1
|
Jacobs B, Bogaerts B, Verhaegen M, Vanneste K, De Keersmaecker SCJ, Roosens NHC, Rajkovic A, Mahillon J, Van Nieuwenhuysen T, Van Hoorde K. Whole-genome sequencing of soil- and foodborne Bacillus cereus sensu lato indicates no clear association between their virulence repertoire, genomic diversity and food matrix. Int J Food Microbiol 2025; 439:111266. [PMID: 40378489 DOI: 10.1016/j.ijfoodmicro.2025.111266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/29/2025] [Accepted: 05/10/2025] [Indexed: 05/19/2025]
Abstract
Bacillus cereus sensu lato is frequently involved in foodborne toxico-infections and is found in various foodstuff. It is unclear whether certain strains have a higher affinity for specific food matrices, which can be of interest for risk assessment. This study reports the characterization by whole-genome sequencing of 169 B. cereus isolates, isolated from 12 food types and soil over two decades. Any potential links between the food matrix of isolation, the isolate's genetic lineage and/or their (putative) virulence gene reservoir were investigated. More than 20 % of the strains contained the genes for the main potential enterotoxins (nheABC, hblCDA and cytK_2). Cereulide biosynthesis genes and genes encoding hemolysins and phospholipases, were detected in multiple isolates. Strain typing revealed a high diversity, as illustrated by 84 distinct sequence types, including 26 not previously described. This diversity was also reflected in the detection of all seven panC types and 71 unique virulence gene profiles. Core-genome MLST was used for phylogenomic investigation of the entire collection and SNP-based clustering was performed on the four most abundant sequence types, which did not reveal a clear affinity for specific B. cereus lineages or (putative) virulence genes for certain food matrices. Additionally, minimal genetic overlap was observed between soil and foodborne isolates. Clusters of closely-related isolates with common epidemiological metadata were detected. However, some isolates from different food matrices or collected several years apart were found to be genetically identical. This study provides elements that can be used for risk assessment of B. cereus in food.
Collapse
Affiliation(s)
- Bram Jacobs
- Foodborne Pathogens, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium; Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 635, Ghent, Belgium; Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Catholic University of Louvain, Croix du Sud 2, Louvain-la-Neuve, Belgium.
| | - Bert Bogaerts
- Transversal activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | - Marie Verhaegen
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Catholic University of Louvain, Croix du Sud 2, Louvain-la-Neuve, Belgium
| | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | | | - Nancy H C Roosens
- Transversal activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | - Andreja Rajkovic
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 635, Ghent, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Catholic University of Louvain, Croix du Sud 2, Louvain-la-Neuve, Belgium
| | | | - Koenraad Van Hoorde
- Foodborne Pathogens, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| |
Collapse
|
2
|
Bartoszewicz M, Czyżewska U, Zambrzycka M, Święcicka I. Organic vs. Conventional Milk: Uncovering the Link to Antibiotic Resistance in Bacillus cereus sensu lato. Int J Mol Sci 2024; 25:13528. [PMID: 39769288 PMCID: PMC11677985 DOI: 10.3390/ijms252413528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Bacillus cereus sensu lato (B. cereus s.l.) comprises mesophilic and psychrotolerant bacteria commonly found in natural environments as well as in organic and conventional milk. Due to their potential toxigenicity and antibiotic resistance, these bacteria pose a significant threat to consumer health. Organic milk production, which prohibits the use of antibiotics and artificial additives, may influence the composition of microbiota between milk types. This study aimed to compare the antibiotic resistance profiles and enterotoxic potential of B. cereus s.l. isolates from organic and conventional milk. The results indicate that, although conventional milk contains on average 3 times fewer B. cereus s.l. isolates, it has 10-15% more resistant isolates to selected beta-lactams, macrolides, and aminoglycosides. Regarding drug resistance, 21% of B. cereus s.l. isolates were multidrug-resistant, and as many as 42% were non-susceptible to two classes of antibiotics. Even among the sensitive isolates, bacteria from conventional milk exhibited on average 2.05 times higher MICs (minimal inhibitory concentrations) for beta-lactams, 1.49 times higher for erythromycin, 1.38 times higher for vancomycin, and 1.38 times higher for azithromycin. Antibiotic resistance was mostly associated with the origin of the isolates. These findings underscore the need for ongoing monitoring of antibiotic resistance and enterotoxicity among opportunistic B. cereus s.l. strains, which may pose challenges for public health and veterinary medicine. The results highlight that selective pressure associated with antibiotic use can drive resistance development in bacteria that are not the primary targets of antimicrobial therapy.
Collapse
Affiliation(s)
- Marek Bartoszewicz
- Department of Microbiology, Faculty of Biology, University of Białystok, 1J Konstanty Ciołkowski Street, 15-245 Białystok, Poland; (U.C.); (M.Z.); (I.Ś.)
| | - Urszula Czyżewska
- Department of Microbiology, Faculty of Biology, University of Białystok, 1J Konstanty Ciołkowski Street, 15-245 Białystok, Poland; (U.C.); (M.Z.); (I.Ś.)
| | - Monika Zambrzycka
- Department of Microbiology, Faculty of Biology, University of Białystok, 1J Konstanty Ciołkowski Street, 15-245 Białystok, Poland; (U.C.); (M.Z.); (I.Ś.)
| | - Izabela Święcicka
- Department of Microbiology, Faculty of Biology, University of Białystok, 1J Konstanty Ciołkowski Street, 15-245 Białystok, Poland; (U.C.); (M.Z.); (I.Ś.)
- Laboratory of Applied Microbiology, Faculty of Biology, University of Białystok, 1J Konstanty Ciołkowski Street, 15-245 Białystok, Poland
| |
Collapse
|
3
|
Saikia L, Medhi D, Bora S, Baishya L, Kataki M, Hazarika SC. An Outbreak of Bacillus cereus Emetic Toxin Mediated Food Poisoning After Consumption of Fried Rice in Assam. Indian J Microbiol 2024; 64:957-962. [PMID: 39282178 PMCID: PMC11399483 DOI: 10.1007/s12088-023-01167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/28/2023] [Indexed: 09/18/2024] Open
Abstract
Bacillus cereus is an emerging food-borne pathogen responsible for two types of food poisoning: emetic and diarrhoeal type. Here we report an emetic type of food-borne illness attributable to Bacillus cereus. On 2nd February, 2021, 202 people suffered from pain in abdomen and vomiting after consuming the rice provided during a public gathering in Diphu, Assam. Culture of leftover fried rice showed growth of Bacillus cereus group of organisms. Molecular detection of enterotoxin and emetic toxin genes was done in the isolated strains by polymerase chain reaction. Multi locus sequence typing (MLST) and phylogenetic analysis was done to characterise the isolated strains. A total of five strains of Bacillus cereus were isolated. Ces gene was found in isolates GMC22 & GMC24 and other enterotoxins producing genes were found in isolates GMC23 and GMC24. MLST identified four sequence types (STs) (ST1051, ST1616, ST998 and ST1000). Phylogenetic analysis clustered ST-1051 assigned to the GMC22 strain into the previously defined clade I and was in close relation with ST-144, representing a new cereulide-producing emetic cluster. As Bacillus cereus is a common contaminant of foods, it is essential to evaluate the pathogenic potential of the bacteria for a definite link between causative agents and the illness. MLST can be used to characterize the Bacillus cereus strains isolated from outbreak samples in order to link the probable pathogens with the illness. In this outbreak, we suggest that ST-1051 is the strain responsible for the food-borne illness, which was predominantly of emetic type.
Collapse
Affiliation(s)
- Lahari Saikia
- Department of Microbiology, Gauhati Medical College and Hospital, Guwahati, Assam 781032 India
| | - Devyashree Medhi
- Department of Microbiology, Gauhati Medical College and Hospital, Guwahati, Assam 781032 India
| | - Simi Bora
- Department of Microbiology, Kokrajhar Medical College and Hospital, Kokrajhar, Assam 783370 India
| | - Lakshyasri Baishya
- Department of Microbiology, Gauhati Medical College and Hospital, Guwahati, Assam 781032 India
| | - Manjuri Kataki
- Department of Microbiology, Nagaon Medical College and Hospital, Nagaon, Assam 782001 India
| | | |
Collapse
|
4
|
Xu B, Huang X, Qin H, Lei Y, Zhao S, Liu S, Liu G, Zhao J. Evaluating the Safety of Bacillus cereus GW-01 Obtained from Sheep Rumen Chyme. Microorganisms 2024; 12:1457. [PMID: 39065225 PMCID: PMC11278751 DOI: 10.3390/microorganisms12071457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Bacillus cereus is responsible for 1.4-12% food poisoning outbreaks worldwide. The safety concerns associated with the applications of B. cereus in health and medicine have been controversial due to its dual role as a pathogen for foodborne diseases and a probiotic in humans and animals. In this study, the pathogenicity of B. cereus GW-01 was assessed by comparative genomic, and transcriptome analysis. Phylogenetic analysis based on a single-copy gene showed clustering of the strain GW-01, and 54 B. cereus strains from the NCBI were classified into six major groups (I-VI), which were then associated with the source region and sequence types (STs). Transcriptome results indicated that the expression of most genes related with toxins secretion in GW-01 was downregulated compared to that in the lag phase. Overall, these findings suggest that GW-01 is not directly associated with pathogenic Bacillus cereus and highlight an insightful strategy for assessing the safety of novel B. cereus strains.
Collapse
Affiliation(s)
- Bowen Xu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Xinyi Huang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Haixiong Qin
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Ying Lei
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
| | - Sijia Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Shan Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Gang Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Jiayuan Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| |
Collapse
|
5
|
Schäfer L, Jehle JA, Kleespies RG, Wennmann JT. Pathogens of the oak processionary moth Thaumetopoea processionea: Developing a user-friendly bioassay system and metagenome analyses for microorganisms. J Invertebr Pathol 2024; 205:108121. [PMID: 38705355 DOI: 10.1016/j.jip.2024.108121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
The oak processionary moth (OPM) Thaumetopoea processionea is a pest of oak trees and poses health risks to humans due to the urticating setae of later instar larvae. For this reason, it is difficult to rear OPM under laboratory conditions, carry out bioassays or examine larvae for pathogens. Biological control targets the early larval instars and is based primarily on commercial preparations of Bacillus thuringiensis ssp. kurstaki (Btk). To test the entomopathogenic potential of other spore-forming bacteria, a user-friendly bioassay system was developed that (i) applies bacterial spore suspensions by oak bud dipping, (ii) targets first instar larvae through feeding exposure and (iii) takes into account their group-feeding behavior. A negligible mortality in the untreated control proved the functionality of the newly established bioassay system. Whereas the commercial Btk HD-1 strain was used as a bioassay standard and confirmed as being highly efficient, a Bacillus wiedmannii strain was ineffective in killing OPM larvae. Larvae, which died during the infection experiment, were further subjected to Nanopore sequencing for a metagenomic approach for entomopathogen detection. It further corroborated that B.wiedmannii was not able to infect and establish in OPM, but identified potential insect pathogenic species from the genera Serratia and Pseudomonas.
Collapse
Affiliation(s)
- Lea Schäfer
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Schwabenheimer Str. 101, 69221 Dossenheim, Germany
| | - Johannes A Jehle
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Schwabenheimer Str. 101, 69221 Dossenheim, Germany
| | - Regina G Kleespies
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Schwabenheimer Str. 101, 69221 Dossenheim, Germany
| | - Jörg T Wennmann
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Schwabenheimer Str. 101, 69221 Dossenheim, Germany.
| |
Collapse
|
6
|
Belaouni HA, Yekkour A, Zitouni A, Meklat A. Organization, conservation, and diversity of biosynthetic gene clusters in Bacillus sp. BH32 and its closest relatives in the Bacillus cereus group. FEMS Microbiol Lett 2024; 371:fnae071. [PMID: 39256169 DOI: 10.1093/femsle/fnae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024] Open
Abstract
This study explores the organization, conservation, and diversity of biosynthetic gene clusters (BGCs) among Bacillus sp. strain BH32, a plant-beneficial bacterial endophyte, and its closest nontype Bacillus cereus group strains. BGC profiles were predicted for each of the 17 selected strains using antiSMASH, resulting in the detection of a total of 198 BGCs. We quantitatively compared the BGCs and analysed their conservation, distribution, and evolutionary relationships. The study identified both conserved and singleton BGCs across the studied Bacillus strains, with minimal variation, and discovered two major BGC synteny blocks composed of homologous BGCs conserved within the B. cereus group. The identified BGC synteny blocks provide insight into the evolutionary relationships and diversity of BGCs within this complex group.
Collapse
Affiliation(s)
- Hadj Ahmed Belaouni
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, 16050, Algeria
- Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast BT9 5PX, Northern Ireland, United Kingdom
| | - Amine Yekkour
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, 16050, Algeria
| | - Abdelghani Zitouni
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, 16050, Algeria
| | - Atika Meklat
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, 16050, Algeria
| |
Collapse
|
7
|
Norris MH, Zincke D, Daegling DJ, Krigbaum J, McGraw WS, Kirpich A, Hadfield TL, Blackburn JK. Genomic and Phylogenetic Analysis of Bacillus cereus Biovar anthracis Isolated from Archival Bone Samples Reveals Earlier Natural History of the Pathogen. Pathogens 2023; 12:1065. [PMID: 37624025 PMCID: PMC10457788 DOI: 10.3390/pathogens12081065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
(1) Background: Bacillus cereus biovar anthracis (Bcbva) was the causative agent of an anthrax-like fatal disease among wild chimpanzees in 2001 in Côte d'Ivoire. Before this, there had not been any description of an anthrax-like disease caused by typically avirulent Bacillus cereus. Genetic analysis found that B. cereus had acquired two anthrax-like plasmids, one a pXO1-like toxin producing plasmid and the other a pXO2-like plasmid encoding capsule. Bcbva caused animal fatalities in Cameroon, Democratic Republic of Congo, and the Central African Republic between 2004 and 2012. (2) Methods: The pathogen had acquired plasmids in the wild and that was discovered as the cause of widespread animal fatalities in the early 2000s. Primate bones had been shipped out of the endemic zone for anthropological studies prior to the realized danger of contamination with Bcbva. Spores were isolated from the bone fragments and positively identified as Bcbva. Strains were characterized by classical microbiological methods and qPCR. Four new Bcbva isolates were whole-genome sequenced. Chromosomal and plasmid phylogenomic analysis was performed to provide temporal and spatial context to these new strains and previously sequenced Bcbva. Tau and principal component analyses were utilized to identify genetic and spatial case patterns in the Taï National Park anthrax zone. (3) Results: Preliminary studies positively identified Bcbva presence in several archival bone fragments. The animals in question died between 1994 and 2010. Previously, the earliest archival strains of Bcbva were identified in 1996. Though the pathogen has a homogeneous genome, spatial analyses of a subset of mappable isolates from Taï National Park revealed strains found closer together were generally more similar, with strains from chimpanzees and duikers having the widest distribution. Ancestral strains were located mostly in the west of the park and had lower spatial clustering compared to more recent isolates, indicating a local increase in genetic diversity of Bcbva in the park over space and time. Global clustering analysis indicates patterns of genetic diversity and distance are shared between the ancestral and more recently isolated type strains. (4) Conclusions: Our strains have the potential to unveil historical genomic information not available elsewhere. This information sheds light on the evolution and emergence of a dangerous anthrax-causing pathogen.
Collapse
Affiliation(s)
- Michael H. Norris
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL 32611, USA; (M.H.N.); (D.Z.); (T.L.H.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Diansy Zincke
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL 32611, USA; (M.H.N.); (D.Z.); (T.L.H.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - David J. Daegling
- Department of Anthropology, University of Florida, Gainesville, FL 32611, USA; (D.J.D.); (J.K.)
| | - John Krigbaum
- Department of Anthropology, University of Florida, Gainesville, FL 32611, USA; (D.J.D.); (J.K.)
| | - W. Scott McGraw
- Department of Anthropology, Ohio State University, Columbus, OH 43210, USA;
| | - Alexander Kirpich
- Department of Population Health Sciences, Georgia State University, Atlanta, GA 30302, USA;
| | - Ted L. Hadfield
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL 32611, USA; (M.H.N.); (D.Z.); (T.L.H.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Jason K. Blackburn
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL 32611, USA; (M.H.N.); (D.Z.); (T.L.H.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
8
|
Blackburn MB, Sparks ME, Mishra R, Bonning BC. Genomic sequencing of fourteen bacillus thuringiensis isolates: insights into geographic variation and phylogenetic implications. BMC Res Notes 2023; 16:134. [PMID: 37403123 PMCID: PMC10318680 DOI: 10.1186/s13104-023-06411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/20/2023] [Indexed: 07/06/2023] Open
Abstract
OBJECTIVE This work was performed in support of a separate study investigating the activity of pesticidal proteins produced by Bacillus thuringiensis against the Asian citrus psyllid, Diaphorina citri. The fourteen Bacillus isolates chosen were selected from a large, geographically diverse collection that was characterized only by biochemical phenotype and morphology of the parasporal crystal, hence, for each isolate it was desired to determine the specific pesticidal proteins produced, assign each to a Bacillus cereus multilocus sequence type (ST), and predict their placement within the classical Bt serotyping system. In addition, phylogenetic distances between the isolates and Bacillus thuringiensis serovar type strains were determined by calculating digital DNA-DNA hybridization (dDDH) values among the isolates. RESULTS Based on the assembled sequence data, the isolates were found to be likely representatives of the Bt serovars kurstaki (ST 8), pakistani (ST 550), toumanoffi (ST 240), israelensis (ST 16), thuringiensis (ST 10), entomocidus (ST 239), and finitimus (ST 171). In cases where multiple isolates occurred within a predicted serovar, pesticidal protein profiles were found to be identical, despite the geographic diversity of the isolates. As expected, the dDDH values calculated for pairwise comparisons of the isolates and their apparent corresponding Bt serovar type strains were quite high (> 98%), however dDDH comparisons of the isolates with other serovar type strains were often surprisingly low (< 70%) and suggest unrecognized taxa within Bt and the Bacillus cereus sensu lato.
Collapse
Affiliation(s)
- Michael B. Blackburn
- Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Henry A Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - Michael E. Sparks
- Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Henry A Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - Ruchir Mishra
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611 USA
| | - Bryony C. Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
9
|
Tourasse NJ, Jolley KA, Kolstø AB, Økstad OA. Core genome multilocus sequence typing scheme for Bacillus cereus group bacteria. Res Microbiol 2023; 174:104050. [PMID: 36893969 DOI: 10.1016/j.resmic.2023.104050] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
Core genome multilocus sequence typing (cgMLST) employs a strategy where the set of orthologous genes common to all members of a group of organisms are used for phylogenetic analysis of the group members. The Bacillus cereus group consists of species with pathogenicity towards insect species as well as warm-blooded animals including humans. While B. cereus is an opportunistic pathogen linked to a range of human disease conditions, including emesis and diarrhoea, Bacillus thuringiensis is an entomopathogenic species with toxicity toward insect larvae, and therefore used as a biological pesticide worldwide. Bacillus anthracis is a classical obligate pathogen causing anthrax, an acute lethal condition in herbivores as well as humans, and which is endemic in many parts of the world. The group also includes a range of additional species, and B. cereus group bacteria have been subject to analysis with a wide variety of phylogenetic typing systems. Here we present, based on analyses of 173 complete genomes from B. cereus group species available in public databases, the identification of a set of 1568 core genes which were used to create a core genome multilocus typing scheme for the group which is implemented in the PubMLST system as an open online database freely available to the community. The new cgMLST system provides unprecedented resolution over existing phylogenetic analysis schemes covering the B. cereus group.
Collapse
Affiliation(s)
- Nicolas J Tourasse
- Department of Pharmacology and Pharmaceutical Biosciences, University of Oslo, Norway; University of Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France.
| | | | - Anne-Brit Kolstø
- Department of Pharmacology and Pharmaceutical Biosciences, University of Oslo, Norway.
| | - Ole Andreas Økstad
- Department of Pharmacology and Pharmaceutical Biosciences, University of Oslo, Norway.
| |
Collapse
|
10
|
Bianco A, Normanno G, Capozzi L, Del Sambro L, Di Fato L, Miccolupo A, Di Taranto P, Caruso M, Petruzzi F, Ali A, Parisi A. High Genetic Diversity and Virulence Potential in Bacillus cereus sensu lato Isolated from Milk and Cheeses in Apulia Region, Southern Italy. Foods 2023; 12:foods12071548. [PMID: 37048369 PMCID: PMC10094235 DOI: 10.3390/foods12071548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
The Bacillus cereus group includes species that act as food-borne pathogens causing diarrheal and emetic symptoms. They are widely distributed and can be found in various foods. In this study, out of 550 samples of milk and cheeses, 139 (25.3%) were found to be contaminated by B. cereus sensu lato (s.l.). One isolate per positive sample was characterized by Multilocus Sequence Typing (MLST) and for the presence of ten virulence genes. Based on MLST, all isolates were classified into 73 different sequence types (STs), of which 12 isolates were assigned to new STs. Virulence genes detection revealed that 90% and 61% of the isolates harboured the nheABC and the hblCDA gene cluster, respectively. Ninety-four percent of the isolates harboured the enterotoxin genes entS and entFM; 8% of the isolates possessed the ces gene. Thirty-eight different genetic profiles were identified, suggesting a high genetic diversity. Our study clearly shows the widespread diffusion of potentially toxigenic isolates of B. cereus s.l. in milk and cheeses in the Apulia region highlighting the need to adopt GMP and HACCP procedures along every step of the milk and cheese production chain in order to reduce the public health risk linked to the consumption of foods contaminated by B. cereus s.l.
Collapse
Affiliation(s)
- Angelica Bianco
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Giovanni Normanno
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Loredana Capozzi
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Laura Del Sambro
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Laura Di Fato
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Angela Miccolupo
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Pietro Di Taranto
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Marta Caruso
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Fiorenza Petruzzi
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Ashraf Ali
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Antonio Parisi
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| |
Collapse
|
11
|
Fernanda Vázquez-Ramírez M, Ibarra JE, Edith Casados-Vázquez L, Eleazar Barboza-Corona J, Rincón-Castro MCD. Molecular and Toxicological Characterization of a Bacillus thuringiensis Strain Expressing a Vip3 Protein Highly Toxic to Spodoptera frugiperda (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1455-1463. [PMID: 35930375 DOI: 10.1093/jee/toac116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The characterization of the Bacillus thuringiensis (Berliner) LBIT-418 strain was based on a previous work which indicated its high insecticidal potential. Therefore, toxicological, molecular, and biochemical characterizations were conducted in this work to identify its unique features and its potential to be developed as a bioinsecticide. This strain, originally isolated from a healthy mosquito larva, was identified within the subspecies kenyae by sequencing of the hag gene and by the multilocus sequence typing (MLST) technique. Genes cry1Ac2, cry1Ea3, cry2Aa1 and cry2Ab4, and a cry1Ia were detected in its genome, in addition to a vip3Aa gene. In this research, the latter protein was successfully cloned, expressed, and purified and showed high toxicity towards the fall armyworm, Spodoptera frugiperda (J.E. Smith), fourth instar larvae in bioassays using the microdroplet ingestion technique, estimating an LD50 of 21.38 ng/larva. Additional bioassays were performed using the diet surface inoculation technique of the strain's spore-crystal complex against diamondback moth larvae, Plutella xylostella (Linnaeus), estimating an LC50 of 10.22 ng/cm2. Its inability to produce β-exotoxin was demonstrated by bioassays against the nematode Caenorhabditis elegans Maupas and by HPLC analysis. These results support the high potential of this strain to be developed as a bioinsecticide.
Collapse
Affiliation(s)
- María Fernanda Vázquez-Ramírez
- Departamento de Alimentos, Posgrado en Biociencias, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Ex Hacienda El Copal Km., Carretera Irapuato-León, Irapuato, Guanajuato, México
| | - Jorge E Ibarra
- Departamento de Biotecnología y Bioquímica, Cinvestav Unidad Irapuato, Irapuato, Guanajuato, México
| | - Luz Edith Casados-Vázquez
- Departamento de Alimentos, Posgrado en Biociencias, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Ex Hacienda El Copal Km., Carretera Irapuato-León, Irapuato, Guanajuato, México
| | - J Eleazar Barboza-Corona
- Departamento de Alimentos, Posgrado en Biociencias, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Ex Hacienda El Copal Km., Carretera Irapuato-León, Irapuato, Guanajuato, México
| | - Ma Cristina Del Rincón-Castro
- Departamento de Alimentos, Posgrado en Biociencias, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Ex Hacienda El Copal Km., Carretera Irapuato-León, Irapuato, Guanajuato, México
| |
Collapse
|
12
|
Meng L, Zhang R, Dong L, Hu H, Liu H, Zheng N, Wang J, Cheng J. Characterization and spoilage potential of Bacillus cereus isolated from farm environment and raw milk. Front Microbiol 2022; 13:940611. [PMID: 36177462 PMCID: PMC9514233 DOI: 10.3389/fmicb.2022.940611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Bacillus cereus sensu lato (B. cereus sl) is important spoilage bacteria causing milk structure and flavor changes and is ubiquitous in the environment. This study addresses the biodiversity, toxicity, and proteolytic activity of B. cereus sl from 82 environmental samples and 18 raw bovine milk samples from a dairy farm in the region of Tianjin. In sum, 47 B. cereus sl isolates were characterized through biochemical tests, 16S rRNA gene sequencing, and panC gene analysis. Fourteen sequence types (STs) of B. cereus sl were found in raw bovine milk samples, and five new STs (ST2749, ST2750, ST2751, ST2752, and ST2753) were identified in this study. ST1150 was the dominant ST, associated with fecal, air, drinking water, teat skin, teat cup, and teat dip cup. The results of toxin gene analyses showed that 12.77% and 8.51% of isolates carried hblACD and nheABC operons, respectively. In addition, the detection rate of emetic cesB gene was 21.28%. B. cereus sl demonstrated high spoilage potentials even at 7°C, which has the proteolytic activity of 14.32 ± 1.96 μmol of glycine equivalents per ml. Proteolytic activities were significantly (p < 0.05) decreased after the heat treatment. The residual activity of protease produced at 7°C was significantly higher than that produced at 25°C and 37°C after treatment at 121°C for 10 s and 135°C for 5 s (p < 0.01). Together, the results provide insights into the characteristics of B. cereus sl from farm environment and raw bovine milk and revealed that B. cereus sl contamination should also be monitored in raw milk for ultra-high temperature (UHT) products. This knowledge illustrates that strict cleaning management should be implemented to control B. cereus sl and assure high-quality milk products.
Collapse
Affiliation(s)
- Lu Meng
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruirui Zhang
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lei Dong
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Haiyan Hu
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huimin Liu
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Jiaqi Wang
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
13
|
Que M, Cao W, Zhang H, Shi L, Ye L. The prevalence, antibiotic resistance and multilocus sequence typing of colistin-resistant bacteria isolated from Penaeus vannamei farms in earthen ponds and HDPE film-lined ponds in China. JOURNAL OF FISH DISEASES 2022; 45:1289-1299. [PMID: 35841601 DOI: 10.1111/jfd.13661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The aquaculture environment, especially the culture ponds and aquaculture products, is considered to be an important reservoir of colistin resistance genes. However, systematic investigations of colistin resistance in Penaeus vannamei farming in different culture modes are scarce. In this study, a total of 93 non-duplicated samples were collected from P. vannamei farms in five cities in China from 2019 to 2021. The prevalence, antibiotic resistance and multilocus sequence typing (MLST) of colistin-resistant bacteria were measured and analysed. The results showed that among the 1601 isolates in P. vannamei and its environmental samples, the pollution of colistin-resistant bacteria was serious (the overall prevalence was 37.3% and 28.8%, respectively), regardless of the earthen pond or high-density polyethylene (HDPE) film-lined pond. Among 533 isolates, the prevalence of mobile colistin resistance (mcr) genes, mcr-1, was the highest (60%, 320/533), followed by mcr-4 (1.5%, 8/533), mcr-8 (0.9%, 5/533), mcr-10 (0.6%, 3/533) and mcr-7 (0.4%, 2/533). The prevalence of mcr-1 in earthen ponds was significantly higher than that in HDPE film-lined ponds (67.5% vs. 49.1%, p < .001). The dominant strain carrying mcr-1 was Bacillus spp. (54.1%, 173/320), followed by Enterobacter spp. (8.1%, 26/320), Staphylococcus spp. (6.3%, 20/320) and Aeromonas spp. (5.3%, 17/320). The antibiotic resistance profiles of 173 Bacillus spp. varied among different sampling locations and culture types. These isolates were highly resistant to cefepime, ceftriaxone, trimethoprim-sulfamethoxazole and ceftiofur (>45%), and multidrug-resistant isolates were common (62.4%, 108/173). Sequence type (ST) 26 (37/66, 56%) was found to be the most prevalent ST in mcr-1-positive Bacillus cereus isolated from the aquaculture environment. In summary, our study pointed out that it is necessary to continuously monitor antibiotic usage and its residues regardless of the pond types, especially with regard to critical drugs such as colistin.
Collapse
Affiliation(s)
- Muyi Que
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Weiwei Cao
- College of Food and Bioengineering, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Huang Zhang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Lei Ye
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Fraccalvieri R, Bianco A, Difato LM, Capozzi L, Del Sambro L, Simone D, Catanzariti R, Caruso M, Galante D, Normanno G, Palazzo L, Tempesta M, Parisi A. Toxigenic Genes, Pathogenic Potential and Antimicrobial Resistance of Bacillus cereus Group Isolated from Ice Cream and Characterized by Whole Genome Sequencing. Foods 2022; 11:foods11162480. [PMID: 36010481 PMCID: PMC9407285 DOI: 10.3390/foods11162480] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Bacillus cereus is isolated from a variety of foods where it may cause food spoilage and/or food poisoning due to its toxigenic and pathogenic nature. In this study, we identified members of B. cereus groups in 65% of the ice cream samples analyzed, which were characterized based on multi locus variable number tandem repeats analysis (MLVA) and whole genome sequencing (WGS). The MLVA revealed that 36 strains showed different allelic profiles. Analyses of WGS data enabled the identification of three members of the B. cereus group: B. cereus sensu stricto, B. mosaicus and B. thuringiensis. Based on the multi locus sequence typing (MLST) scheme, the strains were classified in 27 sequence types (STs), including ST26 that causes food poisoning. Toxin genes’ detection revealed the presence of the genes encoding nonhemolytic enterotoxin (NHE), hemolysin BL (HBL), cytotoxin K (cytK) and cereulide (ces) in 100%, 44%, 42% and 8% of the strains, respectively. The identification of eleven antimicrobial resistance (AMR) genes predicted the resistance to five different antimicrobials, and the resistance to beta-lactam antibiotics was confirmed with a phenotypic antimicrobial test. Taken together, the results showed that the B. cereus strains isolated from ice cream were a potential hazard for consumer safety.
Collapse
Affiliation(s)
- Rosa Fraccalvieri
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZS PB), Via Manfredonia 20, 71121 Foggia, Italy
| | - Angelica Bianco
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZS PB), Via Manfredonia 20, 71121 Foggia, Italy
- Experimental Zooprophylactic Institute of Apulia and Basilicata, 71121 Foggia, Italy
- Correspondence: ; Tel.: +39-080-4057858; Fax: +39-080-4057753
| | - Laura Maria Difato
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZS PB), Via Manfredonia 20, 71121 Foggia, Italy
| | - Loredana Capozzi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZS PB), Via Manfredonia 20, 71121 Foggia, Italy
| | - Laura Del Sambro
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZS PB), Via Manfredonia 20, 71121 Foggia, Italy
| | - Domenico Simone
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZS PB), Via Manfredonia 20, 71121 Foggia, Italy
| | - Roberta Catanzariti
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZS PB), Via Manfredonia 20, 71121 Foggia, Italy
| | - Marta Caruso
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZS PB), Via Manfredonia 20, 71121 Foggia, Italy
| | - Domenico Galante
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZS PB), Via Manfredonia 20, 71121 Foggia, Italy
| | - Giovanni Normanno
- Department of Science of Agriculture, Food and the Environment (SAFE), University of Foggia, 71121 Foggia, Italy
| | - Lucia Palazzo
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZS PB), Via Manfredonia 20, 71121 Foggia, Italy
| | - Maria Tempesta
- Department of Veterinary Medicine, University Aldo Moro of Bari, Strada per Casamassima Km 3, 70010 Valenzano, Italy
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZS PB), Via Manfredonia 20, 71121 Foggia, Italy
| |
Collapse
|
15
|
Takahashi N, Nagai S, Tomimatsu Y, Saito A, Kaneta N, Tsujimoto Y, Tamura H. Simultaneous Discrimination of Cereulide-Producing Bacillus cereus and Psychrotolerant B. cereus Group by Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry. J Food Prot 2022; 85:1192-1202. [PMID: 35687734 DOI: 10.4315/jfp-21-450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/01/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Cereulide-producing Bacillus cereus, which causes foodborne illnesses with vomiting, and psychrotolerant B. cereus group strains such as Bacillus mycoides, which can grow at ≥7°C and cause spoilage of refrigerated foods, are significant concerns for the food industry. Rapid and simple methods to discriminate the cereulide-producing B. cereus and psychrotolerant B. cereus group strains from other B. cereus group strains are needed. We developed a novel, rapid, and simple method with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analysis for simultaneous discrimination of these two groups from other B. cereus group strains. A potassium adduct of cereulide was used to detect cereulide-producing B. cereus, and three ribosomal subunit proteins (L30, S16, and S20) were used to detect psychrotolerant B. cereus group. A total of 51 B. cereus group strains were analyzed by MALDI-TOF MS. The biomarkers allowed successful discrimination of 16 cereulide-producing B. cereus and 15 psychrotolerant B. cereus group strains from other B. cereus group strains. The results showed that this MALDI-TOF MS analysis allows simultaneous discrimination of cereulide-producing B. cereus and psychrotolerant B. cereus group strains from other B. cereus group strains. This efficient method has the potential to be a valuable tool for ensuring food safety. HIGHLIGHTS
Collapse
Affiliation(s)
- Naomi Takahashi
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Satomi Nagai
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan
| | - Yumiko Tomimatsu
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Ayumi Saito
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Naoko Kaneta
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Yoshinori Tsujimoto
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Hiroto Tamura
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan
| |
Collapse
|
16
|
White H, Vos M, Sheppard SK, Pascoe B, Raymond B. Signatures of selection in core and accessory genomes indicate different ecological drivers of diversification among Bacillus cereus clades. Mol Ecol 2022; 31:3584-3597. [PMID: 35510788 PMCID: PMC9324797 DOI: 10.1111/mec.16490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
Bacterial clades are often ecologically distinct, despite extensive horizontal gene transfer (HGT). How selection works on different parts of bacterial pan-genomes to drive and maintain the emergence of clades is unclear. Focusing on the three largest clades in the diverse and well-studied Bacillus cereus sensu lato group, we identified clade-specific core genes (present in all clade members) and then used clade-specific allelic diversity to identify genes under purifying and diversifying selection. Clade-specific accessory genes (present in a subset of strains within a clade) were characterized as being under selection using presence/absence in specific clades. Gene ontology analyses of genes under selection revealed that different gene functions were enriched in different clades. Furthermore, some gene functions were enriched only amongst clade-specific core or accessory genomes. Genes under purifying selection were often clade-specific, while genes under diversifying selection showed signs of frequent HGT. These patterns are consistent with different selection pressures acting on both the core and the accessory genomes of different clades and can lead to ecological divergence in both cases. Examining variation in allelic diversity allows us to uncover genes under clade-specific selection, allowing ready identification of strains and their ecological niche.
Collapse
Affiliation(s)
- Hugh White
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| | - Michiel Vos
- European Centre for Environment and Human HealthUniversity of Exeter Medical SchoolEnvironment and Sustainability InstitutePenryn CampusUK
| | - Samuel K. Sheppard
- Milner Centre for EvolutionDepartment of Biology & BiotechnologyUniversity of BathBathUK
| | - Ben Pascoe
- Milner Centre for EvolutionDepartment of Biology & BiotechnologyUniversity of BathBathUK
| | - Ben Raymond
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| |
Collapse
|
17
|
Gonçalves KB, Appel RJC, Bôas LAV, Cardoso PF, Bôas GTV. Genomic insights into the diversity of non-coding RNAs in Bacillus cereus sensu lato. Curr Genet 2022; 68:449-466. [PMID: 35552506 DOI: 10.1007/s00294-022-01240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
Bacillus cereus sensu lato is a group of bacteria of medical and agricultural importance in different ecological niches and with controversial taxonomic relationships. Studying the composition of non-coding RNAs (ncRNAs) in several bacterial groups has been an important tool for identifying genetic information and better understanding genetic regulation towards environment adaptation. However, to date, no comparative genomics study of ncRNA has been performed in this group. Thus, this study aimed to identify and characterize the set of ncRNAs from 132 strains of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis to obtain an overview of the diversity and distribution of these genetic elements in these species. We observed that the number of ncRNAs differs in the chromosomes of the three species, but not in the plasmids, when species or phylogenetic clusters were compared. The prevailing functional/structural category was Cis-reg and the most frequent class was Riboswitch. However, in plasmids, the class Group II intron was the most frequent. Also, nine ncRNAs were selected for validation in the strain B. thuringiensis 407 by RT-PCR, which allowed to identify the expression of the ncRNAs. The wide distribution and diversity of ncRNAs in the B. cereus group, and more intensely in B. thuringiensis, may help improve the abilities of these species to adapt to various environmental changes. Further studies should address the expression of these genetic elements in different conditions.
Collapse
Affiliation(s)
- Kátia B Gonçalves
- Depto Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | | | | | | | | |
Collapse
|
18
|
Catania AM, Civera T, Di Ciccio PA, Grassi MA, Morra P, Dalmasso A. Characterization of Vegetative Bacillus cereus and Bacillus subtilis Strains Isolated from Processed Cheese Products in an Italian Dairy Plant. Foods 2021; 10:foods10112876. [PMID: 34829157 PMCID: PMC8622485 DOI: 10.3390/foods10112876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022] Open
Abstract
Processed cheese is a commercial product characterized by high microbiological stability and extended shelf life obtained through the application of severe heat treatment. However, spore-forming bacteria can survive through thermal processes. Among them, microorganisms belonging to Bacillus genus have been reported. In this study, we examined the microbiological population of the first hours' production of processed cheeses in an Italian dairy plant during two seasons, between June and October 2020. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to identify bacteria colonies, allowing the isolation of Bacillus cereus and Bacillussubtilis strains. These results were further confirmed by amplification and sequencing of 16 rRNA bacterial region. A multi-locus sequence type (MLST) analysis was performed to assess the genetic similarity among a selection of isolates. The fourteen B. cereus strains showed two sequence types: ST-32 was observed in only one strain and the ST-371 in the remaining thirteen isolates. On the contrary, all twenty-one B. subtlis strains, included in the study, showed a new allelic profile for the pycA gene, resulting in a new sequence type: ST-249. For B. cereus strains, analysis of toxin genes was performed. All isolates were positive for nheABC, entFM, and cytK, while hblABCD, bceT, and ces were not detected. Moreover, the biofilm-forming ability of B. cereus and B. subtilis strains was assessed, and all selected isolates proved to be biofilm formers (most of them were stronger producers). Considering the genetical similarity between isolates, jointly with the capacity to produce biofilm, the presence of a recurring Bacillus population could be hypothesized.
Collapse
|
19
|
Choate LA, Barshad G, McMahon PW, Said I, Rice EJ, Munn PR, Lewis JJ, Danko CG. Multiple stages of evolutionary change in anthrax toxin receptor expression in humans. Nat Commun 2021; 12:6590. [PMID: 34782625 PMCID: PMC8592990 DOI: 10.1038/s41467-021-26854-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/18/2021] [Indexed: 11/09/2022] Open
Abstract
The advent of animal husbandry and hunting increased human exposure to zoonotic pathogens. To understand how a zoonotic disease may have influenced human evolution, we study changes in human expression of anthrax toxin receptor 2 (ANTXR2), which encodes a cell surface protein necessary for Bacillus anthracis virulence toxins to cause anthrax disease. In immune cells, ANTXR2 is 8-fold down-regulated in all available human samples compared to non-human primates, indicating regulatory changes early in the evolution of modern humans. We also observe multiple genetic signatures consistent with recent positive selection driving a European-specific decrease in ANTXR2 expression in multiple tissues affected by anthrax toxins. Our observations fit a model in which humans adapted to anthrax disease following early ecological changes associated with hunting and scavenging, as well as a second period of adaptation after the rise of modern agriculture.
Collapse
Affiliation(s)
- Lauren A Choate
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Gilad Barshad
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Pierce W McMahon
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Iskander Said
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Paul R Munn
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - James J Lewis
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
20
|
Cheng LW, Rao S, Poudyal S, Wang PC, Chen SC. Genotype and virulence gene analyses of Bacillus cereus group clinical isolates from the Chinese softshell turtle (Pelodiscus sinensis) in Taiwan. JOURNAL OF FISH DISEASES 2021; 44:1515-1529. [PMID: 34125451 DOI: 10.1111/jfd.13473] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Chinese softshell turtles (Pelodiscus sinensis) (CST) are susceptible to infections by bacteria belonging to the Bacillus cereus group (Bcg). Bcg includes several closely related species, two of which, B. cereus and B. thuringiensis, are pathogens of aquatic animals or insects. In the present study, we collected 57 Bcg isolates obtained from diseased CST from 2016 to 2019 in Kaohsiung and Pingtung, the areas with the most CST farms in Taiwan. All isolates were divided into four genotypes with two restriction enzymes, SmaI and NotI, by pulsed-field gel electrophoresis and enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR). Representative isolates from each genotype were subjected to phylogenetic tree analysis using 16S rDNA and pyruvate carboxylase genes as phylogenetic markers, and these CST isolates appeared in different clades. PCR was performed targeting six selected virulence genes, four of which were detected in CST isolates, including cytotoxin K (1/57), hblC of the haemolysin BL complex (46/57), nheA of the non-haemolytic enterotoxin complex (52/57) and enterotoxin FM (57/57), whereas cereulide synthetase and cereulide peptide synthase-like genes were not detected in any isolates.
Collapse
Affiliation(s)
- Li-Wu Cheng
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- College of Veterinary Medicine, Southern Taiwan Fish Diseases Research Centre, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shreesha Rao
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Sayuj Poudyal
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- College of Veterinary Medicine, Southern Taiwan Fish Diseases Research Centre, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- College of Veterinary Medicine, Southern Taiwan Fish Diseases Research Centre, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
21
|
Investigation of a cluster of Bacillus cereus bacteremia in neonatal care units. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:494-502. [PMID: 34340907 DOI: 10.1016/j.jmii.2021.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/01/2021] [Accepted: 07/10/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Bacillus cereus is a well-known pathogen for self-limited foodborne illness, and rarely an opportunistic pathogen associated with invasive infections among immunocompromised patients. Nosocomial outbreaks have been rarely reported. METHODS Between August and November 2019, four preterm neonates in neonatal care units of a medical center developed late-onset B. cereus bacteremia. An investigation was carried out. Forty-eight environmental specimens were obtained from these neonatal units, skin surface and environmental objects of Patient 4 for the detection of this organism 19 days after the onset of illness of Patient 4. B. cereus isolates from Patient 4, five unrelated patients and environmental objects if identified were further characterized by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). RESULTS All four infants survived after vancomycin-containing treatment. Patient 4 developed diffuse cerebritis, brain abscess with severe neurologic sequelae. Of the 48 environmental samplings, 26 specimens showed positive for B. cereus, with one major clone (sequence type 365) accounting for 73%. The isolate from Patient 4 (ST427) was identical to one isolate collected from environmental objects in the same unit. After extensive cleaning of the environment and re-institution of the sterilization procedure of hospital linens, which was ceased since two months before the outbreak, no more cases was identified in these units for at least one year. CONCLUSIONS We documented a cluster of B. cereus bacteremia involving four preterm infants, which might be associated with cessation of the procedure for linen sterilization and was successfully controlled by re-institution of this procedure.
Collapse
|
22
|
Carroll LM, Cheng RA, Wiedmann M, Kovac J. Keeping up with the Bacillus cereus group: taxonomy through the genomics era and beyond. Crit Rev Food Sci Nutr 2021; 62:7677-7702. [PMID: 33939559 DOI: 10.1080/10408398.2021.1916735] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Bacillus cereus group, also known as B. cereus sensu lato (s.l.), is a species complex that contains numerous closely related lineages, which vary in their ability to cause illness in humans and animals. The classification of B. cereus s.l. isolates into species-level taxonomic units is thus essential for informing public health and food safety efforts. However, taxonomic classification of these organisms is challenging. Numerous-often conflicting-taxonomic changes to the group have been proposed over the past two decades, making it difficult to remain up to date. In this review, we discuss the major nomenclatural changes that have accumulated in the B. cereus s.l. taxonomic space prior to 2020, particularly in the genomic sequencing era, and outline the resulting problems. We discuss several contemporary taxonomic frameworks as applied to B. cereus s.l., including (i) phenotypic, (ii) genomic, and (iii) hybrid nomenclatural frameworks, and we discuss the advantages and disadvantages of each. We offer suggestions as to how readers can avoid B. cereus s.l. taxonomic ambiguities, regardless of the nomenclatural framework(s) they choose to employ. Finally, we discuss future directions and open problems in the B. cereus s.l. taxonomic realm, including those that cannot be solved by genomic approaches alone.
Collapse
Affiliation(s)
- Laura M Carroll
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Rachel A Cheng
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
23
|
Bianco A, Capozzi L, Miccolupo A, Iannetti S, Danzetta ML, Del Sambro L, Caruso M, Santagada G, Parisi A. Multi-locus sequence typing and virulence profile in Bacillus cereus sensu lato strains isolated from dairy products. Ital J Food Saf 2021; 9:8401. [PMID: 33532366 PMCID: PMC7844584 DOI: 10.4081/ijfs.2020.8401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Members of Bacillus cereus group are important food contaminants and they are of relevant interest in food safety and public heath due to their ability to cause two distinct forms of food poisoning, emetic and diarrhoeal syndrome. In the present study, 90 strains of B. cereus isolated from dairy products, have been typed using Multilocus Sequence Typing (MLST) analysis and investigated for the occurrence of 10 enterotoxigenic genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK, entFM, entS and bceT) and one emetogenic gene (ces), to determine their genetic diversity. A total of 58 sequence types were identified and among these 17 were signalled as new profiles. Among the virulence genes, the majority of our strains carried the entS (92%), entFM (86%), nhe (82%) and cytK (72%) genes. All remaining genes were identified in at least one strain with different prevalence, stressing the genetic diversity, how even the different grade of pathogenicity of B. cereus isolated from dairy products.
Collapse
Affiliation(s)
- Angelica Bianco
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Foggia, Italy
| | - Loredana Capozzi
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Foggia, Italy
| | - Angela Miccolupo
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Foggia, Italy
| | - Simona Iannetti
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Foggia, Italy
| | | | - Laura Del Sambro
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Foggia, Italy
| | - Marta Caruso
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Foggia, Italy
| | | | - Antonio Parisi
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Foggia, Italy
| |
Collapse
|
24
|
Bianco A, Capozzi L, Monno MR, Del Sambro L, Manzulli V, Pesole G, Loconsole D, Parisi A. Characterization of Bacillus cereus Group Isolates From Human Bacteremia by Whole-Genome Sequencing. Front Microbiol 2021; 11:599524. [PMID: 33510722 PMCID: PMC7835510 DOI: 10.3389/fmicb.2020.599524] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
Members of the Bacillus cereus group are spore-forming organisms commonly associated with food poisoning and intestinal infections. Moreover, some strains of the group (i.e., B. cereus sensu stricto and Bacillus thuringiensis) can cause bacteremia in humans, mainly in immunocompromised individuals. Here we performed the genetic characterization of 17 human clinical strains belonging to B. cereus group isolated from blood culture. The whole-genome sequencing (WGS) revealed that the isolates were closely related to B. cereus sensu stricto and B. thuringiensis-type strain. Multilocus sequence typing analysis performed on the draft genome revealed the genetic diversity of our isolates, which were assigned to different sequence types. Based on panC nucleotide sequence, the isolates were grouped in the phylogenetic groups III and IV. The NHE, cer, and inhA gene cluster, entA, entFM, plcA, and plcB, were the most commonly detected virulence genes. Although we did not assess the ability to generate biofilm by phenotypic tests, we verified the prevalence of biofilm associated genes using an in silico approach. A high prevalence of pur gene cluster, xerC, clpY, codY, tasA, sipW, sinI, and sigB genes, was found. Genes related to the resistance to penicillin, trimethoprim, and ceftriaxone were identified in most of the isolates. Intriguingly, the majority of these virulence and AMR genes appeared to be evenly distributed among B. cereus s.s. isolates, as well as closely related to B. thuringiensis isolates. We showed the WGS represents a good approach to rapidly characterize B. cereus group strains, being able to give useful information about genetic epidemiology, the presence of virulence and antimicrobial genes, and finally about the potential hazard related to this underestimated risk.
Collapse
Affiliation(s)
- Angelica Bianco
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Loredana Capozzi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Maria Rosa Monno
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Laura Del Sambro
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Viviana Manzulli
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Graziano Pesole
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, University of Bari "A. Moro", Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies of the National Research Council and Consorzio Interuniversitario Biotecnologie, Bari, Italy
| | - Daniela Loconsole
- Department of Biomedical Sciences and Human Oncology, Hygiene Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| |
Collapse
|
25
|
Manktelow CJ, White H, Crickmore N, Raymond B. Divergence in environmental adaptation between terrestrial clades of the Bacillus cereus group. FEMS Microbiol Ecol 2020; 97:5974271. [PMID: 33175127 DOI: 10.1093/femsec/fiaa228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/06/2020] [Indexed: 12/25/2022] Open
Abstract
The Bacillus cereus group encompasses beneficial and harmful species in diverse niches and has a much debated taxonomy. Investigating whether selection has led to ecological divergence between phylogenetic clades can help understand the basis of speciation, and has implications for predicting biological safety across this group. Using three most terrestrial species in this group (B. cereus, Bacillus thuringiensis and Bacillus mycoides) we charactererized ecological specialization in terms of resource use, thermal adaptation and fitness in different environmental conditions and tested whether taxonomic species or phylogenetic clade best explained phenotypic variation. All isolates grew vigorously in protein rich media and insect cadavers, but exploitation of soil or plant derived nutrients was similarly weak for all. For B. thuringiensis and B. mycoides, clade and taxonomic species were important predictors of relative fitness in insect infections. Fully psychrotolerant isolates could outcompete B. thuringiensis in insects at low temperature, although psychrotolerance predicted growth in artificial media better than clade. In contrast to predictions, isolates in the Bacillus anthracis clade had sub-optimal growth at 37°C. The common ecological niche in these terrestrial B. cereus species is the ability to exploit protein rich resources such as cadavers. However, selection has led to different phylogenetic groups developing different strategies for accessing this resource. Thus, clades, as well as traditional taxonomic phenotypes, predict biologically important traits.
Collapse
Affiliation(s)
- C James Manktelow
- Centre for Ecology and Conservation, University of Exeter, Penryn campus, Penryn, TR10 9FE, UK
| | - Hugh White
- Centre for Ecology and Conservation, University of Exeter, Penryn campus, Penryn, TR10 9FE, UK
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Ben Raymond
- Centre for Ecology and Conservation, University of Exeter, Penryn campus, Penryn, TR10 9FE, UK
| |
Collapse
|
26
|
Zervas A, Aggerbeck MR, Allaga H, Güzel M, Hendriks M, Jonuškienė II, Kedves O, Kupeli A, Lamovšek J, Mülner P, Munday D, Namli Ş, Samut H, Tomičić R, Tomičić Z, Yeni F, Zghal RZ, Zhao X, Sanchis-Borja V, Hendriksen NB. Identification and Characterization of 33 Bacillus cereus sensu lato Isolates from Agricultural Fields from Eleven Widely Distributed Countries by Whole Genome Sequencing. Microorganisms 2020; 8:microorganisms8122028. [PMID: 33353020 PMCID: PMC7766411 DOI: 10.3390/microorganisms8122028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Accepted: 12/12/2020] [Indexed: 01/04/2023] Open
Abstract
The phylogeny, identification, and characterization of 33 B. cereus sensu lato isolates originating from 17 agricultural soils from 11 countries were analyzed on the basis of whole genome sequencing. Phylogenetic analyses revealed all isolates are divided into six groups, which follows the generally accepted phylogenetic division of B. cereus sensu lato isolates. Four different identification methods resulted in a variation in the identity of the isolates, as none of the isolates were identified as the same species by all four methods—only the recent identification method proposed directly reflected the phylogeny of the isolates. This points to the importance of describing the basis and method used for the identification. The presence and percent identity of the protein product of 19 genes potentially involved in pathogenicity divided the 33 isolates into groups corresponding to phylogenetic division of the isolates. This suggests that different pathotypes exist and that it is possible to differentiate between them by comparing the percent identity of proteins potentially involved in pathogenicity. This also reveals that a basic link between phylogeny and pathogenicity is likely to exist. The geographical distribution of the isolates is not random: they are distributed in relation to their division into the six phylogenetic groups, which again relates to different ecotypes with different temperature growth ranges. This means that we find it easier to analyze and understand the results obtained from the 33 B. cereus sensu lato isolates in a phylogenetic, patho-type and ecotype-oriented context, than in a context based on uncertain identification at the species level.
Collapse
Affiliation(s)
- Athanasios Zervas
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark; (A.Z.); (M.R.A.)
| | - Marie Rønne Aggerbeck
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark; (A.Z.); (M.R.A.)
| | - Henrietta Allaga
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (H.A.); (O.K.)
| | - Mustafa Güzel
- Department of Food Engineering, Hitit University, 19030 Çorum, Turkey;
| | - Marc Hendriks
- Wageningen Plant Research, Wageningen University, 6708PB Wageningen, The Netherlands;
| | - IIona Jonuškienė
- Department of Organic Chemistry, Kaunas University of Technology, 50254 Kaunas, Lithuania;
| | - Orsolya Kedves
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (H.A.); (O.K.)
| | - Ayse Kupeli
- Department of Food Engineering, Middle East Technical University, 06800 Ankara, Turkey; (A.K.); (Ş.N.); (H.S.); (F.Y.)
| | - Janja Lamovšek
- Plant Protection Department, Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia;
| | | | - Denise Munday
- Sumitomo Chemical Agro Europe, 1260 Nyon, Switzerland;
| | - Şahin Namli
- Department of Food Engineering, Middle East Technical University, 06800 Ankara, Turkey; (A.K.); (Ş.N.); (H.S.); (F.Y.)
| | - Hilal Samut
- Department of Food Engineering, Middle East Technical University, 06800 Ankara, Turkey; (A.K.); (Ş.N.); (H.S.); (F.Y.)
| | - Ružica Tomičić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Zorica Tomičić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Filiz Yeni
- Department of Food Engineering, Middle East Technical University, 06800 Ankara, Turkey; (A.K.); (Ş.N.); (H.S.); (F.Y.)
| | - Raida Zribi Zghal
- Sfax Preparatory Engineering Institute, Sfax University, P.O. Box 1172, 3000 Sfax, Tunisia;
- Centre of Biotechnology of Sfax, Biopesticides Laboratory, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Xingchen Zhao
- Laboratory of Food Microbiology and Food Preservation, Ghent University, 9000 Ghent, Belgium;
| | | | - Niels Bohse Hendriksen
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark; (A.Z.); (M.R.A.)
- Correspondence: ; Tel.: +45-28102452
| |
Collapse
|
27
|
Aoyagi T, Kishihara Y, Ogawa M, Ito Y, Tanaka S, Kobayashi R, Tokuda K, Kaku M. Characterization of Ba813 harbouring Bacillus cereus in patients with haematological malignancy and hospital environments at a medical centre in Japan. J Med Microbiol 2020; 69:999-1004. [PMID: 32530394 DOI: 10.1099/jmm.0.001212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Bacillus cereus harbouring Ba813, a specific chromosomal marker of Bacillus anthtacis, is found in patients with severe manifestations and causes nosocomial outbreaks.Aim. We assessed the genetic characteristics and virulence of Ba813(+) B. cereus in a hospital setting.Methodology. Three neutropenic patients with haematological malignancy developed B. cereus bacteraemia within a short period. Fifteen B. cereus were isolated from different sites in a haematology ward. A total of 18 isolates were evaluated for Ba813- and B. anthracis-related virulence, food poisoning-related virulence, genetic diversity, bacteria motility and biofilm formation.Results. Ba813(+) B. cereus was detected in 33 % (1/3) of patients and 66 % (9/15) of the hospital environment. The 18 strains were divided into 2 major clusters (clade 1 and clade 2), and 14 strains were classified into clade 1. All Ba813(+) strains, including four sequence types, were classified into clade 1/the cereus III lineage, which is most closely related to the anthracis lineage. Two strains belonging to clade 1/non-cereus III carried the B. anthracis-associated cap gene, but not Ba813. B. cereus, including Ba813(+) strains, had significantly lower prevalence of enterotoxin genes than clade 2 strains. In clade 1, B. cereus, Ba813(+) strains showed significantly higher swimming motility and biofilm formation ability than Ba813(-) strains.Conclusion. Ba813(+) B. cereus, which are genetically closely related to B. anthracis, were abundant in a haematological ward. Ba813(+) B. cereus with high motility and biofilm formation abilities may spread easily in hospital environments, and could become a hospital-acquired infection.
Collapse
Affiliation(s)
- Tetsuji Aoyagi
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aobaku, Sendai, Japan
| | - Yasuhiro Kishihara
- Infection Control Team, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka, Japan
| | - Miho Ogawa
- Department of Bacteriology, BML, Inc., 1361-1, Matoba, Kawagoe, Japan
| | - Yuki Ito
- Infection Control Team, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka, Japan
| | - Sakie Tanaka
- Infection Control Team, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka, Japan
| | - Ryozo Kobayashi
- Infection Control Team, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka, Japan
| | - Koichi Tokuda
- Department of Infection Control and Laboratory Diagnostics, Internal Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aobaku, Sendai, Japan.,Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aobaku, Sendai, Japan
| | - Mistuo Kaku
- Department of Infection Control and Laboratory Diagnostics, Internal Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aobaku, Sendai, Japan.,Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aobaku, Sendai, Japan
| |
Collapse
|
28
|
Carroll LM, Wiedmann M. Cereulide Synthetase Acquisition and Loss Events within the Evolutionary History of Group III Bacillus cereus Sensu Lato Facilitate the Transition between Emetic and Diarrheal Foodborne Pathogens. mBio 2020; 11:e01263-20. [PMID: 32843545 PMCID: PMC7448271 DOI: 10.1128/mbio.01263-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/17/2020] [Indexed: 11/20/2022] Open
Abstract
Cereulide-producing members of Bacillus cereussensu lato group III (also known as emetic B. cereus) possess cereulide synthetase, a plasmid-encoded, nonribosomal peptide synthetase encoded by the ces gene cluster. Despite the documented risks that cereulide-producing strains pose to public health, the level of genomic diversity encompassed by emetic B. cereus has never been evaluated at a whole-genome scale. Here, we employ a phylogenomic approach to characterize group III B. cereussensu lato genomes which possess ces (ces positive) alongside their closely related, ces-negative counterparts (i) to assess the genomic diversity encompassed by emetic B. cereus and (ii) to identify potential ces loss and/or gain events within the evolutionary history of the high-risk and medically relevant sequence type (ST) 26 lineage often associated with emetic foodborne illness. Using all publicly available ces-positive group III B. cereussensu lato genomes and the ces-negative genomes interspersed among them (n = 159), we show that emetic B. cereus is not clonal; rather, multiple lineages within group III harbor cereulide-producing strains, all of which share an ancestor incapable of producing cereulide (posterior probability = 0.86 to 0.89). Members of ST 26 share an ancestor that existed circa 1748 (95% highest posterior density [HPD] interval = 1246.89 to 1915.64) and first acquired the ability to produce cereulide before 1876 (95% HPD = 1641.43 to 1946.70). Within ST 26 alone, two subsequent ces gain events were observed, as well as three ces loss events, including among isolates responsible for B. cereussensu lato toxicoinfection (i.e., "diarrheal" illness).IMPORTANCEB. cereus is responsible for thousands of cases of foodborne disease each year worldwide, causing two distinct forms of illness: (i) intoxication via cereulide (i.e., emetic syndrome) or (ii) toxicoinfection via multiple enterotoxins (i.e., diarrheal syndrome). Here, we show that emetic B. cereus is not a clonal, homogenous unit that resulted from a single cereulide synthetase gain event followed by subsequent proliferation; rather, cereulide synthetase acquisition and loss is a dynamic, ongoing process that occurs across lineages, allowing some group III B. cereussensu lato populations to oscillate between diarrheal and emetic foodborne pathogens over the course of their evolutionary histories. We also highlight the care that must be taken when selecting a reference genome for whole-genome sequencing-based investigation of emetic B. cereussensu lato outbreaks, since some reference genome selections can lead to a confounding loss of resolution and potentially hinder epidemiological investigations.
Collapse
Affiliation(s)
- Laura M Carroll
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
29
|
Aoyagi T, Oshima K, Endo S, Baba H, Kanamori H, Yoshida M, Tokuda K, Kaku M. Ba813 harboring Bacillus cereus, genetically closely related to Bacillus anthracis, causing nosocomial bloodstream infection: Bacterial virulence factors and clinical outcome. PLoS One 2020; 15:e0235771. [PMID: 32658912 PMCID: PMC7357740 DOI: 10.1371/journal.pone.0235771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Bacillus cereus commonly causes catheter-related bloodstream infections (BSIs) in hospital settings, and occasionally occurs fatal central nervous system (CNS) complications. B. cereus harboring Ba813, a specific chromosomal marker of Bacillus anthracis, has been found in patients with severe infection and nosocomial BSI. However, the bacteriological profile and clinical feature of Ba813 (+) B. cereus are unclear. Fifty-three patients with B. cereus BSI were examined. Isolates were evaluated for Ba813, B. anthracis-related and food poisoning-related virulence, multilocus sequencing typing, and biofilm formation. Patients’ clinical records were reviewed retrospectively. The 53 isolates were comprised of 29 different sequence types in two distinct clades. Seventeen of the 53 (32%) B. cereus isolates including five sequence types possessed Ba813 and were classified into Clade-1/Cereus-III lineage which is most closely related to Anthracis lineage. No B. cereus possessed B. anthracis-related virulence genes. Ba813 (+) strains showed a lower prevalence of enterotoxin genes than Clade-2 strains (n = 4), but no difference from Clade-1. Ba813 (+) strains showed significantly lower biofilm formation than Clade-1/non-Cereus-III (n = 22) and Clade-2 strains, respectively. Compared to Clade-1/non-Cereus-III and Clade-2 B. cereus, Ba813 (+) strains were isolated more frequently from elderly patients, patients with indwelling central venous catheter rather than peripheral venous catheter, and patients who remained in the hospital for longer before BSI onset. No significant differences in disease severity or mortality were observed. Though two of the ten Ba813 (-) strains in Clade-1/Cereus III were isolated from the patients with CNS complication, no significant difference was observed in the bacterial profile and clinical characteristics among Clade-1/Cereus III strains. In conclusion, our report suggested that Ba813-harboring B. cereus strains, genetically closely related to B. anthracis, were abundant among B. cereus strains in the hospital setting, and might cause catheter-related nosocomial BSI. However, it did not affect the clinical outcomes.
Collapse
Affiliation(s)
- Tetsuji Aoyagi
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| | - Kengo Oshima
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shiro Endo
- Department of Infection Control and Laboratory Diagnostics, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Baba
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hajime Kanamori
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makiko Yoshida
- Department of Infection Control and Laboratory Diagnostics, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koichi Tokuda
- Department of Infection Control and Laboratory Diagnostics, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuo Kaku
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Infectious Diseases, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
30
|
Bacillus paranthracis Isolate from Blood of Fatal Ebola Virus Disease Case. Pathogens 2020; 9:pathogens9060475. [PMID: 32560095 PMCID: PMC7350349 DOI: 10.3390/pathogens9060475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 11/20/2022] Open
Abstract
A Bacillus paranthracis isolate was cultured from the blood of a fatal Ebola virus disease (EVD) case in Liberia and was identified by whole genome sequencing. Although B. paranthracis has only recently been described and is poorly characterized, this case may represent the bacterial co-infection of an EVD patient.
Collapse
|
31
|
Takahashi N, Nagai S, Fujita A, Ido Y, Kato K, Saito A, Moriya Y, Tomimatsu Y, Kaneta N, Tsujimoto Y, Tamura H. Discrimination of psychrotolerant Bacillus cereus group based on MALDI-TOF MS analysis of ribosomal subunit proteins. Food Microbiol 2020; 91:103542. [PMID: 32539947 DOI: 10.1016/j.fm.2020.103542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 02/06/2023]
Abstract
Psychrotolerant species of the Bacillus cereus group, Bacillus mycoides and Bacillus weihenstephanensis, can grow at ≥ 7 °C and are significant concerns for the food industry due to their ability to cause spoilage of refrigerated food. In addition to that, some strains of B. weihenstephanensis can produce emetic toxin, namely cereulide, which is known to cause vomiting. Therefore, rapid and simple methods to discriminate psychrotolerant B. cereus group species are crucial. Here, matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) and the S10-spc-alpha operon gene encoded ribosomal protein mass spectrum (S10-GERMS) method were used to discriminate psychrotolerant species of the B. cereus group based on a set of four ribosomal subunit proteins (S10, S16, S20 and L30). A total of 36 strains of B. cereus group were cultured on LB agar, and analyzed by MALDI-TOF MS. The four biomarkers successfully discriminated 12 strains of psychrotolerant species from mesophilic species of the B. cereus group. Furthermore, the four biomarkers also classified some Bacillus thuringiensis strains. MALDI-TOF MS analysis using the S10-GERMS method allowed simple and rapid discrimination of psychrotolerant species of the B. cereus group from other mesophilic species. This method has a possibility to enable manufacturers and distributors of refrigerated foods to control psychrotolerant species of the B. cereus group effectively.
Collapse
Affiliation(s)
- Naomi Takahashi
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1, Nanakuni, Hachiouji, Tokyo, 192-0919, Japan.
| | - Satomi Nagai
- Faculty of Agriculture, Meijo University, 1-501, Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Akane Fujita
- Faculty of Agriculture, Meijo University, 1-501, Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Yousuke Ido
- Faculty of Agriculture, Meijo University, 1-501, Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Kenji Kato
- Faculty of Agriculture, Meijo University, 1-501, Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Ayumi Saito
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1, Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Yuka Moriya
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1, Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Yumiko Tomimatsu
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1, Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Naoko Kaneta
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1, Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Yoshinori Tsujimoto
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1, Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Hiroto Tamura
- Faculty of Agriculture, Meijo University, 1-501, Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan.
| |
Collapse
|
32
|
Wan H, Liu T, Su C, Ji X, Wang L, Zhao Y, Wang Z. Evaluation of bacterial and fungal communities during the fermentation of Baixi sufu, a traditional spicy fermented bean curd. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1448-1457. [PMID: 31756265 DOI: 10.1002/jsfa.10151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/28/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Baixi sufu (BS) is a traditional Chinese spicy fermented bean curd manufactured with a natural starter. In this study, the bacterial and fungal communities during BS fermentation were determined by culture and by the culture-independent method of high-throughput sequencing (HTS). Correlation analyses were performed to select the microorganisms potentially contributing to this fermentation. RESULTS During the fermentation of BS, 162 bacterial and 97 fungal strains were isolated and identified, and a total of 268 314 bacterial and 287 844 fungal high-quality sequences were analyzed. In general, lactic acid bacteria (LAB), especially Enterococcus and Lactococcus, were dominant in the early stage of fermentation, and spore-forming bacteria, especially Bacillus spp., became the predominant bacteria by the end of fermentation. Geotrichum, Mortierella, and unclassified Ascomycota, were the major fungal populations, which could not be detected in the final product. Correlation analyses indicated that Enterococcus, Bacillus, Geotrichum, and unclassified Ascomycota correlated significantly and positively with amino nitrogen. However, due to the sporulation characteristics of Bacillus, they may have little effect on BS ripening. The presence of Bifidobacterium spp. in sufu is reported for the first time, but the excessive counts of the Bacillus cereus group (>105 CFU g-1 ) indicate a potential hazard to consumers. CONCLUSION The profiles obtained from this study will contribute to the development of autochthonous starter cultures to control BS fermentation, and may lead to the development of novel strategies to shorten the fermentation time of sufu products. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongfang Wan
- School of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ting Liu
- School of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Caiwei Su
- School of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xu Ji
- School of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liping Wang
- School of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-processing Technology, Shanghai Ocean University, Shanghai, China
| | - Yong Zhao
- School of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
| | - Zhengquan Wang
- School of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
| |
Collapse
|
33
|
Yu S, Yu P, Wang J, Li C, Guo H, Liu C, Kong L, Yu L, Wu S, Lei T, Chen M, Zeng H, Pang R, Zhang Y, Wei X, Zhang J, Wu Q, Ding Y. A Study on Prevalence and Characterization of Bacillus cereus in Ready-to-Eat Foods in China. Front Microbiol 2020; 10:3043. [PMID: 32010099 PMCID: PMC6974471 DOI: 10.3389/fmicb.2019.03043] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
Bacillus cereus is widely distributed in different food products and can cause a variety of symptoms associated with food poisoning. Since ready-to-eat (RTE) foods are not commonly sterilized by heat treatment before consumption, B. cereus contamination may cause severe food safety problems. In this study, we investigated the prevalence of B. cereus in RTE food samples from different regions of China and evaluated the levels of bacterial contamination, antibiotic resistance, virulence gene distribution, and genetic polymorphisms of these isolates. Of the tested retail RTE foods, 35% were positive for B. cereus, with 39 and 83% of the isolated strains harboring the enterotoxin-encoding hblACD and nheABC gene clusters, respectively. The entFM gene was detected in all B. cereus strains. The cytK gene was present in 68% of isolates, but only 7% harbored the emetic toxin-encoding gene cesB. Antimicrobial susceptibility testing revealed that the majority of the isolates were resistant not only to most β-lactam antibiotics, but also to rifamycin. Multilocus sequence typing (MLST) revealed that the 368 isolates belonged to 192 different sequence types (STs) including 93 new STs, the most prevalent of which was ST26. Collectively, our study indicates the prevalence, bacterial contamination levels, and biological characteristics of B. cereus isolated from RTE foods in China and demonstrates the potential hazards of B. cereus in RTE foods.
Collapse
Affiliation(s)
- Shubo Yu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Pengfei Yu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Chun Li
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Hui Guo
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Chengcheng Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Li Kong
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Leyi Yu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Shi Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tao Lei
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Haiyan Zeng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Pang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Youxiong Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xianhu Wei
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
34
|
Saikia L, Gogoi N, Das PP, Sarmah A, Punam K, Mahanta B, Bora S, Bora R. Bacillus cereus-Attributable Primary Cutaneous Anthrax-Like Infection in Newborn Infants, India. Emerg Infect Dis 2019; 25:1261-1270. [PMID: 31211665 PMCID: PMC6590766 DOI: 10.3201/eid2507.181493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During March 13-June 23, 2018, anthrax-like cutaneous lesions attributed to the Bacillus cereus group of organisms developed in 12 newborns in India. We traced the source of infection to the healthcare kits used for newborn care. We used multilocus sequence typing to characterize the 19 selected strains from various sources in hospital settings, including the healthcare kits. This analysis revealed the existence of a genetically diverse population comprising mostly new sequence types. Phylogenetic analysis clustered most strains into the previously defined clade I, composed primarily of pathogenic bacilli. We suggest that the synergistic interaction of nonhemolytic enterotoxin and sphingomyelinase might have a role in the development of cutaneous lesions. The infection was controlled by removing the healthcare kits and by implementing an ideal housekeeping program. All the newborns recovered after treatment with ciprofloxacin and amikacin.
Collapse
|
35
|
Akamatsu R, Suzuki M, Okinaka K, Sasahara T, Yamane K, Suzuki S, Fujikura D, Furuta Y, Ohnishi N, Esaki M, Shibayama K, Higashi H. Novel Sequence Type in Bacillus cereus Strains Associated with Nosocomial Infections and Bacteremia, Japan. Emerg Infect Dis 2019; 25:883-890. [PMID: 31002057 PMCID: PMC6478208 DOI: 10.3201/eid2505.171890] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
This sequence type was dominant in isolates from bacteremia patients in 3 hospitals. Bacillus cereus is associated with foodborne illnesses characterized by vomiting and diarrhea. Although some B. cereus strains that cause severe extraintestinal infections and nosocomial infections are recognized as serious public health threats in healthcare settings, the genetic backgrounds of B. cereus strains causing such infections remain unknown. By conducting pulsed-field gel electrophoresis and multilocus sequence typing, we found that a novel sequence type (ST), newly registered as ST1420, was the dominant ST isolated from the cases of nosocomial infections that occurred in 3 locations in Japan in 2006, 2013, and 2016. Phylogenetic analysis showed that ST1420 strains belonged to the Cereus III lineage, which is much closer to the Anthracis lineage than to other Cereus lineages. Our results suggest that ST1420 is a prevalent ST in B. cereus strains that have caused recent nosocomial infections in Japan.
Collapse
|
36
|
Okutani A, Inoue S, Noguchi A, Kaku Y, Morikawa S. Whole-genome sequence-based comparison and profiling of virulence-associated genes of Bacillus cereus group isolates from diverse sources in Japan. BMC Microbiol 2019; 19:296. [PMID: 31842760 PMCID: PMC6915864 DOI: 10.1186/s12866-019-1678-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
Background The complete genome sequences of 44 Bacillus cereus group isolates collected from diverse sources in Japan were analyzed to determine their genetic backgrounds and diversity levels in Japan. Multilocus sequence typing (MLST) and core-genome single-nucleotide polymorphism (SNP) typing data from whole-genome sequences were analyzed to determine genetic diversity levels. Virulence-associated gene profiles were also used to evaluate the genetic backgrounds and relationships among the isolates. Results The 44 B. cereus group isolates, including soil- and animal-derived isolates and isolates recovered from hospitalized patients and food poisoning cases, were genotyped by MLST and core-genome SNP typing. Genetic variation among the isolates was identified by the MLST and core-genome SNP phylogeny comparison against reference strains from countries outside of Japan. Exploratory principal component analysis and nonmetric multidimensional scaling (NMDS) analyses were used to assess the genetic similarities among the isolates using gene presence and absence information and isolate origins as the metadata. A significant correlation was seen between the principal components and the presence of genes encoding hemolysin BL and emetic genetic determinants in B. cereus, and the capsule proteins in B. anthracis. NMDS showed that the cluster of soil isolates overlapped with the cluster comprising animal-derived and clinical isolates. Conclusions Molecular and epidemiological analyses of B. cereus group isolates in Japan suggest that the soil- and animal-derived bacteria from our study are not a significant risk to human health. However, because several of the clinical isolates share close genetic relationships with the environmental isolates, both molecular and epidemiological surveillance studies could be used effectively to estimate virulence in these important pathogens.
Collapse
Affiliation(s)
- Akiko Okutani
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Satoshi Inoue
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akira Noguchi
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshihiro Kaku
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan.,Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| |
Collapse
|
37
|
Molecular Signatures Related to the Virulence of Bacillus cereus Sensu Lato, a Leading Cause of Devastating Endophthalmitis. mSystems 2019; 4:4/6/e00745-19. [PMID: 31796569 PMCID: PMC6890933 DOI: 10.1128/msystems.00745-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus endophthalmitis is a devastating eye infection that causes rapid blindness through extracellular tissue-destructive exotoxins. Despite its importance, knowledge of the phylogenetic relationships and population structure of intraocular Bacillus spp. is lacking. In this study, we sequenced the whole genomes of eight Bacillus intraocular pathogens independently isolated from 8/52 patients with posttraumatic Bacillus endophthalmitis infections in the Eye Hospital of Wenzhou Medical University between January 2010 and December 2018. Phylogenetic analysis revealed that the pathogenic intraocular isolates belonged to Bacillus cereus, Bacillus thuringiensis and Bacillus toyonensis To determine the virulence of the ocular isolates, three representative strains were injected into mouse models, and severe endophthalmitis leading to blindness was observed. Through incorporating publicly available genomes for Bacillus spp., we found that the intraocular pathogens could be isolated independently but displayed a similar genetic context. In addition, our data provide genome-wide support for intraocular and gastrointestinal sources of Bacillus spp. belonging to different lineages. Importantly, we identified five molecular signatures of virulence and motility genes associated with intraocular infection, namely, plcA-2, InhA-3, InhA-4, hblA-5, and fliD using pangenome-wide association studies. The characterization of overrepresented genes in the intraocular isolates holds value to predict bacterial evolution and for the design of future intervention strategies in patients with endophthalmitis.IMPORTANCE In this study, we provided a detailed and comprehensive clinicopathological and pathogenic report of Bacillus endophthalmitis over the 8 years of the study period. We first reported the whole-genome sequence of Bacillus spp. causing devastating endophthalmitis and found that Bacillus toyonensis is able to cause endophthalmitis. Finally, we revealed significant endophthalmitis-associated virulence genes involved in hemolysis, immunity inhibition, and pathogenesis. Overall, as more sequencing data sets become available, these data will facilitate comparative research and will reveal the emergence of pathogenic "ocular bacteria."
Collapse
|
38
|
A Cluster of Bacillus cereus Infections in the Neonatal Intensive Care Unit: Epidemiologic and Whole-genome Sequencing Analysis. Pediatr Infect Dis J 2019; 38:e301-e306. [PMID: 31626047 DOI: 10.1097/inf.0000000000002441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bacillus cereus isolates causing an outbreak in the neonatal intensive care unit were investigated using whole-genome sequencing. The outbreak coincided with construction work performed adjacent to the neonatal intensive care unit and ceased after strict sealing of the construction area. We found the outbreak to be polyclonal, however, the clonality did not correlate with the virulence in vivo. Genotypically similar isolates were associated with both lethal/severe infection and colonization/environmental contamination. Environmental bacterial load may be a major determinant of infection, especially in high-risk patients. Clinicians should be alert to unusual increase in B. cereus isolations from clinical cultures to facilitate early recognition and investigations of Bacillus outbreaks and pseudo-outbreaks. The integration of genomics into the classical infectious disease work can augment our understanding of pathogen transmission and virulence, and can rapidly assist our response to unusual disease trends.
Collapse
|
39
|
Yoo K, Han I, Ko KS, Lee TK, Yoo H, Khan MI, Tiedje JM, Park J. Bacillus-Dominant Airborne Bacterial Communities Identified During Asian Dust Events. MICROBIAL ECOLOGY 2019; 78:677-687. [PMID: 30904989 DOI: 10.1007/s00248-019-01348-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Asian dust (AD) events have received significant attention due to their adverse effects on ecosystems and human health. However, detailed information about airborne pathogens associated with AD events is limited. This study monitored airborne bacterial communities and identified AD-specific bacteria and the potential hazards associated with these bacteria during AD events. Over a 33-month period, 40 air samples were collected under normal atmospheric conditions (non-AD events; n = 34) and during AD events (n = 6). The airborne bacterial communities in the air samples collected during non-AD events (non-AD sample) and AD events (AD sample) were evaluated using both culture-dependent and culture-independent methods. The bacterial diversity increased significantly, along with the 16S rRNA gene copy number, in AD samples (p < 0.05) and was positively correlated with PM10 concentration. High throughput sequencing of the 16S rRNA gene revealed that the relative abundance of the phylum Firmicutes increased substantially in AD samples (44.3 ± 5.0%) compared with non-AD samples (27.8 ± 4.3%). Within the phylum Firmicutes, AD samples included a greater abundance of Bacillus species (almost 23.8%) than non-AD samples (almost 13.3%). Both culture-dependent and culture-independent methods detected common predominant species closely related to Bacillus cereus during AD events. Subsequent multilocus sequence typing (MLST) and enterotoxin gene assays confirmed the presence of virulence factors in B. cereus isolates from AD samples. Furthermore, the abundance of bceT, encoding enterotoxin in B. cereus, was significantly higher in AD samples (p < 0.05). The systematic characterization of airborne bacterial communities in AD samples in this study suggests that B. cereus pose risks to public health.
Collapse
Affiliation(s)
- Keunje Yoo
- Department of Civil and Environmental Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, South Korea
| | - Il Han
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Tae Kwon Lee
- Department of Environmental Engineering, Yonsei University, Wonju, South Korea
| | - Hyunji Yoo
- Department of Civil and Environmental Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, South Korea
| | - Muhammad Imran Khan
- Department of Civil and Environmental Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, South Korea
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, 48824, USA
| | - Joonhong Park
- Department of Civil and Environmental Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, South Korea.
| |
Collapse
|
40
|
Rossi GAM, Silva HO, Aguilar CEG, Rochetti AL, Pascoe B, Méric G, Mourkas E, Hitchings MD, Mathias LA, de Azevedo Ruiz VL, Fukumasu H, Sheppard SK, Vidal AMC. Comparative genomic survey of Bacillus cereus sensu stricto isolates from the dairy production chain in Brazil. FEMS Microbiol Lett 2019; 365:4780294. [PMID: 29390131 DOI: 10.1093/femsle/fnx283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/23/2017] [Indexed: 12/20/2022] Open
Abstract
The genomes of 262 Bacillus cereus isolates were analyzed including 69 isolates sampled from equipment, raw milk and dairy products from Brazil. The population structure of isolates showed strains belonging to known phylogenetic groups II, III, IV, V and VI. Almost all the isolates obtained from dairy products belonged to group III. Investigation of specific alleles revealed high numbers of isolates carrying toxin-associated genes including cytK (53.62%), hblA (59.42%), hblC (44.93%), hblD (53.62%), nheA (84.06%), nheB (89.86%) and nheC (84.06%) with isolates belonging to groups IV and V having significant higher prevalence of hblACD and group IV of CytK genes. Strains from dairy products had significantly lower prevalence of CytK and hblACD genes compared to isolates from equipment and raw milk/bulk tanks. Genes related to sucrose metabolism were detected at higher frequency in isolates obtained from raw milk compared to strains from equipment and utensils. The population genomic analysis demonstrated the diversity of strains and variability of putative function among B. cereus group isolates in Brazilian dairy production, with large numbers of strains potentially able to cause foodborne illness. This detailed information will contribute to targeted interventions to reduce milk contamination and spoilage associated with B. cereus in Brazil.
Collapse
Affiliation(s)
- Gabriel Augusto Marques Rossi
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, UNESP - Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Via de acesso Paulo Castellane, s/n, CEP 14884-900 Jaboticabal, São Paulo, Brazil
| | - Higor Oliveira Silva
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, UNESP - Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Via de acesso Paulo Castellane, s/n, CEP 14884-900 Jaboticabal, São Paulo, Brazil
| | - Carlos Eduardo Gamero Aguilar
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, UNESP - Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Via de acesso Paulo Castellane, s/n, CEP 14884-900 Jaboticabal, São Paulo, Brazil
| | - Arina Lázaro Rochetti
- Departamento de Medicina Veterinária, Avenida Duque de Caxias Norte 225, Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), CEP 13635-900 Pirassununga, São Paulo, Brazil
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, 4 South, Lab 0.39, Claverton Down, BA2 7AY Bath, UK
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, 4 South, Lab 0.39, Claverton Down, BA2 7AY Bath, UK
| | - Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, 4 South, Lab 0.39, Claverton Down, BA2 7AY Bath, UK
| | | | - Luis Antonio Mathias
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, UNESP - Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Via de acesso Paulo Castellane, s/n, CEP 14884-900 Jaboticabal, São Paulo, Brazil
| | - Vera Letticie de Azevedo Ruiz
- Departamento de Medicina Veterinária, Avenida Duque de Caxias Norte 225, Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), CEP 13635-900 Pirassununga, São Paulo, Brazil
| | - Heidge Fukumasu
- Departamento de Medicina Veterinária, Avenida Duque de Caxias Norte 225, Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), CEP 13635-900 Pirassununga, São Paulo, Brazil
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, 4 South, Lab 0.39, Claverton Down, BA2 7AY Bath, UK
| | - Ana Maria Centola Vidal
- Departamento de Medicina Veterinária, Avenida Duque de Caxias Norte 225, Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), CEP 13635-900 Pirassununga, São Paulo, Brazil
| |
Collapse
|
41
|
Baek I, Lee K, Goodfellow M, Chun J. Comparative Genomic and Phylogenomic Analyses Clarify Relationships Within and Between Bacillus cereus and Bacillus thuringiensis: Proposal for the Recognition of Two Bacillus thuringiensis Genomovars. Front Microbiol 2019; 10:1978. [PMID: 31507580 PMCID: PMC6716467 DOI: 10.3389/fmicb.2019.01978] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/12/2019] [Indexed: 01/03/2023] Open
Abstract
The present study was designed to clarify the taxonomic status of two species classified as Bacillus cereus sensu lato, namely B. cereus sensu stricto and Bacillus thuringiensis. To this end, nearly 900 whole genome sequences of strains assigned to these taxa were the subject of comparative genomic and phylogenomic analyses. A phylogenomic tree based on core gene sequences showed that the type strains of B. cereus and B. thuringiensis formed a well-supported monophyletic clade that was clearly separated from corresponding clades composed of the remaining validly published species classified as B. cereus sensu lato. However, since average nucleotide identity and digital DNA-DNA hybridization similarities between the two types of Bacillus were slightly higher than the thresholds used to distinguish between closely related species we conclude that B. cereus and B. thuringiensis should continue to be recognized as validly published species. The B. thuringiensis strains were assigned to two genomically distinct groups, we propose that these taxa be recognized as genomovars, that is, as B. thuringiensis gv. thuringiensis and B. thuringiensis gv. cytolyticus. The extensive comparative genomic data clearly show that the distribution of pesticidal genes is irregular as strains identified as B. thuringiensis were assigned to several polyphyletic groups/subclades within the B. cereus-B. thuringiensis clade. Consequently, we recommend that genomic or equivalent molecular systematic features should be used to identify B. thuringiensis strains as the presence of pesticidal genes cannot be used as a diagnostic marker for this species. Comparative taxonomic studies are needed to find phenotypic properties that can be used to distinguish between the B. thuringiensis genomovars and between them and B. cereus.
Collapse
Affiliation(s)
- Inwoo Baek
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Kihyun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jongsik Chun
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| |
Collapse
|
42
|
Zhuang K, Li H, Zhang Z, Wu S, Zhang Y, Fox EM, Man C, Jiang Y. Typing and evaluating heat resistance of Bacillus cereus sensu stricto isolated from the processing environment of powdered infant formula. J Dairy Sci 2019; 102:7781-7793. [PMID: 31255274 DOI: 10.3168/jds.2019-16392] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022]
Abstract
Bacillus cereus sensu lato is one of the most harmful bacterial groups affecting the quality and safety of powdered infant formula (PIF). In this study, samples were collected from the raw materials and processing environments of PIF. A total of 84 isolates were identified as Bacillus cereus sensu stricto (B. cereus s. s.) by 16S rRNA analysis, molecular typing technology, and physiological and biochemical tests. The 84 B. cereus s. s. strains were assigned to panC group II, group III, and group IV. Then, the 7 housekeeping genes glpF, gmk, ilvD, pta, pur, pycA, and tpi were selected for multilocus sequence typing. Results showed that the 84 isolates were clustered into 24 sequence types (ST), and 14 novel ST were detected. Among the 24 ST, ST999 (19/84, 22.62%) and ST1343 (13/84, 15.48%) predominated. The correlation between processing areas and ST showed that the processing environments of the production and packing areas were the most susceptible to contamination by B. cereus s. s. Spores of these ST showed different heat resistance phenotypes evaluated by the analysis of DT (time in minutes of spore decimal reduction at each temperature) and Z values (temperature increase required to reduce the DT value to one-tenth of the original). Spores from group III according to panC gene analysis were the most heat resistant. These findings will help us to better understand B. cereus s. s. contamination and control in PIF processing environments.
Collapse
Affiliation(s)
- Kejin Zhuang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Hongfu Li
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ziwei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Shuang Wu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yashuo Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Edward M Fox
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom NE 98; CSIRO Agriculture and Food, Werribee, VIC 3030, Australia
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
43
|
|
44
|
Bağcıoğlu M, Fricker M, Johler S, Ehling-Schulz M. Detection and Identification of Bacillus cereus, Bacillus cytotoxicus, Bacillus thuringiensis, Bacillus mycoides and Bacillus weihenstephanensis via Machine Learning Based FTIR Spectroscopy. Front Microbiol 2019; 10:902. [PMID: 31105681 PMCID: PMC6498184 DOI: 10.3389/fmicb.2019.00902] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/09/2019] [Indexed: 12/04/2022] Open
Abstract
The Bacillus cereus group comprises genetical closely related species with variable toxigenic characteristics. However, detection and differentiation of the B. cereus group species in routine diagnostics can be difficult, expensive and laborious since current species designation is linked to specific phenotypic characteristic or the presence of species-specific genes. Especially the differentiation of Bacillus cereus and Bacillus thuringiensis, the identification of psychrotolerant Bacillus mycoides and Bacillus weihenstephanensis, as well as the identification of emetic B. cereus and Bacillus cytotoxicus, which are both producing highly potent toxins, is of high importance in food microbiology. Thus, we investigated the use of a machine learning approach, based on artificial neural network (ANN) assisted Fourier transform infrared (FTIR) spectroscopy, for discrimination of B. cereus group members. The deep learning tool box of Matlab was employed to construct a one-level ANN, allowing the discrimination of the aforementioned B. cereus group members. This model resulted in 100% correct identification for the training set and 99.5% correct identification overall. The established ANN was applied to investigate the composition of B. cereus group members in soil, as a natural habitat of B. cereus, and in food samples originating from foodborne outbreaks. These analyses revealed a high complexity of B. cereus group populations, not only in soil samples but also in the samples from the foodborne outbreaks, highlighting the importance of taking multiple isolates from samples implicated in food poisonings. Notable, in contrast to the soil samples, no bacteria belonging to the psychrotolerant B. cereus group members were detected in the food samples linked to foodborne outbreaks, while the overall abundancy of B. thuringiensis did not significantly differ between the sample categories. None of the isolates was classified as B. cytotoxicus, fostering the hypothesis that the latter species is linked to very specific ecological niches. Overall, our work shows that machine learning assisted (FTIR) spectroscopy is suitable for identification of B. cereus group members in routine diagnostics and outbreak investigations. In addition, it is a promising tool to explore the natural habitats of B. cereus group, such as soil.
Collapse
Affiliation(s)
- Murat Bağcıoğlu
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Martina Fricker
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sophia Johler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
45
|
de Andrade Cavalcante D, De-Souza MT, de Orem JC, de Magalhães MIA, Martins PH, Boone TJ, Castillo JA, Driks A. Ultrastructural analysis of spores from diverse Bacillales species isolated from Brazilian soil. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:155-164. [PMID: 30421850 DOI: 10.1111/1758-2229.12713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Many species in the order Bacillales form a specialized cell type called a spore that is resistant to a range of environmental stresses. Transmission electron microscopy (TEM) reveals that the spore is comprised of a series of concentric shells, surrounding an interior compartment harbouring the spore DNA. The outermost of these shells varies considerably in morphology among species, likely reflecting adaptations to the highly diverse niches in which spores are found. To better characterize the variation in spore ultrastructure among diverse species, we used TEM to analyse spores from a collection of 23 aerobic spore-forming bacteria from the Solo do Distrito Federal (SDF strains), spanning the genera Bacillus, Lysinibacillus, Paenibacillus and Brevibacillus, isolated from soil from central Brazil. We found that the structures of these spores varied widely, as expected. Interestingly, even though these isolates are novel strains of each species, they were structurally very similar to the known examples of each species in the literature. Because in most cases, the species we analysed are poorly characterized, our data provide important evidence regarding which structural features are likely to be constant within a taxon and which are likely to vary.
Collapse
Affiliation(s)
| | | | | | | | | | - Tyler J Boone
- Stritch School of Medicine, Department of Microbiology and Immunology, Loyola University Chicago, IL, USA
| | - José A Castillo
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
| | - Adam Driks
- Stritch School of Medicine, Department of Microbiology and Immunology, Loyola University Chicago, IL, USA
| |
Collapse
|
46
|
Carter L, Chase HR, Gieseker CM, Hasbrouck NR, Stine CB, Khan A, Ewing-Peeples LJ, Tall BD, Gopinath GR. Analysis of enterotoxigenic Bacillus cereus strains from dried foods using whole genome sequencing, multi-locus sequence analysis and toxin gene prevalence and distribution using endpoint PCR analysis. Int J Food Microbiol 2018; 284:31-39. [PMID: 29990637 PMCID: PMC11541649 DOI: 10.1016/j.ijfoodmicro.2018.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 06/08/2018] [Accepted: 06/21/2018] [Indexed: 10/28/2022]
Abstract
Bacillus cereus strains were isolated from dried foods, which included international brands of spices from South East Asia, Mexico and India purchased from several retail stores, samples of powdered infant formula (PIF), medicated fish feed and dietary supplements. The genetic diversity of 64 strains from spices and PIF was determined using a multiplex endpoint PCR assay designed to identify hemolysin BL, nonhemolytic enterotoxin, cytotoxin K, and enterotoxin FM toxin genes. Thirteen different B. cereus toxigenic gene patterns or profiles were identified among the strains. Randomly selected B. cereus strains were sequenced and compared with reference Genomic Groups from National Center Biotechnology Information using bioinformatics tools. A comprehensive multi-loci sequence analysis (MLSA) was designed using alleles from 25 known MLST genes specifically tailored for use with whole genome assemblies. A cohort of representative genomes of strains from a few FDA regulated commodities like dry foods and medicated fish feed was used to demonstrate the utility of the 25-MLSA approach for rapid clustering and identification of Genome Groups. The analysis clustered the strains from medicated fish feed, dry foods, and dietary supplements into phylogenetically-related groups. 25-MLSA also pointed to a greater diversity of B. cereus strains from foods and feed than previously recognized. Our integrated approach of toxin gene PCR, and to our knowledge, whole genome sequencing (WGS) based sequence analysis, may be the first of its kind that demonstrates enterotoxigenic potential and genomic diversity in parallel.
Collapse
Affiliation(s)
- Laurenda Carter
- U. S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Laurel, MD 20708 USA.
| | - Hannah R Chase
- U. S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Laurel, MD 20708 USA
| | - Charles M Gieseker
- U. S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, MD 20708, USA
| | - Nicholas R Hasbrouck
- U. S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, MD 20708, USA
| | - Cynthia B Stine
- U. S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, MD 20708, USA
| | - Ashraf Khan
- Division of Microbiology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Laura J Ewing-Peeples
- U. S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Laurel, MD 20708 USA
| | - Ben D Tall
- U. S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Laurel, MD 20708 USA
| | - Gopal R Gopinath
- U. S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Laurel, MD 20708 USA
| |
Collapse
|
47
|
Complete Genome Sequence of Bacillus cereus CC-1, A Novel Marine Selenate/Selenite Reducing Bacterium Producing Metallic Selenides Nanomaterials. Curr Microbiol 2018; 76:78-85. [PMID: 30343326 DOI: 10.1007/s00284-018-1587-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 10/15/2018] [Indexed: 10/28/2022]
Abstract
Metallic selenides nanomaterials are widely used in many fields, especially for photothermal therapy and thermoelectric devices. However, the traditional chemogenic methods are energy-intensive and environmentally unfriendly. In this study, the first complete genome data of a metallic selenides producing bacterium Bacillus cereus CC-1 was reported. This strain can not only reduce selenite and selenate into elemental selenium nanoparticles (SeNPs), but also synthesize several metallic selenides nanoparticles when adding metal ions (Pb2+, Ag+ and Bi3+) and selenite simultaneously. The size of the genome is 5,308,319 bp with 36.07% G+C content. Several putative genes responsible for heavy metal resistance, salt resistance, and selenate reduction were found. This genome data provide fundamental information, which support the use of this strain for the production of biocompatible photothermal and thermoelectric nanomaterials under mild conditions.
Collapse
|
48
|
Hernández-González IL, Moreno-Hagelsieb G, Olmedo-Álvarez G. Environmentally-driven gene content convergence and the Bacillus phylogeny. BMC Evol Biol 2018; 18:148. [PMID: 30285626 PMCID: PMC6171248 DOI: 10.1186/s12862-018-1261-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 09/13/2018] [Indexed: 01/28/2023] Open
Abstract
Background Members of the Bacillus genus have been isolated from a variety of environments. However, the relationship between potential metabolism and the niche from which bacteria of this genus have been isolated has not been extensively studied. The existence of a monophyletic aquatic Bacillus group, composed of members isolated from both marine and fresh water has been proposed. Here, we present a phylogenetic/phylogenomic analysis to investigate the potential relationship between the environment from which group members have been isolated and their evolutionary origin. We also carried out hierarchical clustering based on functional content to test for potential environmental effects on the genetic content of these bacteria. Results The phylogenetic reconstruction showed that Bacillus strains classified as aquatic have evolutionary origins in different lineages. Although we observed the presence of a clade consisting exclusively of aquatic Bacillus, it is not comprised of the same strains previously reported. In contrast to phylogeny, clustering based on the functional categories of the encoded proteomes resulted in groups more compatible with the environments from which the organisms were isolated. This evidence suggests a detectable environmental influence on bacterial genetic content, despite their different evolutionary origins. Conclusion Our results suggest that aquatic Bacillus species have polyphyletic origins, but exhibit convergence at the gene content level. Electronic supplementary material The online version of this article (10.1186/s12862-018-1261-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ismael L Hernández-González
- Department of Genetic Engineering, CINVESTAV-Irapuato, Km. 9.6 Libramiento Norte, Carr. Irapuato-Leon, Irapuato, 36824, Guanajuato, Mexico
| | - Gabriel Moreno-Hagelsieb
- Department of Biology, Wilfrid Laurier University, 75 University Ave. W., Waterloo, N2L 3C5, Ontario, Canada.
| | - Gabriela Olmedo-Álvarez
- Department of Genetic Engineering, CINVESTAV-Irapuato, Km. 9.6 Libramiento Norte, Carr. Irapuato-Leon, Irapuato, 36824, Guanajuato, Mexico.
| |
Collapse
|
49
|
Lazarte JN, Lopez RP, Ghiringhelli PD, Berón CM. Bacillus wiedmannii biovar thuringiensis: A Specialized Mosquitocidal Pathogen with Plasmids from Diverse Origins. Genome Biol Evol 2018; 10:2823-2833. [PMID: 30285095 PMCID: PMC6203079 DOI: 10.1093/gbe/evy211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2018] [Indexed: 11/12/2022] Open
Abstract
Bacillus cereus sensu lato also known as B. cereus group is composed of an ecologically diverse bacterial group with an increasing number of related species, some of which are medically or agriculturally important. Numerous efforts have been undertaken to allow presumptive differentiation of B. cereus group species from one another. FCC41 is a Bacillus sp. strain toxic against mosquito species like Aedes aegypti, Aedes (Ochlerotatus) albifasciatus, Culex pipiens, Culex quinquefasciatus, and Culex apicinus, some of them responsible for the transmission of vector-borne diseases. Here, we report the complete genome sequence of FCC41 strain, which consists of one circular chromosome and eight circular plasmids ranging in size from 8 to 490 kb. This strain harbors six crystal protein genes, including cry24Ca, two cry4-like and two cry52-like, a cry41-like parasporin gene and multiple virulence factors. The phylogenetic analysis of the whole-genome sequence of this strain with molecular approaches places this strain into the Bacillus wiedmannii cluster. However, according with phenotypical characteristics such as the mosquitocidal activity due to the presence of Cry proteins found in the parasporal body and cry genes encoded in plasmids of different sizes, indicate that this strain could be renamed as B. wiedmannii biovar thuringiensis strain FCC41.
Collapse
Affiliation(s)
- J Nicolás Lazarte
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) - CONICET, FIBA, Mar del Plata, Argentina
| | - Rocio P Lopez
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) - CONICET, FIBA, Mar del Plata, Argentina
| | - P Daniel Ghiringhelli
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular (LIGBCM), Area Virosis de Insectos (AVI), Departamento Ciencia y Tecnología, Universidad Nacional de Quilmes and CONICET, Bernal, Argentina
| | - Corina M Berón
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) - CONICET, FIBA, Mar del Plata, Argentina
| |
Collapse
|
50
|
Yoo K, Yoo H, Lee JM, Shukla SK, Park J. Classification and Regression Tree Approach for Prediction of Potential Hazards of Urban Airborne Bacteria during Asian Dust Events. Sci Rep 2018; 8:11823. [PMID: 30087362 PMCID: PMC6081373 DOI: 10.1038/s41598-018-29796-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022] Open
Abstract
Despite progress in monitoring and modeling Asian dust (AD) events, real-time public hazard prediction based on biological evidence during AD events remains a challenge. Herein, both a classification and regression tree (CART) and multiple linear regression (MLR) were applied to assess the applicability of prediction for potential urban airborne bacterial hazards during AD events using metagenomic analysis and real-time qPCR. In the present work, Bacillus cereus was screened as a potential pathogenic candidate and positively correlated with PM10 concentration (p < 0.05). Additionally, detection of the bceT gene with qPCR, which codes for an enterotoxin in B. cereus, was significantly increased during AD events (p < 0.05). The CART approach more successfully predicted potential airborne bacterial hazards with a relatively high coefficient of determination (R2) and small bias, with the smallest root mean square error (RMSE) and mean absolute error (MAE) compared to the MLR approach. Regression tree analyses from the CART model showed that the PM10 concentration, from 78.4 µg/m3 to 92.2 µg/m3, is an important atmospheric parameter that significantly affects the potential airborne bacterial hazard during AD events. The results show that the CART approach may be useful to effectively derive a predictive understanding of potential airborne bacterial hazards during AD events and thus has a possible for improving decision-making tools for environmental policies associated with air pollution and public health.
Collapse
Affiliation(s)
- Keunje Yoo
- Department of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, 10027, USA
| | - Hyunji Yoo
- Department of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jae Min Lee
- Department of Earth System Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Sudheer Kumar Shukla
- Department of Built and Natural Environment, Caledonian College of Engineering, Seeb, Sultanate of Oman
| | - Joonhong Park
- Department of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|