1
|
Marasco R, Mosqueira MJ, Fusi M, Ramond JB, Merlino G, Booth JM, Maggs-Kölling G, Cowan DA, Daffonchio D. Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. MICROBIOME 2018; 6:215. [PMID: 30514367 PMCID: PMC6280439 DOI: 10.1186/s40168-018-0597-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/16/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND The rhizosheath-root system is an adaptive trait of sandy-desert speargrasses in response to unfavourable moisture and nutritional conditions. Under the deserts' polyextreme conditions, plants interact with edaphic microorganisms that positively affect their fitness and resistance. However, the trophic simplicity and environmental harshness of desert ecosystems have previously been shown to strongly influence soil microbial community assembly. We hypothesize that sand-driven ecological filtering constrains the microbial recruitment processes in the speargrass rhizosheath-root niche, prevailing over the plant-induced selection. METHODS Bacterial and fungal communities from the rhizosheath-root compartments (endosphere root tissues, rhizosheath and rhizosphere) of three Namib Desert speargrass species (Stipagrostis sabulicola, S. seelyae and Cladoraphis spinosa) along with bulk sand have been studied to test our hypothesis. To minimize the variability determined by edaphic and climatic factors, plants living in a single dune were studied. We assessed the role of plant species vs the sandy substrate on the recruitment and selection, phylogenetic diversity and co-occurrence microbial networks of the rhizosheath-root system microbial communities. RESULTS Microorganisms associated with the speargrass rhizosheath-root system were recruited from the surrounding bulk sand population and were significantly enriched in the rhizosheath compartments (105 and 104 of bacterial 16S rRNA and fungal ITS copies per gram of sand to up to 108 and 107 copies per gram, respectively). Furthermore, each rhizosheath-root system compartment hosted a specific microbial community demonstrating strong niche-partitioning. The rhizosheath-root systems of the three speargrass species studied were dominated by desert-adapted Actinobacteria and Alphaproteobacteria (e.g. Lechevalieria, Streptomyces and Microvirga) as well as saprophytic Ascomycota fungi (e.g. Curvularia, Aspergillus and Thielavia). Our results clearly showed a random phylogenetic turnover of rhizosheath-root system associated microbial communities, independent of the plant species, where stochastic factors drive neutral assembly. Co-occurrence network analyses also indicated that the bacterial and fungal community members of the rhizosheath-root systems established a higher number of interactions than those in the barren bulk sand, suggesting that the former are more stable and functional than the latter. CONCLUSION Our study demonstrates that the rhizosheath-root system microbial communities of desert dune speargrasses are stochastically assembled and host-independent. This finding supports the concept that the selection determined by the desert sand prevails over that imposed by the genotype of the different plant species.
Collapse
Affiliation(s)
- Ramona Marasco
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| | - María J Mosqueira
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Marco Fusi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Jean-Baptiste Ramond
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Giuseppe Merlino
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Jenny M Booth
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | | | - Don A Cowan
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Daniele Daffonchio
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
2
|
Sandoz KM, Popham DL, Beare PA, Sturdevant DE, Hansen B, Nair V, Heinzen RA. Transcriptional Profiling of Coxiella burnetii Reveals Extensive Cell Wall Remodeling in the Small Cell Variant Developmental Form. PLoS One 2016; 11:e0149957. [PMID: 26909555 PMCID: PMC4766238 DOI: 10.1371/journal.pone.0149957] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/05/2016] [Indexed: 11/19/2022] Open
Abstract
A hallmark of Coxiella burnetii, the bacterial cause of human Q fever, is a biphasic developmental cycle that generates biologically, ultrastructurally, and compositionally distinct large cell variant (LCV) and small cell variant (SCV) forms. LCVs are replicating, exponential phase forms while SCVs are non-replicating, stationary phase forms. The SCV has several properties, such as a condensed nucleoid and an unusual cell envelope, suspected of conferring enhanced environmental stability. To identify genetic determinants of the LCV to SCV transition, we profiled the C. burnetii transcriptome at 3 (early LCV), 5 (late LCV), 7 (intermediate forms), 14 (early SCV), and 21 days (late SCV) post-infection of Vero epithelial cells. Relative to early LCV, genes downregulated in the SCV were primarily involved in intermediary metabolism. Upregulated SCV genes included those involved in oxidative stress responses, arginine acquisition, and cell wall remodeling. A striking transcriptional signature of the SCV was induction (>7-fold) of five genes encoding predicted L,D transpeptidases that catalyze nonclassical 3-3 peptide cross-links in peptidoglycan (PG), a modification that can influence several biological traits in bacteria. Accordingly, of cross-links identified, muropeptide analysis showed PG of SCV with 46% 3-3 cross-links as opposed to 16% 3-3 cross-links for LCV. Moreover, electron microscopy revealed SCV with an unusually dense cell wall/outer membrane complex as compared to LCV with its clearly distinguishable periplasm and inner and outer membranes. Collectively, these results indicate the SCV produces a unique transcriptome with a major component directed towards remodeling a PG layer that likely contributes to Coxiella's environmental resistance.
Collapse
Affiliation(s)
- Kelsi M. Sandoz
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Daniel E. Sturdevant
- Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bryan Hansen
- Electron Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Vinod Nair
- Electron Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
3
|
Pradeu T, Laplane L, Prévot K, Hoquet T, Reynaud V, Fusco G, Minelli A, Orgogozo V, Vervoort M. Defining “Development”. Curr Top Dev Biol 2016; 117:171-83. [DOI: 10.1016/bs.ctdb.2015.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
4
|
Lmo0171, a novel internalin-like protein, determines cell morphology of Listeria monocytogenes and its ability to invade human cell lines. Curr Microbiol 2014; 70:267-74. [PMID: 25323012 PMCID: PMC4293459 DOI: 10.1007/s00284-014-0715-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 09/06/2014] [Indexed: 12/19/2022]
Abstract
Internalins comprise a class of Listeria monocytogenes proteins responsible for activation of signalling pathways leading to phagocytic uptake of the bacterium by the host cell. In this paper, a possible role of Lmo0171-a new member of the internalin family was investigated. Disruption of the lmo0171 gene resulted in important cell morphology alterations along with a decrease in the ability to invade three eukaryotic cell lines, that is Int407, Hep-2 and HeLa and diminished adhesion efficiency to int407, thereby suggesting bifunctionality of the newly characterised Lmo0171 internalin.
Collapse
|
5
|
Wang H, Wingreen NS, Mukhopadhyay R. Self-organized periodicity of protein clusters in growing bacteria. PHYSICAL REVIEW LETTERS 2008; 101:218101. [PMID: 19113453 DOI: 10.1103/physrevlett.101.218101] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Indexed: 05/27/2023]
Abstract
Chemotaxis receptors in E. coli form clusters at the cell poles and also laterally along the cell body, and this clustering plays an important role in signal transduction. Recently, experiments using fluorescence imaging have shown that, during cell growth, lateral clusters form at positions approximately periodically spaced along the cell body. In this Letter, we demonstrate within a lattice model that such spatial organization could arise spontaneously from a stochastic nucleation mechanism. The same mechanism may explain the recent observation of periodic aggregates of misfolded proteins in E. coli.
Collapse
Affiliation(s)
- Hui Wang
- Department of Physics, Clark University, Worcester, Massachusetts 01610, USA
| | | | | |
Collapse
|
6
|
San Paolo S, Huang J, Cohen SN, Thompson CJ. rag genes: novel components of the RamR regulon that trigger morphological differentiation in Streptomyces coelicolor. Mol Microbiol 2006; 61:1167-86. [PMID: 16925552 DOI: 10.1111/j.1365-2958.2006.05304.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The filamentous bacterium, Streptomyces coelicolor, undergoes a complex cycle of growth and development in which morphological differentiation coincides with the activation of the orphan response regulator RamR and the biosynthesis of a morphogenic peptide called SapB. SapB is a lantibiotic-like molecule derived from the product of the ramS gene that promotes formation of aerial hyphae by breaking the aqueous tension on the surface of the substrate mycelium. A ramR-disrupted mutant is delayed in aerial hyphae formation while constitutive overexpression of ramR accelerates aerial hyphae formation in the wild-type strain and restores SapB biosynthesis and aerial hyphae formation in all developmental mutants (bld) tested. Using DNA microarrays to globally identify S. coelicolor genes whose transcription was affected by ramR mutation or overexpression, we discovered a ramR-activated locus of contiguous cotranscribed developmental genes that modulate both aerial hyphae formation and sporulation. The genes of this cluster of ramR-activated genes (rag), which are chromosomally distant from previously known RamR-regulated genes, include: ragA (sco4075) and ragB (sco4074), which encode two subunits of an ABC transporter, ragK (sco4073), a putative histidine kinase, and ragR (sco4072), a ramR paralogue. Promoter mapping and protein-DNA binding experiments indicate that RamR activates ragABKR transcription directly, by binding to three sequence motifs in the ragABKR promoter region. A constructed ragABKR null mutant was able to synthesize SapB and erect aerial hyphae; however, these hyphae were unusually branched, reminiscent of substrate hyphae. Subsequent stages of differentiation, septation and sporogenesis were delayed. The role of ragABKR in aerial hyphae formation was shown both by epistasis (ragR-activated aerial hyphae formation in bld mutants) and extracellular complementation (ragR-induced synthesis of an activity allowing aerial hyphae formation in bld mutants) experiments. In conclusion, the ragABKR locus activates a SapB-independent developmental pathway that is involved in both aerial hyphae formation and sporulation, serving to integrate sequential morphogenic changes.
Collapse
Affiliation(s)
- Salvatore San Paolo
- Department of Molecular Microbiology, Biocentre, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
7
|
Ghosh AS, Young KD. Helical disposition of proteins and lipopolysaccharide in the outer membrane of Escherichia coli. J Bacteriol 2005; 187:1913-22. [PMID: 15743937 PMCID: PMC1064060 DOI: 10.1128/jb.187.6.1913-1922.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In bacteria, several physiological processes once thought to be the products of uniformly dispersed reactions are now known to be highly asymmetric, with some exhibiting interesting geometric localizations. In particular, the cell envelope of Escherichia coli displays a form of subcellular differentiation in which peptidoglycan and outer membrane proteins at the cell poles remain stable for generations while material in the lateral walls is diluted by growth and turnover. To determine if material in the side walls was organized in any way, we labeled outer membrane proteins with succinimidyl ester-linked fluorescent dyes and then grew the stained cells in the absence of dye. Labeled proteins were not evenly dispersed in the envelope but instead appeared as helical ribbons that wrapped around the outside of the cell. By staining the O8 surface antigen of E. coli 2443 with a fluorescent derivative of concanavalin A, we observed a similar helical organization for the lipopolysaccharide (LPS) component of the outer membrane. Fluorescence recovery after photobleaching indicated that some of the outer membrane proteins remained freely diffusible in the side walls and could also diffuse into polar domains. On the other hand, the LPS O antigen was virtually immobile. Thus, the outer membrane of E. coli has a defined in vivo organization in which a subfraction of proteins and LPS are embedded in stable domains at the poles and along one or more helical ribbons that span the length of this gram-negative rod.
Collapse
Affiliation(s)
- Anindya S Ghosh
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037, USA
| | | |
Collapse
|
8
|
Varma A, Young KD. FtsZ collaborates with penicillin binding proteins to generate bacterial cell shape in Escherichia coli. J Bacteriol 2004; 186:6768-74. [PMID: 15466028 PMCID: PMC522200 DOI: 10.1128/jb.186.20.6768-6774.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms by which bacteria adopt and maintain individual shapes remain enigmatic. Outstanding questions include why cells are a certain size, length, and width; why they are uniform or irregular; and why some branch while others do not. Previously, we showed that Escherichia coli mutants lacking multiple penicillin binding proteins (PBPs) display extensive morphological diversity. Because defective sites in these cells exhibit the structural and functional characteristics of improperly localized poles, we investigated the connection between cell division and shape. Here we show that under semipermissive conditions the temperature-sensitive FtsZ84 protein produces branched and aberrant cells at a high frequency in mutants lacking PBP 5, and this phenotype is exacerbated by the loss of additional peptidoglycan endopeptidases. Surprisingly, certain ftsZ84 strains lyse at the nonpermissive temperature instead of filamenting, and inhibition of wild-type FtsZ forces some mutants into tightly wound spirillum-like morphologies. The results demonstrate that significant aspects of bacterial shape are dictated by a previously unrecognized relationship between the septation machinery and ostensibly minor peptidoglycan-modifying enzymes and that under certain circumstances improper FtsZ function can destroy the structural integrity of the cell.
Collapse
Affiliation(s)
- Archana Varma
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA.
| | | |
Collapse
|
9
|
Wu X, Liu D, Lee MH, Golden JW. patS minigenes inhibit heterocyst development of Anabaena sp. strain PCC 7120. J Bacteriol 2004; 186:6422-9. [PMID: 15375122 PMCID: PMC516582 DOI: 10.1128/jb.186.19.6422-6429.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The patS gene encodes a small peptide that is required for normal heterocyst pattern formation in the cyanobacterium Anabaena sp. strain PCC 7120. PatS is proposed to control the heterocyst pattern by lateral inhibition. patS minigenes were constructed and expressed by different developmentally regulated promoters to gain further insight into PatS signaling. patS minigenes patS4 to patS8 encode PatS C-terminal 4 (GSGR) to 8 (CDERGSGR) oligopeptides. When expressed by P(petE), P(patS), or P(rbcL) promoters, patS5 to patS8 inhibited heterocyst formation but patS4 did not. In contrast to the full-length patS gene, P(hepA)-patS5 failed to restore a wild-type pattern in a patS null mutant, indicating that PatS-5 cannot function in cell-to-cell signaling if it is expressed in proheterocysts. To establish the location of the PatS receptor, PatS-5 was confined within the cytoplasm as a gfp-patS5 fusion. The green fluorescent protein GFP-PatS-5 fusion protein inhibited heterocyst formation. Similarly, full-length PatS with a C-terminal hexahistidine tag inhibited heterocyst formation. These data indicate that the PatS receptor is located in the cytoplasm, which is consistent with recently published data indicating that HetR is a PatS target. We speculated that overexpression of other Anabaena strain PCC 7120 RGSGR-encoding genes might show heterocyst inhibition activity. In addition to patS and hetN, open reading frame (ORF) all3290 and an unannotated ORF, orf77, encode an RGSGR motif. Overexpression of all3290 and orf77 under the control of the petE promoter inhibited heterocyst formation, indicating that the RGSGR motif can inhibit heterocyst development in a variety of contexts.
Collapse
Affiliation(s)
- Xiaoqiang Wu
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | | | | | | |
Collapse
|
10
|
Abstract
In free-living eubacteria an external shell of peptidoglycan opposes internal hydrostatic pressure and prevents membrane rupture and death. At the same time, this wall imposes on each cell a shape. Because shape is both stable and heritable, as is the ability of many organisms to execute defined morphological transformations, cells must actively choose from among a large repertoire of available shapes. How they do so has been debated for decades, but recently experiment has begun to catch up with theory. Two discoveries are particularly informative. First, specific protein assemblies, nucleated by FtsZ, MreB or Mbl, appear to act as internal scaffolds that influence cell shape, perhaps by correctly localizing synthetic enzymes. Second, defects in cell shape are correlated with the presence of inappropriately placed, metabolically inert patches of peptidoglycan. When combined with what we know about mutants affecting cellular morphology, these observations suggest that bacteria may fabricate specific shapes by directing the synthesis of two kinds of cell wall: a long-lived, rigid framework that defines overall topology, and a metabolically plastic peptidoglycan whose shape is directed by internal scaffolds.
Collapse
Affiliation(s)
- Kevin D Young
- Department of Microbiology and Immunology, University of North Dakota School of Medicine, Grand Forks 58202-9037, USA.
| |
Collapse
|