1
|
Tao H, Zhang W, Liu J, Zhou Y, Wang G. The impact of the flagellar protein gene fliK on Helicobacter pylori biofilm formation. mSphere 2025; 10:e0001825. [PMID: 40116479 PMCID: PMC12039246 DOI: 10.1128/msphere.00018-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
The biofilm structure of Helicobacter pylori is known to enhance its capabilities for antimicrobial resistance. This study aims to investigate the role of the flagellar hook length control protein gene fliK in the biofilm formation of H. pylori. Homologous recombination was employed to knock out the fliK gene in the H. pylori NCTC 11637 strain. The flagella of H. pylori were observed using transmission electron microscopy (TEM), whereas H. pylori motility and growth were examined through semi-solid agar assays and growth curve analyses, respectively. The bacterial biofilm and its constituents were visualized utilizing fluorescence confocal microscopy. Assessments of H. pylori adhesion to gastric mucosal cells, its vacuolar toxicity, and antibiotic resistance were evaluated using co-culture experiments and E-test methods. The fliK gene was successfully knocked out in H. pylori NCTC 11637. The ΔfliK mutant exhibited polyhook structures or lacked typical flagellar morphology, reduced mobility, and a slower bacterial growth rate compared with the wild-type strain. Fluorescence confocal microscopy revealed a decrease in the thickness of the biofilm formed by the ΔfliK strain, along with reductions in polysaccharide and DNA components. The deletion of fliK did not affect vacuolar toxicity or antibiotic resistance but did reduce the adhesive capacity of the bacterium to gastric mucosal cells. The deletion of the fliK gene significantly impairs H. pylori biofilm formation, leading to substantial decreases in biofilm components, bacterial growth, and adhesion capabilities. These findings underscore the importance of fliK in the pathogenicity of H. pylori.IMPORTANCEThe increasing antibiotic resistance of Helicobacter pylori has emerged as a global health concern, with biofilm formation serving as a crucial mechanism underlying this resistance. This study investigates the role of the fliK gene, which encodes the flagellar hook length control protein, in H. pylori biofilm formation. Furthermore, we examined the influence of fliK on H. pylori growth, motility, and cellular adhesion capabilities. Our findings elucidate the molecular mechanisms governing H. pylori biofilm formation and suggest potential therapeutic strategies for addressing H. pylori antibiotic resistance.
Collapse
Affiliation(s)
- Hongjin Tao
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Wangjingyi Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jing Liu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yu Zhou
- Department of Laboratory Medicine, Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Gangshi Wang
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Liu Y, Gates AD, Liu Z, Duque Q, Chen MY, Hamilton CD, O’Toole GA, Haney CH. In vitro biofilm formation only partially predicts beneficial Pseudomonas fluorescens protection against rhizosphere pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628960. [PMID: 39763852 PMCID: PMC11702707 DOI: 10.1101/2024.12.17.628960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Plant roots form associations with both beneficial and pathogenic soil microorganisms. While members of the rhizosphere microbiome can protect against pathogens, the mechanisms are poorly understood. We hypothesized that the ability to form a robust biofilm on the root surface is necessary for the exclusion of pathogens; however, it is not known if the same biofilm formation components required in vitro are necessary in vivo. Pseudomonas fluorescens WCS365 is a beneficial strain that is phylogenetically closely related to an opportunistic pathogen P. fluorescens N2C3 and confers robust protection against P. fluorescens N2C3 in the rhizosphere. We used this plant-mutualist-pathogen model to screen collections of P. fluorescens WCS365 increased attachment mutants (iam) and surface attachment defective (sad) transposon insertion mutants that form increased or decreased levels of biofilm on an abiotic surface, respectively. We found that while the P. fluorescens WCS365 mutants had altered biofilm formation in vitro, only a subset of these mutants, including those involved in large adhesion protein (Lap) biosynthesis, flagellin biosynthesis and O-antigen biosynthesis, lost protection against P. fluorescens N2C3. We found that the inability of P. fluorescens WCS365 mutants to grow in planta, and the inability to suppress pathogen growth, both partially contributed to loss of plant protection. We did not find a correlation between the extent of biofilm formed in vitro and pathogen protection in planta indicating that biofilm formation on abiotic surfaces may not fully predict pathogen exclusion in planta. Collectively, our work provides insights into mechanisms of biofilm formation and host colonization that shape the outcomes of host-microbe-pathogen interactions.
Collapse
Affiliation(s)
- Yang Liu
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| | - Alexandra D. Gates
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, USA
| | - Zhexian Liu
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| | - Quinn Duque
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, USA
| | - Melissa Y. Chen
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| | - Corri D. Hamilton
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, USA
| | - George A. O’Toole
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Cara H. Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
3
|
Kneuer L, Wurst R, Gescher J. Shewanella oneidensis: Biotechnological Application of Metal-Reducing Bacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39579226 DOI: 10.1007/10_2024_272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
What is an unconventional organism in biotechnology? The γ-proteobacterium Shewanella oneidensis might fall into this category as it was initially established as a laboratory model organism for a process that was not seen as potentially interesting for biotechnology. The reduction of solid-state extracellular electron acceptors such as iron and manganese oxides is highly relevant for many biogeochemical cycles, although it turned out in recent years to be quite relevant for many potential biotechnological applications as well. Applications started with the production of nanoparticles and dramatically increased after understanding that electrodes in bioelectrochemical systems can also be used by these organisms. From the potential production of current and hydrogen in these systems and the development of biosensors, the field expanded to anode-assisted fermentations enabling fermentation reactions that were - so far - dependent on oxygen as an electron acceptor. Now the field expands further to cathode-dependent production routines. As a side product to all these application endeavors, S. oneidensis was understood more and more, and our understanding and genetic repertoire is at eye level to E. coli. Corresponding to this line of thought, this chapter will first summarize the available arsenal of tools in molecular biology that was established for working with the organism and thereafter describe so far established directions of application. Last but not least, we will highlight potential future directions of work with the unconventional model organism S. oneidensis.
Collapse
Affiliation(s)
- Lukas Kneuer
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| | - René Wurst
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| | - Johannes Gescher
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany.
| |
Collapse
|
4
|
Hirose N, Kazama I, Aso Y, Ohara H. Potential of Cellulomonas fimi for polysaccharide-fueled microbial fuel cells. Lett Appl Microbiol 2024; 77:ovae105. [PMID: 39509279 DOI: 10.1093/lambio/ovae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
To generate power from various biomass using microbial fuel cells (MFCs), microorganisms with high potential are essential. Therefore, this study examined the feasibility of using Cellulomonas fimi and Shewanella oneidensis as MFCs fueled by starch, cellulose, chitin, and chitosan. To our knowledge, this is the first report of power generation using C. fimi fueled by these polysaccharides other than cellulose, furthermore the first report of S. oneidensis fueled by chitosan. No differences were observed in the power generation capacities between C. fimi and S. oneidensis when chitin and chitosan were used. However, C. fimi demonstrated effective power generation from starch and cellulose, showing a maximum current density of 17.4 mA m-2 for starch and 38.8 mA m-2 for cellulose. Shewanella oneidensis could not utilize these fuels. Power generation using C. fimi fueled by starch and cellulose produced acetic acid, lactic acid, and formic acid. However, when chitin and chitosan were used, only acetic acid was produced. These results indicate that electron transfer from C. fimi to the anode may be inefficient. To improve power generation efficiency, it may be necessary to enhance electron transfer from the cells to the anode, e.g. by adding a mediator.
Collapse
Affiliation(s)
- Naoto Hirose
- Department of Biobased Materials Science, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Iori Kazama
- Department of Biobased Materials Science, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yuji Aso
- Department of Biobased Materials Science, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Hitomi Ohara
- Department of Biobased Materials Science, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| |
Collapse
|
5
|
Yang L, Li S, Ahmed W, Jiang T, Mei F, Hu X, Liu W, Abbas FM, Xue R, Peng X, Zhao Z. Exploring the Relationship Between Biochar Pore Structure and Microbial Community Composition in Promoting Tobacco Growth. PLANTS (BASEL, SWITZERLAND) 2024; 13:2952. [PMID: 39519871 PMCID: PMC11548322 DOI: 10.3390/plants13212952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The potential benefits of biochar, a carbon-rich substance derived from biomass, for enhancing agricultural yield and soil health have drawn increasing interest. Nevertheless, owing to the lack of specialized studies, the role of its poly-spatial structure in the success of fostering plant growth remains unclear. This study aimed to assess the effects of various biochar pore shapes on tobacco growth and the underlying microbiological processes. Three pyrolysis temperatures (250 °C, 400 °C, and 550 °C) were used to produce biochar from tobacco stems, resulting in different pore structures (T3 > T2 > T1). We then used BET-specific surface area (BET), t.Plot micropore specific surface area (t.Plot), mesopore specific surface area (MSSA), specific pore volume (SPV), average pore size (AP), and mesopore pore volume (MPV) measurements to evaluate the effects of these biochars on tobacco growth and biomass accumulation, and microbial analyses were performed to investigate the underlying mechanisms. When applied to plants, biochar increased their growth compared to untreated controls. The most notable improvement in tobacco growth was observed in the biochar produced at 400 °C (T3), which possessed the largest and most advantageous pore structure among all treatments. Further studies demonstrated that biochars with greater specific surface areas (BET, t.Plot, and MSSA) positively altered the abundance of key microbial taxa (e.g., Stenotrophobacter, Ensifer, Claroideoglomus) and community composition, thereby encouraging plant development and biomass accumulation. Conversely, greater pore volumes (SPV, AP, and MPV) inhibited microbial activity and significantly affected growth and biomass accumulation. Structural equation modeling further demonstrated that the pore structure of biochar greatly affected plant growth by changing the relative abundance and community composition of soil microbes. Maximizing the benefits of biochar in stimulating plant growth and improving soil microbial communities depends on optimizing the material's pore structure, particularly by increasing the specific surface area. These findings will help expand the use of biochar in sustainable agriculture.
Collapse
Affiliation(s)
- Linyuan Yang
- Yunnan Agricultural University, Kunming 650201, China
- Yunnan Academy of Agricultural Sciences, Institute of Tropical and Subtropical Cash Crops, Baoshan 678000, China
| | - Shichen Li
- Yunnan Agricultural University, Kunming 650201, China
| | - Waqar Ahmed
- Yunnan Agricultural University, Kunming 650201, China
| | - Tao Jiang
- Yunnan Agricultural University, Kunming 650201, China
| | - Fupeng Mei
- Yunnan Agricultural University, Kunming 650201, China
| | - Xiaodong Hu
- Yunnan Agricultural University, Kunming 650201, China
| | - Wubo Liu
- Yunnan Agricultural University, Kunming 650201, China
| | - Fatima M. Abbas
- Department of Biology, Faculty of Sciences and Arts, King Khalid University, Dahran Al-Janoub 61421, Saudi Arabia
| | - Rujun Xue
- Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoci Peng
- Yunnan Agricultural University, Kunming 650201, China
| | | |
Collapse
|
6
|
Klein EM, Heintz H, Wurst R, Schuldt S, Hähl H, Jacobs K, Gescher J. Comparative analysis of the influence of BpfA and BpfG on biofilm development and current density in Shewanella oneidensis under oxic, fumarate- and anode-respiring conditions. Sci Rep 2024; 14:23174. [PMID: 39369013 PMCID: PMC11455927 DOI: 10.1038/s41598-024-73474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024] Open
Abstract
Biofilm formation by Shewanella oneidensis has been extensively studied under oxic conditions; however, relatively little is known about biofilm formation under anoxic conditions and how biofilm architecture and composition can positively influence current generation in bioelectrochemical systems. In this study, we utilized a recently developed microfluidic biofilm analysis setup with automated 3D imaging to investigate the effects of extracellular electron acceptors and synthetic modifications to the extracellular polymeric matrix on biofilm formation. Our results with the wild type strain demonstrate robust biofilm formation even under anoxic conditions when fumarate is used as the electron acceptor. However, this pattern shifts when a graphite electrode is employed as the electron acceptor, resulting in biofilm formation falling below the detection limit of the optical coherence tomography imaging system. To manipulate biofilm formation, we aimed to express BpfG with a single amino acid substitution in the catalytic center (C116S) and to overexpress bpfA. Our analyses indicate that, under oxic conditions, overarching mechanisms predominantly influence biofilm development, rather than the specific mutations we investigated. Under anoxic conditions, the bpfG mutation led to a quantitative increase in biofilm formation, but both strains exhibited significant qualitative changes in biofilm architecture compared to the controls. When an anode was used as the sole electron acceptor, both the bpfA and bpfG mutations positively impacted mean current density, yielding a 1.8-fold increase for each mutation.
Collapse
Affiliation(s)
- Edina Marlen Klein
- Institute of Technical Microbiology, University of Technology Hamburg, 21073, Hamburg, Germany
| | - Hannah Heintz
- Experimental Physics, Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany
| | - René Wurst
- Institute of Technical Microbiology, University of Technology Hamburg, 21073, Hamburg, Germany
| | - Simon Schuldt
- Institute of Technical Microbiology, University of Technology Hamburg, 21073, Hamburg, Germany
| | - Hendrik Hähl
- Experimental Physics, Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany
| | - Karin Jacobs
- Experimental Physics, Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany
- Max Planck School Matter to Life, 69120, Heidelberg, Germany
| | - Johannes Gescher
- Institute of Technical Microbiology, University of Technology Hamburg, 21073, Hamburg, Germany.
| |
Collapse
|
7
|
Poli JP, Boyeldieu A, Lutz A, Vigneron-Bouquet A, Ali Chaouche A, Giudici-Orticoni MT, Fons M, Jourlin-Castelli C. BpfD Is a c-di-GMP Effector Protein Playing a Key Role for Pellicle Biosynthesis in Shewanella oneidensis. Int J Mol Sci 2024; 25:9697. [PMID: 39273643 PMCID: PMC11395469 DOI: 10.3390/ijms25179697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The aquatic γ-proteobacterium Shewanella oneidensis is able to form two types of biofilms: a floating biofilm at the air-liquid interface (pellicle) and a solid surface-associated biofilm (SSA-biofilm). S. oneidensis possesses the Bpf system, which is orthologous to the Lap system first described in Pseudomonas fluorescens. In the Lap systems, the retention of a large adhesin (LapA) at the cell surface is controlled by LapD, a c-di-GMP effector protein, and LapG, a periplasmic protease targeting LapA. Here, we showed that the Bpf system is mandatory for pellicle biogenesis, but not for SSA-biofilm formation, indicating that the role of Bpf is somewhat different from that of Lap. The BpfD protein was then proved to bind c-di-GMP via its degenerated EAL domain, thus acting as a c-di-GMP effector protein like its counterpart LapD. In accordance with its key role in pellicle formation, BpfD was found to interact with two diguanylate cyclases, PdgA and PdgB, previously identified as involved in pellicle formation. Finally, BpfD was shown to interact with CheY3, the response regulator controlling both chemotaxis and biofilm formation. Altogether, these results indicate that biofilm formation in S. oneidensis is under the control of a large c-di-GMP network.
Collapse
Affiliation(s)
- Jean-Pierre Poli
- Aix Marseille Univ, CNRS, BIP, Marseille, France; (J.-P.P.); (A.B.); (A.L.); (A.V.-B.); (A.A.C.); (M.-T.G.-O.); (M.F.)
- UMR CNRS 6134 Laboratoire Sciences pour l’Environnement (SPE), Université de Corse, Corte, France
| | - Anne Boyeldieu
- Aix Marseille Univ, CNRS, BIP, Marseille, France; (J.-P.P.); (A.B.); (A.L.); (A.V.-B.); (A.A.C.); (M.-T.G.-O.); (M.F.)
| | - Alexandre Lutz
- Aix Marseille Univ, CNRS, BIP, Marseille, France; (J.-P.P.); (A.B.); (A.L.); (A.V.-B.); (A.A.C.); (M.-T.G.-O.); (M.F.)
- Université de Toulon, MAPIEM, Toulon, France
| | - Amélie Vigneron-Bouquet
- Aix Marseille Univ, CNRS, BIP, Marseille, France; (J.-P.P.); (A.B.); (A.L.); (A.V.-B.); (A.A.C.); (M.-T.G.-O.); (M.F.)
| | - Amine Ali Chaouche
- Aix Marseille Univ, CNRS, BIP, Marseille, France; (J.-P.P.); (A.B.); (A.L.); (A.V.-B.); (A.A.C.); (M.-T.G.-O.); (M.F.)
| | | | - Michel Fons
- Aix Marseille Univ, CNRS, BIP, Marseille, France; (J.-P.P.); (A.B.); (A.L.); (A.V.-B.); (A.A.C.); (M.-T.G.-O.); (M.F.)
| | - Cécile Jourlin-Castelli
- Aix Marseille Univ, CNRS, BIP, Marseille, France; (J.-P.P.); (A.B.); (A.L.); (A.V.-B.); (A.A.C.); (M.-T.G.-O.); (M.F.)
| |
Collapse
|
8
|
Rodríguez-Torres LM, Huerta-Miranda GA, Martínez-García AL, Mazón-Montijo DA, Hernández-Eligio A, Miranda-Hernández M, Juárez K. Influence of support materials on the electroactive behavior, structure and gene expression of wild type and GSU1771-deficient mutant of Geobacter sulfurreducens biofilms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33612-3. [PMID: 38758442 DOI: 10.1007/s11356-024-33612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Geobacter sulfurreducens DL1 is a metal-reducing dissimilatory bacterium frequently used to produce electricity in bioelectrochemical systems (BES). The biofilm formed on electrodes is one of the most important factors for efficient electron transfer; this is possible due to the production of type IV pili and c-type cytochromes that allow it to carry out extracellular electron transfer (EET) to final acceptors. In this study, we analyzed the biofilm formed on different support materials (glass, hematite (Fe2O3) on glass, fluorine-doped tin oxide (FTO) semiconductor glass, Fe2O3 on FTO, graphite, and stainless steel) by G. sulfurreducens DL1 (WT) and GSU1771-deficient strain mutant (Δgsu1771). GSU1771 is a transcriptional regulator that controls the expression of several genes involved in electron transfer. Different approaches and experimental tests were carried out with the biofilms grown on the different support materials including structure analysis by confocal laser scanning microscopy (CLSM), characterization of electrochemical activity, and quantification of relative gene expression by RT-qPCR. The gene expression of selected genes involved in EET was analyzed, observing an overexpression of pgcA, omcS, omcM, and omcF from Δgsu1771 biofilms compared to those from WT, also the overexpression of the epsH gene, which is involved in exopolysaccharide synthesis. Although we observed that for the Δgsu1771 mutant strain, the associated redox processes are similar to the WT strain, and more current is produced, we think that this could be associated with a higher relative expression of certain genes involved in EET and in the production of exopolysaccharides despite the chemical environment where the biofilm develops. This study supports that G. sulfurreducens is capable of adapting to the electrochemical environment where it grows.
Collapse
Affiliation(s)
- Luis Miguel Rodríguez-Torres
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Guillermo Antonio Huerta-Miranda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Ana Luisa Martínez-García
- Centro de Investigación en Materiales Avanzados S. C., Subsede Monterrey, Grupo de Investigación DORA-Lab, 66628, Apodaca, N. L, México
- Centro de Investigación e Innovación Tecnológica (CIIT), Grupo de Investigación DORA-Lab, Tecnológico Nacional de México Campus Nuevo León (TECNL), 66629, Apodaca, N. L, México
| | - Dalia Alejandra Mazón-Montijo
- Centro de Investigación en Materiales Avanzados S. C., Subsede Monterrey, Grupo de Investigación DORA-Lab, 66628, Apodaca, N. L, México
- Centro de Investigación e Innovación Tecnológica (CIIT), Grupo de Investigación DORA-Lab, Tecnológico Nacional de México Campus Nuevo León (TECNL), 66629, Apodaca, N. L, México
- Investigadores Por México, CONAHCYT, Ciudad de México, México
| | - Alberto Hernández-Eligio
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, 62210, Cuernavaca, Morelos, México
- Investigadores Por México, CONAHCYT, Ciudad de México, México
| | - Margarita Miranda-Hernández
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco, 62580, Temixco, Morelos, México
| | - Katy Juárez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, 62210, Cuernavaca, Morelos, México.
| |
Collapse
|
9
|
Chen S, Ding Y. A bibliography study of Shewanella oneidensis biofilm. FEMS Microbiol Ecol 2023; 99:fiad124. [PMID: 37796898 PMCID: PMC10630087 DOI: 10.1093/femsec/fiad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023] Open
Abstract
This study employs a bibliography study method to evaluate 472 papers focused on Shewanella oneidensis biofilms. Biofilms, which are formed when microorganisms adhere to surfaces or interfaces, play a crucial role in various natural, engineered, and medical settings. Within biofilms, microorganisms are enclosed in extracellular polymeric substances (EPS), creating a stable working environment. This characteristic enhances the practicality of biofilm-based systems in natural bioreactors, as they are less susceptible to temperature and pH fluctuations compared to enzyme-based bioprocesses. Shewanella oneidensis, a nonpathogenic bacterium with the ability to transfer electrons, serves as an example of a species isolated from its environment that exhibits extensive biofilm applications. These applications, such as heavy metal removal, offer potential benefits for environmental engineering and human health. This paper presents a comprehensive examination and review of the biology and engineering aspects of Shewanella biofilms, providing valuable insights into their functionality.
Collapse
Affiliation(s)
- Shan Chen
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong, China
| | - Yuanzhao Ding
- School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom
| |
Collapse
|
10
|
Medin S, Schmitz AM, Pian B, Mini K, Reid MC, Holycross M, Gazel E, Wu M, Barstow B. Genomic characterization of rare earth binding by Shewanella oneidensis. Sci Rep 2023; 13:15975. [PMID: 37749198 PMCID: PMC10520059 DOI: 10.1038/s41598-023-42742-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
Rare earth elements (REE) are essential ingredients of sustainable energy technologies, but separation of individual REE is one of the hardest problems in chemistry today. Biosorption, where molecules adsorb to the surface of biological materials, offers a sustainable alternative to environmentally harmful solvent extractions currently used for separation of rare earth elements (REE). The REE-biosorption capability of some microorganisms allows for REE separations that, under specialized conditions, are already competitive with solvent extractions, suggesting that genetic engineering could allow it to leapfrog existing technologies. To identify targets for genomic improvement we screened 3,373 mutants from the whole genome knockout collection of the known REE-biosorbing microorganism Shewanella oneidensis MR-1. We found 130 genes that increased biosorption of the middle REE europium, and 112 that reduced it. We verified biosorption changes from the screen for a mixed solution of three REE (La, Eu, Yb) using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) in solution conditions with a range of ionic strengths and REE concentrations. We identified 18 gene ontologies and 13 gene operons that make up key systems that affect biosorption. We found, among other things, that disruptions of a key regulatory component of the arc system (hptA), which regulates cellular response to anoxic environments and polysaccharide biosynthesis related genes (wbpQ, wbnJ, SO_3183) consistently increase biosorption across all our solution conditions. Our largest total biosorption change comes from our SO_4685, a capsular polysaccharide (CPS) synthesis gene, disruption of which results in an up to 79% increase in biosorption; and nusA, a transcriptional termination/anti-termination protein, disruption of which results in an up to 35% decrease in biosorption. Knockouts of glnA, pyrD, and SO_3183 produce small but significant increases (≈ 1%) in relative biosorption affinity for ytterbium over lanthanum in multiple solution conditions tested, while many other genes we explored have more complex binding affinity changes. Modeling suggests that while these changes to lanthanide biosorption selectivity are small, they could already reduce the length of repeated enrichment process by up to 27%. This broad exploratory study begins to elucidate how genetics affect REE-biosorption by S. oneidensis, suggests new areas of investigation for better mechanistic understanding of the membrane chemistry involved in REE binding, and offer potential targets for improving biosorption and separation of REE by genetic engineering.
Collapse
Affiliation(s)
- Sean Medin
- Department of Biological and Environmental Engineering, Cornell University, Cornell University, 228 Riley-Robb Hall, Ithaca, NY, 14853, USA
| | - Alexa M Schmitz
- Department of Biological and Environmental Engineering, Cornell University, Cornell University, 228 Riley-Robb Hall, Ithaca, NY, 14853, USA
| | - Brooke Pian
- Department of Biological and Environmental Engineering, Cornell University, Cornell University, 228 Riley-Robb Hall, Ithaca, NY, 14853, USA
| | - Kuunemuebari Mini
- Department of Sciences and Technology Studies, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew C Reid
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Megan Holycross
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Esteban Gazel
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Cornell University, 228 Riley-Robb Hall, Ithaca, NY, 14853, USA
| | - Buz Barstow
- Department of Biological and Environmental Engineering, Cornell University, Cornell University, 228 Riley-Robb Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
11
|
Zhang P, Zhou X, Wang X, Li Z. Enhanced bidirectional extracellular electron transfer based on biointerface interaction of conjugated polymers-bacteria biohybrid system. Colloids Surf B Biointerfaces 2023; 228:113383. [PMID: 37295125 DOI: 10.1016/j.colsurfb.2023.113383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
The low bacteria loading capacity and low extracellular electron transfer (EET) efficiency are two major bottlenecks restricting the performance of the bioelectrochemical systems from practical applications. Herein, we demonstrated that conjugated polymers (CPs) could enhance the bidirectional EET efficiency through the intimate biointerface interactions of CPs-bacteria biohybrid system. Upon the formation of CPs/bacteria biohybrid, thick and intact CPs-biofilm formed which ensured close biointerface interactions between bacteria-to-bacteria and bacteria-to-electrode. CPs could promote the transmembrane electron transfer through intercalating into the cell membrane of bacteria. Utilizing the CPs-biofilm biohybrid electrode as anode in microbial fuel cell (MFC), the power generation and lifetime of MFC had greatly improved based on accelerated outward EET. Moreover, using the CPs-biofilm biohybrid electrode as cathode in electrochemical cell, the current density was increased due to the enhanced inward EET. Therefore, the intimate biointerface interaction between CPs and bacteria greatly enhanced the bidirectional EET, indicating that CPs exhibit promising applications in both MFC and microbial electrosynthesis.
Collapse
Affiliation(s)
- Pengbo Zhang
- School of Chemistry and Biological Engineering, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Xin Zhou
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Zhengping Li
- School of Chemistry and Biological Engineering, University of Science & Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
12
|
Zhang Y, Plymale A, Son J, Huang Q, Chen W, Yu XY. Reducing the matrix effect in mass spectral imaging of biofilms using flow-cell culture. Front Chem 2023; 11:1203314. [PMID: 37304684 PMCID: PMC10248399 DOI: 10.3389/fchem.2023.1203314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
The interactions between soil microorganisms and soil minerals play a crucial role in the formation and evolution of minerals and the stability of soil aggregates. Due to the heterogeneity and diversity of the soil environment, the under-standing of the functions of bacterial biofilms in soil minerals at the microscale is limited. A soil mineral-bacterial biofilm system was used as a model in this study, and it was analyzed by time-of-flight secondary ion mass spectrometry (ToF-SIMS) to acquire molecular level information. Static culture in multi-wells and dynamic flow-cell culture in microfluidics of biofilms were investigated. Our results show that more characteristic molecules of biofilms can be observed in SIMS spectra of the flow-cell culture. In contrast, biofilm signature peaks are buried under the mineral components in SIMS spectra in the static culture case. Spectral overlay was used in peak selection prior to performing Principal component analysis (PCA). Comparisons of the PCA results between the static and flow-cell culture show more pronounced molecular features and higher loadings of organic peaks of the dynamic cultured specimens. For example, fatty acids secreted from bacterial biofilm extracellular polymeric substance are likely to be responsible for biofilm dispersal due to mineral treatment up to 48 h. Such findings suggest that the use of microfluidic cells to dynamically culture biofilms be a more suitable method for reducing the matrix effect arisen from the growth medium and minerals as a perturbation fac-tor for improved spectral and multivariate analysis of complex mass spectral data in ToF-SIMS. These results show that the interaction mechanism between biofilms and soil minerals at the molecular level can be better studied using the flow-cell culture and advanced mass spectral imaging techniques like ToF-SIMS.
Collapse
Affiliation(s)
- Yuchen Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Andrew Plymale
- Pacific Northwest National Laboratory, Energy and Environment Directorate, Richland, WA, United States
| | - Jiyoung Son
- Pacific Northwest National Laboratory, Energy and Environment Directorate, Richland, WA, United States
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Ying Yu
- Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN, United States
| |
Collapse
|
13
|
Szmuc E, Walker DJF, Kireev D, Akinwande D, Lovley DR, Keitz B, Ellington A. Engineering Geobacter pili to produce metal:organic filaments. Biosens Bioelectron 2023; 222:114993. [PMID: 36525710 DOI: 10.1016/j.bios.2022.114993] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/15/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
The organized self-assembly of conductive biological structures holds promise for creating new bioelectronic devices. In particular, Geobacter sulfurreducens type IVa pili have proven to be a versatile material for fabricating protein nanowire-based devices. To scale the production of conductive pili, we designed a strain of Shewanella oneidensis that heterologously expressed abundant, conductive Geobacter pili when grown aerobically in liquid culture. S. oneidensis expressing a cysteine-modified pilin, designed to enhance the capability to bind to gold, generated conductive pili that self-assembled into biohybrid filaments in the presence of gold nanoparticles. Elemental composition analysis confirmed the filament-metal interactions within the structures, which were several orders of magnitude larger than previously described metal:organic filaments. The results demonstrate that the S. oneidensis chassis significantly advances the possibilities for facile conductive protein nanowire design and fabrication.
Collapse
Affiliation(s)
- Eric Szmuc
- College of Natural Sciences, University of Texas at Austin, Austin, TX, 78712, United States
| | - David J F Walker
- College of Natural Sciences, University of Texas at Austin, Austin, TX, 78712, United States; U.S. Army Engineer Research and Development Center, Environmental Laboratory, University of Texas at Austin, Austin, TX, 78712, United States; Bioconscientia LLC, Austin, TX 78712, United States
| | - Dmitry Kireev
- Cockrell School of Engineering, University of Texas at Austin, Austin, TX, 78712, United States
| | - Deji Akinwande
- Cockrell School of Engineering, University of Texas at Austin, Austin, TX, 78712, United States
| | - Derek R Lovley
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, MA, 01003, United States
| | - Benjamin Keitz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, United States
| | - Andrew Ellington
- College of Natural Sciences, University of Texas at Austin, Austin, TX, 78712, United States.
| |
Collapse
|
14
|
BCM3D 2.0: accurate segmentation of single bacterial cells in dense biofilms using computationally generated intermediate image representations. NPJ Biofilms Microbiomes 2022; 8:99. [PMID: 36529755 PMCID: PMC9760640 DOI: 10.1038/s41522-022-00362-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Accurate detection and segmentation of single cells in three-dimensional (3D) fluorescence time-lapse images is essential for observing individual cell behaviors in large bacterial communities called biofilms. Recent progress in machine-learning-based image analysis is providing this capability with ever-increasing accuracy. Leveraging the capabilities of deep convolutional neural networks (CNNs), we recently developed bacterial cell morphometry in 3D (BCM3D), an integrated image analysis pipeline that combines deep learning with conventional image analysis to detect and segment single biofilm-dwelling cells in 3D fluorescence images. While the first release of BCM3D (BCM3D 1.0) achieved state-of-the-art 3D bacterial cell segmentation accuracies, low signal-to-background ratios (SBRs) and images of very dense biofilms remained challenging. Here, we present BCM3D 2.0 to address this challenge. BCM3D 2.0 is entirely complementary to the approach utilized in BCM3D 1.0. Instead of training CNNs to perform voxel classification, we trained CNNs to translate 3D fluorescence images into intermediate 3D image representations that are, when combined appropriately, more amenable to conventional mathematical image processing than a single experimental image. Using this approach, improved segmentation results are obtained even for very low SBRs and/or high cell density biofilm images. The improved cell segmentation accuracies in turn enable improved accuracies of tracking individual cells through 3D space and time. This capability opens the door to investigating time-dependent phenomena in bacterial biofilms at the cellular level.
Collapse
|
15
|
Yu K, Huang Z, Xiao Y, Wang D. Shewanella infection in humans: Epidemiology, clinical features and pathogenicity. Virulence 2022; 13:1515-1532. [PMID: 36065099 PMCID: PMC9481105 DOI: 10.1080/21505594.2022.2117831] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The genus Shewanella consists of Gram-negative proteobacteria that are ubiquitously distributed in environment. As the members of this genus have rapidly increased within the past decade, several species have become emerging pathogens worldwide, attracting the attention of the medical community. These species are also associated with severe community- and hospital-acquired infections. Patients infected with Shewanella spp. had experiences of occupational or recreational exposure; meanwhile, the process of infection is complex and the pathogenicity is influenced by a variety of factors. Here, an exhaustive internet-based literature search was carried out in PUBMED using terms “Achromobacter putrefaciens,” “Pseudomonas putrefaciens,” “Alteromonas putrefaciens” and “Shewanella” to search literatures published between 1978 and June 2022. We provided a comprehensive review on the epidemiology, clinical features and pathogenicity of Shewanella, which will contribute a better understanding of its clinical aetiology, and facilitate the timely diagnosis and effective treatment of Shewanella infection for clinicians and public health professionals.
Collapse
Affiliation(s)
- Keyi Yu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| | - Zhenzhou Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| | - Yue Xiao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| | - Duochun Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| |
Collapse
|
16
|
Dynamic Changes in Biofilm Structures under Dynamic Flow Conditions. Appl Environ Microbiol 2022; 88:e0107222. [PMID: 36300948 PMCID: PMC9680615 DOI: 10.1128/aem.01072-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Detachment is an important process determining the structure and function of bacterial biofilm, which has significant implications for biogeochemical cycling of elements, biofilm application, and infection control in clinical settings. Quantifying the responses of biofilm structure to hydrodynamics is crucial for understanding biofilm detachment mechanisms in aquatic environments.
Collapse
|
17
|
Hu Y, Han X, Shi L, Cao B. Electrochemically active biofilm-enabled biosensors: Current status and opportunities for biofilm engineering. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Salazar-Sánchez A, Baztarrika I, Alonso R, Fernández-Astorga A, Martínez-Ballesteros I, Martinez-Malaxetxebarria I. Arcobacter butzleri Biofilms: Insights into the Genes Beneath Their Formation. Microorganisms 2022; 10:1280. [PMID: 35888999 PMCID: PMC9324650 DOI: 10.3390/microorganisms10071280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/19/2022] Open
Abstract
Arcobacter butzleri, the most prevalent species of the genus, has the demonstrated ability to adhere to various surfaces through biofilm production. The biofilm formation capability has been related to the expression of certain genes, which have not been characterized in A. butzleri. In order to increase the knowledge of this foodborne pathogen, the aim of this study was to assess the role of six biofilm-associated genes in campylobacteria (flaA, flaB, fliS, luxS, pta and spoT) in the biofilm formation ability of A. butzleri. Knockout mutants were constructed from different foodborne isolates, and static biofilm assays were conducted on polystyrene (PS), reinforced glass and stainless steel. Additionally, motility and Congo red binding assays were performed. In general, mutants in flaAB, fliS and luxS showed a decrease in the biofilm production irrespective of the surface; mutants in spoT showed an increase on stainless steel, and mutants in pta and spoT showed a decrease on reinforced glass but an increase on PS. Our work sheds light on the biofilm-related pathogenesis of A. butzleri, although future studies are necessary to achieve a satisfactory objective.
Collapse
Affiliation(s)
- Adrián Salazar-Sánchez
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Itsaso Baztarrika
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Rodrigo Alonso
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Aurora Fernández-Astorga
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Ilargi Martínez-Ballesteros
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Irati Martinez-Malaxetxebarria
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
19
|
Abstract
Type IV pili (T4P) are retractable multifunctional nanofibers present on the surface of numerous bacterial and archaeal species. Their importance to microbiology is difficult to overstate. The scientific journey leading to our current understanding of T4P structure and function has included many innovative research milestones. Although multiple T4P reviews over the years have emphasized recent advances, we find that current reports often omit many of the landmark discoveries in this field. Here, we attempt to highlight chronologically the most important work on T4P, from the discovery of pili to the application of sophisticated contemporary methods, which has brought us to our current state of knowledge. As there remains much to learn about the complex machine that assembles and retracts T4P, we hope that this review will increase the interest of current researchers and inspire innovative progress.
Collapse
|
20
|
Rick T, Kreiling V, Höing A, Fiedler S, Glatter T, Steinchen W, Hochberg G, Bähre H, Seifert R, Bange G, Knauer SK, Graumann PL, Thormann KM. GGDEF domain as spatial on-switch for a phosphodiesterase by interaction with landmark protein HubP. NPJ Biofilms Microbiomes 2022; 8:35. [PMID: 35501424 PMCID: PMC9061725 DOI: 10.1038/s41522-022-00297-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractIn bacteria, the monopolar localization of enzymes and protein complexes can result in a bimodal distribution of enzyme activity between the dividing cells and heterogeneity of cellular behaviors. In Shewanella putrefaciens, the multidomain hybrid diguanylate cyclase/phosphodiesterase PdeB, which degrades the secondary messenger c-di-GMP, is located at the flagellated cell pole. Here, we show that direct interaction between the inactive diguanylate cyclase (GGDEF) domain of PdeB and the FimV domain of the polar landmark protein HubP is crucial for full function of PdeB as a phosphodiesterase. Thus, the GGDEF domain serves as a spatially controlled on-switch that effectively restricts PdeBs activity to the flagellated cell pole. PdeB regulates abundance and activity of at least two crucial surface-interaction factors, the BpfA surface-adhesion protein and the MSHA type IV pilus. The heterogeneity in c-di-GMP concentrations, generated by differences in abundance and timing of polar appearance of PdeB, orchestrates the population behavior with respect to cell-surface interaction and environmental spreading.
Collapse
|
21
|
Hu Y, Wang Y, Han X, Shan Y, Li F, Shi L. Biofilm Biology and Engineering of Geobacter and Shewanella spp. for Energy Applications. Front Bioeng Biotechnol 2021; 9:786416. [PMID: 34926431 PMCID: PMC8683041 DOI: 10.3389/fbioe.2021.786416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 01/04/2023] Open
Abstract
Geobacter and Shewanella spp. were discovered in late 1980s as dissimilatory metal-reducing microorganisms that can transfer electrons from cytoplasmic respiratory oxidation reactions to external metal-containing minerals. In addition to mineral-based electron acceptors, Geobacter and Shewanella spp. also can transfer electrons to electrodes. The microorganisms that have abilities to transfer electrons to electrodes are known as exoelectrogens. Because of their remarkable abilities of electron transfer, Geobacter and Shewanella spp. have been the two most well studied groups of exoelectrogens. They are widely used in bioelectrochemical systems (BESs) for various biotechnological applications, such as bioelectricity generation via microbial fuel cells. These applications mostly associate with Geobacter and Shewanella biofilms grown on the surfaces of electrodes. Geobacter and Shewanella biofilms are electrically conductive, which is conferred by matrix-associated electroactive components such as c-type cytochromes and electrically conductive nanowires. The thickness and electroactivity of Geobacter and Shewanella biofilms have a significant impact on electron transfer efficiency in BESs. In this review, we first briefly discuss the roles of planktonic and biofilm-forming Geobacter and Shewanella cells in BESs, and then review biofilm biology with the focus on biofilm development, biofilm matrix, heterogeneity in biofilm and signaling regulatory systems mediating formation of Geobacter and Shewanella biofilms. Finally, we discuss strategies of Geobacter and Shewanella biofilm engineering for improving electron transfer efficiency to obtain enhanced BES performance.
Collapse
Affiliation(s)
- Yidan Hu
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yinghui Wang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xi Han
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yawei Shan
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Feng Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Liang Shi
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China.,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China.,State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan, China
| |
Collapse
|
22
|
Zhou J, Hong SH. Establishing Efficient Bisphenol A Degradation by Engineering Shewanella oneidensis. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiacheng Zhou
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Seok Hoon Hong
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
23
|
Colin R, Ni B, Laganenka L, Sourjik V. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol Rev 2021; 45:fuab038. [PMID: 34227665 PMCID: PMC8632791 DOI: 10.1093/femsre/fuab038] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Most swimming bacteria are capable of following gradients of nutrients, signaling molecules and other environmental factors that affect bacterial physiology. This tactic behavior became one of the most-studied model systems for signal transduction and quantitative biology, and underlying molecular mechanisms are well characterized in Escherichia coli and several other model bacteria. In this review, we focus primarily on less understood aspect of bacterial chemotaxis, namely its physiological relevance for individual bacterial cells and for bacterial populations. As evident from multiple recent studies, even for the same bacterial species flagellar motility and chemotaxis might serve multiple roles, depending on the physiological and environmental conditions. Among these, finding sources of nutrients and more generally locating niches that are optimal for growth appear to be one of the major functions of bacterial chemotaxis, which could explain many chemoeffector preferences as well as flagellar gene regulation. Chemotaxis might also generally enhance efficiency of environmental colonization by motile bacteria, which involves intricate interplay between individual and collective behaviors and trade-offs between growth and motility. Finally, motility and chemotaxis play multiple roles in collective behaviors of bacteria including swarming, biofilm formation and autoaggregation, as well as in their interactions with animal and plant hosts.
Collapse
Affiliation(s)
- Remy Colin
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| | - Bin Ni
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Yuanmingyuan Xilu No. 2, Beijing 100193, China
| | - Leanid Laganenka
- Institute of Microbiology, D-BIOL, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| |
Collapse
|
24
|
Zhang J, Zhang M, Wang Y, Donarski E, Gahlmann A. Optically Accessible Microfluidic Flow Channels for Noninvasive High-Resolution Biofilm Imaging Using Lattice Light Sheet Microscopy. J Phys Chem B 2021; 125:12187-12196. [PMID: 34714647 DOI: 10.1021/acs.jpcb.1c07759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Imaging platforms that enable long-term, high-resolution imaging of biofilms are required to study cellular level dynamics within bacterial biofilms. By combining high spatial and temporal resolution and low phototoxicity, lattice light sheet microscopy (LLSM) has made critical contributions to the study of cellular dynamics. However, the power of LLSM has not yet been leveraged for biofilm research because the open-on-top imaging geometry using water-immersion objective lenses is not compatible with living bacterial specimens; bacterial growth on the microscope's objective lenses makes long-term time-lapse imaging impossible and raises considerable safety concerns for microscope users. To make LLSM compatible with pathogenic bacterial specimens, we developed hermetically sealed, but optically accessible, microfluidic flow channels that can sustain bacterial biofilm growth for multiple days under precisely controllable physical and chemical conditions. To generate a liquid- and gas-tight seal, we glued a thin polymer film across a 3D-printed channel, where the top wall had been omitted. We achieved negligible optical aberrations by using polymer films that precisely match the refractive index of water. Bacteria do not adhere to the polymer film itself, so that the polymer window provides unobstructed optical access to the channel interior. Inside the flow channels, biofilms can be grown on arbitrary, even nontransparent, surfaces. By integrating this flow channel with LLSM, we were able to record the growth of S. oneidensis MR-1 biofilms over several days at cellular resolution without any observable phototoxicity or photodamage.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Mingxing Zhang
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
| | - Yibo Wang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Eric Donarski
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Andreas Gahlmann
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.,Department of Molecular Physiology & Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, United States
| |
Collapse
|
25
|
Wong JWC, Ogbonnaya UO. Biochar porosity: a nature-based dependent parameter to deliver microorganisms to soils for land restoration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46894-46909. [PMID: 34263396 DOI: 10.1007/s11356-021-14803-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/14/2020] [Indexed: 06/13/2023]
Abstract
Literature shows that biochar can potentially retain nutrients in agricultural soils, avoiding significant nutrient losses. Furthermore, biochar porosity and functional groups have been shown to enhance physico-chemical properties of soil when amended, which in turn has the ability to encourage inhabitation of specific microorganisms as biofertilizers or to enhance soil remediation. It supports scale-dependent parameters and provides both ecosystem services and soil-vegetation solutions relevant to nature-based solutions. However, detailed researches on the mechanisms of soil microbial interactions with biochar porous properties are required, along with the microbial attachment factors, sustenance, and detachment when applied to soils. Recent valuable works have impregnated plant growth-promoting bacteria unto biochar and have observed inconsistent results. Firstly, biochar intrinsic properties alter the fate of impregnation by inhibiting quorum sensing signals, and the macropore requirements for adsorption and/or biofilm formation have not been well considered. Additionally, the nutrient and supplement requirements for each microorganism as well as the adsorption capacity have not been well understood for biochar surfaces. Substantial information is required to understand the mechanisms of microbe adsorption and factors that influence the process, as well as sustenance of the matrix even when deployed in soils. Research directions should focus on determining molecular and chemical mechanisms responsible for the biochar-microbe interaction process and fate of microbe on biochar while expressing plant growth-promoting properties, which needs to be done in laboratory and field trials. Graphical abstract.
Collapse
Affiliation(s)
- Jonathan W C Wong
- Institute of Bioresource and Agriculture and the Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Uchenna O Ogbonnaya
- Institute of Bioresource and Agriculture and the Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| |
Collapse
|
26
|
Shewanella oneidensis MR-1 as a bacterial platform for electro-biotechnology. Essays Biochem 2021; 65:355-364. [PMID: 33769488 PMCID: PMC8314016 DOI: 10.1042/ebc20200178] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
The genus Shewanella comprises over 70 species of heterotrophic bacteria with versatile respiratory capacities. Some of these bacteria are known to be pathogens of fishes and animals, while many are non-pathogens considered to play important roles in the global carbon cycle. A representative strain is Shewanella oneidensis MR-1 that has been intensively studied for its ability to respire diverse electron acceptors, such as oxygen, nitrate, sulfur compounds, metals, and organics. In addition, studies have been focused on its ability as an electrochemically active bacterium that is capable of discharging electrons to and receiving electrons from electrodes in bioelectrochemical systems (BESs) for balancing intracellular redox states. This ability is expected to be applied to electro-fermentation (EF) for producing value-added chemicals that conventional fermentation technologies are difficult to produce efficiently. Researchers are also attempting to utilize its electrochemical ability for controlling gene expression, for which electro-genetics (EG) has been coined. Here we review fundamental knowledge on this bacterium and discuss future directions of studies on its applications to electro-biotechnology (EB).
Collapse
|
27
|
Erben J, Wang X, Kerzenmacher S. High Current Production of
Shewanella Oneidensis
with Electrospun Carbon Nanofiber Anodes is Directly Linked to Biofilm Formation**. ChemElectroChem 2021. [DOI: 10.1002/celc.202100192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Johannes Erben
- Center for Environmental Research and Sustainable Technology (UFT) University of Bremen 28359 Bremen Germany
| | - Xinyu Wang
- Laboratory for MEMS Applications IMTEK – Department of Microsystems Engineering University of Freiburg Georges-Koehler-Allee 103 79110 Freiburg Germany
| | - Sven Kerzenmacher
- Center for Environmental Research and Sustainable Technology (UFT) University of Bremen 28359 Bremen Germany
| |
Collapse
|
28
|
Martín‐Rodríguez AJ, Villion K, Yilmaz‐Turan S, Vilaplana F, Sjöling Å, Römling U. Regulation of colony morphology and biofilm formation in Shewanella algae. Microb Biotechnol 2021; 14:1183-1200. [PMID: 33764668 PMCID: PMC8085958 DOI: 10.1111/1751-7915.13788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial colony morphology can reflect different physiological stages such as virulence or biofilm formation. In this work we used transposon mutagenesis to identify genes that alter colony morphology and cause differential Congo Red (CR) and Brilliant Blue G (BBG) binding in Shewanella algae, a marine indigenous bacterium and occasional human pathogen. Microscopic analysis of colonies formed by the wild-type strain S. algae CECT 5071 and three transposon integration mutants representing the diversity of colony morphotypes showed production of biofilm extracellular polymeric substances (EPS) and distinctive morphological alterations. Electrophoretic and chemical analyses of extracted EPS showed differential patterns between strains, although the targets of CR and BBG binding remain to be identified. Galactose and galactosamine were the preponderant sugars in the colony biofilm EPS of S. algae. Surface-associated biofilm formation of transposon integration mutants was not directly correlated with a distinct colony morphotype. The hybrid sensor histidine kinase BarA abrogated surface-associated biofilm formation. Ectopic expression of the kinase and mutants in the phosphorelay cascade partially recovered biofilm formation. Altogether, this work provides the basic analysis to subsequently address the complex and intertwined networks regulating colony morphology and biofilm formation in this poorly understood species.
Collapse
Affiliation(s)
| | - Katia Villion
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Secil Yilmaz‐Turan
- Division of GlycoscienceDepartment of ChemistryKTH Royal Institute of TechnologyAlbaNova University CentreStockholmSweden
| | - Francisco Vilaplana
- Division of GlycoscienceDepartment of ChemistryKTH Royal Institute of TechnologyAlbaNova University CentreStockholmSweden
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
29
|
Yokoyama F, Imai T, Aoki W, Ueda M, Kawamoto J, Kurihara T. Identification of a Putative Sensor Protein Involved in Regulation of Vesicle Production by a Hypervesiculating Bacterium, Shewanella vesiculosa HM13. Front Microbiol 2021; 12:629023. [PMID: 33679653 PMCID: PMC7930318 DOI: 10.3389/fmicb.2021.629023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/29/2021] [Indexed: 11/20/2022] Open
Abstract
Bacteria secrete and utilize nanoparticles, called extracellular membrane vesicles (EMVs), for survival in their growing environments. Therefore, the amount and components of EMVs should be tuned in response to the environment. However, how bacteria regulate vesiculation in response to the extracellular environment remains largely unknown. In this study, we identified a putative sensor protein, HM1275, involved in the induction of vesicle production at high lysine concentration in a hypervesiculating Gram-negative bacterium, Shewanella vesiculosa HM13. This protein was predicted to possess typical sensing and signaling domains of sensor proteins, such as methyl-accepting chemotaxis proteins. Comparison of vesicle production between the hm1275-disrupted mutant and the parent strain revealed that HM1275 is involved in lysine-induced hypervesiculation. Moreover, HM1275 has sequence similarity to a biofilm dispersion protein, BdlA, of Pseudomonas aeruginosa PAO1, and hm1275 disruption increased the amount of biofilm. Thus, this study showed that the induction of vesicle production and suppression of biofilm formation in response to lysine concentration are under the control of the same putative sensor protein.
Collapse
Affiliation(s)
| | - Tomoya Imai
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,Kyoto Integrated Science and Technology Bio-Analysis Center, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,Kyoto Integrated Science and Technology Bio-Analysis Center, Kyoto, Japan
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University, Uji, Japan
| |
Collapse
|
30
|
Lebov JF, Bohannan BJM. Msh Pilus Mutations Increase the Ability of a Free-Living Bacterium to Colonize a Piscine Host. Genes (Basel) 2021; 12:genes12020127. [PMID: 33498301 PMCID: PMC7909257 DOI: 10.3390/genes12020127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Symbioses between animals and bacteria are ubiquitous. To better understand these relationships, it is essential to unravel how bacteria evolve to colonize hosts. Previously, we serially passaged the free-living bacterium, Shewanella oneidensis, through the digestive tracts of germ-free larval zebrafish (Danio rerio) to uncover the evolutionary changes involved in the initiation of a novel symbiosis with a vertebrate host. After 20 passages, we discovered an adaptive missense mutation in the mshL gene of the msh pilus operon, which improved host colonization, increased swimming motility, and reduced surface adhesion. In the present study, we determined that this mutation was a loss-of-function mutation and found that it improved zebrafish colonization by augmenting S. oneidensis representation in the water column outside larvae through a reduced association with environmental surfaces. Additionally, we found that strains containing the mshL mutation were able to immigrate into host digestive tracts at higher rates per capita. However, mutant and evolved strains exhibited no evidence of a competitive advantage after colonizing hosts. Our results demonstrate that bacterial behaviors outside the host can play a dominant role in facilitating the onset of novel host associations.
Collapse
Affiliation(s)
- Jarrett F. Lebov
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA;
- Correspondence:
| | - Brendan J. M. Bohannan
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA;
| |
Collapse
|
31
|
Sivakumar K, Lehmann R, Rachmadi AT, Augsburger N, Zaouri N, Tegner J, Hong PY. Elucidating the Role of Virulence Traits in the Survival of Pathogenic E. coli PI-7 Following Disinfection. Front Bioeng Biotechnol 2021; 8:614186. [PMID: 33415102 PMCID: PMC7783314 DOI: 10.3389/fbioe.2020.614186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Reuse and discharge of treated wastewater can result in dissemination of microorganisms into the environment. Deployment of disinfection strategies is typically proposed as a last stage remediation effort to further inactivate viable microorganisms. In this study, we hypothesize that virulence traits, including biofilm formation, motility, siderophore, and curli production along with the capability to internalize into mammalian cells play a role in survival against disinfectants. Pathogenic E. coli PI-7 strain was used as a model bacterium that was exposed to diverse disinfection strategies such as chlorination, UV and solar irradiation. To this end, we used a random transposon mutagenesis library screening approach to generate 14 mutants that exhibited varying levels of virulence traits. In these 14 isolated mutants, we observed that an increase in virulence traits such as biofilm formation, motility, curli production, and internalization capability, increased the inactivation half-lives of mutants compared to wild-type E. coli PI-7. In addition, oxidative stress response and EPS production contributed to lengthening the lag phase duration (defined as the time required for exposure to disinfectant prior to decay). However, traits related to siderophore production did not help with survival against the tested disinfection strategies. Taken together, the findings suggested that selected virulence traits facilitate survival of pathogenic E. coli PI-7, which in turn could account for the selective enrichment of pathogens over the non-pathogenic ones after wastewater treatment. Further, the study also reflected on the effectiveness of UV as a more viable disinfection strategy for inactivation of pathogens.
Collapse
Affiliation(s)
- Krishnakumar Sivakumar
- Computational Bioscience Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Robert Lehmann
- Living Systems Laboratory, Environmental Epigenetic Program, Biological and Environmental Science and Engineering Division, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Andri Taruna Rachmadi
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nicolas Augsburger
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Noor Zaouri
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jesper Tegner
- Living Systems Laboratory, Environmental Epigenetic Program, Biological and Environmental Science and Engineering Division, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pei-Ying Hong
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
32
|
Engineering S. oneidensis for Performance Improvement of Microbial Fuel Cell-a Mini Review. Appl Biochem Biotechnol 2020; 193:1170-1186. [PMID: 33200267 DOI: 10.1007/s12010-020-03469-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 11/09/2020] [Indexed: 02/02/2023]
Abstract
Microbial fuel cell (MFC) is a promising technology that utilizes exoelectrogens cultivated in the form of biofilm to generate power from various types of sources supplied. A metal-reducing pathway is utilized by these organisms to transfer electrons obtained from the metabolism of substrate from anaerobic respiration extracellularly. A widely established model organism that is capable of extracellular electron transfer (EET) is Shewanella oneidensis. This review highlights the strategies used in the transformation of S. oneidensis and the recent development of MFC in terms of intervention through genetic modifications. S. oneidensis was genetically engineered for several aims including the study on the underlying mechanisms of EET, and the enhancement of power generation and wastewater treating potential when used in an MFC. Through engineering S. oneidensis, genes responsible for EET are identified and strategies on enhancing the EET efficiency are studied. Overexpressing genes related to EET to enhance biofilm formation, mediator biosynthesis, and respiration appears as one of the common approaches.
Collapse
|
33
|
The phosphorylated regulator of chemotaxis is crucial throughout biofilm biogenesis in Shewanella oneidensis. NPJ Biofilms Microbiomes 2020; 6:54. [PMID: 33188190 PMCID: PMC7666153 DOI: 10.1038/s41522-020-00165-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/13/2020] [Indexed: 02/04/2023] Open
Abstract
The core of the chemotaxis system of Shewanella oneidensis is made of the CheA3 kinase and the CheY3 regulator. When appropriated, CheA3 phosphorylates CheY3, which, in turn, binds to the rotor of the flagellum to modify the swimming direction. In this study, we showed that phosphorylated CheY3 (CheY3-P) also plays an essential role during biogenesis of the solid-surface-associated biofilm (SSA-biofilm). Indeed, in a ΔcheY3 strain, the formation of this biofilm is abolished. Using the phospho-mimetic CheY3D56E mutant, we showed that CheY-P is required throughout the biogenesis of the biofilm but CheY3 phosphorylation is independent of CheA3 during this process. We have recently found that CheY3 interacts with two diguanylate cyclases (DGCs) and with MxdA, the c-di-GMP effector, probably triggering exopolysaccharide synthesis by the Mxd machinery. Here, we discovered two additional DGCs involved in SSA-biofilm development and showed that one of them interacts with CheY3. We therefore propose that CheY3-P acts together with DGCs to control SSA-biofilm formation. Interestingly, two orthologous CheY regulators complement the biofilm defect of a ΔcheY3 strain, supporting the idea that biofilm formation could involve CheY regulators in other bacteria.
Collapse
|
34
|
Kreienbaum M, Dörrich AK, Brandt D, Schmid NE, Leonhard T, Hager F, Brenzinger S, Hahn J, Glatter T, Ruwe M, Briegel A, Kalinowski J, Thormann KM. Isolation and Characterization of Shewanella Phage Thanatos Infecting and Lysing Shewanella oneidensis and Promoting Nascent Biofilm Formation. Front Microbiol 2020; 11:573260. [PMID: 33072035 PMCID: PMC7530303 DOI: 10.3389/fmicb.2020.573260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/27/2020] [Indexed: 01/21/2023] Open
Abstract
Species of the genus Shewanella are widespread in nature in various habitats, however, little is known about phages affecting Shewanella sp. Here, we report the isolation of phages from diverse freshwater environments that infect and lyse strains of Shewanella oneidensis and other Shewanella sp. Sequence analysis and microscopic imaging strongly indicate that these phages form a so far unclassified genus, now named Shewanella phage Thanatos, which can be positioned within the subfamily of Tevenvirinae (Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Caudovirales; Myoviridae; Tevenvirinae). We characterized one member of this group in more detail using S. oneidensis MR-1 as a host. Shewanella phage Thanatos-1 possesses a prolate icosahedral capsule of about 110 nm in height and 70 nm in width and a tail of about 95 nm in length. The dsDNA genome exhibits a GC content of about 34.5%, has a size of 160.6 kbp and encodes about 206 proteins (92 with an annotated putative function) and two tRNAs. Out of those 206, MS analyses identified about 155 phage proteins in PEG-precipitated samples of infected cells. Phage attachment likely requires the outer lipopolysaccharide of S. oneidensis, narrowing the phage's host range. Under the applied conditions, about 20 novel phage particles per cell were produced after a latent period of approximately 40 min, which are stable at a pH range from 4 to 12 and resist temperatures up to 55°C for at least 24 h. Addition of Thanatos to S. oneidensis results in partial dissolution of established biofilms, however, early exposure of planktonic cells to Thanatos significantly enhances biofilm formation. Taken together, we identified a novel genus of Myophages affecting S. oneidensis communities in different ways.
Collapse
Affiliation(s)
- Maximilian Kreienbaum
- Department of Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Anja K Dörrich
- Department of Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| | - David Brandt
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Nicole E Schmid
- Department of Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Tabea Leonhard
- Department of Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Fabian Hager
- Department of Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Susanne Brenzinger
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Julia Hahn
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Timo Glatter
- Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Matthias Ruwe
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Ariane Briegel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Kai M Thormann
- Department of Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
35
|
Mukherjee M, Zaiden N, Teng A, Hu Y, Cao B. Shewanella biofilm development and engineering for environmental and bioenergy applications. Curr Opin Chem Biol 2020; 59:84-92. [PMID: 32750675 DOI: 10.1016/j.cbpa.2020.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022]
Abstract
The genus Shewanella comprises about 70 species of Gram-negative, facultative anaerobic bacteria inhabiting various environments, which have shown great potential in various biotechnological applications ranging from environmental bioremediation, metal(loid) recovery and material synthesis to bioenergy generation. Most environmental and energy applications of Shewanella involve the biofilm mode of growth on surfaces of solid minerals or electrodes. In this article, we first provide an overview of Shewanella biofilm biology with the focus on biofilm dynamics, biofilm matrix, and key signalling systems involved in Shewanella biofilm development. Then we review strategies recently exploited to engineer Shewanella biofilms to improve biofilm-mediated bioprocesses.
Collapse
Affiliation(s)
- Manisha Mukherjee
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Norazean Zaiden
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, 637335, Singapore
| | - Aloysius Teng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, 637335, Singapore
| | - Yidan Hu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, 637335, Singapore
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
36
|
Exploration of Electrochemcially Active Bacterial Strains for Microbial Fuel Cells: An Innovation in Bioelectricity Generation. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Cheng L, Min D, Liu DF, Zhu TT, Wang KL, Yu HQ. Deteriorated biofilm-forming capacity and electroactivity of Shewanella oneidnsis MR-1 induced by insertion sequence (IS) elements. Biosens Bioelectron 2020; 156:112136. [PMID: 32174561 DOI: 10.1016/j.bios.2020.112136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/17/2022]
Abstract
Shewanella oneidensis MR-1, a model species of exoelectrogenic bacteria (EEB), has been widely applied in bioelectrochemical systems. Biofilms of EEB grown on electrodes are essential in governing the current output and power density of bioelectrochemical systems. The MR-1 genome is exceptionally dynamic due to the existence of a large number of insertion sequence (IS) elements. However, to date, the impacts of IS elements on the biofilm-forming capacity of EEB and performance of bioelectrochemical systems remain unrevealed. Herein, we isolated a non-motile mutant (NMM) with biofilm-deficient phenotype from MR-1. We found that the insertion of an ISSod2 element into the flrA (encoding the master regulator for flagella synthesis and assembly) of MR-1 resulted in the non-motile and biofilm-deficient phenotypes in NMM cells. Notably, such a variant was readily confused with the wild-type strain because there were no obvious differences in growth rates and colonial morphologies between the two strains. However, the reduced biofilm formation on the electrodes and the deteriorated performances of bioelectrochemical systems and Cr(VI) immobilization for the strain NMM were observed. Given the wide distribution of IS elements in EEB, appropriate cultivation and preservation conditions should be adopted to reduce the likelihood that IS elements-mediated mutation occurs in EEB. These findings reveal the negative impacts of IS elements on the biofilm-forming capacity of EEB and performance of bioelectrochemical systems and suggest that great attention should be given to the actual physiological states of EEB before their applications.
Collapse
Affiliation(s)
- Lei Cheng
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| | - Ting-Ting Zhu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Kai-Li Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
38
|
Nisbett LM, Binnenkade L, Bacon B, Hossain S, Kotloski NJ, Brutinel ED, Hartmann R, Drescher K, Arora DP, Muralidharan S, Thormann KM, Gralnick JA, Boon EM. NosP Signaling Modulates the NO/H-NOX-Mediated Multicomponent c-Di-GMP Network and Biofilm Formation in Shewanella oneidensis. Biochemistry 2019; 58:4827-4841. [PMID: 31682418 PMCID: PMC7290162 DOI: 10.1021/acs.biochem.9b00706] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biofilms form when bacteria aggregate in a self-secreted exopolysaccharide matrix; they are resistant to antibiotics and implicated in disease. Nitric oxide (NO) is known to mediate biofilm formation in many bacteria via ligation to H-NOX (heme-NO/oxygen binding) domains. Most NO-responsive bacteria, however, lack H-NOX domain-containing proteins. We have identified another NO-sensing protein (NosP), which is predicted to be involved in two-component signaling and biofilm regulation in many species. Here, we demonstrate that NosP participates in the previously described H-NOX/NO-responsive multicomponent c-di-GMP signaling network in Shewanella oneidensis. Strains lacking either nosP or its co-cistronic kinase nahK (previously hnoS) produce immature biofilms, while hnoX and hnoK (kinase responsive to NO/H-NOX) mutants result in wild-type biofilm architecture. We demonstrate that NosP regulates the autophosphorylation activity of NahK as well as HnoK. HnoK and NahK have been shown to regulate three response regulators (HnoB, HnoC, and HnoD) that together comprise a NO-responsive multicomponent c-di-GMP signaling network. Here, we propose that NosP/NahK adds regulation on top of H-NOX/HnoK to modulate this c-di-GMP signaling network, and ultimately biofilm formation, by governing the flux of phosphate through both HnoK and NahK. In addition, it appears that NosP and H-NOX act to counter each other in a push-pull mechanism; NosP/NahK promotes biofilm formation through inhibition of H-NOX/HnoK signaling, which itself reduces the extent of biofilm formation. Addition of NO results in a reduction of c-di-GMP and biofilm formation, primarily through disinhibition of HnoK activity.
Collapse
Affiliation(s)
- Lisa-Marie Nisbett
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Lucas Binnenkade
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Bezalel Bacon
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Sajjad Hossain
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Nicholas J. Kotloski
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota 55108, United States
| | - Evan D. Brutinel
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota 55108, United States
| | - Raimo Hartmann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Renthof 6, 35032 Marburg, Germany
| | - Dhruv P. Arora
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Sandhya Muralidharan
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Kai M. Thormann
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Jeffrey A. Gralnick
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota 55108, United States
| | - Elizabeth M. Boon
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York 11794-3400, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
- Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
39
|
Wu G, Jin F. Pellicle development of Shewanella oneidensis is an aerotaxis-piloted and energy-dependent process. Biochem Biophys Res Commun 2019; 519:127-133. [PMID: 31481239 DOI: 10.1016/j.bbrc.2019.08.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/26/2019] [Indexed: 11/19/2022]
Abstract
Pellicles are biofilms found at the air-liquid interface and are widely distributed in natural environments. In this study, a simple pellicle detection method was established, and using this new method, the pellicle formation activities of Shewanella oneidensis MR-1 and its 42 cytochrome c mutants were analysed. The results showed that the pellicle was initiated at very early stages of incubation. Aerotaxis was the major external factor, while energy acquirement was the main internal factor for pellicle initiation. Among the 42 cytochrome c mutants, 17 mutants, including those deficient in aerobic respiration, sulfur or sulfite/sulfate respiration, nitrite respiration, metal respiration, DMSO respiration and fumarate respiration, exhibited delayed pellicle initiation. The results suggest that S. oneidensis utilizes the electron acceptors simultaneously under anoxic conditions and that the disruption of any of these anaerobic respiration routes would retard pellicle initiation.
Collapse
Affiliation(s)
- Genfu Wu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Feifei Jin
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
40
|
Hirose A, Kasai T, Koga R, Suzuki Y, Kouzuma A, Watanabe K. Understanding and engineering electrochemically active bacteria for sustainable biotechnology. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0245-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
41
|
Wang Y, Wang F, Wang C, Li X, Fu L. Positive Regulation of Spoilage Potential and Biofilm Formation in Shewanella baltica OS155 via Quorum Sensing System Composed of DKP and Orphan LuxRs. Front Microbiol 2019; 10:135. [PMID: 30804914 PMCID: PMC6370745 DOI: 10.3389/fmicb.2019.00135] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 01/21/2019] [Indexed: 12/23/2022] Open
Abstract
The spoilage potential and biofilm formation of Shewanella baltica are reported to be regulated by Quorum sensing (QS) system from the phenotype point of view, but the specific mechanism is not fully understood. In the present study, the QS autoinducers were detected by UHPLC-MS/MS, cell density-dependent luxR-type genes were obtained through autoregulation experiments among a series of candidates in S. baltica OS155 (The SSO of large yellow croaker). The direct interaction between cyclo-(L-Pro-L-Phe) (PP) and LuxR01 as well as LuxR02 proteins was revealed via in vitro binding assay. Deletion of luxR-type genes (luxR01 and luxR02) impaired spoilage potential and biofilm formation of S. baltica OS155 in various degrees. Transcriptional analysis and qRT-PCR validation showed that spoilage and biofilm-related genes torS, speF, and pomA were down-regulated in luxR01 and luxR02 deletion strains. In addition, exogenous PP promoted spoilage potential and biofilm formation, which could be attenuated by luxR01 or luxR02 deletion. Our results revealed an explicit QS system employing PP as autoinducer and two orphan LuxRs as receptors which positively regulated spoilage capacity and biofilm formation via transcriptional regulation of corresponding genes in S. baltica OS155, which provides potential specific targets for seafood preservation involving QS system.
Collapse
Affiliation(s)
- Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Engineering Institute of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou, China
| | - Feifei Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Chong Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Engineering Institute of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
42
|
Gambari C, Boyeldieu A, Armitano J, Méjean V, Jourlin-Castelli C. Control of pellicle biogenesis involves the diguanylate cyclases PdgA and PdgB, the c-di-GMP binding protein MxdA and the chemotaxis response regulator CheY3 in Shewanella oneidensis. Environ Microbiol 2018; 21:81-97. [PMID: 30252211 DOI: 10.1111/1462-2920.14424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 11/29/2022]
Abstract
Shewanella oneidensis is an aquatic proteobacterium with remarkable respiratory and chemotactic abilities. It is also capable of forming biofilms either associated to surfaces (SSA-biofilm) or at the air-liquid interface (pellicle). We have previously shown that pellicle biogenesis in S. oneidensis requires the flagellum and the chemotaxis regulatory system including CheA3 kinase and CheY3 response regulator. Here we searched for additional factors involved in pellicle development. Using a multicopy library of S. oneidensis chromosomal fragments, we identified two genes encoding putative diguanylate cyclases (pdgA and pdgB) and allowing pellicle formation in the non-pellicle-forming cheY3-deleted mutant. A mutant deleted of both pdgA and pdgB is affected during pellicle development. By overexpressing phosphodiesterase encoding genes, we confirmed the key role of c-di-GMP in pellicle biogenesis. The mxd operon, previously proposed to encode proteins involved in exopolysaccharide biosynthesis, is also essential for pellicle formation. In addition, we showed that the MxdA protein, containing a degenerate GGDEF motif, binds c-di-GMP and interacts with both CheY3 and PdgA. Therefore, we propose that pellicle biogenesis in S. oneidensis is controlled by a complex pathway that involves the chemotaxis response regulator CheY3, the two putative diguanylate cyclases PdgA and PdgB, and the c-di-GMP binding protein MxdA.
Collapse
|
43
|
Pönisch W, Eckenrode KB, Alzurqa K, Nasrollahi H, Weber C, Zaburdaev V, Biais N. Pili mediated intercellular forces shape heterogeneous bacterial microcolonies prior to multicellular differentiation. Sci Rep 2018; 8:16567. [PMID: 30410109 PMCID: PMC6224386 DOI: 10.1038/s41598-018-34754-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/24/2018] [Indexed: 11/18/2022] Open
Abstract
Microcolonies are aggregates of a few dozen to a few thousand cells exhibited by many bacteria. The formation of microcolonies is a crucial step towards the formation of more mature bacterial communities known as biofilms, but also marks a significant change in bacterial physiology. Within a microcolony, bacteria forgo a single cell lifestyle for a communal lifestyle hallmarked by high cell density and physical interactions between cells potentially altering their behaviour. It is thus crucial to understand how initially identical single cells start to behave differently while assembling in these tight communities. Here we show that cells in the microcolonies formed by the human pathogen Neisseria gonorrhoeae (Ng) present differential motility behaviors within an hour upon colony formation. Observation of merging microcolonies and tracking of single cells within microcolonies reveal a heterogeneous motility behavior: cells close to the surface of the microcolony exhibit a much higher motility compared to cells towards the center. Numerical simulations of a biophysical model for the microcolonies at the single cell level suggest that the emergence of differential behavior within a multicellular microcolony of otherwise identical cells is of mechanical origin. It could suggest a route toward further bacterial differentiation and ultimately mature biofilms.
Collapse
Affiliation(s)
- Wolfram Pönisch
- Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany
- MRC Laboratory for Molecular Cell Biology, University City London, London, UK
| | - Kelly B Eckenrode
- Brooklyn College of CUNY, Department of Biology, Brooklyn, USA
- Graduate Center of CUNY, New York, USA
| | - Khaled Alzurqa
- Brooklyn College of CUNY, Department of Biology, Brooklyn, USA
| | - Hadi Nasrollahi
- Brooklyn College of CUNY, Department of Biology, Brooklyn, USA
| | - Christoph Weber
- Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany
| | - Vasily Zaburdaev
- Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany.
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Nicolas Biais
- Brooklyn College of CUNY, Department of Biology, Brooklyn, USA.
- Graduate Center of CUNY, New York, USA.
| |
Collapse
|
44
|
Binnenkade L, Kreienbaum M, Thormann KM. Characterization of ExeM, an Extracellular Nuclease of Shewanella oneidensis MR-1. Front Microbiol 2018; 9:1761. [PMID: 30123203 PMCID: PMC6085458 DOI: 10.3389/fmicb.2018.01761] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/13/2018] [Indexed: 01/08/2023] Open
Abstract
Bacterial extracellular nucleases have multiple functions in processes as diverse as nutrient acquisition, natural transformation, biofilm formation, or defense against neutrophil extracellular traps (NETs). Here we explored the properties of ExeM in Shewanella oneidensis MR-1, an extracellular nuclease, which is widely conserved among species of Shewanella, Vibrio, Aeromonas, and others. In S. oneidensis, ExeM is crucial for normal biofilm formation. In vitro activity measurements on heterologously produced ExeM revealed that this enzyme is a sugar-unspecific endonuclease, which requires Ca2+ and Mg2+/Mn2+ as co-factors for full activity. ExeM was almost exclusively localized to the cytoplasmic membrane fraction, even when a putative C-terminal membrane anchor was deleted. In contrast, ExeM was not detected in medium supernatants. Based on the results we hypothesize that ExeM predominantly interacts with DNA in close proximity to the cell, e.g., to promote biofilm formation and defense against NETs, or to control uptake of DNA.
Collapse
Affiliation(s)
- Lucas Binnenkade
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Maximilian Kreienbaum
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Kai M Thormann
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
45
|
Furst A, Smith MJ, Lee MC, Francis MB. DNA Hybridization To Interface Current-Producing Cells with Electrode Surfaces. ACS CENTRAL SCIENCE 2018; 4:880-884. [PMID: 30062116 PMCID: PMC6062829 DOI: 10.1021/acscentsci.8b00255] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 05/23/2023]
Abstract
As fossil fuels are increasingly linked to environmental damage, the development of renewable, affordable biological alternative fuels is vital. Shewanella oneidensis is often suggested as a potential component of bioelectrochemical cells because of its ability to act as an electron donor to metal surfaces. These microbes remain challenging to implement, though, due to inconsistency in biofilm formation on electrodes and therefore current generation. We have applied DNA hybridization-based cell adhesion to immobilize S. oneidensis on electrodes. High levels of current are reproducibly generated from these cell layers following only 30 min of immobilization without the need for the formation of a biofilm. Upon incorporation of DNA mismatches in the microbe immobilization sequence, significant attenuation in current production is observed, suggesting that at least part of the electron transfer to the electrode is DNA-mediated. This method of microbe assembly is rapid, reproducible, and facile for the production of anodes for biofuel cells.
Collapse
Affiliation(s)
- Ariel
L. Furst
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720-1460, United States
| | - Matthew J. Smith
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720-1460, United States
| | - Michael C. Lee
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720-1460, United States
| | - Matthew B. Francis
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720-1460, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratories, Berkeley, California 94720-1460, United States
| |
Collapse
|
46
|
Cao Y, Li X, Li F, Song H. CRISPRi-sRNA: Transcriptional-Translational Regulation of Extracellular Electron Transfer in Shewanella oneidensis. ACS Synth Biol 2017; 6:1679-1690. [PMID: 28616968 DOI: 10.1021/acssynbio.6b00374] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Extracellular electron transfer (EET) in Shewanella oneidensis MR-1, which is one of the most well-studied exoelectrogens, underlies many microbial electrocatalysis processes, including microbial fuel cells, microbial electrolysis cells, and microbial electrosynthesis. However, regulating the efficiency of EET remains challenging due to the lack of efficient genome regulation tools that regulate gene expression levels in S. oneidensis. Here, we systematically established a transcriptional regulation technology, i.e., clustered regularly interspaced short palindromic repeats interference (CRISPRi), in S. oneidensis MR-1 using green fluorescent protein (GFP) as a reporter. We used this CRISPRi technology to repress the expression levels of target genes, individually and in combination, in the EET pathways (e.g., the MtrCAB pathway and genes affecting the formation of electroactive biofilms in S. oneidensis), which in turn enabled the efficient regulation of EET efficiency. We then established a translational regulation technology, i.e., Hfq-dependent small regulatory RNA (sRNA), in S. oneidensis by repressing the GFP reporter and mtrA, which is a critical gene in the EET pathways in S. oneidensis. To achieve coordinated transcriptional and translational regulation at the genomic level, the CRISPRi and Hfq-dependent sRNA systems were incorporated into a single plasmid harbored in a recombinant S. oneidensis strain, which enabled an even higher efficiency of mtrA gene repression in the EET pathways than that achieved by the CRISPRi and Hfq-dependent sRNA system alone, as exhibited by the reduced electricity output. Overall, we developed a combined CRISPRi-sRNA method that enabled the synergistic transcriptional and translational regulation of target genes in S. oneidensis. This technology involving CRISPRi-sRNA transcriptional-translational regulation of gene expression at the genomic level could be applied to other microorganisms.
Collapse
Affiliation(s)
- Yingxiu Cao
- Key Laboratory of Systems
Bioengineering (Ministry of Education), SynBio Research Platform,
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Xiaofei Li
- Key Laboratory of Systems
Bioengineering (Ministry of Education), SynBio Research Platform,
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Feng Li
- Key Laboratory of Systems
Bioengineering (Ministry of Education), SynBio Research Platform,
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Hao Song
- Key Laboratory of Systems
Bioengineering (Ministry of Education), SynBio Research Platform,
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| |
Collapse
|
47
|
Structures, Compositions, and Activities of Live Shewanella Biofilms Formed on Graphite Electrodes in Electrochemical Flow Cells. Appl Environ Microbiol 2017. [PMID: 28625998 DOI: 10.1128/aem.00903-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
An electrochemical flow cell equipped with a graphite working electrode (WE) at the bottom was inoculated with Shewanella oneidensis MR-1 expressing an anaerobic fluorescent protein, and biofilm formation on the WE was observed over time during current generation at WE potentials of +0.4 and 0 V (versus standard hydrogen electrodes), under electrolyte-flow conditions. Electrochemical analyses suggested the presence of unique electron-transfer mechanisms in the +0.4-V biofilm. Microscopic analyses revealed that, in contrast to aerobic biofilms, current-generating biofilm (at +0.4 V) was thin and flat (∼10 μm in thickness), and cells were evenly and densely distributed in the biofilm. In contrast, cells were unevenly distributed in biofilm formed at 0 V. In situ fluorescence staining and biofilm recovery experiments showed that the amounts of extracellular polysaccharides (EPSs) in the +0.4-V biofilm were much smaller than those in the aerobic and 0-V biofilms, suggesting that Shewanella cells suppress the production of EPSs at +0.4 V under flow conditions. We suggest that Shewanella cells perceive electrode potentials and modulate the structure and composition of biofilms to efficiently transfer electrons to electrodes.IMPORTANCE A promising application of microbial fuel cells (MFCs) is to save energy in wastewater treatment. Since current is generated in these MFCs by biofilm microbes under horizontal flows of wastewater, it is important to understand the mechanisms for biofilm formation and current generation under water-flow conditions. Although massive work has been done to analyze the molecular mechanisms for current generation by model exoelectrogenic bacteria, such as Shewanella oneidensis, limited information is available regarding the formation of current-generating biofilms over time under water-flow conditions. The present study developed electrochemical flow cells and used them to examine the electrochemical and structural features of current-generating biofilms under water-flow conditions. We show unique features of mature biofilms actively generating current, creating opportunities to search for as-yet-undiscovered current-generating mechanisms in Shewanella biofilms. Furthermore, information provided in the present study is useful for researchers attempting to develop anode architectures suitable for wastewater treatment MFCs.
Collapse
|
48
|
Chen X, Liang Z, Li D, Xiong Y, Xiong P, Guan Y, Hou S, Hu Y, Chen S, Liu G, Tian Y. Microfluidic dielectrophoresis device for trapping, counting and detecting Shewanella oneidensis at the cell level. Biosens Bioelectron 2017; 99:416-423. [PMID: 28810232 DOI: 10.1016/j.bios.2017.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 06/27/2017] [Accepted: 08/07/2017] [Indexed: 01/29/2023]
Abstract
Shewanella oneidensis, a model organism for electrochemical activity bacteria, has been widely studied at the biofilm level. However, to obtain more information regarding this species, it is essential to develop an approach to trap and detect S. oneidensis at the cell level. In this study, we report a rapid and label-free microfluidic platform for trapping, counting and detecting S. oneidensis cells. A microfluidic chip was integrated with a modified dielectrophoresis (DEP) trapping technique and hole arrays of different hole sizes. By numerical simulation and an elaborate electric field distribution design, S. oneidensis cells were successfully trapped and positioned in the hole arrays. Real time fluorescence imaging was also used to observe the trapping process. With the aid of a homemade image program, the trapped bacteria were accurately counted, and the results demonstrated that the amount of bacteria correlated with the hole sizes. As one of the significant applications of the device, Raman identification and detection of countable S. oneidensis cells was accomplished in two kinds of holes. The microfluidic platform provides a quantitative sample preparation and analysis method at the cell level that could be widely applied in the environmental and energy fields.
Collapse
Affiliation(s)
- Xiangyu Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China; Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhiting Liang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Daobo Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ying Xiong
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Penghui Xiong
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Shuangyue Hou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yue Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Shan Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Gang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China.
| | - Yangchao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| |
Collapse
|
49
|
Uno M, Phansroy N, Aso Y, Ohara H. Starch-fueled microbial fuel cells by two-step and parallel fermentation using Shewanella oneidensis MR-1 and Streptococcus bovis 148. J Biosci Bioeng 2017; 124:189-194. [DOI: 10.1016/j.jbiosc.2017.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/27/2017] [Indexed: 12/31/2022]
|
50
|
Sodium Lactate Negatively Regulates Shewanella putrefaciens CN32 Biofilm Formation via a Three-Component Regulatory System (LrbS-LrbA-LrbR). Appl Environ Microbiol 2017; 83:AEM.00712-17. [PMID: 28500045 DOI: 10.1128/aem.00712-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/09/2017] [Indexed: 11/20/2022] Open
Abstract
The capability of biofilm formation has a major impact on the industrial and biotechnological applications of Shewanella putrefaciens CN32. However, the detailed regulatory mechanisms underlying biofilm formation in this strain remain largely unknown. In the present report, we describe a three-component regulatory system which negatively regulates the biofilm formation of S. putrefaciens CN32. This system consists of a histidine kinase LrbS (Sputcn32_0303) and two cognate response regulators, including a transcription factor, LrbA (Sputcn32_0304), and a phosphodiesterase, LrbR (Sputcn32_0305). LrbS responds to the signal of the carbon source sodium lactate and subsequently activates LrbA. The activated LrbA then promotes the expression of lrbR, the gene for the other response regulator. The bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) phosphodiesterase LrbR, containing an EAL domain, decreases the concentration of intracellular c-di-GMP, thereby negatively regulating biofilm formation. In summary, the carbon source sodium lactate acts as a signal molecule that regulates biofilm formation via a three-component regulatory system (LrbS-LrbA-LrbR) in S. putrefaciens CN32.IMPORTANCE Biofilm formation is a significant capability used by some bacteria to survive in adverse environments. Numerous environmental factors can affect biofilm formation through different signal transduction pathways. Carbon sources are critical nutrients for bacterial growth, and their concentrations and types significantly influence the biomass and structure of biofilms. However, knowledge about the underlying mechanism of biofilm formation regulation by carbon source is still limited. This work elucidates a modulation pattern of biofilm formation negatively regulated by sodium lactate as a carbon source via a three-component regulatory system in S. putrefaciens CN32, which may serve as a good example for studying how the carbon sources impact biofilm development in other bacteria.
Collapse
|