1
|
Chai L, Zaburdaev V, Kolter R. How bacteria actively use passive physics to make biofilms. Proc Natl Acad Sci U S A 2024; 121:e2403842121. [PMID: 39264745 PMCID: PMC11459164 DOI: 10.1073/pnas.2403842121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
Modern molecular microbiology elucidates the organizational principles of bacterial biofilms via detailed examination of the interplay between signaling and gene regulation. A complementary biophysical approach studies the mesoscopic dependencies at the cellular and multicellular levels with a distinct focus on intercellular forces and mechanical properties of whole biofilms. Here, motivated by recent advances in biofilm research and in other, seemingly unrelated fields of biology and physics, we propose a perspective that links the biofilm, a dynamic multicellular organism, with the physical processes occurring in the extracellular milieu. Using Bacillus subtilis as an illustrative model organism, we specifically demonstrate how such a rationale explains biofilm architecture, differentiation, communication, and stress responses such as desiccation tolerance, metabolism, and physiology across multiple scales-from matrix proteins and polysaccharides to macroscopic wrinkles and water-filled channels.
Collapse
Affiliation(s)
- Liraz Chai
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD4000, Australia
| | - Vasily Zaburdaev
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen91058, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen91058, Germany
| | - Roberto Kolter
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
2
|
Karasz DC, Weaver AI, Buckley DH, Wilhelm RC. Conditional filamentation as an adaptive trait of bacteria and its ecological significance in soils. Environ Microbiol 2021; 24:1-17. [PMID: 34929753 DOI: 10.1111/1462-2920.15871] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
Bacteria can regulate cell morphology in response to environmental conditions, altering their physiological and metabolic characteristics to improve survival. Conditional filamentation, in which cells suspend division while continuing lateral growth, is a strategy with a range of adaptive benefits. Here, we review the causes and consequences of conditional filamentation with respect to bacterial physiology, ecology and evolution. We describe four major benefits from conditional filamentation: stress tolerance, surface colonization, gradient spanning and the facilitation of biotic interactions. Adopting a filamentous growth habit involves fitness trade-offs which are also examined. We focus on the role of conditional filamentation in soil habitats, where filamentous morphotypes are highly prevalent and where environmental heterogeneity can benefit a conditional response. To illustrate the use of information presented in our review, we tested the conditions regulating filamentation by the forest soil isolate Paraburkholderia elongata 5NT . Filamentation by P. elongata was induced at elevated phosphate concentrations, and was associated with the accumulation of intracellular polyphosphate, highlighting the role of filamentation in a phosphate-solubilizing bacterium. Conditional filamentation enables bacteria to optimize their growth and metabolism in environments that are highly variable, a trait that can impact succession, symbioses, and biogeochemistry in soil environments.
Collapse
Affiliation(s)
- David C Karasz
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, New York, 14853, USA
| | - Anna I Weaver
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, New York, 14853, USA.,Weill Institute for Cell and Molecular Biology, Weill Hall, Cornell University, Ithaca, New York, 14853, USA
| | - Daniel H Buckley
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, New York, 14853, USA
| | - Roland C Wilhelm
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
3
|
Lee SH, Kurade MB, Jeon BH, Kim J, Zheng Y, Salama ES. Water condition in biotrickling filtration for the efficient removal of gaseous contaminants. Crit Rev Biotechnol 2021; 41:1279-1296. [PMID: 34107840 DOI: 10.1080/07388551.2021.1917506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biofiltration (BF) facilitates the removal of organic and inorganic compounds through microbial reactions. Water is one of the most important elements in biotrickling filters that provides moisture and nutrients to microbial biofilms. The maintenance of proper trickle watering is very critical in biotrickling filtration because the flow rate of the trickling water significantly influences contaminant removal, and its optimal control is associated with various physicochemical and biological mechanisms. The lack of water leads to the drying of the media, creating several issues, including the restricted absorption of hydrophilic contaminants and the inhibition of microbial activities, which ultimately deteriorates the overall contaminant removal efficiency (RE). Conversely, an excess of water limits the mass transfer of oxygen or hydrophobic gases. In-depth analysis is required to elucidate the role of trickle water in the overall performance of biotrickling filters. The processes involved in the treatment of various polluted gases under specific water conditions have been summarized in this study. Recent microscopic studies on biofilms were reviewed to explain the process by which water stress influences the biological mechanisms involved in the treatment of hydrophobic contaminated gases. In order to maintain an effective mass transfer, hydrodynamic and biofilm conditions, a coherent understanding of water stress and the development of extracellular polymeric substances (EPS) in biofilms is necessary. Future studies on the realistic local distribution of hydrodynamic patterns (trickle flow, water film thickness, and wet efficiency), integrated with biofilm distributions, should be conducted with respect to EPS development.
Collapse
Affiliation(s)
- Sang-Hun Lee
- Department of Environmental Science, Keimyung Unviersity, Daegu, South Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Jungeun Kim
- Department of Environmental Science, Keimyung Unviersity, Daegu, South Korea
| | - Yuanzhang Zheng
- Department of Molecular Biology, School of Medicine Biochemistry, Indiana University, Indianapolis, IN, USA
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|
4
|
Sharma V, Prasanna R, Hossain F, Muthusamy V, Nain L, Das S, Shivay YS, Kumar A. Priming maize seeds with cyanobacteria enhances seed vigour and plant growth in elite maize inbreds. 3 Biotech 2020; 10:154. [PMID: 32181116 PMCID: PMC7054569 DOI: 10.1007/s13205-020-2141-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/15/2020] [Indexed: 01/10/2023] Open
Abstract
Biofilm formation of a nitrogen-fixing cyanobacterium Anabaena torulosa with a beneficial fungus Trichoderma viride (An-Tr) was examined under laboratory conditions. A gradual enhancement in growth over A. torulosa alone was recorded in the biofilm, with 15-20% higher values in nitrogen fixation, IAA and exopolysaccharide production illustrating the synergism among the partners in the biofilm. To investigate the role of such biofilms in priming seed attributes, mesocosm studies using primed seeds of two maize inbred lines (V6, V7) were undertaken. Beneficial effects of biofilm (An-Tr) were recorded, as compared to uninoculated treatment and cyanobacterial consortium (Anabaena-Nostoc; BF 1-4) at both stages (7 and 21 DAS, days after sowing) with a significant increase of more than 20% in seedling attributes, along with 5-15% increment in seed enzyme activities. More than three- to fivefold higher values in nitrogen fixation and C-N mobilizing enzyme activities, and significant increases in leaf chlorophyll, proteins and PEP carboxylase activity were observed with V7-An-Tr biofilm. Cyanobacterial inoculation brought about distinct changes in the soil phospholipid fatty acid profiles (PLFA); particularly, significant changes in those representing eukaryotes and anaerobic bacteria. Principal component analyses illustrated the significant role of dehydrogenase activity and microbial biomass carbon and distinct elicited effects on soil microbial communities, as evidenced by the PLFA. This investigation highlighted the promise of cyanobacteria as valuable priming options to improve mobilization of nutrients at seed stage, modulating the abundance and activities of various soil microbial communities, thereby, enhanced plant growth and vigour of maize plants.
Collapse
Affiliation(s)
- Vikas Sharma
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012 India
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012 India
| | - Firoz Hossain
- Maize Genetics Section, Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Vignesh Muthusamy
- Maize Genetics Section, Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Lata Nain
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012 India
| | - Shrila Das
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Yashbir Singh Shivay
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Arun Kumar
- National Phytotron Facility, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
5
|
Kassinger SJ, van Hoek ML. Biofilm architecture: An emerging synthetic biology target. Synth Syst Biotechnol 2020; 5:1-10. [PMID: 31956705 PMCID: PMC6961760 DOI: 10.1016/j.synbio.2020.01.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/29/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Synthetic biologists are exploiting biofilms as an effective mechanism for producing various outputs. Metabolic optimization has become commonplace as a method of maximizing system output. In addition to production pathways, the biofilm itself contributes to the efficacy of production. The purpose of this review is to highlight opportunities that might be leveraged to further enhance production in preexisting biofilm production systems. These opportunities may be used with previously established production systems as a method of improving system efficiency further. This may be accomplished through the reduction in the cost of establishing and maintaining biofilms, and maintenance of the enhancement of product yield per unit of time, per unit of area, or per unit of required input.
Collapse
Affiliation(s)
| | - Monique L. van Hoek
- George Mason University, School of Systems Biology, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, USA
| |
Collapse
|
6
|
Fu H, Chen F, Liu W, Kong W, Wang C, Fang X, Ye J. Adding nutrients to the biocontrol strain JK-SH007 promotes biofilm formation and improves resistance to stress. AMB Express 2020; 10:32. [PMID: 32048076 PMCID: PMC7013030 DOI: 10.1186/s13568-019-0929-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/10/2019] [Indexed: 11/17/2022] Open
Abstract
Burkholderia pyrrocinia JK-SH007 is an important biocontrol strain for the prevention and treatment of poplar canker disease. Its powerful biocontrol function is inseparable from its successful colonization of poplar trees. Bacterial biofilms can ensure the long-term colonization of a host. To explore the mechanism of action of biofilms in the biocontrol process, we manipulated various exogenous factors to explore the morphology of the JK-SH007 biofilm in vitro. The addition of glycerol and MgSO4 to TSB medium stimulated biofilm production, increased the resistance of JK-SH007 to disease, enhanced the survival of JK-SH007 in nutrient-poor environments and maintained the antagonistic ability of JK-SH007 against the poplar canker pathogen. Therefore, we constructed and optimized a biofilm-forming system to produce a large number of stable JK-SH007 biofilms. The optimized system showed that the optimal incubation time for JK-SH007 biofilm formation was 14 h, the optimal temperature of the static culture was 25 °C, and the optimal pH was 5. The optimal medium for biofilm formation was TSB medium, 1% glycerol and 50 mM MgSO4. RT-qPCR experiments showed that an increase in the expression of the suhB gene promoted JK-SH007 biofilm formation, while an increase in the expression level of the ropN gene inhibited JK-SH007 biofilm formation. The possible mechanism by which JK-SH007 was inhibited by biofilm formation under natural culture was revealed. These results indicate the importance of adding nutrients to JK-SH007 biocides produced on a commercial scale. This is the first report of JK-SH007 producing a long-lasting biofilm that guarantees antagonism.
Collapse
|
7
|
Navarrete B, Leal-Morales A, Serrano-Ron L, Sarrió M, Jiménez-Fernández A, Jiménez-Díaz L, López-Sánchez A, Govantes F. Transcriptional organization, regulation and functional analysis of flhF and fleN in Pseudomonas putida. PLoS One 2019; 14:e0214166. [PMID: 30889223 PMCID: PMC6424431 DOI: 10.1371/journal.pone.0214166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/07/2019] [Indexed: 11/25/2022] Open
Abstract
The Pseudomonas putida flhA-flhF-fleN-fliA cluster encodes a component of the flagellar export gate and three regulatory elements potentially involved in flagellar biogenesis and other functions. Here we show that these four genes form an operon, whose transcription is driven from the upstream PflhA promoter. A second promoter, PflhF, provides additional transcription of the three distal genes. PflhA and PflhF are σN-dependent, activated by the flagellar regulator FleQ, and negatively regulated by FleN. Motility, surface adhesion and colonization defects of a transposon insertion mutant in flhF revealed transcriptional polarity on fleN and fliA, as the former was required for strong surface adhesion and biofilm formation, and the latter was required for flagellar synthesis. On the other hand, FlhF and FleN were necessary to attain proper flagellar location and number for a fully functional flagellar complement. FleN, along with FleQ and the second messenger c-di-GMP differentially regulated transcription of lapA and the bcs operon, encoding a large adhesion protein and cellulose synthase. FleQ positively regulated the PlapA promoter and activation was antagonized by FleN and c-di-GMP. PbcsD was negatively regulated by FleQ and FleN, and repression was antagonized by c-di-GMP. FleN promoted FleQ binding to both PlapA and PbcsD in vitro, while c-di-GMP antagonized interaction with PbcsD and stimulated interaction with PlapA. A single FleQ binding site in PlapA was critical to activation in vivo. Our results suggest that FleQ, FleN and c-di-GMP cooperate to coordinate the regulation of flagellar motility and biofilm development.
Collapse
Affiliation(s)
- Blanca Navarrete
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Antonio Leal-Morales
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Laura Serrano-Ron
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Marina Sarrió
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Alicia Jiménez-Fernández
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Lorena Jiménez-Díaz
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Aroa López-Sánchez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Fernando Govantes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
- * E-mail:
| |
Collapse
|
8
|
Ashfaq MY, Al-Ghouti MA, Qiblawey H, Zouari N. Evaluating the effect of antiscalants on membrane biofouling using FTIR and multivariate analysis. BIOFOULING 2019; 35:1-14. [PMID: 30672327 DOI: 10.1080/08927014.2018.1557637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
A combination of Fourier-transform infrared (FTIR) spectroscopy, multivariate analysis and conventional microbiological assays were utilized to characterize and differentiate membrane biofouling formed in the presence of antiscalants. Based on the FTIR spectra of biofouled reverse osmosis membranes obtained after incubating with antiscalants and H. aquamarina (as model microorganism), it was found that the biofouling intensity and composition was dependent on the type of antiscalants used. The growth of the bacterium was also highly affected by the type of antiscalants as shown by the colony forming unit (CFU) counts. By combining the techniques of principle component analysis (PCA) and FTIR, it was demonstrated that the biofouling was more intense and composed of proteins, polysaccharides and lipids, when polymer antiscalant was used. By applying PCA-FTIR with CFU counts, faster prediction of the effect of antiscalants on biofouling was made possible.
Collapse
Affiliation(s)
- Mohammad Y Ashfaq
- a Department of Biological and Environmental Sciences , College of Arts and Sciences, Qatar University , Doha , Qatar
| | - Mohammad A Al-Ghouti
- a Department of Biological and Environmental Sciences , College of Arts and Sciences, Qatar University , Doha , Qatar
| | - Hazim Qiblawey
- b Department of Chemical Engineering , College of Engineering, Qatar University , Doha , Qatar
| | - Nabil Zouari
- a Department of Biological and Environmental Sciences , College of Arts and Sciences, Qatar University , Doha , Qatar
| |
Collapse
|
9
|
Kim MH, Khan MSI, Lee KW, Kim YJ. Biofilm reduction potential of micro-plasma discharged water (m-PDW) against the microbes isolated from a tofu manufacturing plant. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.07.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Ledwoch K, Dancer S, Otter J, Kerr K, Roposte D, Rushton L, Weiser R, Mahenthiralingam E, Muir D, Maillard JY. Beware biofilm! Dry biofilms containing bacterial pathogens on multiple healthcare surfaces; a multi-centre study. J Hosp Infect 2018; 100:e47-e56. [DOI: 10.1016/j.jhin.2018.06.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/26/2018] [Indexed: 01/19/2023]
|
11
|
Torres D, Benavidez I, Donadio F, Mongiardini E, Rosas S, Spaepen S, Vanderleyden J, Pěnčík A, Novák O, Strnad M, Frébortová J, Cassán F. New insights into auxin metabolism in Bradyrhizobium japonicum. Res Microbiol 2018; 169:313-323. [PMID: 29751062 DOI: 10.1016/j.resmic.2018.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 11/28/2022]
Abstract
Bacterial metabolism of phytohormones includes several processes such as biosynthesis, catabolism, conjugation, hydrolysis and homeostatic regulation. However, only biosynthesis and occasionally catabolism are studied in depth in microorganisms. In this work, we evaluated and reconsidered IAA metabolism in Bradyrhizobiumjaponicum E109, one of the most widely used strains for soybean inoculation around the world. The genomic analysis of the strain showed the presence of several genes responsible for IAA biosynthesis, mainly via indole-3-acetonitrile (IAN), indole-3-acetamide (IAM) and tryptamine (TAM) pathways. However; in vitro experiments showed that IAA is not accumulated in the culture medium in significant amounts. On the contrary, a strong degradation activity was observed after exogenous addition of 0.1 mM of IAA, IBA or NAA to the medium. B. japonicum E109 was not able to grow in culture medium containing IAA as a sole carbon source. In YEM medium, the bacteria degraded IAA and hydrolyzed amino acid auxin conjugates with alanine (IAAla), phenylalanine (IAPhe), and leucine (IAPhe), releasing IAA which was quickly degraded. Finally, the presence of exogenous IAA induced physiological changes in the bacteria such as increased biomass and exopolysaccharide production, as well as infection effectiveness and symbiotic behavior in soybean plants.
Collapse
Affiliation(s)
- Daniela Torres
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo, Departamento de Ciencias Naturales, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, Córdoba, Argentina
| | - Iliana Benavidez
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo, Departamento de Ciencias Naturales, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, Córdoba, Argentina
| | - Florencia Donadio
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo, Departamento de Ciencias Naturales, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, Córdoba, Argentina
| | - Elias Mongiardini
- Laboratorio de Interacción Rizobios y Soja, Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Susana Rosas
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo, Departamento de Ciencias Naturales, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, Córdoba, Argentina
| | - Stijn Spaepen
- Katholieke Universiteit Leuven, Leuven, Belgium; Max Planck Institute for Plant Breeding Research, Plant Microbe Interactions, Köln, Germany
| | | | - Aleš Pěnčík
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Jitka Frébortová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Fabricio Cassán
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo, Departamento de Ciencias Naturales, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, Córdoba, Argentina.
| |
Collapse
|
12
|
Desmond P, Best JP, Morgenroth E, Derlon N. Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms. WATER RESEARCH 2018; 132:211-221. [PMID: 29331909 DOI: 10.1016/j.watres.2017.12.058] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
The effect of extracellular polymeric substances (EPS) on the meso-scale physical structure and hydraulic resistance of membrane biofilms during gravity driven membrane (GDM) filtration was investigated. Biofilms were developed on the surface of ultrafiltration membranes during dead-end filtration at ultra-low pressure (70 mbar). Biofilm EPS composition (total protein, polysaccharide and eDNA) was manipulated by growing biofilms under contrasting nutrient conditions. Nutrient conditions consisted of (i) a nutrient enriched condition with a nutrient ratio of 100:30:10 (C: N: P), (ii) a phosphorus limitation (C: N: P ratio: 100:30:0), and (iii) a nitrogen limitation (C: N: P ratio: 100:0:10). The structure of the biofilm was characterised at meso-scale using Optical Coherence Tomography (OCT). Biofilm composition was analysed with respect to total organic carbon, total cellular mass and extracellular concentrations of proteins, polysaccharides, and eDNA. 2D-confocal Raman mapping was used to characterise the functional group composition and micro-scale distribution of the biofilms EPS. Our study reveals that the composition of the EPS matrix can determine the meso-scale physical structure of membrane biofilms and in turn its hydraulic resistance. Biofilms grown under P limiting conditions were characterised by dense and homogeneous physical structures with high concentrations of polysaccharides and eDNA. Biofilm grown under nutrient enriched or N limiting conditions were characterised by heterogeneous physical structures with lower concentrations of polysaccharides and eDNA. For P limiting biofilms, 2D-confocal Raman microscopy revealed a homogeneous spatial distribution of anionic functional groups in homogeneous biofilm structures with higher polysaccharide and eDNA concentrations. This study links EPS composition, physical structure and hydraulic resistance of membrane biofilms, with practical relevance for the hydraulic performances of GDM ultrafiltration.
Collapse
Affiliation(s)
- Peter Desmond
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland.
| | - James P Best
- Empa - Swiss Federal Institute for Material Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland.
| | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland.
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| |
Collapse
|
13
|
|
14
|
Frösler J, Panitz C, Wingender J, Flemming HC, Rettberg P. Survival of Deinococcus geothermalis in Biofilms under Desiccation and Simulated Space and Martian Conditions. ASTROBIOLOGY 2017; 17:431-447. [PMID: 28520474 DOI: 10.1089/ast.2015.1431] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biofilm formation represents a successful survival strategy for bacteria. In biofilms, cells are embedded in a matrix of extracellular polymeric substances (EPS). As they are often more stress-tolerant than single cells, biofilm cells might survive the conditions present in space and on Mars. To investigate this topic, the bacterium Deinococcus geothermalis was chosen as a model organism due to its tolerance toward desiccation and radiation. Biofilms cultivated on membranes and, for comparison, planktonically grown cells deposited on membranes were air-dried and exposed to individual stressors that included prolonged desiccation, extreme temperatures, vacuum, simulated martian atmosphere, and UV irradiation, and they were exposed to combinations of stressors that simulate space (desiccation + vacuum + UV) or martian (desiccation + Mars atmosphere + UV) conditions. The effect of sulfatic Mars regolith simulant on cell viability during stress was investigated separately. The EPS produced by the biofilm cells contained mainly polysaccharides and proteins. To detect viable but nonculturable (VBNC) cells, cultivation-independent viability indicators (membrane integrity, ATP, 16S rRNA) were determined in addition to colony counts. Desiccation for 2 months resulted in a decrease of culturability with minor changes of membrane integrity in biofilm cells and major loss of membrane integrity in planktonic bacteria. Temperatures between -25°C and +60°C, vacuum, and Mars atmosphere affected neither culturability nor membrane integrity in both phenotypes. Monochromatic (254 nm; ≥1 kJ m-2) and polychromatic (200-400 nm; >5.5 MJ m-2 for planktonic cells and >270 MJ m-2 for biofilms) UV irradiation significantly reduced the culturability of D. geothermalis but did not affect cultivation-independent viability markers, indicating the induction of a VBNC state in UV-irradiated cells. In conclusion, a substantial proportion of the D. geothermalis population remained viable under all stress conditions tested, and in most cases the biofilm form proved advantageous for surviving space and Mars-like conditions. Key Words: Biofilms-Desiccation-UV radiation-Mars-Lithopanspermia. Astrobiology 17, 431-447.
Collapse
Affiliation(s)
- Jan Frösler
- 1 Biofilm Centre, University of Duisburg-Essen , Essen, Germany
| | - Corinna Panitz
- 2 Uniklinik/RWTH Aachen, Institute of Pharmacology and Toxicology , Aachen, Germany
| | - Jost Wingender
- 1 Biofilm Centre, University of Duisburg-Essen , Essen, Germany
| | | | - Petra Rettberg
- 3 DLR (Deutsches Zentrum für Luft- und Raumfahrt e.V.), Institute of Aerospace Medicine , Radiation Biology Department, Research Group Astrobiology, Cologne, Germany
| |
Collapse
|
15
|
Velmourougane K, Prasanna R, Saxena AK. Agriculturally important microbial biofilms: Present status and future prospects. J Basic Microbiol 2017; 57:548-573. [PMID: 28407275 DOI: 10.1002/jobm.201700046] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 11/07/2022]
Abstract
Microbial biofilms are a fascinating subject, due to their significant roles in the environment, industry, and health. Advances in biochemical and molecular techniques have helped in enhancing our understanding of biofilm structure and development. In the past, research on biofilms primarily focussed on health and industrial sectors; however, lately, biofilms in agriculture are gaining attention due to their immense potential in crop production, protection, and improvement. Biofilms play an important role in colonization of surfaces - soil, roots, or shoots of plants and enable proliferation in the desired niche, besides enhancing soil fertility. Although reports are available on microbial biofilms in general; scanty information is published on biofilm formation by agriculturally important microorganisms (bacteria, fungi, bacterial-fungal) and their interactions in the ecosystem. Better understanding of agriculturally important bacterial-fungal communities and their interactions can have several implications on climate change, soil quality, plant nutrition, plant protection, bioremediation, etc. Understanding the factors and genes involved in biofilm formation will help to develop more effective strategies for sustainable and environment-friendly agriculture. The present review brings together fundamental aspects of biofilms, in relation to their formation, regulatory mechanisms, genes involved, and their application in different fields, with special emphasis on agriculturally important microbial biofilms.
Collapse
Affiliation(s)
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau Nath Bhanjan, Uttar Pradesh, India
| |
Collapse
|
16
|
Stone W, Kroukamp O, Korber DR, McKelvie J, Wolfaardt GM. Microbes at Surface-Air Interfaces: The Metabolic Harnessing of Relative Humidity, Surface Hygroscopicity, and Oligotrophy for Resilience. Front Microbiol 2016; 7:1563. [PMID: 27746774 PMCID: PMC5043023 DOI: 10.3389/fmicb.2016.01563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/20/2016] [Indexed: 12/25/2022] Open
Abstract
The human environment is predominantly not aqueous, and microbes are ubiquitous at the surface-air interfaces with which we interact. Yet microbial studies at surface-air interfaces are largely survival-oriented, whilst microbial metabolism has overwhelmingly been investigated from the perspective of liquid saturation. This study explored microbial survival and metabolism under desiccation, particularly the influence of relative humidity (RH), surface hygroscopicity, and nutrient availability on the interchange between these two phenomena. The combination of a hygroscopic matrix (i.e., clay or 4,000 MW polyethylene glycol) and high RH resulted in persistent measurable microbial metabolism during desiccation. In contrast, no microbial metabolism was detected at (a) hygroscopic interfaces at low RH, and (b) less hygroscopic interfaces (i.e., sand and plastic/glass) at high or low RH. Cell survival was conversely inhibited at high RH and promoted at low RH, irrespective of surface hygroscopicity. Based on this demonstration of metabolic persistence and survival inhibition at high RH, it was proposed that biofilm metabolic rates might inversely influence whole-biofilm resilience, with ‘resilience’ defined in this study as a biofilm’s capacity to recover from desiccation. The concept of whole-biofilm resilience being promoted by oligotrophy was supported in desiccation-tolerant Arthrobacter spp. biofilms, but not in desiccation-sensitive Pseudomonas aeruginosa biofilms. The ability of microbes to interact with surfaces to harness water vapor during desiccation was demonstrated, and potentially to harness oligotrophy (the most ubiquitous natural condition facing microbes) for adaptation to desiccation.
Collapse
Affiliation(s)
- Wendy Stone
- Department of Microbiology, University of Stellenbosch, Cape TownSouth Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ONCanada
| | - Otini Kroukamp
- Department of Microbiology, University of Stellenbosch, Cape TownSouth Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ONCanada
| | - Darren R Korber
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK Canada
| | - Jennifer McKelvie
- Environmental Geoscience, Nuclear Waste Management Organization, Toronto, ON Canada
| | - Gideon M Wolfaardt
- Department of Microbiology, University of Stellenbosch, Cape TownSouth Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ONCanada
| |
Collapse
|
17
|
Jiménez-Fernández A, López-Sánchez A, Jiménez-Díaz L, Navarrete B, Calero P, Platero AI, Govantes F. Complex Interplay between FleQ, Cyclic Diguanylate and Multiple σ Factors Coordinately Regulates Flagellar Motility and Biofilm Development in Pseudomonas putida. PLoS One 2016; 11:e0163142. [PMID: 27636892 PMCID: PMC5026340 DOI: 10.1371/journal.pone.0163142] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 09/02/2016] [Indexed: 01/01/2023] Open
Abstract
Most bacteria alternate between a free living planktonic lifestyle and the formation of structured surface-associated communities named biofilms. The transition between these two lifestyles requires a precise and timely regulation of the factors involved in each of the stages that has been likened to a developmental process. Here we characterize the involvement of the transcriptional regulator FleQ and the second messenger cyclic diguanylate in the coordinate regulation of multiple functions related to motility and surface colonization in Pseudomonas putida. Disruption of fleQ caused strong defects in flagellar motility, biofilm formation and surface attachment, and the ability of this mutation to suppress multiple biofilm-related phenotypes associated to cyclic diguanylate overproduction suggests that FleQ mediates cyclic diguanylate signaling critical to biofilm growth. We have constructed a library containing 94 promoters potentially involved in motility and biofilm development fused to gfp and lacZ, screened this library for FleQ and cyclic diguanylate regulation, and assessed the involvement of alternative σ factors σN and FliA in the transcription of FleQ-regulated promoters. Our results suggest a dual mode of action for FleQ. Low cyclic diguanylate levels favor FleQ interaction with σN-dependent promoters to activate the flagellar cascade, encompassing the flagellar cluster and additional genes involved in cyclic diguanylate metabolism, signal transduction and gene regulation. On the other hand, characterization of the FleQ-regulated σN- and FliA-independent PlapA and PbcsD promoters revealed two disparate regulatory mechanisms leading to a similar outcome: the synthesis of biofilm matrix components in response to increased cyclic diguanylate levels.
Collapse
Affiliation(s)
- Alicia Jiménez-Fernández
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain; and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Aroa López-Sánchez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain; and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Lorena Jiménez-Díaz
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain; and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Blanca Navarrete
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain; and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Patricia Calero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain; and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Ana Isabel Platero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain; and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Fernando Govantes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain; and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
- * E-mail:
| |
Collapse
|
18
|
Almatroudi A, Hu H, Deva A, Gosbell IB, Jacombs A, Jensen SO, Whiteley G, Glasbey T, Vickery K. A new dry-surface biofilm model: An essential tool for efficacy testing of hospital surface decontamination procedures. J Microbiol Methods 2015; 117:171-6. [DOI: 10.1016/j.mimet.2015.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/04/2015] [Accepted: 08/04/2015] [Indexed: 11/28/2022]
|
19
|
The influence of microbial factors on the susceptibility of bacteria to photocatalytic destruction. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Gambino M, Marzano V, Villa F, Vitali A, Vannini C, Landini P, Cappitelli F. Effects of sublethal doses of silver nanoparticles on Bacillus subtilis
planktonic and sessile cells. J Appl Microbiol 2015; 118:1103-15. [DOI: 10.1111/jam.12779] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/10/2015] [Accepted: 02/14/2015] [Indexed: 01/01/2023]
Affiliation(s)
- M. Gambino
- Department of Biosciences; Università degli Studi di Milano; Milan Italy
| | - V. Marzano
- Institute of Chemistry of Molecular Recognition; Consiglio Nazionale delle Ricerche (CNR); Rome Italy
| | - F. Villa
- Department of Food, Environmental and Nutritional Sciences; Università degli Studi di Milano; Milan Italy
| | - A. Vitali
- Institute of Chemistry of Molecular Recognition; Consiglio Nazionale delle Ricerche (CNR); Rome Italy
| | - C. Vannini
- Department of Biotecnology and Life Science; Università degli Studi dell'Insubria; Varese Italy
| | - P. Landini
- Department of Biosciences; Università degli Studi di Milano; Milan Italy
| | - F. Cappitelli
- Department of Food, Environmental and Nutritional Sciences; Università degli Studi di Milano; Milan Italy
| |
Collapse
|
21
|
Jiménez-Fernández A, López-Sánchez A, Calero P, Govantes F. The c-di-GMP phosphodiesterase BifA regulates biofilm development in Pseudomonas putida. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:78-84. [PMID: 25870874 DOI: 10.1111/1758-2229.12153] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We previously showed the isolation of biofilmpersistent Pseudomonas putida mutants that fail to undergo biofilm dispersal upon entry in stationary phase. Two such mutants were found to bear insertions in PP0914, encoding a GGDEF/EAL domain protein with high similarity to Pseudomon asaeruginosa BifA. Here we show the phenotypic characterization of a ΔbifA mutant in P. putida KT2442.This mutant displayed increased biofilm and pellicle formation, cell aggregation in liquid medium and decreased starvation-induced biofilm dispersal relative to the wild type. Unlike its P. aeruginosa counterpart, P. putida BifA did not affect swarming motility. The hyperadherent phenotype of the ΔbifA mutant correlates with a general increase in cyclic diguanylate (c-di-GMP) levels, Congo Red-binding exopolyaccharide production and transcription of the adhesin-encoding lapA gene. Integrity of the EAL motif and a modified GGDEF motif (altered to GGDQF)were crucial for BifA activity, and c-di-GMP depletion by overexpression of a heterologous c-di-GMP phosphodiesterase in the ΔbifA mutant restored wild-type biofilm dispersal and lapA expression.Our results indicate that BifA is a phosphodiesterase involved in the regulation of the c-di-GMP pool and required for the generation of the low c-di-GMP signal that triggers starvation-induced biofilm dispersal.
Collapse
Affiliation(s)
- Alicia Jiménez-Fernández
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Carretera de Utrera, Km. 1, Sevilla 41013, Spain
| | | | | | | |
Collapse
|
22
|
Embedded biofilm, a new biofilm model based on the embedded growth of bacteria. Appl Environ Microbiol 2014; 81:211-9. [PMID: 25326307 DOI: 10.1128/aem.02311-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A variety of systems have been developed to study biofilm formation. However, most systems are based on the surface-attached growth of microbes under shear stress. In this study, we designed a microfluidic channel device, called a microfluidic agarose channel (MAC), and found that microbial cells in the MAC system formed an embedded cell aggregative structure (ECAS). ECASs were generated from the embedded growth of bacterial cells in an agarose matrix and better mimicked the clinical environment of biofilms formed within mucus or host tissue under shear-free conditions. ECASs were developed with the production of extracellular polymeric substances (EPS), the most important feature of biofilms, and eventually burst to release planktonic cells, which resembles the full developmental cycle of biofilms. Chemical and genetic effects have also confirmed that ECASs are a type of biofilm. Unlike the conventional biofilms formed in the flow cell model system, this embedded-type biofilm completes the developmental cycle in only 9 to 12 h and can easily be observed with ordinary microscopes. We suggest that ECASs are a type of biofilm and that the MAC is a system for observing biofilm formation.
Collapse
|
23
|
Responses of unsaturated Pseudomonas putida CZ1 biofilms to environmental stresses in relation to the EPS composition and surface morphology. World J Microbiol Biotechnol 2014; 30:3081-90. [DOI: 10.1007/s11274-014-1735-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/31/2014] [Indexed: 10/24/2022]
|
24
|
Steele DJ, Franklin DJ, Underwood GJ. Protection of cells from salinity stress by extracellular polymeric substances in diatom biofilms. BIOFOULING 2014; 30:987-98. [PMID: 25268215 PMCID: PMC4706044 DOI: 10.1080/08927014.2014.960859] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/28/2014] [Indexed: 05/26/2023]
Abstract
Diatom biofilms are abundant in the marine environment. It is assumed (but untested) that extracellular polymeric substances (EPS), produced by diatoms, enable cells to cope with fluctuating salinity. To determine the protective role of EPS, Cylindrotheca closterium was grown in xanthan gum at salinities of 35, 50, 70 and 90 ppt. A xanthan matrix significantly increased cell viability (determined by SYTOX-Green), growth rate and population density by up to 300, 2,300 and 200%, respectively. Diatoms grown in 0.75% w/v xanthan, subjected to acute salinity shock treatments (at salinities 17.5, 50, 70 and 90 ppt) maintained photosynthetic capacity, Fq'/Fm', within 4% of pre-shock values, whereas Fq'/Fm' in cells grown without xanthan declined by up to 64% with hypersaline shock. Biofilms that developed in xanthan at standard salinity helped cells to maintain function during salinity shock. These results provide evidence of the benefits of living in an EPS matrix for biofilm diatoms.
Collapse
Affiliation(s)
- Deborah J. Steele
- School of Biological Sciences, University of Essex, Colchester, UK
- Faculty of Science & Technology, Bournemouth University, Poole, UK
- Plymouth Marine Laboratory, Plymouth, UK
| | | | | |
Collapse
|
25
|
Bekir K, Noumi E, Abid NBS, Bakhrouf A. Adhesive properties to materials used in unit care by Staphylococcus aureus strains incubated in seawater microcosms. J IND ENG CHEM 2014. [DOI: 10.1016/j.jiec.2013.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Liquid chromatography time of flight mass spectrometry based environmental metabolomics for the analysis of Pseudomonas putida Bacteria in potable water. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 966:179-86. [PMID: 24674937 DOI: 10.1016/j.jchromb.2014.02.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 02/03/2014] [Accepted: 02/10/2014] [Indexed: 01/11/2023]
Abstract
Water supply biofilms have the potential to harbour waterborne diseases, accelerate corrosion, and contribute to the formation of tuberculation in metallic pipes. One particular species of bacteria known to be found in the water supply networks is Pseudomonas sp., with the presence of Pseudomonas putida being isolated to iron pipe tubercles. Current methods for detecting and analysis pipe biofilms are time consuming and expensive. The application of metabolomics techniques could provide an alternative method for assessing biofilm risk more efficiently based on bacterial activity. As such, this paper investigates the application of metabolomic techniques and provides a proof-of-concept application using liquid chromatography coupled with time-of-flight mass spectrometry (LC-ToF-MS) to three biologically independent P. putida samples, across five different growth conditions exposed to solid and soluble iron (Fe). Analysis of the samples in +ESI and -ESI mode yielded 887 and 1789 metabolite features, respectively. Chemometric analysis of the +ESI and -ESI data identified 34 and 39 significant metabolite features, respectively, where features were considered significant if the fold change was greater than 2 and obtained a p-value less than 0.05. Metabolite features were subsequently identified according to the Metabolomics Standard Initiative (MSI) Chemical Analysis Workgroup using analytical standards and standard online LC-MS databases. Possible markers for P. putida growth, with and without being exposed to solid and soluble Fe, were identified from a diverse range of different chemical classes of metabolites including nucleobases, nucleosides, dipeptides, tripeptides, amino acids, fatty acids, sugars, and phospholipids.
Collapse
|
27
|
Donati AJ, Lee HI, Leveau JHJ, Chang WS. Effects of indole-3-acetic acid on the transcriptional activities and stress tolerance of Bradyrhizobium japonicum. PLoS One 2013; 8:e76559. [PMID: 24098533 PMCID: PMC3788728 DOI: 10.1371/journal.pone.0076559] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/28/2013] [Indexed: 11/18/2022] Open
Abstract
A genome-wide transcriptional profile of Bradyrhizobium japonicum, the nitrogen-fixing endosymbiont of the soybean plant, revealed differential expression of approximately 15% of the genome after a 1 mM treatment with the phytohormone indole-3-acetic acid (IAA). A total of 1,323 genes were differentially expressed (619 up-regulated and 704 down-regulated) at a two-fold cut off with q value ≤ 0.05. General stress response genes were induced, such as those involved in response to heat, cold, oxidative, osmotic, and desiccation stresses and in exopolysaccharide (EPS) biosynthesis. This suggests that IAA is effective in activating a generalized stress response in B. japonicum. The transcriptional data were corroborated by the finding that stress tolerance of B. japonicum in cell viability assays was enhanced when pre-treated with 1 mM IAA compared to controls. The IAA treatment also stimulated biofilm formation and EPS production by B. japonicum, especially acidic sugar components in the total EPS. The IAA pre-treatment did not influence the nodulation ability of B. japonicum. The data provide a comprehensive overview of the potential transcriptional responses of the symbiotic bacterium when exposed to the ubiquitous hormone of its plant host.
Collapse
Affiliation(s)
- Andrew J. Donati
- Department of Biology, University of Texas, Arlington, Texas, United States of America
| | - Hae-In Lee
- Department of Biology, University of Texas, Arlington, Texas, United States of America
| | - Johan H. J. Leveau
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Woo-Suk Chang
- Department of Biology, University of Texas, Arlington, Texas, United States of America
| |
Collapse
|
28
|
Wang G, Or D. Hydration dynamics promote bacterial coexistence on rough surfaces. THE ISME JOURNAL 2013; 7:395-404. [PMID: 23051694 PMCID: PMC3554404 DOI: 10.1038/ismej.2012.115] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/08/2012] [Accepted: 08/14/2012] [Indexed: 11/08/2022]
Abstract
Identification of mechanisms that promote and maintain the immense microbial diversity found in soil is a central challenge for contemporary microbial ecology. Quantitative tools for systematic integration of complex biophysical and trophic processes at spatial scales, relevant for individual cell interactions, are essential for making progress. We report a modeling study of competing bacterial populations cohabiting soil surfaces subjected to highly dynamic hydration conditions. The model explicitly tracks growth, motion and life histories of individual bacterial cells on surfaces spanning dynamic aqueous networks that shape heterogeneous nutrient fields. The range of hydration conditions that confer physical advantages for rapidly growing species and support competitive exclusion is surprisingly narrow. The rapid fragmentation of soil aqueous phase under most natural conditions suppresses bacterial growth and cell dispersion, thereby balancing conditions experienced by competing populations with diverse physiological traits. In addition, hydration fluctuations intensify localized interactions that promote coexistence through disproportional effects within densely populated regions during dry periods. Consequently, bacterial population dynamics is affected well beyond responses predicted from equivalent and uniform hydration conditions. New insights on hydration dynamics could be considered in future designs of soil bioremediation activities, affect longevity of dry food products, and advance basic understanding of bacterial diversity dynamics and its role in global biogeochemical cycles.
Collapse
Affiliation(s)
- Gang Wang
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Universitaetstrasse, Zurich, Switzerland
| | - Dani Or
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Universitaetstrasse, Zurich, Switzerland
| |
Collapse
|
29
|
Crabbé A, Leroy B, Wattiez R, Aertsen A, Leys N, Cornelis P, Van Houdt R. Differential proteomics and physiology of Pseudomonas putida KT2440 under filament-inducing conditions. BMC Microbiol 2012. [PMID: 23186381 PMCID: PMC3538555 DOI: 10.1186/1471-2180-12-282] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background Pseudomonas putida exerts a filamentous phenotype in response to environmental stress conditions that are encountered during its natural life cycle. This study assessed whether P. putida filamentation could confer survival advantages. Filamentation of P. putida was induced through culturing at low shaking speed and was compared to culturing in high shaking speed conditions, after which whole proteomic analysis and stress exposure assays were performed. Results P. putida grown in filament-inducing conditions showed increased resistance to heat and saline stressors compared to non-filamented cultures. Proteomic analysis showed a significant metabolic change and a pronounced induction of the heat shock protein IbpA and recombinase RecA in filament-inducing conditions. Our data further indicated that the associated heat shock resistance, but not filamentation, was dependent of RecA. Conclusions This study provides insights into the altered metabolism of P. putida in filament-inducing conditions, and indicates that the formation of filaments could potentially be utilized by P. putida as a survival strategy in its hostile, recurrently changing habitat.
Collapse
Affiliation(s)
- Aurélie Crabbé
- Unit of Microbiology, Expert Group Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | | | | | | | | | | | | |
Collapse
|
30
|
Schmidt H, Eickhorst T, Mussmann M. Gold-FISH: a new approach for the in situ detection of single microbial cells combining fluorescence and scanning electron microscopy. Syst Appl Microbiol 2012; 35:518-25. [PMID: 22770611 DOI: 10.1016/j.syapm.2012.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 04/26/2012] [Accepted: 04/27/2012] [Indexed: 11/26/2022]
Abstract
A novel fluorescence in situ hybridisation (FISH) method is presented that allows the combination of epifluorescence and scanning electron microscopy (SEM) to identify single microbial cells. First, the rRNA of whole cells is hybridised with horseradish peroxidase-labelled oligonucleotide probes and this is followed by catalysed reporter deposition (CARD) of biotinylated tyramides. This facilitates an amplification of binding sites for streptavidin conjugates covalently labelled with both fluorophores and nanogold particles. The deposition of Alexa Fluor 488 fluoro-nanogold-streptavidin conjugates was confirmed via epifluorescence microscopy and cells could be quantified in a similar way to standard CARD-FISH approaches. To detect cells by SEM, an autometallographic enhancement of the nanogold particles was essential, and allowed the in situ localisation of the target organisms at resolutions beyond light microscopy. Energy dispersive X-ray spectroscopy (EDS) was used to verify the effects of CARD and autometallography on gold deposition in target cells. The gold-FISH protocol was developed and optimised using pure cultures and environmental samples, such as rice roots and marine sediments. The combination of epifluorescence and scanning electron microscopy provides a promising tool for investigating microorganisms at levels of high resolution. Correlative characterisation of physicochemical properties by EDS will allow for the analysis of microbe-surface interactions.
Collapse
Affiliation(s)
- Hannes Schmidt
- University of Bremen, Leobener Str., UFT, 28359 Bremen, Germany
| | | | | |
Collapse
|
31
|
Mavrodi OV, Mavrodi DV, Parejko JA, Thomashow LS, Weller DM. Irrigation differentially impacts populations of indigenous antibiotic-producing pseudomonas spp. in the rhizosphere of wheat. Appl Environ Microbiol 2012; 78:3214-20. [PMID: 22389379 PMCID: PMC3346461 DOI: 10.1128/aem.07968-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/23/2012] [Indexed: 01/22/2023] Open
Abstract
This work determined the impact of irrigation on the seasonal dynamics of populations of Pseudomonas spp. producing the antibiotics phenazine-1-carboxylic acid (Phz(+)) and 2,4-diacetylphloroglucinol (Phl(+)) in the rhizosphere of wheat grown in the low-precipitation zone (150 to 300 mm annually) of the Columbia Plateau of the Inland Pacific Northwest. Population sizes and plant colonization frequencies of Phz(+) and Phl(+) Pseudomonas spp. were determined in winter and spring wheat collected during the growing seasons from 2008 to 2009 from selected commercial dryland and irrigated fields in central Washington State. Only Phz(+) bacteria were detected on dryland winter wheat, with populations ranging from 4.8 to 6.3 log CFU g(-1) of root and rhizosphere colonization frequencies of 67 to 100%. The ranges of population densities of Phl(+) and Phz(+) Pseudomonas spp. recovered from wheat grown under irrigation were similar, but 58 to 100% of root systems were colonized by Phl(+) bacteria whereas only 8 to 50% of plants harbored Phz(+) bacteria. In addition, Phz(+) Pseudomonas spp. were abundant in the rhizosphere of native plant species growing in nonirrigated areas adjacent to the sampled dryland wheat fields. This is the first report that documents the impact of irrigation on indigenous populations of two closely related groups of antibiotic-producing pseudomonads that coinhabit the rhizosphere of an economically important cereal crop. These results demonstrate how crop management practices can influence indigenous populations of antibiotic-producing pseudomonads with the capacity to suppress soilborne diseases of wheat.
Collapse
Affiliation(s)
- Olga V Mavrodi
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA.
| | | | | | | | | |
Collapse
|
32
|
Gupta R, Schuster M. Quorum sensing modulates colony morphology through alkyl quinolones in Pseudomonas aeruginosa. BMC Microbiol 2012; 12:30. [PMID: 22404951 PMCID: PMC3364869 DOI: 10.1186/1471-2180-12-30] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 03/09/2012] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Acyl-homoserine lactone (acyl-HSL) and alkyl quinolone (AQ) based quorum-sensing (QS) systems are important for Pseudomonas aeruginosa virulence and biofilm formation. The effect of QS on biofilm formation is influenced by various genetic and environmental factors. Here, we used a colony biofilm assay to study the effect of the central acyl-HSL QS regulator, LasR, on biofilm formation and structure in the representative clinical P. aeruginosa isolate ZK2870. RESULTS A lasR mutant exhibited wrinkled colony morphology at 37°C in contrast to the smooth colony morphology of the wild-type. Mutational analysis indicated that wrinkling of the lasR mutant is dependent on pel, encoding a biofilm matrix exopolysaccharide. Suppressor mutagenesis and complementation analysis implicated the AQ signaling pathway as the link between las QS and colony morphology. In this pathway, genes pqsA-D are involved in the synthesis of 4-hydroxyalkyl quinolines ("Series A congeners"), which are converted to 3,4-dihydroxyalkyl quinolines ("Series B congeners", including the well-characterized Pseudomonas Quinolone Signal, PQS) by the product of the LasR-dependent pqsH gene. Measurement of AQ in the wild-type, the lasR pqsA::Tn suppressor mutant as well as the defined lasR, pqsH, and lasR pqsH mutants showed a correlation between 4-hydroxyalkyl quinoline levels and the degree of colony wrinkling. Most importantly, the lasR pqsH double mutant displayed wrinkly morphology without producing any 3,4-dihydroxyalkyl quinolines. Constitutive expression of pqsA-D genes in a lasR pqsR::Tnmutant showed that colony wrinkling does not require the AQ receptor PqsR. CONCLUSIONS Taken together, these results indicate that the las QS system represses Pel and modulates colony morphology through a 4-hydroxyalkyl quinoline in a PqsR-independent manner, ascribing a novel function to an AQ other than PQS in P. aeruginosa.
Collapse
Affiliation(s)
- Rashmi Gupta
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
33
|
Villa F, Remelli W, Forlani F, Gambino M, Landini P, Cappitelli F. Effects of chronic sub-lethal oxidative stress on biofilm formation by Azotobacter vinelandii. BIOFOULING 2012; 28:823-833. [PMID: 22871137 DOI: 10.1080/08927014.2012.715285] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This work showed that perturbations of the physiological steady-state level of reactive oxygen species (ROS) affected biofilm genesis and the characteristics of the model bacterium Azotobacter vinelandii. To get a continuous endogenous source of ROS, a strain exposed to chronic sub-lethal oxidative stress was deprived of the gene coding for the antioxidant rhodanese-like protein RhdA (MV474). In this study MV474 biofilm showed (i) a seven-fold higher growth rate, (ii) induction of catalase and alkyl-hydroxyl-peroxidase enzymes, (iii) higher average thicknesses due to increased production of a polysaccharide-rich extracellular matrix and (iv) less susceptibility to hydrogen peroxide than the wild-type strain (UW136). MV474 showed increased swimming and swarming activity and the swarming colonies experienced a higher level of oxidative stress compared to UW136. A continuous exogenous source of ROS increased biofilm formation in UW136. Overall, chronic sub-lethal oxidative events promoted sessile behavior in A. vinelandii.
Collapse
Affiliation(s)
- Federica Villa
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, via Celoria 2, Milano, 20133, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Cercado B, Auria R, Cardenas B, Revah S. Characterization of artificially dried biofilms for air biofiltration studies. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2012; 47:940-948. [PMID: 22486663 DOI: 10.1080/10934529.2012.667292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
One of the main problems associated with the operation of air biofilters is the loss of performance caused by drying of the bioactive support, as the removal capacity of contaminants by the microorganisms is dependent on their water content. In this work, biofilms from a microbial consortium adapted to toluene were grown on stainless steel slides. The biofilms were dried in stoppered flasks with saturated saline solutions to obtain final water activities of 97.4 %, 83.9 %, 74.8 % and 32 %. The biofilms were characterized by a sorption isotherm Type III with toluene; the water desorption isotherm was fitted to the BET model and the biofilm hydrophobicity was also determined. Specific oxygen consumption rates decreased at lower Aw from 60 μg O(2)/mg protein/h to zero activity. Biofilm activity, represented by a toluene consumption rate, and others physical properties presented a critical point between Aw 0.84 and 0.97. Biological activity of dried biofilms was restored either partially or completely, depending on the extent of drying and rewetting method.
Collapse
Affiliation(s)
- Bibiana Cercado
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana Cuajimalpa, Distrito Federal, México
| | | | | | | |
Collapse
|
35
|
Transcriptome dynamics of Pseudomonas putida KT2440 under water stress. Appl Environ Microbiol 2011; 78:676-83. [PMID: 22138988 DOI: 10.1128/aem.06150-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Water deprivation can be a major stressor to microbial life in surface and subsurface soil. In unsaturated soils, the matric potential (Ψ(m)) is often the main component of the water potential, which measures the thermodynamic availability of water. A low matric potential usually translates into water forming thin liquid films in the soil pores. Little is known of how bacteria respond to such conditions, where, in addition to facing water deprivation that might impair their metabolism, they have to adapt their dispersal strategy as swimming motility may be compromised. Using the pressurized porous surface model (PPSM), which allows creation of thin liquid films by controlling Ψ(m), we examined the transcriptome dynamics of Pseudomonas putida KT2440. We identified the differentially expressed genes in cells exposed to a mild matric stress (-0.4 MPa) for 4, 24, or 72 h. The major response was detected at 4 h before gradually disappearing. Upregulation of alginate genes was notable in this early response. Flagellar genes were not downregulated, and the microarray data even suggested increasing expression as the stress prolonged. Moreover, we tested the effect of polyethylene glycol 8000 (PEG 8000), a nonpermeating solute often used to simulate Ψ(m), on the gene expression profile and detected a different profile than that observed by directly imposing Ψ(m). This study is the first transcriptome profiling of KT2440 under directly controlled Ψ(m) and also the first to show the difference in gene expression profiles between a PEG 8000-simulated and a directly controlled Ψ(m).
Collapse
|
36
|
Bekir K, Abdallah FB, Ellafi A, Bakhrouf A. Adherence assays and slime production of Staphylococcus aureus strains after their incubation in seawater microcosms. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0200-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
37
|
Gülez G, Dechesne A, Smets BF. The Pressurized Porous Surface Model: an improved tool to study bacterial behavior under a wide range of environmentally relevant matric potentials. J Microbiol Methods 2010; 82:324-6. [PMID: 20599568 DOI: 10.1016/j.mimet.2010.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/17/2010] [Accepted: 06/20/2010] [Indexed: 11/30/2022]
Abstract
To study bacterial behavior under varying hydration conditions similar to surface soil, we have developed a system called the Pressurized Porous Surface Model (PPSM). Thin liquid films created by imposing a matric potential of -0.4 MPa impact gene expression and colony development in Pseudomonas putida.
Collapse
Affiliation(s)
- Gamze Gülez
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, DK-2800 Kgs. Lyngby, Denmark
| | | | | |
Collapse
|
38
|
Li X, Nielsen L, Nolan C, Halverson LJ. Transient alginate gene expression by Pseudomonas putida biofilm residents under water-limiting conditions reflects adaptation to the local environment. Environ Microbiol 2010; 12:1578-90. [PMID: 20236161 DOI: 10.1111/j.1462-2920.2010.02186.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Under water-limiting conditions Pseudomonas putida produces the exopolysaccharide alginate, which influences biofilm development and facilitates maintaining a hydrated microenvironment. Since alginate is a minor biofilm matrix component it is important to determine whether alginate production occurs by all or a subset of residents, and when and to what extent cells contribute to alginate production. To address these questions we employed stable and unstable fluorescent reporters to measure alginate biosynthesis (algD) operon expression and metabolic activity in vivo quantitatively by flow cytometry and visually by microscopy. Here we report that during growth under water-limiting conditions and when biofilms become dehydrated most residents transiently express the alginate biosynthesis genes leading to distinct spatial patterns as the biofilm ages. Transient alginate gene expression was not a consequence of decreased metabolic activity, since metabolic reporters were still expressed, nor was it likely due to transient cytosolic availability of the alternative sigma factor AlgT, based on qRT-PCR. Our findings also indicate that one or more biofilm attribute, other than alginate, provides protection from desiccation stress. Collectively, our findings suggest that differentiated cells dedicated to alginate production are not part of the P. putida biofilm lifestyle under water-limiting conditions. Alternatively, P. putida biofilm cells may be responding to their own local environment, producing alginate because of the fitness advantage it confers under those particular conditions.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
39
|
Wang G, Or D. Aqueous films limit bacterial cell motility and colony expansion on partially saturated rough surfaces. Environ Microbiol 2010; 12:1363-73. [DOI: 10.1111/j.1462-2920.2010.02180.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Kim SA, Lee YM, Oh SW, Gwak HS, Hwang IG, Kang DH, Woo GJ, Rhee MS. Biofilm Formation and Low pH Viability of Cronobacter spp. (Enterobacter sakazakii) Isolated from Powdered Infant Formula and Infant Foods in Korea. Korean J Food Sci Anim Resour 2009. [DOI: 10.5851/kosfa.2009.29.6.702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
41
|
Veeranagouda Y, Lim EJ, Kim DW, Kim JK, Cho K, Heipieper HJ, Lee K. Formation of specialized aerial architectures by Rhodococcus during utilization of vaporized p-cresol. Microbiology (Reading) 2009; 155:3788-3796. [DOI: 10.1099/mic.0.029926-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
When grown with vaporized alkylphenols such as p-cresol as the sole carbon and energy source, several isolated Rhodococcus strains formed growth structures like miniature mushrooms, termed here specialized aerial architectures (SAA), that reached sizes of up to 0.8 mm in height. Microscopic examination allowed us to view the distinct developmental stages during the formation of SAA from a selected strain, Rhodococcus sp. KL96. Initially, mounds consisting of long rod cells arose from a lawn of cells, and then highly branched structures were formed from the mounds. During the secondary stage of development, branching began after long rod cells grew outward and twisted longitudinally, serving as growth points, and the cells at the base of the mound became short rods that supported upward growth. Cells in the highly fluffy structures were eventually converted, via reductive division, into structures that resembled cocci, with a diameter of approximately 0.5 μm, that were arranged in chains. Most cells inside the SAA underwent a phase variation in order to form wrinkled colonies from cells that originally formed smooth colonies. Approximately 2 months was needed for complete development of the SAA, and viable cells were recovered from SAA that were incubated for more than a year. An extracellular polymeric matrix layer and lipid bodies appeared to play an important role in structural integrity and as a metabolic energy source, respectively. To our knowledge, similar formation of aerial structures for the purpose of substrate utilization has not been reported previously for Gram-positive bacteria.
Collapse
Affiliation(s)
- Yaligara Veeranagouda
- Department of Microbiology, Changwon National University, Changwon-si, Kyongnam 641-773, Republic of Korea
| | - Eun Jin Lim
- Department of Microbiology, Changwon National University, Changwon-si, Kyongnam 641-773, Republic of Korea
| | - Dong Wan Kim
- Department of Microbiology, Changwon National University, Changwon-si, Kyongnam 641-773, Republic of Korea
| | - Jin-Kyoo Kim
- Department of Microbiology, Changwon National University, Changwon-si, Kyongnam 641-773, Republic of Korea
| | - Kyungyun Cho
- Department of Biotechnology, Hoseo University, Asan 336-795, Republic of Korea
| | - Hermann J. Heipieper
- Department of Environmental Biotechnology, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Kyoung Lee
- Department of Microbiology, Changwon National University, Changwon-si, Kyongnam 641-773, Republic of Korea
| |
Collapse
|
42
|
Chang WS, Li X, Halverson LJ. Influence of water limitation on endogenous oxidative stress and cell death within unsaturatedPseudomonas putidabiofilms. Environ Microbiol 2009; 11:1482-92. [DOI: 10.1111/j.1462-2920.2009.01876.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
|
44
|
The porous surface model, a novel experimental system for online quantitative observation of microbial processes under unsaturated conditions. Appl Environ Microbiol 2008; 74:5195-200. [PMID: 18586968 DOI: 10.1128/aem.00313-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Water is arguably the most important constituent of microbial microhabitats due to its control of physical and physiological processes critical to microbial activity. In natural environments, bacteria often live on unsaturated surfaces, in thin (micrometric) liquid films. Nevertheless, no experimental systems are available that allow real-time observation of bacterial processes in liquid films of controlled thickness. We propose a novel, inexpensive, easily operated experimental platform, termed the porous surface model (PSM) that enables quantitative real-time microscopic observations of bacterial growth and activity under controlled unsaturated conditions. Bacteria are inoculated on a porous ceramic plate, wetted by a liquid medium. The thickness of the liquid film at the surface of the plate is set by imposing suction, corresponding to soil matric potential, to the liquid medium. The utility of the PSM was demonstrated using Pseudomonas putida KT2440 tagged with gfp as a model bacterium. Single cells were inoculated at the surface of the PSM, and the rate at which colonies expanded laterally was measured for three matric potentials (-0.5, -1.2, and -3.6 kPa). The matric potential exerted significant influence on colony expansion rates, with a faster rate of spreading at -0.5 than at -1.2 or -3.6 kPa (diameter increase rate, ca. 1,000, 200, and 17 microm h(-1), respectively). These differences can be attributed to cell motility, strongly limited under the most negative matric potential. The PSM constitutes a tool uniquely adapted to study the influence of liquid film geometry on microbial processes. It should therefore contribute to uncovering mechanisms of microbial adaptation to unsaturated environments.
Collapse
|
45
|
Santaella C, Schue M, Berge O, Heulin T, Achouak W. The exopolysaccharide of Rhizobium sp. YAS34 is not necessary for biofilm formation on Arabidopsis thaliana and Brassica napus roots but contributes to root colonization. Environ Microbiol 2008; 10:2150-63. [PMID: 18507672 PMCID: PMC2702498 DOI: 10.1111/j.1462-2920.2008.01650.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microbial exopolysaccharides (EPSs) play key roles in plant–microbe interactions, such as biofilm formation on plant roots and legume nodulation by rhizobia. Here, we focused on the function of an EPS produced by Rhizobium sp. YAS34 in the colonization and biofilm formation on non-legume plant roots (Arabidopsis thaliana and Brassica napus). Using random transposon mutagenesis, we isolated an EPS-deficient mutant of strain YAS34 impaired in a glycosyltransferase gene (gta). Wild type and mutant strains were tagged with a plasmid-born GFP and, for the first time, the EPS produced by the wild-type strain was seen in the rhizosphere using selective carbohydrate probing with a fluorescent lectin and confocal laser-scanning microscopy. We show for the fist time that Rhizobium forms biofilms on roots of non-legumes, independently of the EPS synthesis. When produced by strain YAS34 wild type, EPS is targeted at specific parts of the plant root system. Nutrient fluctuations, root exudates and bacterial growth phase can account for such a production pattern. The EPS synthesis in Rhizobium sp. YAS34 is not essential for biofilm formation on roots, but is critical to colonization of the basal part of the root system and increasing the stability of root-adhering soil. Thus, in Rhizobium sp. YAS34 and non-legume interactions, microbial EPS is implicated in root–soil interface, root colonization, but not in biofilm formation.
Collapse
Affiliation(s)
- Catherine Santaella
- CEA, DSV, IBEB, SBVME, Laboratory Ecol Microb Rhizosphere and Environ Extrem (LEMiRE), Saint-Paul-lez-Durance, F-13108, France.
| | | | | | | | | |
Collapse
|
46
|
Abstract
Plants support a diverse array of bacteria, including parasites, mutualists, and commensals on and around their roots, in the vasculature, and on aerial tissues. These microbes have a profound influence on plant health and productivity. Bacteria physically interact with surfaces to form complex multicellular and often multispecies assemblies, including biofilms and smaller aggregates. There is growing appreciation that the intensity, duration, and outcome of plant-microbe interactions are significantly influenced by the conformation of adherent microbial populations. Biofilms on different tissues have unique properties, reflecting the prevailing conditions at those sites. Attachment is required for biofilm formation, and bacteria interact with plant tissues through adhesins including polysaccharides and surface proteins, with initial contact often mediated by active motility. Recognition between lectins and their cognate carbohydrates is a common means of specificity. Biofilm development and the resulting intimate interactions with plants often require cell-cell communication between colonizing bacteria.
Collapse
Affiliation(s)
- Thomas Danhorn
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
47
|
Affiliation(s)
- Robert J Palmer
- Oral Biofilm Communication Unit, Oral Infections and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bldg. 30, Room 310, 30 Convent Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|
48
|
Chang WS, van de Mortel M, Nielsen L, Nino de Guzman G, Li X, Halverson LJ. Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J Bacteriol 2007; 189:8290-9. [PMID: 17601783 PMCID: PMC2168710 DOI: 10.1128/jb.00727-07] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms exist in a variety of habitats that are routinely or periodically not saturated with water, and residents must integrate cues on water abundance (matric stress) or osmolarity (solute stress) into lifestyle strategies. Here we examine this hypothesis by assessing the extent to which alginate production by Pseudomonas putida strain mt-2 and by other fluorescent pseudomonads occurs in response to water limitations and how the presence of alginate in turn influences biofilm development and stress tolerance. Total exopolysaccharide (EPS) and alginate production increased with increasing matric, but not solute, stress severity, and alginate was a significant component, but not the major component, of EPS. Alginate influenced biofilm architecture, resulting in biofilms that were taller, covered less surface area, and had a thicker EPS layer at the air interface than those formed by an mt-2 algD mutant under water-limiting conditions, properties that could contribute to less evaporative water loss. We examined this possibility and show that alginate reduces the extent of water loss from biofilm residents by using a biosensor to quantify the water potential of individual cells and by measuring the extent of dehydration-mediated changes in fatty acid composition following a matric or solute stress shock. Alginate deficiency decreased survival of desiccation not only by P. putida but also by Pseudomonas aeruginosa PAO1 and Pseudomonas syringae pv. syringae B728a. Our findings suggest that in response to water-limiting conditions, pseudomonads produce alginate, which influences biofilm development and EPS physiochemical properties. Collectively these responses may facilitate the maintenance of a hydrated microenvironment, protecting residents from desiccation stress and increasing survival.
Collapse
Affiliation(s)
- Woo-Suk Chang
- Graduate Program in Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | |
Collapse
|
49
|
Castonguay MH, van der Schaaf S, Koester W, Krooneman J, van der Meer W, Harmsen H, Landini P. Biofilm formation by Escherichia coli is stimulated by synergistic interactions and co-adhesion mechanisms with adherence-proficient bacteria. Res Microbiol 2006; 157:471-8. [PMID: 16376056 DOI: 10.1016/j.resmic.2005.10.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 09/30/2005] [Accepted: 10/18/2005] [Indexed: 11/17/2022]
Abstract
Laboratory strains of Escherichia coli do not show significant ability to attach to solid surfaces and to form biofilms. We compared the adhesion properties of the E. coli PHL565 laboratory strain to eight environmental E. coli isolates: only four isolates displayed adhesion properties to glass significantly higher than PHL565. The ability of the adhesion-proficient isolates to attach to glass tubes strongly correlated with their ability to express curli (thin aggregative fimbriae), thus suggesting that curli are a common adhesion determinant in environmental strains. Despite its inability to attach to solid surfaces, growth of E. coli PHL565 in mixed cultures with Pseudomonas putida MT2 resulted in co-adhesion and in formation of a mixed E. coli/P. putida biofilm, which was able to colonize glass surfaces with dramatic efficiency compared to P. putida alone. E. coli/P. putida interactions stimulate initial adhesion to glass, and the presence of both bacterial species in the mature biofilm was confirmed by quantitative PCR. In contrast, no synergistic biofilm formation was observed in mixed cultures of E. coli with the Gram-positive bacterium Staphylococcus epidermidis. Interestingly, E. coli PHL565 also stimulated biofilm formation by bacterial communities isolated from drinking water distribution systems. Our results strongly suggest that co-adhesion and synergistic interaction with biofilm-forming species might represent an important mechanism, and a possible alternative strategy to production of adhesion determinants, for persistence and propagation of E. coli in the environment.
Collapse
Affiliation(s)
- Marie-Hélène Castonguay
- Swiss Federal Institute of Environmental Technology (EAWAG), Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
| | | | | | | | | | | | | |
Collapse
|
50
|
Nanavati DM, Thirangoon K, Noll KM. Several archaeal homologs of putative oligopeptide-binding proteins encoded by Thermotoga maritima bind sugars. Appl Environ Microbiol 2006; 72:1336-45. [PMID: 16461685 PMCID: PMC1392961 DOI: 10.1128/aem.72.2.1336-1345.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hyperthermophilic bacterium Thermotoga maritima has shared many genes with archaea through horizontal gene transfer. Several of these encode putative oligopeptide ATP binding cassette (ABC) transporters. We sought to test the hypothesis that these transporters actually transport sugars by measuring the substrate affinities of their encoded substrate-binding proteins (SBPs). This information will increase our understanding of the selective pressures that allowed this organism to retain these archaeal homologs. By measuring changes in intrinsic fluorescence of these SBPs in response to exposure to various sugars, we found that five of the eight proteins examined bind to sugars. We could not identify the ligands of the SBPs TM0460, TM1150, and TM1199. The ligands for the archaeal SBPs are TM0031 (BglE), the beta-glucosides cellobiose and laminaribiose; TM0071 (XloE), xylobiose and xylotriose; TM0300 (GloE), large glucose oligosaccharides represented by xyloglucans; TM1223 (ManE), beta-1,4-mannobiose; and TM1226 (ManD), beta-1,4-mannobiose, beta-1,4-mannotriose, beta-1,4-mannotetraose, beta-1,4-galactosyl mannobiose, and cellobiose. For comparison, seven bacterial putative sugar-binding proteins were examined and ligands for three (TM0595, TM0810, and TM1855) were not identified. The ligands for these bacterial SBPs are TM0114 (XylE), xylose; TM0418 (InoE), myo-inositol; TM0432 (AguE), alpha-1,4-digalactouronic acid; and TM0958 (RbsB), ribose. We found that T. maritima does not grow on several complex polypeptide mixtures as sole sources of carbon and nitrogen, so it is unlikely that these archaeal ABC transporters are used primarily for oligopeptide transport. Since these SBPs bind oligosaccharides with micromolar to nanomolar affinities, we propose that they are used primarily for oligosaccharide transport.
Collapse
Affiliation(s)
- Dhaval M Nanavati
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | | | | |
Collapse
|