponds to a conserved motif of tRNA TψC stem-loop, whereas the remainder of the recognition site is rather degenerate. T4-related phages T2L, RB1 and RB3 contain tRNA gene regions that are homologous to that of phage T4 but lack segB gene and several tRNA genes. In co-infections of phages T4 and T2L, segB gene is inherited with nearly 100% of efficiency. The preferred inheritance depends absolutely on the segB gene integrity and is accompanied by the loss of the T2L tRNA gene region markers. We suggest that SegB is a homing endonuclease that functions to ensure spreading of its own gene and the surrounding tRNA genes among T4-related phages.
Collapse
Affiliation(s)
- Vera S Brok-Volchanskaya
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Nauki ave., 5, Pushchino, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|