1
|
Li H, Tang X, Yang T, Liao T, Debowski AW, Yang T, Shen Y, Nilsson HO, Haslam SM, Mulloy B, Dell A, Stubbs KA, Fischer W, Haas R, Tang H, Marshall BJ, Benghezal M. Reinvestigation into the role of lipopolysaccharide Glycosyltransferases in Helicobacter pylori protein glycosylation. Gut Microbes 2025; 17:2455513. [PMID: 39834051 DOI: 10.1080/19490976.2025.2455513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Protein glycosylation has been considered as a fundamental phenomenon shared by all domains of life. In Helicobacter pylori, glycosylation of flagellins A and B with pseudaminic acid have been rigorously confirmed and shown to be essential for flagella assembly and bacterial colonization. In addition to flagellins, several other proteins including RecA, AlpA/B, and BabA/B in H. pylori have also been reported to be glycosylated and to be dependent on the lipopolysaccharide (LPS) biosynthetic pathway. However, these proteins have not been purified for sugar-specific staining or structural analysis to confirm the existence of carbohydrate motifs. Here, using a combined approach of genetics, protein purification, and sugar-specific staining, we demonstrate that RecA is not a glycoprotein. Moreover, using LPS-protein reconstitution experiments, we demonstrate that the presence of O-antigen containing full-length LPS interferes with the electrophoretic mobility of H. pylori RecA and many other proteins including AlpA/B on SDS-PAGE. Finally, we demonstrate that full-length LPS extracted from E. coli affects electrophoretic migration of H. pylori proteins, while full-length LPS extracted from H. pylori similarly influences the electrophoretic migration of E. coli proteins. The impact is more subtle with E. coli LPS compared to H. pylori LPS, indicating that the magnitude of effect of LPS effects on protein mobility is dependent on bacterial source of the LPS. These findings suggest that the effects of full-length LPS on protein electrophoresis may represent a more general phenomenon. As LPS is a unique component of virtually all Gram-negative bacteria, our data suggest that when observing protein electrophoretic mobility shifts between wild-type and LPS mutant strains or between subcellular fractionation samples, the influence of LPS on protein electrophoretic migration should be considered first, rather than interpreting it as potential protein glycosylation that is dependent upon LPS biosynthetic pathway.
Collapse
Affiliation(s)
- Hong Li
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Helicobacter pylori Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| | - Xiaoqiong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Tiandi Yang
- Department of Life Sciences, Imperial College London, London, UK
| | - Tingting Liao
- Helicobacter pylori Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| | - Aleksandra W Debowski
- Helicobacter pylori Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
- School of Molecular Sciences, University of Western Australia, Crawley, Australia
| | - Tiankuo Yang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yalin Shen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Hans-Olof Nilsson
- Helicobacter pylori Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Barbara Mulloy
- Department of Life Sciences, Imperial College London, London, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, UK
| | - Keith A Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, Australia
| | - Wolfgang Fischer
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, and German Center for Infection Research (DZIF), LMU Munich, Munich, Germany
| | - Rainer Haas
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, and German Center for Infection Research (DZIF), LMU Munich, Munich, Germany
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Barry J Marshall
- Helicobacter pylori Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| | - Mohammed Benghezal
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Helicobacter pylori Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| |
Collapse
|
2
|
Fu HW, Lai YC. The Role of Helicobacter pylori Neutrophil-Activating Protein in the Pathogenesis of H. pylori and Beyond: From a Virulence Factor to Therapeutic Targets and Therapeutic Agents. Int J Mol Sci 2022; 24:ijms24010091. [PMID: 36613542 PMCID: PMC9820732 DOI: 10.3390/ijms24010091] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori neutrophil-activating protein (HP-NAP), a major virulence factor of H. pylori, plays a role in bacterial protection and host inflammation. HP-NAP activates a variety of innate immune cells, including neutrophils, monocytes, and mast cells, to induce their pro-oxidant and pro-inflammatory activities. This protein also induces T-helper type 1 (Th1) immune response and cytotoxic T lymphocyte (CTL) activity, supporting that HP-NAP is able to promote gastric inflammation by activation of adaptive immune responses. Thus, HP-NAP is a potential therapeutic target for the treatment of H. pylori-induced gastric inflammation. The inflammatory responses triggered by HP-NAP are mediated by a PTX-sensitive G protein-coupled receptor and Toll-like receptor 2. Drugs designed to block the interactions between HP-NAP and its receptors could alleviate the inflammation in gastric mucosa caused by H. pylori infection. In addition, HP-NAP acts as a promising therapeutic agent for vaccine development, allergy treatment, and cancer immunotherapy. The high antigenicity of HP-NAP makes this protein a component of vaccines against H. pylori infection. Due to its immunomodulatory activity to stimulate the Th1-inducing ability of dendritic cells, enhance Th1 immune response and CTL activity, and suppress Th2-mediated allergic responses, HP-NAP could also act as an adjuvant in vaccines, a drug candidate against allergic diseases, and an immunotherapeutic agent for cancer. This review highlights the role of HP-NAP in the pathogenesis of H. pylori and the potential for this protein to be a therapeutic target in the treatment of H. pylori infection and therapeutic agents against H. pylori-associated diseases, allergies, and cancer.
Collapse
Affiliation(s)
- Hua-Wen Fu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence: ; Tel.: +886-3-574-2485
| | - Yu-Chang Lai
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
3
|
Park HE, Park S, Nizamutdinov D, Seo JH, Park JS, Jun JS, Shin JI, Boonyanugomol W, Park JS, Shin MK, Baik SC, Youn HS, Cho MJ, Kang HL, Lee WK, Jung M. Antigenic Determinant of Helicobacter pylori FlaA for Developing Serological Diagnostic Methods in Children. Pathogens 2022; 11:pathogens11121544. [PMID: 36558878 PMCID: PMC9782684 DOI: 10.3390/pathogens11121544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/23/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The early diagnosis of Helicobacter pylori infection is important for gastric cancer prevention and treatment. Although endoscopic biopsy is widely used for H. pylori diagnosis, an accurate biopsy cannot be performed until a lesion becomes clear, especially in pediatric patients. Therefore, it is necessary to develop convenient and accurate methods for early diagnosis. FlaA, an essential factor for H. pylori survival, shows high antigenicity and can be used as a diagnostic marker. We attempted to identify effective antigens containing epitopes of high diagnostic value in FlaA. Full-sized FlaA was divided into several fragments and cloned, and its antigenicity was investigated using Western blotting. The FlaA fragment of 1345-1395 bp had strong immunogenicity. ELISA was performed with serum samples from children by using the 1345-1395 bp recombinant antigen fragment. IgG reactivity showed 90.0% sensitivity and 90.5% specificity, and IgM reactivity showed 100% sensitivity and specificity. The FlaA fragment of 1345-1395 bp discovered in the present study has antigenicity and is of high value as a candidate antigen for serological diagnosis. The FlaA 1345-1395 bp epitope can be used as a diagnostic marker for H. pylori infection, thereby controlling various gastric diseases such as gastric cancer and peptic ulcers caused by H. pylori.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Institute of Health Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Seorin Park
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Institute of Health Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Damir Nizamutdinov
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ji-Hyeun Seo
- Institute of Health Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Pediatrics, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ji-Shook Park
- Institute of Health Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Pediatrics, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jin-Su Jun
- Institute of Health Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Pediatrics, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jeong-Ih Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Wongwarut Boonyanugomol
- Department of Sciences and Liberal Arts, Amnatcharoen Campus, Mahidol University, Amnatcharoen 37000, Thailand
| | - Jin-Sik Park
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Min-Kyoung Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Institute of Health Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung-Chul Baik
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Institute of Health Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hee-Shang Youn
- Institute of Health Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Pediatrics, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Myung-Je Cho
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyung-Lyun Kang
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Institute of Health Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Woo-Kon Lee
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Correspondence: (W.-K.L.); (M.J.); Tel.: +82-55-772-8082 (M.J.); Fax: +82-55-772-8089 (M.J.)
| | - Myunghwan Jung
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Institute of Health Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Correspondence: (W.-K.L.); (M.J.); Tel.: +82-55-772-8082 (M.J.); Fax: +82-55-772-8089 (M.J.)
| |
Collapse
|
4
|
Xia X. Multiple regulatory mechanisms for pH homeostasis in the gastric pathogen, Helicobacter pylori. ADVANCES IN GENETICS 2022; 109:39-69. [PMID: 36334916 DOI: 10.1016/bs.adgen.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acid-resistance in gastric pathogen Helicobacter pylori requires the coordination of four essential processes to regulate urease activity. Firstly, urease expression above a base level needs to be finely tuned at different ambient pH. Secondly, as nickel is needed to activate urease, nickel homeostasis needs to be maintained by proteins that import and export nickel ions, and sequester, store and release nickel when needed. Thirdly, urease accessary proteins that activate urease activity by nickel insertion need to be expressed. Finally, a reliable source of urea needs to be maintained by both intrinsic and extrinsic sources of urea. Two-component systems (arsRS and flgRS), as well as a nickel response regulator (NikR), sense the change in pH and act on a variety of genes to accomplish the function of acid resistance without causing cellular overalkalization and nickel toxicity. Nickel storage proteins also feature built-in switches to store nickel at neutral pH and release nickel at low pH. This review summarizes the current status of H. pylori research and highlights a number of hypotheses that need to be tested.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, Canada; Ottawa Institute of Systems Biology, Ottawa, Canada.
| |
Collapse
|
5
|
Membrane Proteins and Proteomics of Cronobacter sakazakii Cells: Reliable Method for Identification and Subcellular Localization. Appl Environ Microbiol 2022; 88:e0250821. [PMID: 35435719 PMCID: PMC9088360 DOI: 10.1128/aem.02508-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Cronobacter are responsible for severe infections in infants and immunosuppressed individuals. Although several virulence factors have been described, many proteins involved in the pathogenesis of such infections have not yet been mapped. This study is the first to fractionate Cronobacter sakazakii cells into outer membrane, inner membrane, periplasmic, and cytosolic fractions as the basis for improved proteome mapping. A novel method was designed to prepare the fractionated samples for protein identification. The identification was performed via one-dimensional electrophoresis-liquid chromatography electrospray ionization tandem mass spectrometry. To determine the subcellular localization of the identified proteins, we developed a novel Python-based script (Subcelloc) that combines three web-based tools, PSORTb 3.0.2, CELLO 2.5, and UniProtKB. Applying this approach enabled us to identify 1,243 C. sakazakii proteins, which constitutes 28% of all predicted proteins and 49% of all theoretically expressed outer membrane proteins. These results represent a significant improvement on previous attempts to map the C. sakazakii proteome and could provide a major step forward in the identification of Cronobacter virulence factors. IMPORTANCE Cronobacter spp. are opportunistic pathogens that can cause rare and, in many cases, life-threatening infections, such as meningitis, necrotizing enterocolitis, and sepsis. Such infections are mainly linked to the consumption of contaminated powdered infant formula, with Cronobacter sakazakii clonal complex 4 considered the most frequent agent of serious neonatal infection. However, the pathogenesis of diseases caused by these bacteria remains unclear; in particular, the proteins involved throughout the process have not yet been mapped. To help address this, we present an improved method for proteome mapping that emphasizes the isolation and identification of membrane proteins. Specific focus was placed on the identification of the outer membrane proteins, which, being exposed to the surface of the bacterium, directly participate in host-pathogen interaction.
Collapse
|
6
|
Orench-Rivera N, Kuehn MJ. Differential Packaging Into Outer Membrane Vesicles Upon Oxidative Stress Reveals a General Mechanism for Cargo Selectivity. Front Microbiol 2021; 12:561863. [PMID: 34276573 PMCID: PMC8284480 DOI: 10.3389/fmicb.2021.561863] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Selective cargo packaging into bacterial extracellular vesicles has been reported and implicated in many biological processes, however, the mechanism behind the selectivity has remained largely unexplored. In this study, proteomic analysis of outer membrane (OM) and OM vesicle (OMV) fractions from enterotoxigenic E. coli revealed significant differences in protein abundance in the OMV and OM fractions for cultures shifted to oxidative stress conditions. Analysis of sequences of proteins preferentially packaged into OMVs showed that proteins with oxidizable residues were more packaged into OMVs in comparison with those retained in the membrane. In addition, the results indicated two distinct classes of OM-associated proteins were differentially packaged into OMVs as a function of peroxide treatment. Implementing a Bayesian hierarchical model, OM lipoproteins were determined to be preferentially exported during stress whereas integral OM proteins were preferentially retained in the cell. Selectivity was determined to be independent of transcriptional regulation of the proteins upon oxidative stress and was validated using randomly selected protein candidates from the different cargo classes. Based on these data, a hypothetical functional and mechanistic basis for cargo selectivity was tested using OmpA constructs. Our study reveals a basic mechanism for cargo selectivity into OMVs that may be useful for the engineering of OMVs for future biotechnological applications.
Collapse
Affiliation(s)
| | - Meta J. Kuehn
- Department of Biochemistry, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
7
|
Lu Y, Pang J, Wang G, Hu X, Li X, Li G, Wang X, Yang X, Li C, You X. Quantitative proteomics approach to investigate the antibacterial response of Helicobacter pylori to daphnetin, a traditional Chinese medicine monomer. RSC Adv 2021; 11:2185-2193. [PMID: 35424199 PMCID: PMC8693750 DOI: 10.1039/d0ra06677j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium related to the development of peptic ulcers and stomach cancer. An increasing number of infected individuals are found to harbor antibiotic-resistant H. pylori, which results in treatment failure. Daphnetin, a traditional Chinese medicine, has a broad spectrum of antibacterial activity without the development of bacterial resistance. However, the antibacterial mechanisms of daphnetin have not been elucidated entirely. To better understand the mechanisms of daphnetin's effect on H. pylori, a label-free quantitative proteomics approach based on an EASY-nLC 1200 system coupled with an Orbitrap Fusion Lumos mass spectrometer was established to investigate the key protein differences between daphnetin- and non-daphnetin-treated H. pylori. Using the criteria of greater than 1.5-fold changes and adjusted p value <0.05, proteins related to metabolism, membrane structure, nucleic acid and protein synthesis, ion binding, H. pylori colonization and infection, stress reaction, flagellar assembly and so on were found to be changed under daphnetin pressure. And the changes of selected proteins in expression level were confirmed by targeted proteomics. These new data provide us a more comprehensive horizon of the proteome changes in H. pylori that occur in response to daphnetin.
Collapse
Affiliation(s)
- Yun Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Genzhu Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xinxin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Guoqing Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xiukun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Congran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| |
Collapse
|
8
|
Kim NH, Ha EJ, Ko DS, Choi KS, Kwon HJ. Comparison of Humoral Immune Responses to Different Forms of Salmonella enterica Serovar Gallinarum Biovar Gallinarum. Front Vet Sci 2020; 7:598610. [PMID: 33240965 PMCID: PMC7677237 DOI: 10.3389/fvets.2020.598610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 02/03/2023] Open
Abstract
Fowl typhoid is caused by Salmonella enterica serovar Gallinarum biovar Gallinarum (SG), and live attenuated, rough vaccine strains have been used. Both humoral and cellular immune responses are involved in protection, but the humoral responses to different forms of SG antigens are unclear. In this study, we compared humoral responses to a killed oil-emulsion (OE) smooth vaccine (SG002) and its rough mutant vaccine (SR2-N6) strains using proteomics techniques. We identified two immunogenic outer membrane proteins (OmpA and OmpX), and the selected linear epitopes were successfully applied in peptide-ELISA. Our peptide- and total OMP-ELISAs were used to compare the temporal humoral responses to various SG antigens: OE SG002 and SR2-N6; live, killed [PBS-suspension (PS) and OE)] and mixed (live and PS) formulations of another rough vaccine strain (SG 9R); and orally challenge with a field strain. Serum antibodies to the linear epitopes of OmpA and OmpX lasted only for the first 2 weeks, but serum antibodies against OMPs increased over time. The rough strain (SR2-N6) and mixed SG 9R induced higher serum antibody titers than the smooth strain (SG002) and single SG 9R (OE, live and PS SG 9R), respectively. Infection with the field strain delayed the serum antibody response by ~2 weeks. Mucosal immunity was not induced by any formulation, except for infection with the field strain after SG 9R vaccination. Thus, our results may be useful to understand humoral immunity against various SG antigens and to improve vaccine programs and serological diagnosis in the field.
Collapse
Affiliation(s)
- Nam-Hyung Kim
- Laboratory of Poultry Medicine, Seoul National University, Seoul, South Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul, South Korea
| | - Eun-Jin Ha
- Laboratory of Poultry Medicine, Seoul National University, Seoul, South Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul, South Korea
| | - Dae-Sung Ko
- Laboratory of Poultry Medicine, Seoul National University, Seoul, South Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul, South Korea
| | - Kang-Seuk Choi
- Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul, South Korea
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Hyuk-Joon Kwon
- Laboratory of Poultry Medicine, Seoul National University, Seoul, South Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul, South Korea
- Farm Animal Clinical Training and Research Center (FACTRC), GBST, Seoul National University, Seoul, South Korea
| |
Collapse
|
9
|
Bokhari H, Maryam A, Shahid R, Siddiqi AR. Oligosaccharyltransferase PglB of Campylobacter jejuni is a glycoprotein. World J Microbiol Biotechnol 2019; 36:9. [PMID: 31858269 DOI: 10.1007/s11274-019-2784-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/10/2019] [Indexed: 11/29/2022]
Abstract
Campylobacter jejuni is the one of the leading cause of bacterial food borne gastroenteritis. PglB, a glycosyltransferase, plays a crucial role of mediating glycosylation of numerous periplasmic proteins. It catalyzes N-glycosylation at the sequon D/E-X1-N-X2-S/T in its substrate proteins. Here we report that the PglB itself is a glycoprotein which self-glycosylates at N534 site in its DYNQS sequon by its own catalytic WWDYG motif. Site-directed mutagenesis, lectin Immunoblot, and mobility shift assays confirmed that the DYNQS is an N-glycosylation motif. PglB's N-glycosylation motif is structurally and functionally similar to its widely studied glycosylation substrate, the OMPH1. Its DYNQS motif forms a solvent-exposed crest. This motif is close to a cluster of polar and hydrophilic residues, which form a loop flanked by two α helices. This arrangement extremely apposite for auto-glycosylation at N534. This self-glycosylation ability of PglB could mediate C. jejuni's ability to colonize the intestinal epithelium. Further this capability may also bear significance for the development of novel conjugated vaccines and diagnostic tests.
Collapse
Affiliation(s)
- Habib Bokhari
- Department of Biosciences, COMSATS University, Islamabad, Chak Shazad Campus, Islamabad, Pakistan.
| | - Arooma Maryam
- Department of Biosciences, COMSATS University, Islamabad, Chak Shazad Campus, Islamabad, Pakistan
| | - Ramla Shahid
- Department of Biosciences, COMSATS University, Islamabad, Chak Shazad Campus, Islamabad, Pakistan
| | - Abdul Rauf Siddiqi
- Department of Biosciences, COMSATS University, Islamabad, Chak Shazad Campus, Islamabad, Pakistan
| |
Collapse
|
10
|
Wang G, Pang J, Hu X, Nie T, Lu X, Li X, Wang X, Lu Y, Yang X, Jiang J, Li C, Xiong YQ, You X. Daphnetin: A Novel Anti- Helicobacter pylori Agent. Int J Mol Sci 2019; 20:ijms20040850. [PMID: 30781382 PMCID: PMC6412720 DOI: 10.3390/ijms20040850] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/02/2019] [Accepted: 02/12/2019] [Indexed: 02/08/2023] Open
Abstract
Background: Antibiotic-resistant H. pylori was increasingly found in infected individuals, which resulted in treatment failure and required alternative therapeutic strategies. Daphnetin, a coumarin-derivative compound, has multiple pharmacological activities. Methods: The mechanism of daphnetin on H. pylori was investigated focusing on its effect on cell morphologies, transcription of genes related to virulence, adhesion, and cytotoxicity to human gastric epithelial (GES-1) cell line. Results: Daphnetin showed good activities against multidrug resistant (MDR) H. pylori clinical isolates, with minimal inhibitory concentration (MIC) values ranging from 25 to 100 μg/mL. In addition, daphnetin exposure resulted in H. pylori morphological changes. Moreover, daphnetin caused increased translocation of phosphatidylserine (PS), DNA damage, and recA expression, and RecA protein production vs. control group. Of great importance, daphnetin significantly decreased H. pylori adhesion to GES-1 cell line vs. control group, which may be related to the reduced expression of colonization related genes (e.g., babA and ureI). Conclusions: These results suggested that daphnetin has good activity against MDR H. pylori. The mechanism(s) of daphnetin against H. pylori were related to change of membrane structure, increase of DNA damage and PS translocation, and decrease of H. pylori attachment to GES-1 cells.
Collapse
Affiliation(s)
- Genzhu Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xinxin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Tongying Nie
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xi Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiukun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yun Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Jiandong Jiang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Congran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yan Q Xiong
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
11
|
Abstract
Codon usage depends on mutation bias, tRNA-mediated selection, and the need for high efficiency and accuracy in translation. One codon in a synonymous codon family is often strongly over-used, especially in highly expressed genes, which often leads to a high dN/dS ratio because dS is very small. Many different codon usage indices have been proposed to measure codon usage and codon adaptation. Sense codon could be misread by release factors and stop codons misread by tRNAs, which also contribute to codon usage in rare cases. This chapter outlines the conceptual framework on codon evolution, illustrates codon-specific and gene-specific codon usage indices, and presents their applications. A new index for codon adaptation that accounts for background mutation bias (Index of Translation Elongation) is presented and contrasted with codon adaptation index (CAI) which does not consider background mutation bias. They are used to re-analyze data from a recent paper claiming that translation elongation efficiency matters little in protein production. The reanalysis disproves the claim.
Collapse
|
12
|
Chanana P, Padhy G, Bhargava K, Arya R. Mutation in GNE Downregulates Peroxiredoxin IV Altering ER Redox Homeostasis. Neuromolecular Med 2017; 19:525-540. [PMID: 28895049 DOI: 10.1007/s12017-017-8467-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022]
Abstract
GNE myopathy is a rare neuromuscular genetic disorder characterized by early adult onset and muscle weakness due to mutation in sialic acid biosynthetic enzyme, UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). More than 180 different GNE mutations are known all over the world with unclear pathomechanism. Although hyposialylation of glycoproteins is speculated to be the major cause, but cellular mechanism leading to loss of muscle mass has not yet been deciphered. Besides sialic acid biosynthesis, GNE affects other cellular functions such as cell adhesion and apoptosis. In order to understand the effect of mutant GNE protein on cellular functions, differential proteome profile of HEK293 cells overexpressing pathologically relevant recombinant mutant GNE protein (D207V and V603L) was analyzed. These cells, along with vector control and wild-type GNE-overexpressing cells, were subjected to two-dimensional gel electrophoresis coupled with mass spectrometry (MALDI-TOF/TOF MS/MS). In the study, 10 differentially expressed proteins were identified. Progenesis same spots software revealed downregulation of peroxiredoxin IV (PrdxIV), an ER-resident H2O2 sensor that regulates neurogenesis. Significant reduction in mRNA and protein levels of PrdxIV was observed in GNE mutant cell lines compared with vector control. However, neither total reactive oxygen species was altered nor H2O2 accumulation was observed in GNE mutant cell lines. Interestingly, ER redox state was significantly affected due to reduced normal GNE enzyme activity. Our study indicates that downregulation of PrdxIV affects ER redox state that may contribute to misfolding and aggregation of proteins in GNE myopathy.
Collapse
Affiliation(s)
- Pratibha Chanana
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Gayatri Padhy
- Peptide and Proteomics Division, DIPAS, DRDO, Delhi, India
| | | | - Ranjana Arya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
13
|
Wang Y, Chen H, Guo Z, Sun L, Fu Y, Li T, Lin W, Lin X. Quantitative proteomic analysis of iron-regulated outer membrane proteins in Aeromonas hydrophila as potential vaccine candidates. FISH & SHELLFISH IMMUNOLOGY 2017; 68:1-9. [PMID: 28676336 DOI: 10.1016/j.fsi.2017.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
The iron-regulated outer membrane protein (OMP) of Aeromonas hydrophila is an effective vaccine candidate, but its intrinsic functional components are largely unknown. In this study, we compared the differentially expressed sarcosine-insoluble fractions of A. hydrophila in iron-limited and normal medium using tandem mass tag labeling-based quantitative proteomics, and identified 91 upregulated proteins including 21 OMPs and 83 downregulated proteins including 10 OMPs. Subsequent bioinformatics analysis showed that iron chelate transport-related proteins were enriched in increasing abundance, whereas oxidoreductase activity and translation-related proteins were significantly enriched in decreasing abundance. The proteomics results were further validated in selected altered proteins by Western blotting. Finally, the vaccine efficacy of five iron-related recombinant OMPs (A0KGW8, A0KFG8, A0KQ46, A0KIU8, and A0KQZ1) that were increased abundance in iron-limited medium, were evaluated when challenged with virulent A. hydrophila against zebrafish, suggesting that these proteins had highly efficient immunoprotectivity. Our results indicate that quantitative proteomics combined with evaluation of vaccine efficacy is an effective strategy for screening novel recombinant antigens for vaccine development.
Collapse
Affiliation(s)
- Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Huarong Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Zhuang Guo
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Lina Sun
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Yuying Fu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Tao Li
- Shanghai MHelix BioTech Co., Ltd, Shanghai 201900, PR China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China.
| |
Collapse
|
14
|
Hutton ML, D'Costa K, Rossiter AE, Wang L, Turner L, Steer DL, Masters SL, Croker BA, Kaparakis-Liaskos M, Ferrero RL. A Helicobacter pylori Homolog of Eukaryotic Flotillin Is Involved in Cholesterol Accumulation, Epithelial Cell Responses and Host Colonization. Front Cell Infect Microbiol 2017; 7:219. [PMID: 28634572 PMCID: PMC5460342 DOI: 10.3389/fcimb.2017.00219] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022] Open
Abstract
The human pathogen Helicobacter pylori acquires cholesterol from membrane raft domains in eukaryotic cells, commonly known as "lipid rafts." Incorporation of this cholesterol into the H. pylori cell membrane allows the bacterium to avoid clearance by the host immune system and to resist the effects of antibiotics and antimicrobial peptides. The presence of cholesterol in H. pylori bacteria suggested that this pathogen may have cholesterol-enriched domains within its membrane. Consistent with this suggestion, we identified a hypothetical H. pylori protein (HP0248) with homology to the flotillin proteins normally found in the cholesterol-enriched domains of eukaryotic cells. As shown for eukaryotic flotillin proteins, HP0248 was detected in detergent-resistant membrane fractions of H. pylori. Importantly, H. pylori HP0248 mutants contained lower levels of cholesterol than wild-type bacteria (P < 0.01). HP0248 mutant bacteria also exhibited defects in type IV secretion functions, as indicated by reduced IL-8 responses and CagA translocation in epithelial cells (P < 0.05), and were less able to establish a chronic infection in mice than wild-type bacteria (P < 0.05). Thus, we have identified an H. pylori flotillin protein and shown its importance for bacterial virulence. Taken together, the data demonstrate important roles for H. pylori flotillin in host-pathogen interactions. We propose that H. pylori flotillin may be required for the organization of virulence proteins into membrane raft-like structures in this pathogen.
Collapse
Affiliation(s)
- Melanie L. Hutton
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical ResearchMelbourne, VIC, Australia
| | - Kimberley D'Costa
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical ResearchMelbourne, VIC, Australia
| | - Amanda E. Rossiter
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical ResearchMelbourne, VIC, Australia
| | - Lin Wang
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical ResearchMelbourne, VIC, Australia
| | - Lorinda Turner
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical ResearchMelbourne, VIC, Australia
| | - David L. Steer
- Monash Biomedical Proteomics Facility, Monash UniversityMelbourne, VIC, Australia
| | - Seth L. Masters
- Inflammation Division, The Walter and Eliza Hall InstituteMelbourne, VIC, Australia
| | - Ben A. Croker
- Inflammation Division, The Walter and Eliza Hall InstituteMelbourne, VIC, Australia
| | - Maria Kaparakis-Liaskos
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical ResearchMelbourne, VIC, Australia
| | - Richard L. Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical ResearchMelbourne, VIC, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityMelbourne, VIC, Australia
| |
Collapse
|
15
|
Bernardini G, Figura N, Ponzetto A, Marzocchi B, Santucci A. Application of proteomics to the study of Helicobacter pylori and implications for the clinic. Expert Rev Proteomics 2017; 14:477-490. [PMID: 28513226 DOI: 10.1080/14789450.2017.1331739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) is a gram-negative bacterium that colonizes the gastric epithelium and mucous layer of more than half the world's population. H. pylori is a primary human pathogen, responsible for the development of chronic gastritis, peptic ulceration and gastric cancer. Proteomics is impacting several aspects of medical research: understanding the molecular basis of infection and disease manifestation, identification of therapeutic targets and discovery of clinically relevant biomarkers. Areas covered: The main aim of the present review is to provide a comprehensive overview of the contribution of proteomics to the study of H. pylori infection pathophysiology. In particular, we focused on the role of the bacterium and its most important virulence factor, CagA, in the progression of gastric cells transformation and cancer progression. We also discussed the proteomic approaches aimed at the investigation of the host response to bacterial infection. Expert commentary: In the field of proteomics of H. pylori, comprehensive analysis of clinically relevant proteins (functional proteomics) rather than entire proteomes will result in important medical outcomes. Finally, we provided an outlook on the potential development of proteomics in H. pylori research.
Collapse
Affiliation(s)
- Giulia Bernardini
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| | - Natale Figura
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| | - Antonio Ponzetto
- b Dipartimento di Scienze Mediche , Università degli Studi di Torino , Torino , Italy
| | - Barbara Marzocchi
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| | - Annalisa Santucci
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| |
Collapse
|
16
|
Bocian-Ostrzycka KM, Łasica AM, Dunin-Horkawicz S, Grzeszczuk MJ, Drabik K, Dobosz AM, Godlewska R, Nowak E, Collet JF, Jagusztyn-Krynicka EK. Functional and evolutionary analyses of Helicobacter pylori HP0231 (DsbK) protein with strong oxidative and chaperone activity characterized by a highly diverged dimerization domain. Front Microbiol 2015; 6:1065. [PMID: 26500620 PMCID: PMC4597128 DOI: 10.3389/fmicb.2015.01065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/16/2015] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori does not encode the classical DsbA/DsbB oxidoreductases that are crucial for oxidative folding of extracytoplasmic proteins. Instead, this microorganism encodes an untypical two proteins playing a role in disulfide bond formation – periplasmic HP0231, which structure resembles that of EcDsbC/DsbG, and its redox partner, a membrane protein HpDsbI (HP0595) with a β-propeller structure. The aim of presented work was to assess relations between HP0231 structure and function. We showed that HP0231 is most closely related evolutionarily to the catalytic domain of DsbG, even though it possesses a catalytic motif typical for canonical DsbA proteins. Similarly, the highly diverged N-terminal dimerization domain is homologous to the dimerization domain of DsbG. To better understand the functioning of this atypical oxidoreductase, we examined its activity using in vivo and in vitro experiments. We found that HP0231 exhibits oxidizing and chaperone activities but no isomerizing activity, even though H. pylori does not contain a classical DsbC. We also show that HP0231 is not involved in the introduction of disulfide bonds into HcpC (Helicobactercysteine-rich protein C), a protein involved in the modulation of the H. pylori interaction with its host. Additionally, we also constructed a truncated version of HP0231 lacking the dimerization domain, denoted HP0231m, and showed that it acts in Escherichia coli cells in a DsbB-dependent manner. In contrast, HP0231m and classical monomeric EcDsbA (E. coli DsbA protein) were both unable to complement the lack of HP0231 in H. pylori cells, though they exist in oxidized forms. HP0231m is inactive in the insulin reduction assay and possesses high chaperone activity, in contrast to EcDsbA. In conclusion, HP0231 combines oxidative functions characteristic of DsbA proteins and chaperone activity characteristic of DsbC/DsbG, and it lacks isomerization activity.
Collapse
Affiliation(s)
- Katarzyna M Bocian-Ostrzycka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Anna M Łasica
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Stanisław Dunin-Horkawicz
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Magdalena J Grzeszczuk
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Karolina Drabik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Aneta M Dobosz
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Renata Godlewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Jean-Francois Collet
- de Duve Institute, Université catholique de Louvain (UCL)/Walloon Excellence in Life Sciences and Biotechnology Brussels, Belgium
| | - Elżbieta K Jagusztyn-Krynicka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| |
Collapse
|
17
|
De Falco M, Lucariello A, Iaquinto S, Esposito V, Guerra G, De Luca A. Molecular Mechanisms of Helicobacter pylori Pathogenesis. J Cell Physiol 2015; 230:1702-7. [PMID: 25639461 DOI: 10.1002/jcp.24933] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 01/16/2015] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori infects 50% of mankind. The vast majority of H. pylori infection occurs in the developing countries where up to 80% of the middle-aged adults may be infected. Bacterial infection causes an inflammatory response that proceeds through a series of intermediated stages of precancerous lesions (gastritis, atrophy, intestinal metaplasia, and dysplasia). Among infected individuals, approximately 10% develops severe gastric lesions such as peptic ulcer disease, 1-3% progresses to gastric cancer (GC) with a low 5-year survival rate, and 0.1% develops mucosa-associated lymphoid tissue (MALT). GC is one of the most common cancer and the third leading cause of cancer-related deaths worldwide. In this review, we have summarized the most recent papers about molecular mechanisms of H. pylori pathogenesis. The main important steps of H. pylori infection such as adhesion, entry in epithelial gastric cells, activation of intracellular pathways until epigenetic modifications have been described.
Collapse
Affiliation(s)
- Maria De Falco
- Department of Biology, University Federico II of Naples, Naples, Italy; National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Roszczenko P, Grzeszczuk M, Kobierecka P, Wywial E, Urbanowicz P, Wincek P, Nowak E, Jagusztyn-Krynicka EK. Helicobacter pylori HP0377, a member of the Dsb family, is an untypical multifunctional CcmG that cooperates with dimeric thioldisulfide oxidase HP0231. BMC Microbiol 2015; 15:135. [PMID: 26141380 PMCID: PMC4491210 DOI: 10.1186/s12866-015-0471-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In the genome of H. pylori 26695, 149 proteins containing the CXXC motif characteristic of thioldisulfide oxidoreductases have been identified to date. However, only two of these proteins have a thioredoxin-like fold (i.e., HP0377 and HP0231) and are periplasm-located. We have previously shown that HP0231 is a dimeric oxidoreductase that catalyzes disulfide bond formation in the periplasm. Although HP0377 was originally described as DsbC homologue, its resolved structure and location of the hp0377 gene in the genome indicate that it is a counterpart of CcmG/DsbE. RESULTS The present work shows that HP0377 is present in H. pylori cells only in a reduced form and that absence of the main periplasmic oxidase HP0231 influences its redox state. Our biochemical analysis indicates that HP0377 is a specific reductase, as it does not reduce insulin. However, it possesses disulfide isomerase activity, as it catalyzes the refolding of scrambled RNase. Additionally, although its standard redox potential is -176 mV, it is the first described CcmG protein having an acidic pKa of the N-terminal cysteine of the CXXC motif, similar to E. coli DsbA or E. coli DsbC. The CcmG proteins that play a role in a cytochrome c-maturation, both in system I and system II, are kept in the reduced form by an integral membrane protein DsbD or its analogue, CcdA. In H. pylori HP0377 is re-reduced by CcdA (HP0265); however in E. coli it remains in the oxidized state as it does not interact with E. coli DsbD. Our in vivo work also suggests that both HP0377, which plays a role in apocytochrome reduction, and HP0378, which is involved in heme transport and its ligation into apocytochrome, provide essential functions in H. pylori. CONCLUSIONS The present data, in combination with the resolved three-dimensional structure of the HP0377, suggest that HP0377 is an unusual, multifunctional CcmG protein.
Collapse
Affiliation(s)
- Paula Roszczenko
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland. .,Present address: Department of Cell Biology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland.
| | - Magdalena Grzeszczuk
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Patrycja Kobierecka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Ewa Wywial
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| | - Paweł Urbanowicz
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Piotr Wincek
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Elzbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| | | |
Collapse
|
19
|
Global analysis of bacterial membrane proteins and their modifications. Int J Med Microbiol 2015; 305:203-8. [DOI: 10.1016/j.ijmm.2014.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
20
|
Lopes AI, Vale FF, Oleastro M. Helicobacter pylori infection - recent developments in diagnosis. World J Gastroenterol 2014; 20:9299-9313. [PMID: 25071324 PMCID: PMC4110561 DOI: 10.3748/wjg.v20.i28.9299] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
Considering the recommended indications for Helicobacter pylori (H. pylori) eradication therapy and the broad spectrum of available diagnostic methods, a reliable diagnosis is mandatory both before and after eradication therapy. Only highly accurate tests should be used in clinical practice, and the sensitivity and specificity of an adequate test should exceed 90%. The choice of tests should take into account clinical circumstances, the likelihood ratio of positive and negative tests, the cost-effectiveness of the testing strategy and the availability of the tests. This review concerns some of the most recent developments in diagnostic methods of H. pylori infection, namely the contribution of novel endoscopic evaluation methodologies for the diagnosis of H. pylori infection, such as magnifying endoscopy techniques and chromoendoscopy. In addition, the diagnostic contribution of histology and the urea breath test was explored recently in specific clinical settings and patient groups. Recent studies recommend enhancing the number of biopsy fragments for the rapid urease test. Bacterial culture from the gastric biopsy is the gold standard technique, and is recommended for antibiotic susceptibility test. Serology is used for initial screening and the stool antigen test is particularly used when the urea breath test is not available, while molecular methods have gained attention mostly for detecting antibiotic resistance.
Collapse
|
21
|
Padhy G, Sethy NK, Ganju L, Bhargava K. Abundance of plasma antioxidant proteins confers tolerance to acute hypobaric hypoxia exposure. High Alt Med Biol 2014; 14:289-97. [PMID: 24067188 DOI: 10.1089/ham.2012.1095] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Systematic identification of molecular signatures for hypobaric hypoxia can aid in better understanding of human adaptation to high altitude. In an attempt to identify proteins promoting hypoxia tolerance during acute exposure to high altitude, we screened and identified hypoxia tolerant and susceptible rats based on hyperventilation time to a simulated altitude of 32,000 ft (9754 m). The hypoxia tolerance was further validated by estimating 8-isoprotane levels and protein carbonyls, which revealed that hypoxia tolerant rats possessed significant lower plasma levels as compared to susceptible rats. We used a comparative plasma proteome profiling approach using 2-dimensional gel electrophoresis (2-DGE) combined with MALDI TOF/TOF for both groups, along with an hypoxic control group. This resulted in the identification of 19 differentially expressed proteins. Seven proteins (TTR, GPx-3, PON1, Rab-3D, CLC11, CRP, and Hp) were upregulated in hypoxia tolerant rats, while apolipoprotein A-I (APOA1) was upregulated in hypoxia susceptible rats. We further confirmed the consistent higher expression levels of three antioxidant proteins (PON1, TTR, and GPx-3) in hypoxia-tolerant animals using ELISA and immunoblotting. Collectively, these proteomics-based results highlight the role of antioxidant enzymes in conferring hypoxia tolerance during acute hypobaric hypoxia. The expression of these antioxidant enzymes could be used as putative biomarkers for screening altitude adaptation as well as aiding in better management of altered oxygen pathophysiologies.
Collapse
Affiliation(s)
- Gayatri Padhy
- 1 Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences , Defence Research and Development Organization, Timarpur, Delhi, India
| | | | | | | |
Collapse
|
22
|
Analysis of surface-exposed outer membrane proteins in Helicobacter pylori. J Bacteriol 2014; 196:2455-71. [PMID: 24769695 DOI: 10.1128/jb.01768-14] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
More than 50 Helicobacter pylori genes are predicted to encode outer membrane proteins (OMPs), but there has been relatively little experimental investigation of the H. pylori cell surface proteome. In this study, we used selective biotinylation to label proteins localized to the surface of H. pylori, along with differential detergent extraction procedures to isolate proteins localized to the outer membrane. Proteins that met multiple criteria for surface-exposed outer membrane localization included known adhesins, as well as Cag proteins required for activity of the cag type IV secretion system, putative lipoproteins, and other proteins not previously recognized as cell surface components. We identified sites of nontryptic cleavage consistent with signal sequence cleavage, as well as C-terminal motifs that may be important for protein localization. A subset of surface-exposed proteins were highly susceptible to proteolysis when intact bacteria were treated with proteinase K. Most Hop and Hom OMPs were susceptible to proteolysis, whereas Hor and Hof proteins were relatively resistant. Most of the protease-susceptible OMPs contain a large protease-susceptible extracellular domain exported beyond the outer membrane and a protease-resistant domain at the C terminus with a predicted β-barrel structure. These features suggest that, similar to the secretion of the VacA passenger domain, the N-terminal domains of protease-susceptible OMPs are exported through an autotransporter pathway. Collectively, these results provide new insights into the repertoire of surface-exposed H. pylori proteins that may mediate bacterium-host interactions, as well as the cell surface topology of these proteins.
Collapse
|
23
|
Repetto O, Zanussi S, Casarotto M, Canzonieri V, De Paoli P, Cannizzaro R, De Re V. Differential proteomics of Helicobacter pylori associated with autoimmune atrophic gastritis. Mol Med 2014; 20:57-71. [PMID: 24395566 DOI: 10.2119/molmed.2013.00076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/23/2013] [Indexed: 12/20/2022] Open
Abstract
Atrophic autoimmune gastritis (AAG) is a condition of chronic inflammation and atrophy of stomach mucosa, for which development can be partially triggered by the bacterial pathogen Helicobacter pylori (HP). HP can cause a variety of gastric diseases, such as duodenal ulcer (DU) or gastric cancer (GC). In this study, a comparative proteomic approach was used by two-dimensional fluorescence difference gel electrophoresis (DIGE) to identify differentially expressed proteins of HP strains isolated from patients with AAG, to identify markers of HP strain associated with AAG. Proteome profiles of HP isolated from GC or DU were used as a reference to compare proteomic levels. Proteomics analyses revealed 27 differentially expressed spots in AAG-associated HP in comparison with GC, whereas only 9 differential spots were found in AAG-associated HP profiles compared with DU. Proteins were identified after matrix-assisted laser desorption ionization (MALDI)-TOF and peptide mass fingerprinting. Some AAG-HP differential proteins were common between DU- and GC-HP (peroxiredoxin, heat shock protein 70 [HSP70], adenosine 5'-triphosphate [ATP] synthase subunit α, flagellin A). Our results presented here may suggest that comparative proteomes of HP isolated from AAG and DU share more common protein expression than GC and provide subsets of putative AAG-specific upregulated or downregulated proteins that could be proposed as putative markers of AAG-associated HP. Other comparative studies by two-dimensional maps integrated with functional genomics of candidate proteins will undoubtedly contribute to better decipher the biology of AAG-associated HP strains.
Collapse
Affiliation(s)
- Ombretta Repetto
- Facility of Bio-Proteomics, Centro di Riferimento Oncologico (CRO), Aviano National Cancer Institute, Aviano, Italy
| | - Stefania Zanussi
- Microbiology-Immunology and Virology, Centro di Riferimento Oncologico (CRO), Aviano National Cancer Institute, Aviano, Italy
| | - Mariateresa Casarotto
- Microbiology-Immunology and Virology, Centro di Riferimento Oncologico (CRO), Aviano National Cancer Institute, Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico (CRO), Aviano National Cancer Institute, Aviano, Italy
| | - Paolo De Paoli
- Facility of Bio-Proteomics, Centro di Riferimento Oncologico (CRO), Aviano National Cancer Institute, Aviano, Italy
| | - Renato Cannizzaro
- Gastroenterology Unit, Centro di Riferimento Oncologico (CRO), Aviano National Cancer Institute, Aviano, Italy
| | - Valli De Re
- Facility of Bio-Proteomics, Centro di Riferimento Oncologico (CRO), Aviano National Cancer Institute, Aviano, Italy
| |
Collapse
|
24
|
Bernardini G, Braconi D, Martelli P, Santucci A. Postgenomics ofNeisseria meningitidisfor vaccines development. Expert Rev Proteomics 2014; 4:667-77. [DOI: 10.1586/14789450.4.5.667] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Khalilpour A, Santhanam A, Wei LC, Saadatnia G, Velusamy N, Osman S, Mohamad AM, Noordin R. Antigenic proteins of Helicobacter pylori of potential diagnostic value. Asian Pac J Cancer Prev 2014; 14:1635-42. [PMID: 23679248 DOI: 10.7314/apjcp.2013.14.3.1635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Helicobacter pylori antigen was prepared from an isolate from a patient with a duodenal ulcer. Serum samples were obtained from culture-positive H. pylori infected patients with duodenal ulcers, gastric ulcers and gastritis (n=30). As controls, three kinds of sera without detectable H. pylori IgG antibodies were used: 30 from healthy individuals without history of gastric disorders, 30 from patients who were seen in the endoscopy clinic but were H. pylori culture negative and 30 from people with other diseases. OFF-GEL electrophoresis, SDS-PAGE and Western blots of individual serum samples were used to identify protein bands with good sensitivity and specificity when probed with the above sera and HRP-conjugated anti-human IgG. Four H. pylori protein bands showed good (≥ 70%) sensitivity and high specificity (98-100%) towards anti-Helicobacter IgG antibody in culture- positive patients sera and control sera, respectively. The identities of the antigenic proteins were elucidated by mass spectrometry. The relative molecular weights and the identities of the proteins, based on MALDI TOF/ TOF, were as follows: CagI (25 kDa), urease G accessory protein (25 kDa), UreB (63 kDa) and proline/pyrroline- 5-carboxylate dehydrogenase (118 KDa). These identified proteins, singly and/or in combinations, may be useful for diagnosis of H. pylori infection in patients.
Collapse
Affiliation(s)
- Akbar Khalilpour
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Intracellular locations of replication proteins and the origin of replication during chromosome duplication in the slowly growing human pathogen Helicobacter pylori. J Bacteriol 2013; 196:999-1011. [PMID: 24363345 DOI: 10.1128/jb.01198-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We followed the position of the replication complex in the pathogenic bacterium Helicobacter pylori using antibodies raised against the single-stranded DNA binding protein (HpSSB) and the replicative helicase (HpDnaB). The position of the replication origin, oriC, was also localized in growing cells by fluorescence in situ hybridization (FISH) with fluorescence-labeled DNA sequences adjacent to the origin. The replisome assembled at oriC near one of the cell poles, and the two forks moved together toward the cell center as replication progressed in the growing cell. Termination and resolution of the forks occurred near midcell, on one side of the septal membrane. The duplicated copies of oriC did not separate until late in elongation, when the daughter chromosomes segregated into bilobed nucleoids, suggesting sister chromatid cohesion at or near the oriC region. Components of the replication machinery, viz., HpDnaB and HpDnaG (DNA primase), were found associated with the cell membrane. A model for the assembly and location of the H. pylori replication machinery during chromosomal duplication is presented.
Collapse
|
27
|
Smiley R, Bailey J, Sethuraman M, Posecion N, Showkat Ali M. Comparative proteomics analysis of sarcosine insoluble outer membrane proteins from clarithromycin resistant and sensitive strains of Helicobacter pylori. J Microbiol 2013; 51:612-8. [PMID: 24173641 DOI: 10.1007/s12275-013-3029-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/25/2013] [Indexed: 12/31/2022]
Abstract
Helicobacter pylori causes disease manifestations in humans including chronic gastric and peptic ulcers, gastric cancer, and lymphoid tissue lymphoma. Increasing rates of H. pylori clarithromycin resistance has led to higher rates of disease development. Because antibiotic resistance involves modifications of outer membrane proteins (OMP) in other Gram-negative bacteria, this study focuses on identification of H. pylori OMP's using comparative proteomic analyses of clarithromycin-susceptible and -resistant H. pylori strains. Comparative proteomics analyses of isolated sarcosine-insoluble OMP fractions from clarithromycin-susceptible and -resistant H. pylori strains were performed by 1) one dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis protein separation and 2) in-gel digestion of the isolated proteins and mass spectrometry analysis by Matrix Assisted Laser Desorption Ionization-tandem mass spectrometry. Iron-regulated membrane protein, UreaseB, EF-Tu, and putative OMP were down-regulated; HopT (BabB) transmembrane protein, HofC, and OMP31 were up-regulated in clarithromycin-resistant H. pylori. Western blotting and real time PCR, respectively, validated UreaseB subunit and EF-Tu changes at the protein level, and mRNA expression of HofC and HopT. This limited proteomic study provides evidence that alteration of the outer membrane proteins' profile may be a novel mechanism involved in clarithromycin resistance in H. pylori.
Collapse
Affiliation(s)
- Rebecca Smiley
- Department of Clinical Investigation, William Beaumont Army Medical Center, 5005 Piedras Street, El Paso, TX, 79920-5001, USA
| | | | | | | | | |
Collapse
|
28
|
The Role of Helicobacter pylori Outer Membrane Proteins in Adherence and Pathogenesis. BIOLOGY 2013; 2:1110-34. [PMID: 24833057 PMCID: PMC3960876 DOI: 10.3390/biology2031110] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/26/2013] [Accepted: 08/13/2013] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori is one of the most successful human pathogens, which colonizes the mucus layer of the gastric epithelium of more than 50% of the world’s population. This curved, microaerophilic, Gram-negative bacterium induces a chronic active gastritis, often asymptomatic, in all infected individuals. In some cases, this gastritis evolves to more severe diseases such as peptic ulcer disease, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. H. pylori has developed a unique set of factors, actively supporting its successful survival and persistence in its natural hostile ecological niche, the human stomach, throughout the individual’s life, unless treated. In the human stomach, the vast majority of H. pylori cells are motile in the mucus layer lining, but a small percentage adheres to the epithelial cell surfaces. Adherence to the gastric epithelium is important for the ability of H. pylori to cause disease because this intimate attachment facilitates: (1) colonization and persistence, by preventing the bacteria from being eliminated from the stomach, by mucus turnover and gastric peristalsis; (2) evasion from the human immune system and (3) efficient delivery of proteins into the gastric cell, such as the CagA oncoprotein. Therefore, bacteria with better adherence properties colonize the host at higher densities. H. pylori is one of the most genetically diverse bacterial species known and is equipped with an extraordinarily large set of outer membrane proteins, whose role in the infection and persistence process will be discussed in this review, as well as the different receptor structures that have been so far described for mucosal adherence.
Collapse
|
29
|
Fowsantear W, Argo E, Pattinson C, Cash P. Comparative proteomics of Helicobacter species: the discrimination of gastric and enterohepatic Helicobacter species. J Proteomics 2013; 97:245-55. [PMID: 23899588 DOI: 10.1016/j.jprot.2013.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 07/11/2013] [Accepted: 07/14/2013] [Indexed: 12/26/2022]
Abstract
UNLABELLED Helicobacter pylori is a major human pathogen that infects the gastric mucosa and is responsible for a range of infections including gastritis and gastric carcinoma. Although other bacteria within the Helicobacter genus can also infect the gastric mucosa, there are Helicobacter species that infect alternative sites within the gastrointestinal (GI) tract. Two-dimensional gel electrophoresis was used to compare the cellular proteomes of seven non-pylori Helicobacters (H. mustelae, H. felis, H. cinaedi, H. hepaticus, H. fennelliae, H. bilis and H. cholecystus) against the more extensively characterised H. pylori. The different Helicobacter species showed distinctive 2D protein profiles, it was possible to combine them into a single dataset using Progenesis SameSpots software. Principal Component Analysis was used to search for correlations between the bacterial proteomes and their sites of infection. This approach clearly discriminated between gastric (i.e. those which infect in the gastric mucosa) and enterohepatic Helicobacter species (i.e. those bacteria that infect the small intestine and hepatobillary regions of the GI tract). Selected protein spots showing significant differences in abundance between these two groups of bacteria were identified by LC-MS. The data provide an initial insight into defining those features of the bacterial proteome that influence the sites of bacterial infection. BIOLOGICAL SIGNIFICANCE This study demonstrated that representative members of the Helicobacter genus were readily discriminated from each other on the basis of their in vitro whole cell proteomes determined using 2D gel electrophoresis. Despite the intra-species heterogeneity observed it was possible, to demonstrate that the enterohepatic (represented by H. bilis, H. hepaticus, H. fennelliae, H. cinaedi and H. cholecystus) and gastric (represented by H. pylori, H. mustelae, and H. felis) Helicobacters formed discrete groups based on their 2D protein profiles. A provisional proteomic signature was identified that correlated with the typical sites of colonisation of these members of the Helicobacter genus. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Winita Fowsantear
- Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Evelyn Argo
- Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Craig Pattinson
- Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Phillip Cash
- Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.
| |
Collapse
|
30
|
Champasa K, Longwell SA, Eldridge AM, Stemmler EA, Dube DH. Targeted identification of glycosylated proteins in the gastric pathogen Helicobacter pylori (Hp). Mol Cell Proteomics 2013; 12:2568-86. [PMID: 23754784 PMCID: PMC3769331 DOI: 10.1074/mcp.m113.029561] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Virulence of the gastric pathogen Helicobacter pylori (Hp) is directly linked to the pathogen's ability to glycosylate proteins; for example, Hp flagellin proteins are heavily glycosylated with the unusual nine-carbon sugar pseudaminic acid, and this modification is absolutely essential for Hp to synthesize functional flagella and colonize the host's stomach. Although Hp's glycans are linked to pathogenesis, Hp's glycome remains poorly understood; only the two flagellin glycoproteins have been firmly characterized in Hp. Evidence from our laboratory suggests that Hp synthesizes a large number of as-yet unidentified glycoproteins. Here we set out to discover Hp's glycoproteins by coupling glycan metabolic labeling with mass spectrometry analysis. An assessment of the subcellular distribution of azide-labeled proteins by Western blot analysis indicated that glycoproteins are present throughout Hp and may therefore serve diverse functions. To identify these species, Hp's azide-labeled glycoproteins were tagged via Staudinger ligation, enriched by tandem affinity chromatography, and analyzed by multidimensional protein identification technology. Direct comparison of enriched azide-labeled glycoproteins with a mock-enriched control by both SDS-PAGE and mass spectrometry-based analyses confirmed the selective enrichment of azide-labeled glycoproteins. We identified 125 candidate glycoproteins with diverse biological functions, including those linked with pathogenesis. Mass spectrometry analyses of enriched azide-labeled glycoproteins before and after cleavage of O-linked glycans revealed the presence of Staudinger ligation-glycan adducts in samples only after beta-elimination, confirming the synthesis of O-linked glycoproteins in Hp. Finally, the secreted colonization factors urease alpha and urease beta were biochemically validated as glycosylated proteins via Western blot analysis as well as by mass spectrometry analysis of cleaved glycan products. These data set the stage for the development of glycosylation-based therapeutic strategies, such as new vaccines based on natively glycosylated Hp proteins, to eradicate Hp infection. Broadly, this report validates metabolic labeling as an effective and efficient approach for the identification of bacterial glycoproteins.
Collapse
Affiliation(s)
- Kanokwan Champasa
- Department of Chemistry and Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, USA
| | | | | | | | | |
Collapse
|
31
|
Felső P, Horváth G, Bencsik T, Godányi R, Lemberkovics É, Böszörményi A, Böddi K, Takátsy A, Molnár P, Kocsis B. Detection of the antibacterial effect of essential oils on outer membrane proteins ofPseudomonas aeruginosaby lab-on-a-chip and MALDI-TOF/MS. FLAVOUR FRAG J 2013. [DOI: 10.1002/ffj.3150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Györgyi Horváth
- Department of Pharmacognosy, Medical School; University of Pécs; 7624; Pécs; Rókus u. 2; Hungary
| | - Tímea Bencsik
- Department of Pharmacognosy, Medical School; University of Pécs; 7624; Pécs; Rókus u. 2; Hungary
| | - Roland Godányi
- Department of Pharmacognosy, Medical School; University of Pécs; 7624; Pécs; Rókus u. 2; Hungary
| | - Éva Lemberkovics
- Institute of Pharmacognosy, Faculty of Pharmacy; Semmelweis University; 1085; Budapest; Üllői út 26; Hungary
| | - Andrea Böszörményi
- Institute of Pharmacognosy, Faculty of Pharmacy; Semmelweis University; 1085; Budapest; Üllői út 26; Hungary
| | - Katalin Böddi
- Department of Biochemistry and Medical Chemistry, Medical School; University of Pécs; 7624; Pécs; Szigeti út 12; Hungary
| | - Anikó Takátsy
- Department of Biochemistry and Medical Chemistry, Medical School; University of Pécs; 7624; Pécs; Szigeti út 12; Hungary
| | - Péter Molnár
- Department of Pharmacognosy, Medical School; University of Pécs; 7624; Pécs; Rókus u. 2; Hungary
| | - Béla Kocsis
- Institute of Medical Microbiology and Immunology, Medical School; University of Pécs; 7624; Pécs; Szigeti út 12; Hungary
| |
Collapse
|
32
|
von Rosenvinge EC, O'May GA, Macfarlane S, Macfarlane GT, Shirtliff ME. Microbial biofilms and gastrointestinal diseases. Pathog Dis 2013; 67:25-38. [PMID: 23620117 DOI: 10.1111/2049-632x.12020] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 12/12/2012] [Accepted: 12/12/2012] [Indexed: 12/16/2022] Open
Abstract
The majority of bacteria live not planktonically, but as residents of sessile biofilm communities. Such populations have been defined as 'matrix-enclosed microbial accretions, which adhere to both biological and nonbiological surfaces'. Bacterial formation of biofilm is implicated in many chronic disease states. Growth in this mode promotes survival by increasing community recalcitrance to clearance by host immune effectors and therapeutic antimicrobials. The human gastrointestinal (GI) tract encompasses a plethora of nutritional and physicochemical environments, many of which are ideal for biofilm formation and survival. However, little is known of the nature, function, and clinical relevance of these communities. This review summarizes current knowledge of the composition and association with health and disease of biofilm communities in the GI tract.
Collapse
Affiliation(s)
- Erik C von Rosenvinge
- Department of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
33
|
Kumar R, Mukhopadhyay AK, Ghosh P, Rao DN. Comparative transcriptomics of H. pylori strains AM5, SS1 and their hpyAVIBM deletion mutants: possible roles of cytosine methylation. PLoS One 2012; 7:e42303. [PMID: 22879937 PMCID: PMC3411764 DOI: 10.1371/journal.pone.0042303] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 07/05/2012] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori is an important human pathogen and one of the most successful chronic colonizers of the human body. H. pylori uses diverse mechanisms to modulate its interaction with the host in order to promote chronic infection and overcome host immune response. Restriction-modification genes are a major part of strain-specific genes present in H. pylori. The role of N6 - adenine methylation in bacterial gene regulation and virulence is well established but not much is known about the effect of C5 -cytosine methylation on gene expression in prokaryotes. In this study, it was observed by microarray analysis and RT-PCR, that deletion of an orphan C5 -cytosine methyltransferase, hpyAVIBM in H. pylori strains AM5and SS1 has a significant effect on the expression of number of genes belonging to motility, adhesion and virulence. AM5ΔhpyAVIBM mutant strain has a different LPS profile and is able to induce high IL-8 production compared to wild-type. hpyAVIBM from strain 26695 is able to complement mutant SS1 and AM5 strains. This study highlights a possible significance of cytosine methylation in the physiology of H. pylori.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Asish K. Mukhopadhyay
- Division of Bacteriology, National Institute of Cholera and Enteric Disease, Kolkata, India
| | - Prachetash Ghosh
- Division of Bacteriology, National Institute of Cholera and Enteric Disease, Kolkata, India
| | - Desirazu N. Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
34
|
The Helicobacter pylori autotransporter ImaA (HP0289) modulates the immune response and contributes to host colonization. Infect Immun 2012; 80:2286-96. [PMID: 22566509 DOI: 10.1128/iai.00312-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human pathogen Helicobacter pylori employs a diverse collection of outer membrane proteins to colonize, persist, and drive disease within the acidic gastric environment. In this study, we sought to elucidate the function of the host-induced gene HP0289, which encodes an uncharacterized outer membrane protein. We first generated an isogenic H. pylori mutant that lacks HP0289 and found that the mutant has a colonization defect in single-strain infections and is greatly outcompeted in mouse coinfection experiments with wild-type H. pylori. Furthermore, we used protease assays and biochemical fractionation coupled with an HP0289-targeted peptide antibody to verify that the HP0289 protein resides in the outer membrane. Our previous findings showed that the HP0289 promoter is upregulated in the mouse stomach, and here we demonstrate that HP0289 expression is induced under acidic conditions in an ArsRS-dependent manner. Finally, we have shown that the HP0289 mutant induces greater expression of the chemokine interleukin-8 (IL-8) and the cytokine tumor necrosis factor alpha (TNF-α) in gastric carcinoma cells (AGS). Similarly, transcription of the IL-8 homolog keratinocyte-derived chemokine (KC) is elevated in murine infections with the HP0289 mutant than in murine infections with wild-type H. pylori. On the basis of this phenotype, we renamed HP0289 ImaA for immunomodulatory autotransporter protein. Our work has revealed that genes induced in vivo play an important role in H. pylori pathogenesis. Specifically, the outer membrane protein ImaA modulates a component of the host inflammatory response, and thus may allow H. pylori to fine tune the host immune response based on ImaA expression.
Collapse
|
35
|
Stent A, Every AL, Sutton P. Helicobacter pylori defense against oxidative attack. Am J Physiol Gastrointest Liver Physiol 2012; 302:G579-87. [PMID: 22194421 DOI: 10.1152/ajpgi.00495.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Helicobacter pylori is a microaerophilic, gram-negative pathogen of the human stomach. Despite the chronic active gastritis that develops following colonization, H. pylori is able to persist unharmed in the stomach for decades. Much of the damage caused by gastric inflammation results from the accumulation of reactive oxygen/nitrogen species within the stomach environment, which can induce oxidative damage in a wide range of biological molecules. Without appropriate defenses, this oxidative damage would be able to rapidly kill nearby H. pylori, but the organism employs a range of measures, including antioxidant enzymes, biological repair systems, and inhibitors of oxidant generation, to counter the attack. Despite the variety of measures employed to defend against oxidative injury, these processes are intimately interdependent, and any deficiency within the antioxidant system is generally sufficient to cause substantial impairment of H. pylori viability and persistence. This review provides an overview of the development of oxidative stress during H. pylori gastritis and examines the methods the organism uses to survive the resultant damage.
Collapse
Affiliation(s)
- Andrew Stent
- Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
36
|
Cao Y, Johnson HM, Bazemore-Walker CR. Improved enrichment and proteomic identification of outer membrane proteins from a Gram-negative bacterium: focus on Caulobacter crescentus. Proteomics 2012; 12:251-262. [PMID: 22106052 DOI: 10.1002/pmic.201100288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 10/16/2011] [Accepted: 11/02/2011] [Indexed: 01/04/2025]
Abstract
Efforts to characterize proteins found in the outer membrane (OM) of Gram-negative bacteria have been steadily increasing due to the promise of expanding our understanding of fundamental bacterial processes such as cell adhesion or cell wall biogenesis as well as the promise of finding potential vaccine- or drug-targets for virulent bacteria. We have developed a mass spectrometry-compatible experimental strategy that resulted in increased coverage of the OM proteome of a model organism, Caulobacter crescentus. The specificity of the OM enrichment step was improved by using detergent solubilization of the protein pellet, low-density cell culture conditions, and a surface-layer deficient cell line. Additionally, efficient gel-assisted digestion, high-resolution RP/RP-MS/MS, and rigorous bioinformatic analysis led to the identification of 234 proteins using strict identification criteria (≥ two unique peptides per protein; peptide false discovery rate <2%). Eighty-four of the detected proteins were predicted to localize to the OM or extracellular space. These results represent ~70% coverage of the predicted OM/extracellular proteome of C. crescentus. This analytical approach, which considers important experimental variables not previously explored in published OM protein studies, can be applied to other OM proteomic endeavors "as is" or with slight modification and should improve the large-scale study of this especially challenging subproteome.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
37
|
Hopf PS, Ford RS, Zebian N, Merkx-Jacques A, Vijayakumar S, Ratnayake D, Hayworth J, Creuzenet C. Protein glycosylation in Helicobacter pylori: beyond the flagellins? PLoS One 2011; 6:e25722. [PMID: 21984942 PMCID: PMC3184161 DOI: 10.1371/journal.pone.0025722] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 09/09/2011] [Indexed: 12/13/2022] Open
Abstract
Glycosylation of flagellins by pseudaminic acid is required for virulence in Helicobacter pylori. We demonstrate that, in H. pylori, glycosylation extends to proteins other than flagellins and to sugars other than pseudaminic acid. Several candidate glycoproteins distinct from the flagellins were detected via ProQ-emerald staining and DIG- or biotin- hydrazide labeling of the soluble and outer membrane fractions of wild-type H. pylori, suggesting that protein glycosylation is not limited to the flagellins. DIG-hydrazide labeling of proteins from pseudaminic acid biosynthesis pathway mutants showed that the glycosylation of some glycoproteins is not dependent on the pseudaminic acid glycosylation pathway, indicating the existence of a novel glycosylation pathway. Fractions enriched in glycoprotein candidates by ion exchange chromatography were used to extract the sugars by acid hydrolysis. High performance anion exchange chromatography with pulsed amperometric detection revealed characteristic monosaccharide peaks in these extracts. The monosaccharides were then identified by LC-ESI-MS/MS. The spectra are consistent with sugars such as 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (Pse5Ac7Ac) previously described on flagellins, 5-acetamidino-7-acetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (Pse5Am7Ac), bacillosamine derivatives and a potential legionaminic acid derivative (Leg5AmNMe7Ac) which were not previously identified in H. pylori. These data open the way to the study of the mechanism and role of protein glycosylation on protein function and virulence in H. pylori.
Collapse
Affiliation(s)
- Patrick S. Hopf
- Infectious Diseases Research Group, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Rachel S. Ford
- Infectious Diseases Research Group, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Najwa Zebian
- Infectious Diseases Research Group, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Alexandra Merkx-Jacques
- Infectious Diseases Research Group, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Somalinga Vijayakumar
- Infectious Diseases Research Group, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Dinath Ratnayake
- Infectious Diseases Research Group, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Jacqueline Hayworth
- Infectious Diseases Research Group, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Carole Creuzenet
- Infectious Diseases Research Group, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
38
|
Taddei CR, Oliveira FF, Piazza RMF, Paes Leme AF, Klitzke CF, Serrano SMT, Martinez MB, Elias WP, Sant Anna OA. A Comparative Study of the Outer Membrane Proteome from an Atypical and a Typical Enteropathogenic Escherichia coli. Open Microbiol J 2011; 5:83-90. [PMID: 21804903 PMCID: PMC3143538 DOI: 10.2174/1874285801105010083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/09/2011] [Accepted: 05/12/2011] [Indexed: 01/29/2023] Open
Abstract
This study compared the proteomic profile of outer membrane proteins (OMPs) from one strain of atypical enteropathogenic Escherichia coli (aEPEC) and one of typical EPEC (tEPEC). The OMPs fractions were obtained using sarcosine extraction, and analyzed by one- and two-dimensional gel electrophoresis (1DE and 2DE, respectively). The 1DE OMPs analysis of typical and atypical EPEC evidenced similar patterns; however, the 2DE OMP profile from the aEPEC revealed more protein spots in the 40- to 70-kDa region. 2DE image analysis identified 159 protein spots in both strains whereas 53 protein spots were observed only in tEPEC and 128 were observed only in aEPEC. Remarkably, 41.5% of aEPEC spots showed higher levels of expression compared to tEPEC, some of which with two, others four or even five times more. Twenty-four selected spots were identified using MALDI-TOF mass spectrometry and they corresponded to proteins involved in cell structure and metabolism, as well as in gene regulation. Some of these proteins showed similarity with proteins identified in other E. coli pathotypes. Besides, the differential expression of some proteins in aEPEC may suggest that it could be related to their features that ascertain the adaptation to distinct environments and the worldwide spread distribution of these pathogens.
Collapse
Affiliation(s)
- Carla R Taddei
- Laboratório de Bacteriologia, Av. Vital Brasil, 1500 - 05503-900, Instituto Butantan, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cash P. Investigating pathogen biology at the level of the proteome. Proteomics 2011; 11:3190-202. [DOI: 10.1002/pmic.201100029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/04/2011] [Accepted: 04/19/2011] [Indexed: 11/12/2022]
|
40
|
A proteomic approach to investigate the differential antigenic profile of two Coxiella burnetii strains. J Proteomics 2011; 74:1150-9. [DOI: 10.1016/j.jprot.2011.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 03/26/2011] [Accepted: 04/17/2011] [Indexed: 11/18/2022]
|
41
|
Bernarde C, Lehours P, Lasserre JP, Castroviejo M, Bonneu M, Mégraud F, Ménard A. Complexomics study of two Helicobacter pylori strains of two pathological origins: potential targets for vaccine development and new insight in bacteria metabolism. Mol Cell Proteomics 2010; 9:2796-826. [PMID: 20610778 PMCID: PMC3101863 DOI: 10.1074/mcp.m110.001065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori infection plays a causal role in the development of gastric mucosa-associated lymphoid tissue (MALT) lymphoma (LG-MALT) and duodenal ulcer (DU). Although many virulence factors have been associated with DU, many questions remain unanswered regarding the evolution of the infection toward this exceptional event, LG-MALT. The present study describes and compares the complexome of two H. pylori strains, strain J99 associated with DU and strain B38 associated with LG-MALT, using the two-dimensional blue native/SDS-PAGE method. It was possible to identify 90 different complexes (49 and 41 in the B38 and J99 strains, respectively); 12 of these complexes were common to both strains (seven and five in the membrane and cytoplasm, respectively), reflecting the variability of H. pylori strains. The 44 membrane complexes included numerous outer membrane proteins, such as the major adhesins BabA and SabA retrieved from a complex in the B38 strain, and also proteins from the hor family rarely studied. BabA and BabB adhesins were found to interact independently with HopM/N in the B38 and J99 strains, respectively. The 46 cytosolic complexes essentially comprised proteins involved in H. pylori physiology. Some orphan proteins were retrieved from heterooligomeric complexes, and a function could be proposed for a number of them via the identification of their partners, such as JHP0119, which may be involved in the flagellar function. Overall, this study gave new insights into the membrane and cytoplasm structure, and those which could help in the design of molecules for vaccine and/or antimicrobial agent development are highlighted.
Collapse
Affiliation(s)
- Cédric Bernarde
- From ‡INSERM U853, 33076 Bordeaux, France and
- §Laboratoire de Bactériologie
| | - Philippe Lehours
- From ‡INSERM U853, 33076 Bordeaux, France and
- §Laboratoire de Bactériologie
| | - Jean-Paul Lasserre
- From ‡INSERM U853, 33076 Bordeaux, France and
- §Laboratoire de Bactériologie
| | - Michel Castroviejo
- ‖Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, and
| | - Marc Bonneu
- **Pôle Protéomique, Plateforme Génomique Fonctionnelle, Université Victor Segalen Bordeaux 2, Bordeaux, F 33076 France
| | - Francis Mégraud
- From ‡INSERM U853, 33076 Bordeaux, France and
- §Laboratoire de Bactériologie
| | - Armelle Ménard
- From ‡INSERM U853, 33076 Bordeaux, France and
- §Laboratoire de Bactériologie
| |
Collapse
|
42
|
Mazzoli R, Fattori P, Lamberti C, Giuffrida MG, Zapponi M, Giunta C, Pessione E. High isoelectric point sub-proteome analysis of Acinetobacter radioresistens S13 reveals envelope stress responses induced by aromatic compounds. MOLECULAR BIOSYSTEMS 2010; 7:598-607. [PMID: 20953507 DOI: 10.1039/c0mb00112k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, the high isoelectric point sub-proteome of Acinetobacter radioresistens S13 grown on aromatic compounds (benzoate or phenol) was analyzed and compared to the protein pattern, in the same pI range, of acetate-grown bacteria (control condition). Analyses concerned both soluble and membrane enriched proteomes and led to the identification of 25 proteins that were differentially expressed among the growth conditions considered: most of them were up-regulated in cells grown on aromatic compounds. Up to 17 identified proteins can be, more or less directly, related to the so called "envelope stress responses": these signal transduction pathways are activated when bacterial cells are exposed to stressing environments (e.g., heat, pH stress, organic solvents, osmotic stress) causing accumulation of misfolded/unfolded cell wall proteins into the periplasmic space. For, at least, five of these proteins (a DegP-like serine protease, a peptidyl-prolyl cis-trans isomerase, a phosphatidylserine decarboxylase, a pseudouridine synthase, and a TolB-like protein) a direct induction via either the σ(E) or the Cpx alternative signalling systems mediating envelope stress responses was previously demonstrated in Gram-negative bacteria. The proteins identified in this study include periplasmic proteases, chaperones, enzymes catalyzing peptydoglycan biogenesis, proteins involved in outer membrane integrity, cell surface properties and cellular redox homeostasis. The present study brings additional information to previous works on the acidic proteome of A. radioresistens S13, thus complementing and refining the metabolic picture of this bacterial strain during growth on aromatic compounds.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Dipartimento di Biologia Animale e dell'Uomo, Università di Torino, Via Accademia Albertina 13, 10123 Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
Kim KM, Lee SG, Cho YA, Song YG, Song JY, Kang HL, Lee WK, Cho MJ, Rhee KH, Baik SC. Identification ofHelicobacter pyloriStrain 51 Major Outer Membrane Proteins by Quadrupole Time of Flight Mass Spectrometry. ACTA ACUST UNITED AC 2010. [DOI: 10.4167/jbv.2010.40.3.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Kyung-Mi Kim
- Department of Microbiology, Gyeongsang National University, Jinju, Korea
| | - Seung-Gyu Lee
- National Institute of Animal Science, Rural Development Administration, Suwon, Korea
| | - Young-A Cho
- Department of Microbiology, Gyeongsang National University, Jinju, Korea
| | - Yun-Gyu Song
- Department of Microbiology, Gyeongsang National University, Jinju, Korea
| | - Jea-Young Song
- Department of Microbiology, Gyeongsang National University, Jinju, Korea
| | - Hyung-Lyun Kang
- Department of Microbiology, Gyeongsang National University, Jinju, Korea
- Research Institute of Life Science, Gyeongsang Nationa University, Jinju, Korea
| | - Woo-Kon Lee
- Department of Microbiology, Gyeongsang National University, Jinju, Korea
- Research Institute of Life Science, Gyeongsang Nationa University, Jinju, Korea
| | - Myung-Je Cho
- Department of Microbiology, Gyeongsang National University, Jinju, Korea
- Research Institute of Life Science, Gyeongsang Nationa University, Jinju, Korea
| | - Kwang-Ho Rhee
- Department of Microbiology, Gyeongsang National University, Jinju, Korea
- Research Institute of Life Science, Gyeongsang Nationa University, Jinju, Korea
| | - Seung-Chul Baik
- Department of Microbiology, Gyeongsang National University, Jinju, Korea
- Research Institute of Life Science, Gyeongsang Nationa University, Jinju, Korea
| |
Collapse
|
44
|
Kumar G, Sharma P, Rathore G, Bisht D, Sengupta U. Proteomic analysis of outer membrane proteins of Edwardsiella tarda. J Appl Microbiol 2009; 108:2214-21. [PMID: 20002913 DOI: 10.1111/j.1365-2672.2009.04627.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS The purpose of this study was to identify outer membrane proteins (OMPs) of Edwardsiella tarda. METHODS AND RESULTS The OMPs from a virulent strain of E. tarda (ET-7) was extracted using lauroyl sarcosine method. The OMPs were analysed by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), and protein spots were identified using matrix assisted laser desorption/ionization-time-of-flight mass spectrometry. A total of 21 proteins were identified from 24 protein spots observed on the 2D-PAGE gel. These proteins were identified as GroEL, antigenic proteins, ABC transporters, elongation factors, OmpA, PTSINtr with GAF domain, catalase C, glycolytic enzymes, DnaJ, transcriptional regulator, proteins mraZ and ccdA. Subcellular localizations, beta-barrel OMPs and lipoproteins of identified proteins were predicted using PSORTb, PRED-TMBB and LipoP1.0 programme. CONCLUSIONS Identification, localization and possible functions of OMPs of E. tarda were studied. SIGNIFICANCE AND IMPACT OF THE STUDY These proteins could be used for development of novel drug targets, diagnostics or vaccine against edwardsiellosis.
Collapse
Affiliation(s)
- G Kumar
- National Bureau of Fish Genetic Resources (ICAR), Lucknow, India
| | | | | | | | | |
Collapse
|
45
|
Gastric helicobacters in domestic animals and nonhuman primates and their significance for human health. Clin Microbiol Rev 2009; 22:202-23, Table of Contents. [PMID: 19366912 DOI: 10.1128/cmr.00041-08] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacters other than Helicobacter pylori have been associated with gastritis, gastric ulcers, and gastric mucosa-associated lymphoid tissue lymphoma in humans. These very fastidious microorganisms with a typical large spiral-shaped morphology were provisionally designated "H. heilmannii," but in fact they comprise at least five different Helicobacter species, all of which are known to colonize the gastric mucosa of animals. H. suis, which has been isolated from the stomachs of pigs, is the most prevalent gastric non-H. pylori Helicobacter species in humans. Other gastric non-H. pylori helicobacters colonizing the human stomach are H. felis, H. salomonis, H. bizzozeronii, and the still-uncultivable "Candidatus Helicobacter heilmannii." These microorganisms are often detected in the stomachs of dogs and cats. "Candidatus Helicobacter bovis" is highly prevalent in the abomasums of cattle but has only occasionally been detected in the stomachs of humans. There are clear indications that gastric non-H. pylori Helicobacter infections in humans originate from animals, and it is likely that transmission to humans occurs through direct contact. Little is known about the virulence factors of these microorganisms. The recent successes with in vitro isolation of non-H. pylori helicobacters from domestic animals open new perspectives for studying these microorganisms and their interactions with the host.
Collapse
|
46
|
Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. Proc Natl Acad Sci U S A 2009; 106:14321-6. [PMID: 19706518 DOI: 10.1073/pnas.0903438106] [Citation(s) in RCA: 271] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ulcer-causing gastric pathogen Helicobacter pylori is the only bacterium known to colonize the harsh acidic environment of the human stomach. H. pylori survives in acidic conditions by producing urease, which catalyzes hydrolysis of urea to yield ammonia thus elevating the pH of its environment. However, the manner in which H. pylori is able to swim through the viscoelastic mucus gel that coats the stomach wall remains poorly understood. Previous rheology studies on gastric mucin, the key viscoelastic component of gastric mucus, indicate that the rheology of this material is pH dependent, transitioning from a viscous solution at neutral pH to a gel in acidic conditions. Bulk rheology measurements on porcine gastric mucin (PGM) show that pH elevation by H. pylori induces a dramatic decrease in viscoelastic moduli. Microscopy studies of the motility of H. pylori in gastric mucin at acidic and neutral pH in the absence of urea show that the bacteria swim freely at high pH, and are strongly constrained at low pH. By using two-photon fluorescence microscopy to image the bacterial motility in an initially low pH mucin gel with urea present we show that the gain of translational motility by bacteria is directly correlated with a rise in pH indicated by 2',7'-Bis-(2-Carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), a pH sensitive fluorescent dye. This study indicates that the helicoidal-shaped H. pylori does not bore its way through the mucus gel like a screw through a cork as has previously been suggested, but instead achieves motility by altering the rheological properties of its environment.
Collapse
|
47
|
Mullaney E, Brown PA, Smith SM, Botting CH, Yamaoka YY, Terres AM, Kelleher DP, Windle HJ. Proteomic and functional characterization of the outer membrane vesicles from the gastric pathogen Helicobacter pylori. Proteomics Clin Appl 2009; 3:785-796. [DOI: 10.1002/prca.200800192] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 01/14/2009] [Accepted: 01/19/2009] [Indexed: 12/28/2022]
Abstract
AbstractThe gastric pathogen Helicobacter pylori causes a spectrum of gastro‐duodenal diseases, which may be mediated in part by the outer membrane vesicles (OMVs) constitutively shed by the pathogen. We aimed to determine the proteome of H. pylori OMV to help evaluate the mechanisms whereby these structures confer their known immuno‐modulatory and cytotoxic activities to host cells, as such disease‐associated activities are also conferred by the bacterium from which the vesicles are derived. We also evaluated the effect of the OMV on gastric/colonic epithelial cells, duodenal explants and neutrophils. A proteomic analysis of the OMV proteins separated by SDS‐PAGE from two strains of H. pylori (J99 and NCTC 11637) was undertaken and 162 OMV‐associated proteins were identified in J99 and 91 in NCTC 11637 by LC‐MS/MS. The vesicles are rich in membrane proteins, porins, adhesins and several molecules known to modulate chemokine secretion, cell proliferation and other host cellular processes. Further, the OMVs are also vehicles for the carriage of the cytotoxin‐associated gene A cytotoxin in addition to the previously documented toxin, vacuolating cytotoxin. Taken together, it is evident from the proteome of H. pylori OMV that these structures are equipped with the molecules required to interact with host cells in a manner not dissimilar from the intact pathogen.
Collapse
|
48
|
Son MH, Yeom JS, Park JS, Park ES, Seo JH, Lim JY, Park CH, Woo HO, Youn HS. Relationship between Helicobacter pylori infection and iron-deficiency anemia in infants and children. KOREAN JOURNAL OF PEDIATRICS 2009. [DOI: 10.3345/kjp.2009.52.5.544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Meong Hi Son
- Department of Pediatrics, The Gyeongsang National University College of Medicine, Jinju, Korea
| | - Jung Suk Yeom
- Department of Pediatrics, The Gyeongsang National University College of Medicine, Jinju, Korea
| | - Ji Suk Park
- Department of Pediatrics, The Gyeongsang National University College of Medicine, Jinju, Korea
| | - Eun Sil Park
- Department of Pediatrics, The Gyeongsang National University College of Medicine, Jinju, Korea
| | - Ji Hyun Seo
- Department of Pediatrics, The Gyeongsang National University College of Medicine, Jinju, Korea
| | - Jae Young Lim
- Department of Pediatrics, The Gyeongsang National University College of Medicine, Jinju, Korea
| | - Chan Hoo Park
- Department of Pediatrics, The Gyeongsang National University College of Medicine, Jinju, Korea
| | - Hyang Ok Woo
- Department of Pediatrics, The Gyeongsang National University College of Medicine, Jinju, Korea
| | - Hee Shang Youn
- Department of Pediatrics, The Gyeongsang National University College of Medicine, Jinju, Korea
| |
Collapse
|
49
|
Oleastro M, Cordeiro R, Ferrand J, Nunes B, Lehours P, Carvalho-Oliveira I, Mendes AI, Penque D, Monteiro L, Mégraud F, Ménard A. Evaluation of the clinical significance of homB, a novel candidate marker of Helicobacter pylori strains associated with peptic ulcer disease. J Infect Dis 2008; 198:1379-87. [PMID: 18811585 DOI: 10.1086/592166] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND homB codes for a putative Helicobacter pylori outer membrane protein and has previously been associated with peptic ulcer disease (PUD) in children. METHODS A total of 190 H. pylori strains isolated from children and adults were studied to evaluate the clinical importance of the homB gene. In vitro experiments were performed to identify HomB mechanisms of bacterial pathogenicity. RESULTS Characterization of the isolates demonstrated that homB was significantly associated with PUD in 86 children (odds ratio [OR], 7.64 [95% confidence interval {CI}, 2.65-22.05]) and in 32 adults < or =40 years of age (OR, 11.25 [95% CI, 1.86-68.13]). homB was correlated with the presence of cagA, babA2, vacAs1, hopQI, and oipA "on" genotype (P< .001) The HomB protein was found to be expressed in the H. pylori outer membrane and was noted to be antigenic in humans. H. pylori homB knockout mutant strains presented reduced ability to induce interleukin-8 secretion from human gastric epithelial cells, as well as reduced capacity to bind to these cells. Both of these functions correlated with the number of homB copies present in a strain. CONCLUSION homB can be considered a comarker of H. pylori strains associated with PUD. Moreover, results strongly suggest that HomB is involved in the inflammatory response and in H. pylori adherence, constituting a novel putative virulence factor.
Collapse
Affiliation(s)
- Mónica Oleastro
- Departamento de Doenças Infecciosas, Instituto Nacional Saúde Dr Ricardo Jorge, Lisbon, Portugal.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Suh MJ, Alami H, Clark DJ, Parmar PP, Robinson JM, Huang ST, Fleischmann RD, Peterson SN, Pieper R. Widespread Occurrence of Non-Enzymatic Deamidations of Asparagine Residues in Yersinia pestis Proteins Resulting from Alkaline pH Membrane Extraction Conditions. ACTA ACUST UNITED AC 2008; 1:106-115. [PMID: 20428468 DOI: 10.2174/1875039700801010106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Extraction of crude membrane fractions with alkaline solutions, such as 100-200 mM Na(2)CO(3) (pH ~11), is often used to solubilize peripheral membrane proteins. Integral membrane proteins are largely retained in membrane pellets. We applied this method to the fractionation of membrane proteins of the plague bacterium Yersinia pestis. Extensive horizontal spot trains were observed in 2-DE gels. The pI values of the most basic spots part of such protein spot trains usually matched the computationally predicted pI values. Regular patterns of decreasing spot pI values and in silico analysis with the software ProMoST suggested ;n-1' deamidations of asparagine (N) and/or glutamine (Q) side chains for ;n' observed spots of a protein in a given spot train. MALDI-MS analysis confirmed the occurrence of deamidations, particularly in N side chains part of NG dipeptide motifs. In more than ten cases, tandem MS data for tryptic peptides provided strong evidence for deamidations, with y- and b-ion series increased by 1 Da following N-to-D substitutions. Horizontal spot trains in 2-DE gels were rare when alkaline extraction was omitted during membrane protein sample preparation. This study strongly supports the notion that exposure to alkaline pH solutions is a dominant cause of extensive N and Q side chain deamidations in proteins during sample preparation of membrane extracts. The modifications are of non-enzymatic nature and not physiologically relevant. Therefore, quantitative spot differences within spot trains in differential protein display experiments following the aforementioned sample preparation steps need to be interpreted cautiously.
Collapse
Affiliation(s)
- Moo-Jin Suh
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, U.S.A
| | | | | | | | | | | | | | | | | |
Collapse
|